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Abstract

Dimensionality reduction methods are routinely employed across scientific dis-
ciplines to make high dimensional data amenable to analysis. Despite their
widespread use, we often lack tools to assess whether their resulting embeddings
are faithful to the underlying manifold structure. Without a rigorous quantitative
assessment of an embedding’s structural properties, it is difficult to quantify their
degree of preservation or distortion of the underlying manifold structure of the
data. We introduce a complementary suite of geometric metrics to quantitatively
audit embedding fidelity across neighborhood sizes: Tangent Space Approximation
(TSA), Local Intrinsic Dimensionality (LID), and Participation Ratio (PR). We com-
pare the dimensionality of each sample before and after embedding, where points
that preserve similar values across transformations are deemed to be geometrically
faithful and thus, representative of true manifold structure in the data.

Across synthetic and biological datasets, we show that these metrics expose dis-
tinct embedding failure modes: TSA is most sensitive to small-scale geometric
distortions, LID captures heterogeneity in mixed-density regions, and PR diag-
noses global variance structure. Finally, we demonstrate that applying Jacobian
Frobenius penalties during autoencoder refinement of embeddings contracts tan-
gent spaces, reduces disagreement between metrics, and improves alignment with
intrinsic manifold geometry. We motivate moving beyond visual heuristics and
making principled, geometry-based choices to inform method selection, improve
representations and motivate geometry-aware objectives for representation learning.

1 Introduction

Dimensionality reduction is used for visualization, clustering, and downstream learning across
numerous domains ranging from single-cell transcriptomics to population genetics [1-3]. When pro-
jecting high-dimensional data into two or three dimensions, we implicitly assume that the embedding
faithfully represents the underlying manifold [4]. This reliability is rarely questioned. However,
embeddings that appear to be well-separated visually can distort local neighborhoods, collapse
directions of variance, or warp tangent spaces in ways that aren’t reliably visualizable in 2 or 3
dimensions [516]. Common quantitative measures, such as explained variance, only provide partial
guarantees. Embeddings can appear similar at a global scale but differ locally. This can lead to
modeling inconsistencies. When dealing with high dimensional data, we assume it is generated from
a lower-dimensional manifold. Modeling with representations that are inconsistent to this manifold
geometrically but are otherwise visually consistent may result in misguided analyses.

In this work, we assess the structural fidelity of embedding spaces by integrating a complementary
set of metrics spanning local and global scales, through neighborhood-based based methods. We
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measure an embedding space’s Local Intrinsic Dimensionality [7], Tangent Space Approximation [8],
Participation Ratio [9]], Trustworthiness and Continuity [10].

We contrast embeddings obtained from Principal Components Analysis (PCA) [L1], which captures
linear variation, against Archetypal Analysis (AA) [12] which emphasizes extreme points on a convex
hull to understand how initial representation spaces influence subsequent embeddings. We then test
whether embeddings can be actively refined to keep local geometry faithful across transformations
via autoencoders, including variants penalizing the Frobenius norm of the Jacobian to smoothen
latent geometry [[13]. This introduces an explicit inductive bias: we trade off some global embedding
fidelity, lost in reconstruction and through subsequent transformations, to obtain locally coherent
latent spaces that better align with the intrinsic manifold structure of the embedding’s source.

2 Methods

Our metric suite is designed to evaluate embedding spaces with a complementary set of geometric
metrics that account for both local and global structure. This enables a comprehensive audit of
embedding fidelity and overall manifold structure. For local metrics, we estimate the Tangent Space
Approximation (TSA) by performing PCA locally within a point’s neighborhood to infer the local
intrinsic dimensionality required to explain a fixed fraction of variance. Local Intrinsic Dimensionality
(LID) measures the effective number of degrees of freedom that are required to describe local structure,
as determined by a maximum likelihood estimate of a point’s neighbors’ distances. Additionally, we
employ Participation Ratio (PR) to estimate the effective number of variance directions, or eigenvalue
spread, for a given local embedding patch. All of these are computed across neighborhood sizes
k € {5,15,25,50,100}. Trustworthiness and Continuity quantify how well local neighborhoods
are preserved globally between the original ambient space and transformed embedded spaces. To
ensure paired comparisons, we fix a random subset of 500 evaluation points per dataset and reuse it
consistently across all methods and seeds.

2.1 Datasets

We evaluate dimensionality reduction methods on two datasets, chosen to highlight distinct manifold
geometries, across synthetic and real world settings. We use the Swiss Roll as a controlled benchmark:
a synthetic 2 dimensional manifold projected into 200 dimensions, with known geodesic distances.
Second, we assess high-dimensional population genomic data from the Human Genome Diversity
Project (HGDP) [14] and Thousand Genomes Project (1KGP) [[15] with mixed-mode distributions,
known population admixture and multi-scale variation, providing a realistic test to assess embedding
fidelity. See appendix and for further details about swissroll and HGDP+1KGP respectively.

2.2 Experimental Pipeline

Our goal is to evaluate how different initial representations and refinement steps affect the preservation
of manifold structure across datasets. We designed a three-stage pipeline beginning with initial
PCA or AA representations. We then obtain refined embeddings through both unregularized
and regularized autoencoder reconstructions of the input spaces. Finally, we evaluated all obtained
downstream embeddings, at both the reconstruction and further transformation stages with our
comprehensive suite of manifold-aware metrics and their correlations against the ambient space
they were generated from.

Stage 1: Initial representations. For each dataset, we first construct two 50-dimensional baseline
representations from both of our source datasets:

* PCA;¢: captures directions of maximal variance via principal components.
* AAj;(: emphasizes extreme points on the convex hull as anchors, points as mixtures of these.

Stage 2: Representation refinement with autoencoders. We train two types of autoencoders to
reconstruct the PCA5q and AAs5q representations:

* AE(PCAj5p) and AE(AAj5p) Standard or "Vanilla" autoencoders trained by minimizing
reconstruction error Lyecon ON the baseline embeddings.
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* AEr(PCAj5p) and AEr(AA5q). Autoencoders trained with an additional penalty on the
Frobenius norm of the encoder Jacobian:

L= Erecon + )\JHJf(:U)H%'

where J;(z) is the Jacobian of the encoder mapping f with respect to its inputs, and A ;
controls the strength of regularization.

This Frobenius penalty encourages the encoder to produce locally smooth, low-curvature latent spaces,
making the refined embeddings less sensitive to noise and better aligned with intrinsic manifold
geometry [13]].

Stage 3: Downstream embeddings. We further reduce each of the three representations from
baseline and refinement stages into 2-dimensional spaces using two common projection methods:
UMAP [16] and PHATE [17], where we sweep over their respective neighborhood parameters
n_neighbors orknn € {5, 15,25, 50,100} to probe method and metric sensitivity to local or global
structure. We then compute the Spearman’s rank correlation from both the "refined" autoencoder and
six downstream embeddings with respect to their original representation spaces, AA or PCA. See
appendix [C] for full architectural details.

3 Results

3.1 Our metric suite reliably estimates known intrinsic dimension on controlled data

We tested if these metrics captured the dimensionality of a dataset that is known to be 2-dimensional.
The Local Intrinsic Dimensionality (LID), Tangent Space Approximation (TSA) and Participation
Ratio (PR) reliably capture the intrinsic dimension of a Swiss Roll in 2 dimensions. The values for
TSA diverge as the number of neighbors gets larger, starting at & = 25 with a more pronounced effect
for the AA than the PCA initial embedding space. Participation Ratio stabilizes at k = 25 in AA, and
right after in PCA. LID shows largely consistent values with a consistent divergence margin from 2
after £ = 5. We found that regularizing the autoencoder with a Frobenius Jacobian penalty produces
embeddings that are locally smoother and consistently lower-dimensional. Full definitions can be
found in Appendix [A.T] The full tables for PCA and AA baselines can be found in Appendix Table 2]

Table 1: Average metric performance of baseline methods on the Swiss Roll dataset across varying
numbers of neighbors (k) for both PCA and AA ambient spaces. For PR, LID, and TSA, values
closer to the intrinsic dimension of the dataset (2) are better.

Method Metric Number of Neighbors (k)
5 15 25 50 100
Local Intrinsic Dim. (LID) 333 204 182 170 1.85
Tangent Space Approx. (TSA) 193 201 206 239 277
PCA Participation Ratio (PR) 1.50 1.68 1.76 195 221
Trustworthiness 1.00 1.00 1.00 1.00 1.00
Continuity 0.80 0.84 0.85 0.87 0.90

Local Intrinsic Dim. (LID) 382 240 221 225 254
Tangent Space Approx. (TSA) 2.14 277 3.11 3.81 496

AA Participation Ratio (PR) 1.59 194 212 245 290
Trustworthiness 1.00 1.00 099 0.99 0.99
Continuity 047 055 060 068 0.74

3.2 Improved local geometry propagates to downstream embeddings

To gauge consistency across embedding spaces, we use the Spearman rank correlation to quantify
how well local neighborhood structure is preserved relative to the baseline embedding. See Figure
for LID, TSA, PR computed at k € {5, 15,25, 50, 100} for all obtained embeddings. Each method’s
n_neighbors or knn parameter included in the figure matches the % value at which it is evaluated.
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Figure 1: Correlations of average metric performance of reconstructions and downstream methods on
the Swiss Roll and HGDP+1KGP datasets across varying numbers of neighbors k against both of the
original PCA and AA ambient spaces.

Frobenius-regularized autoencoders show a higher correlation to the original space for both the Swiss
Roll and heterogenous HGDP+1KGP data. Exceptions are observed for PR and LID in the HGDP
PCA cases, where a UMAP computed on the 50d baseline outperforms it.

4 Discussion

TSA excels for small, near-linear neighborhoods, making it well-suited to measure spaces with
near linear variation. LID is strongest at medium values of & in heterogeneous regions, and PR is
informative at high values of k but loses resolution when variance is concentrated along few directions.
This is especially apparent as noted by a divergence in metric agreement when measuring high
dimensional AA spaces. As AA captures global extremal structure at the expense of local coherence,
methods like TSA fail to capture local neighborhoods while LID and PR remain comparatively
robust in successfully capturing intrinsic dimension. This is the center of our argument: internal
geometrical coherence across embeddings isn’t something that can be reliably seen with global
or isolated metrics. Visual intuition builds on the former, therefore it is insufficient as a measure
of embedding consistency; embeddings must be thoroughly audited before they’re trusted to be
representative of their data.

Embedding spaces can be actively steered via inductive biases like encoder-Jacobian Frobenius
penalties. This geometric regularization contracts tangent spaces, reduces metric disagreement,
and improves alignment between representations. The benefit starts to become apparent when
the neighborhoods grow in heterogeneity, beyond tight local spaces at k& = 25. Systematically
quantifying these trade-offs establishes a foundation for principled, geometry-aware embedding
refinement. This is essential for auditing representations produced by modern foundation models
in a principled, geometry-aware way. Will implementing TSA/PR/LID penalties in the loss terms
of existing encoders when fine-tuning allow us to reconstruct faithful, easily traversable manifolds?
Can measuring geometric embedding quality be a proxy to establish favorable or "well-behaved"
training dynamics? Knowing if methods favor consistent learned representations will allow us to be
intentional about what type of geometry we propagate through in our representations.
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A Details of Measurements Used

A.1 Common notation and metric definitions.

For each point z;, let Ny (x;) be its k nearest neighbors (excluding x; itself) in the ambient or
embedded space. Form the local data matrix X € R¥*P by centering those neighbors, then
compute its covariance

o) — % (XO)T x00).
Let )\(f) > )\gi) > > )\g) be the eigenvalues of C' (1), We will build each metric from these {AS-") }.

Participation Ratio (PR). The local participation ratio measures the effective number of dimensions
utilized in a neighborhood. It is defined by

(ZJ 1 )‘51 )
S

Tangent Space Approximation (TSA). TSA estimates local intrinsic dimension by asking “How
many eigenvalues are needed to capture at least a fraction g of the total variance?”” Concretely:

AW
drsa(zi; q) = min{d: Z]# > q},

D (2)
Jj= 1>\J

where in our experiments ¢ = 0.95.

Local Intrinsic Dimensionality (LID). Unlike variance-based measures, LID estimates local
dimensionality via a Maximum Likelihood framework based on neighbor distances. Let d;(z;) be
the distance to the j-th nearest neighbor of x;, and let dy (x;) be the distance to the k-th (i.e., furthest)
neighbor in the set Ny (z;). The LID at point z; is the maximum likelihood estimate, given by:

1o B
duip () = ( %2:: >

Continuity. Continuity measures the proportion of original high-dimensional neighbors preserved
in the embedding:

Continuity (k) = - Z ’Nk ]?N il )’7

=1

where NJ (z;) is the set of k-nearest neighbors of z; in the embedded space.

Trustworthiness. Trustworthiness penalizes neighbors in the embedding that weren’t true neighbors
in the original space:

Trustworthiness(k) = 1 — E@n Z Z (r(i,5) — k),

i=1 jEN (i) \Nk(2i)

where 7 (1, 7) is the rank of j among the original high-dimensional neighbors of i.

A.2 Rank-based Comparison

We evaluate consistency between embeddings and their original high-dimensional spaces through
rank-based correlation analyses. Given corresponding metrics M; and M/ for each point 7 in the
original and embedded spaces respectively, Spearman’s correlation p is:

63 5y (i — r)?
n(n2—-1) ’

where 7; and 7} denote the ranks of metric values M; and M/ respectively.

p=1- ()



207

208

209
210
211
212
213
214
215

216
217
218

219
220
221
222

223

224
225
226
227
228
229
230
231

232

233

234
235
236
237
238
239
240

241

242
243
244
245
246
247
248

B Dataset details and pre-processing

B.1 Swiss roll

We constructed a synthetic Swiss roll dataset to evaluate the capability of dimensionality reduction
methods. The Swiss roll is designed to represent a two-dimensional plane (y, ) that is smoothly
embedded into a three-dimensional space (z, y, z) through a spiral transformation. By default, the
dataset consists of 100 distributions, each with 50 points, resulting in a total of 5000 samples. For each
distribution, we sample random means for ¢ and y, and add Gaussian noise to introduce variability
around these means. These (y, t) coordinates encode the intrinsic geometry of the data manifold. We
embed the 2D manifold into 3D space using:

xr=t-cost, z=1-sint,

while the y coordinate retains its noisy values. This transforms the flat plane into a 3D Swiss
roll. After this transformation, additional Gaussian noise is added to all 3D coordinates to simulate
observation or measurement noise.

To increase the complexity and evaluate robustness to ambient dimensionality, we further embed the
dataset into a 200-dimensional space by applying a random orthogonal transformation. This projection
preserves pairwise distances while eliminating any axis alignment, simulating high-dimensional
real-world scenarios.

B.2 HGDP + 1KGP

We combined HGDP and 1KGP whole-genome sequencing (WGS) 30X release [[15]. To limit
the genetics markers to a set of good quality and informative polymorphisms, we intersected this
dataset positions contained on a largely used genotyping array (Illumina’s GSAMD-24v3). This set
of positions was then extracted from the 1000G dataset and additional filters were applied on this
resulting intersection, including a maximum missing rate of 10% and minor allele frequency (MAF)
5% thresholds. We performed linkage disequilibrium (LD) pruning on the filtered 1000G dataset
(plink v1.9 —indep-pairwise 50 5 0.5 parameters), followed by the exclusion of the human leukocyte
antigen (HLA) region. The remaining missing data was imputed using ShapelT5.

C Model architecture and tuning

C.1 Vanilla Autoencoder (AE) Configuration

For baseline comparison, a standard autoencoder was trained for 150 epochs to reconstruct the
50-dimensional PCA and AA embeddings. The network’s encoder mapped the 50-dimensional input
to a 10-dimensional latent space through hidden layers of 32 and 16 neurons. The decoder then
reconstructed the original 50-dimensional vector from this latent representation. The model was
optimized using a standard Mean Squared Error (MSE) reconstruction loss, without any additional
regularization on the latent space geometry. An early stopping validation loss was set with a patience
of 10 epochs.

C.2 Autoencoder with Frobenius Penalty (AE ) Configuration

To investigate the effect of smoothing regularization, a second autoencoder (A E'r) was trained for 150
epochs on the 50-dimensional PCA embeddings. This model used an identical network architecture,
with an encoder compressing the input to a 10-dimensional bottleneck via hidden layers of 32 and
16 neurons. Its objective function was augmented with a Jacobian penalty. The model was trained
to minimize a composite loss consisting of the MSE reconstruction error and a regularization term
based on the squared Frobenius norm of the encoder’s Jacobian, with the penalty weighted by a factor
of A = 0.01.



Table 2: Comparison of PCA and AA Baselines with Autoencoder Refinement and Frobenius
Regularization. Metrics reported for varying neighborhood sizes (k). Note: values for LID k = 15
for both autoencoder cases were interpolated due to a mathematical error in computation.

Method Metric k Original AE Refined AE Frobenius
5 3.82 3.63 3.75

15 2.20 2.16 2.21

Local Intrinsic Dim. 25 2.20 2.16 2.03
50 2.19 2.16 1.98

100 2.41 2.40 2.15

5 1.52 1.49 1.51

15 1.88 1.85 1.84

Participation Ratio 25 2.10 2.07 2.03
50 2.41 2.36 2.32

100 2.90 2.81 2.75

5 2.08 2.01 2.06

AA 15 2.82 2.70 2.71
Tangent Space Approx. 25 3.23 3.10 3.08
50 4.01 3.82 3.71

100 5.35 5.07 4.77

5 0.99 0.99 0.99

15 0.98 0.97 0.98

Trustworthiness 25 0.97 0.96 0.97
50 0.96 0.95 0.96

100 0.94 0.94 0.94

5 0.47 0.48 0.46

15 0.54 0.55 0.54

Continuity 25 0.58 0.59 0.57
50 0.64 0.64 0.63

100 0.68 0.69 0.67

5 4.87 3.89 3.85

15 2.88 2.41 2.39

Local Intrinsic Dim. 25 2.46 2.13 2.13
50 2.07 1.90 1.88

100 1.81 1.67 1.65

5 1.65 1.57 1.55

15 2.03 1.77 1.76

Participation Ratio 25 2.06 1.78 1.79
50 2.11 1.92 1.88

100 2.53 1.92 1.88

5 2.17 2.07 2.05

PCA 15 2.79 2.29 2.28
Tangent Space Approx. 25 3.04 2.30 2.31
50 3.40 2.49 2.47

100 3.53 2.69 2.58

5 0.98 0.98 0.98

15 0.98 0.98 0.98

Trustworthiness 25 0.98 0.98 0.98
50 0.98 0.97 0.97

100 0.97 0.97 0.97

5 0.50 0.46 0.47

15 0.55 0.51 0.52

Continuity 25 0.58 0.54 0.55
50 0.63 0.60 0.60

100 0.69 0.66 0.67
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