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Abstract

Dimensionality reduction methods are routinely employed across scientific dis-1

ciplines to make high dimensional data amenable to analysis. Despite their2

widespread use, we often lack tools to assess whether their resulting embeddings3

are faithful to the underlying manifold structure. Without a rigorous quantitative4

assessment of an embedding’s structural properties, it is difficult to quantify their5

degree of preservation or distortion of the underlying manifold structure of the6

data. We introduce a complementary suite of geometric metrics to quantitatively7

audit embedding fidelity across neighborhood sizes: Tangent Space Approximation8

(TSA), Local Intrinsic Dimensionality (LID), and Participation Ratio (PR). We com-9

pare the dimensionality of each sample before and after embedding, where points10

that preserve similar values across transformations are deemed to be geometrically11

faithful and thus, representative of true manifold structure in the data.12

Across synthetic and biological datasets, we show that these metrics expose dis-13

tinct embedding failure modes: TSA is most sensitive to small-scale geometric14

distortions, LID captures heterogeneity in mixed-density regions, and PR diag-15

noses global variance structure. Finally, we demonstrate that applying Jacobian16

Frobenius penalties during autoencoder refinement of embeddings contracts tan-17

gent spaces, reduces disagreement between metrics, and improves alignment with18

intrinsic manifold geometry. We motivate moving beyond visual heuristics and19

making principled, geometry-based choices to inform method selection, improve20

representations and motivate geometry-aware objectives for representation learning.21

1 Introduction22

Dimensionality reduction is used for visualization, clustering, and downstream learning across23

numerous domains ranging from single-cell transcriptomics to population genetics [1–3]. When pro-24

jecting high-dimensional data into two or three dimensions, we implicitly assume that the embedding25

faithfully represents the underlying manifold [4]. This reliability is rarely questioned. However,26

embeddings that appear to be well-separated visually can distort local neighborhoods, collapse27

directions of variance, or warp tangent spaces in ways that aren’t reliably visualizable in 2 or 328

dimensions [5, 6]. Common quantitative measures, such as explained variance, only provide partial29

guarantees. Embeddings can appear similar at a global scale but differ locally. This can lead to30

modeling inconsistencies. When dealing with high dimensional data, we assume it is generated from31

a lower-dimensional manifold. Modeling with representations that are inconsistent to this manifold32

geometrically but are otherwise visually consistent may result in misguided analyses.33

In this work, we assess the structural fidelity of embedding spaces by integrating a complementary34

set of metrics spanning local and global scales, through neighborhood-based based methods. We35
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measure an embedding space’s Local Intrinsic Dimensionality [7], Tangent Space Approximation [8],36

Participation Ratio [9], Trustworthiness and Continuity [10].37

We contrast embeddings obtained from Principal Components Analysis (PCA) [11], which captures38

linear variation, against Archetypal Analysis (AA) [12] which emphasizes extreme points on a convex39

hull to understand how initial representation spaces influence subsequent embeddings. We then test40

whether embeddings can be actively refined to keep local geometry faithful across transformations41

via autoencoders, including variants penalizing the Frobenius norm of the Jacobian to smoothen42

latent geometry [13]. This introduces an explicit inductive bias: we trade off some global embedding43

fidelity, lost in reconstruction and through subsequent transformations, to obtain locally coherent44

latent spaces that better align with the intrinsic manifold structure of the embedding’s source.45

2 Methods46

Our metric suite is designed to evaluate embedding spaces with a complementary set of geometric47

metrics that account for both local and global structure. This enables a comprehensive audit of48

embedding fidelity and overall manifold structure. For local metrics, we estimate the Tangent Space49

Approximation (TSA) by performing PCA locally within a point’s neighborhood to infer the local50

intrinsic dimensionality required to explain a fixed fraction of variance. Local Intrinsic Dimensionality51

(LID) measures the effective number of degrees of freedom that are required to describe local structure,52

as determined by a maximum likelihood estimate of a point’s neighbors’ distances. Additionally, we53

employ Participation Ratio (PR) to estimate the effective number of variance directions, or eigenvalue54

spread, for a given local embedding patch. All of these are computed across neighborhood sizes55

k ∈ {5, 15, 25, 50, 100}. Trustworthiness and Continuity quantify how well local neighborhoods56

are preserved globally between the original ambient space and transformed embedded spaces. To57

ensure paired comparisons, we fix a random subset of 500 evaluation points per dataset and reuse it58

consistently across all methods and seeds.59

2.1 Datasets60

We evaluate dimensionality reduction methods on two datasets, chosen to highlight distinct manifold61

geometries, across synthetic and real world settings. We use the Swiss Roll as a controlled benchmark:62

a synthetic 2 dimensional manifold projected into 200 dimensions, with known geodesic distances.63

Second, we assess high-dimensional population genomic data from the Human Genome Diversity64

Project (HGDP) [14] and Thousand Genomes Project (1KGP) [15] with mixed-mode distributions,65

known population admixture and multi-scale variation, providing a realistic test to assess embedding66

fidelity. See appendix B.1 and B.2 for further details about swissroll and HGDP+1KGP respectively.67

2.2 Experimental Pipeline68

Our goal is to evaluate how different initial representations and refinement steps affect the preservation69

of manifold structure across datasets. We designed a three-stage pipeline beginning with initial70

PCA or AA representations. We then obtain refined embeddings through both unregularized71

and regularized autoencoder reconstructions of the input spaces. Finally, we evaluated all obtained72

downstream embeddings, at both the reconstruction and further transformation stages with our73

comprehensive suite of manifold-aware metrics and their correlations against the ambient space74

they were generated from.75

Stage 1: Initial representations. For each dataset, we first construct two 50-dimensional baseline76

representations from both of our source datasets:77

• PCA50: captures directions of maximal variance via principal components.78

• AA50: emphasizes extreme points on the convex hull as anchors, points as mixtures of these.79

Stage 2: Representation refinement with autoencoders. We train two types of autoencoders to80

reconstruct the PCA50 and AA50 representations:81

• AE(PCA50) and AE(AA50) Standard or "Vanilla" autoencoders trained by minimizing82

reconstruction error Lrecon on the baseline embeddings.83

2



• AEF(PCA50) and AEF(AA50). Autoencoders trained with an additional penalty on the84

Frobenius norm of the encoder Jacobian:85

L = Lrecon + λJ∥Jf (x)∥2F
where Jf (x) is the Jacobian of the encoder mapping f with respect to its inputs, and λJ86

controls the strength of regularization.87

This Frobenius penalty encourages the encoder to produce locally smooth, low-curvature latent spaces,88

making the refined embeddings less sensitive to noise and better aligned with intrinsic manifold89

geometry [13].90

Stage 3: Downstream embeddings. We further reduce each of the three representations from91

baseline and refinement stages into 2-dimensional spaces using two common projection methods:92

UMAP [16] and PHATE [17], where we sweep over their respective neighborhood parameters93

n_neighbors or knn ∈ {5, 15, 25, 50, 100} to probe method and metric sensitivity to local or global94

structure. We then compute the Spearman’s rank correlation from both the "refined" autoencoder and95

six downstream embeddings with respect to their original representation spaces, AA or PCA. See96

appendix C for full architectural details.97

3 Results98

3.1 Our metric suite reliably estimates known intrinsic dimension on controlled data99

We tested if these metrics captured the dimensionality of a dataset that is known to be 2-dimensional.100

The Local Intrinsic Dimensionality (LID), Tangent Space Approximation (TSA) and Participation101

Ratio (PR) reliably capture the intrinsic dimension of a Swiss Roll in 2 dimensions. The values for102

TSA diverge as the number of neighbors gets larger, starting at k = 25 with a more pronounced effect103

for the AA than the PCA initial embedding space. Participation Ratio stabilizes at k = 25 in AA, and104

right after in PCA. LID shows largely consistent values with a consistent divergence margin from 2105

after k = 5. We found that regularizing the autoencoder with a Frobenius Jacobian penalty produces106

embeddings that are locally smoother and consistently lower-dimensional. Full definitions can be107

found in Appendix A.1. The full tables for PCA and AA baselines can be found in Appendix Table 2.108

Table 1: Average metric performance of baseline methods on the Swiss Roll dataset across varying
numbers of neighbors (k) for both PCA and AA ambient spaces. For PR, LID, and TSA, values
closer to the intrinsic dimension of the dataset (2) are better.

Method Metric Number of Neighbors (k)
5 15 25 50 100

PCA

Local Intrinsic Dim. (LID) 3.33 2.04 1.82 1.70 1.85
Tangent Space Approx. (TSA) 1.93 2.01 2.06 2.39 2.77
Participation Ratio (PR) 1.50 1.68 1.76 1.95 2.21

Trustworthiness 1.00 1.00 1.00 1.00 1.00
Continuity 0.80 0.84 0.85 0.87 0.90

AA

Local Intrinsic Dim. (LID) 3.82 2.40 2.21 2.25 2.54
Tangent Space Approx. (TSA) 2.14 2.77 3.11 3.81 4.96
Participation Ratio (PR) 1.59 1.94 2.12 2.45 2.90

Trustworthiness 1.00 1.00 0.99 0.99 0.99
Continuity 0.47 0.55 0.60 0.68 0.74

3.2 Improved local geometry propagates to downstream embeddings109

To gauge consistency across embedding spaces, we use the Spearman rank correlation to quantify110

how well local neighborhood structure is preserved relative to the baseline embedding. See Figure 1111

for LID, TSA, PR computed at k ∈ {5, 15, 25, 50, 100} for all obtained embeddings. Each method’s112

n_neighbors or knn parameter included in the figure matches the k value at which it is evaluated.113
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Figure 1: Correlations of average metric performance of reconstructions and downstream methods on
the Swiss Roll and HGDP+1KGP datasets across varying numbers of neighbors k against both of the
original PCA and AA ambient spaces.

Frobenius-regularized autoencoders show a higher correlation to the original space for both the Swiss114

Roll and heterogenous HGDP+1KGP data. Exceptions are observed for PR and LID in the HGDP115

PCA cases, where a UMAP computed on the 50d baseline outperforms it.116

4 Discussion117

TSA excels for small, near-linear neighborhoods, making it well-suited to measure spaces with118

near linear variation. LID is strongest at medium values of k in heterogeneous regions, and PR is119

informative at high values of k but loses resolution when variance is concentrated along few directions.120

This is especially apparent as noted by a divergence in metric agreement when measuring high121

dimensional AA spaces. As AA captures global extremal structure at the expense of local coherence,122

methods like TSA fail to capture local neighborhoods while LID and PR remain comparatively123

robust in successfully capturing intrinsic dimension. This is the center of our argument: internal124

geometrical coherence across embeddings isn’t something that can be reliably seen with global125

or isolated metrics. Visual intuition builds on the former, therefore it is insufficient as a measure126

of embedding consistency; embeddings must be thoroughly audited before they’re trusted to be127

representative of their data.128

Embedding spaces can be actively steered via inductive biases like encoder-Jacobian Frobenius129

penalties. This geometric regularization contracts tangent spaces, reduces metric disagreement,130

and improves alignment between representations. The benefit starts to become apparent when131

the neighborhoods grow in heterogeneity, beyond tight local spaces at k = 25. Systematically132

quantifying these trade-offs establishes a foundation for principled, geometry-aware embedding133

refinement. This is essential for auditing representations produced by modern foundation models134

in a principled, geometry-aware way. Will implementing TSA/PR/LID penalties in the loss terms135

of existing encoders when fine-tuning allow us to reconstruct faithful, easily traversable manifolds?136

Can measuring geometric embedding quality be a proxy to establish favorable or "well-behaved"137

training dynamics? Knowing if methods favor consistent learned representations will allow us to be138

intentional about what type of geometry we propagate through in our representations.139
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A Details of Measurements Used181

A.1 Common notation and metric definitions.182

For each point xi, let Nk(xi) be its k nearest neighbors (excluding xi itself) in the ambient or183

embedded space. Form the local data matrix X(i) ∈ Rk×D by centering those neighbors, then184

compute its covariance185

C(i) =
1

k
(X(i))⊤X(i).

Let λ(i)
1 ≥ λ

(i)
2 ≥ · · · ≥ λ

(i)
D be the eigenvalues of C(i). We will build each metric from these {λ(i)

j }.186

Participation Ratio (PR). The local participation ratio measures the effective number of dimensions187

utilized in a neighborhood. It is defined by188

PR(xi) =

(∑D
j=1 λ

(i)
j

)2∑D
j=1

(
λ
(i)
j

)2 .
Tangent Space Approximation (TSA). TSA estimates local intrinsic dimension by asking “How189

many eigenvalues are needed to capture at least a fraction q of the total variance?” Concretely:190

dTSA(xi; q) = min

{
d :

∑d
j=1 λ

(i)
j∑D

j=1 λ
(i)
j

≥ q

}
,

where in our experiments q = 0.95.191

Local Intrinsic Dimensionality (LID). Unlike variance-based measures, LID estimates local192

dimensionality via a Maximum Likelihood framework based on neighbor distances. Let dj(xi) be193

the distance to the j-th nearest neighbor of xi, and let dk(xi) be the distance to the k-th (i.e., furthest)194

neighbor in the set Nk(xi). The LID at point xi is the maximum likelihood estimate, given by:195

d̂LID(xi) =

(
−1

k

k∑
j=1

log
dj(xi)

dk(xi)

)−1

.

Continuity. Continuity measures the proportion of original high-dimensional neighbors preserved196

in the embedding:197

Continuity(k) =
1

n

n∑
i=1

∣∣Nk(xi) ∩N ′
k(xi)

∣∣
k

,

where N ′
k(xi) is the set of k-nearest neighbors of xi in the embedded space.198

Trustworthiness. Trustworthiness penalizes neighbors in the embedding that weren’t true neighbors199

in the original space:200

Trustworthiness(k) = 1− 2

nk (2n− 3k − 1)

n∑
i=1

∑
j∈N ′

k(xi)\Nk(xi)

(
r(i, j)− k

)
,

where r(i, j) is the rank of j among the original high-dimensional neighbors of i.201

A.2 Rank-based Comparison202

We evaluate consistency between embeddings and their original high-dimensional spaces through203

rank-based correlation analyses. Given corresponding metrics Mi and M ′
i for each point i in the204

original and embedded spaces respectively, Spearman’s correlation ρ is:205

ρ = 1−
6
∑n

i=1(ri − r′i)
2

n(n2 − 1)
, (1)

where ri and r′i denote the ranks of metric values Mi and M ′
i respectively.206
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B Dataset details and pre-processing207

B.1 Swiss roll208

We constructed a synthetic Swiss roll dataset to evaluate the capability of dimensionality reduction209

methods. The Swiss roll is designed to represent a two-dimensional plane (y, t) that is smoothly210

embedded into a three-dimensional space (x, y, z) through a spiral transformation. By default, the211

dataset consists of 100 distributions, each with 50 points, resulting in a total of 5000 samples. For each212

distribution, we sample random means for t and y, and add Gaussian noise to introduce variability213

around these means. These (y, t) coordinates encode the intrinsic geometry of the data manifold. We214

embed the 2D manifold into 3D space using:215

x = t · cos t, z = t · sin t,

while the y coordinate retains its noisy values. This transforms the flat plane into a 3D Swiss216

roll. After this transformation, additional Gaussian noise is added to all 3D coordinates to simulate217

observation or measurement noise.218

To increase the complexity and evaluate robustness to ambient dimensionality, we further embed the219

dataset into a 200-dimensional space by applying a random orthogonal transformation. This projection220

preserves pairwise distances while eliminating any axis alignment, simulating high-dimensional221

real-world scenarios.222

B.2 HGDP + 1KGP223

We combined HGDP and 1KGP whole-genome sequencing (WGS) 30X release [15]. To limit224

the genetics markers to a set of good quality and informative polymorphisms, we intersected this225

dataset positions contained on a largely used genotyping array (Illumina’s GSAMD-24v3). This set226

of positions was then extracted from the 1000G dataset and additional filters were applied on this227

resulting intersection, including a maximum missing rate of 10% and minor allele frequency (MAF)228

5% thresholds. We performed linkage disequilibrium (LD) pruning on the filtered 1000G dataset229

(plink v1.9 –indep-pairwise 50 5 0.5 parameters), followed by the exclusion of the human leukocyte230

antigen (HLA) region. The remaining missing data was imputed using ShapeIT5.231

C Model architecture and tuning232

C.1 Vanilla Autoencoder (AE) Configuration233

For baseline comparison, a standard autoencoder was trained for 150 epochs to reconstruct the234

50-dimensional PCA and AA embeddings. The network’s encoder mapped the 50-dimensional input235

to a 10-dimensional latent space through hidden layers of 32 and 16 neurons. The decoder then236

reconstructed the original 50-dimensional vector from this latent representation. The model was237

optimized using a standard Mean Squared Error (MSE) reconstruction loss, without any additional238

regularization on the latent space geometry. An early stopping validation loss was set with a patience239

of 10 epochs.240

C.2 Autoencoder with Frobenius Penalty (AEF ) Configuration241

To investigate the effect of smoothing regularization, a second autoencoder (AEF ) was trained for 150242

epochs on the 50-dimensional PCA embeddings. This model used an identical network architecture,243

with an encoder compressing the input to a 10-dimensional bottleneck via hidden layers of 32 and244

16 neurons. Its objective function was augmented with a Jacobian penalty. The model was trained245

to minimize a composite loss consisting of the MSE reconstruction error and a regularization term246

based on the squared Frobenius norm of the encoder’s Jacobian, with the penalty weighted by a factor247

of λ = 0.01.248
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Table 2: Comparison of PCA and AA Baselines with Autoencoder Refinement and Frobenius
Regularization. Metrics reported for varying neighborhood sizes (k). Note: values for LID k = 15
for both autoencoder cases were interpolated due to a mathematical error in computation.

Method Metric k Original AE Refined AE Frobenius

AA

Local Intrinsic Dim.

5 3.82 3.63 3.75
15 2.20 2.16 2.21
25 2.20 2.16 2.03
50 2.19 2.16 1.98

100 2.41 2.40 2.15

Participation Ratio

5 1.52 1.49 1.51
15 1.88 1.85 1.84
25 2.10 2.07 2.03
50 2.41 2.36 2.32

100 2.90 2.81 2.75

Tangent Space Approx.

5 2.08 2.01 2.06
15 2.82 2.70 2.71
25 3.23 3.10 3.08
50 4.01 3.82 3.71

100 5.35 5.07 4.77

Trustworthiness

5 0.99 0.99 0.99
15 0.98 0.97 0.98
25 0.97 0.96 0.97
50 0.96 0.95 0.96

100 0.94 0.94 0.94

Continuity

5 0.47 0.48 0.46
15 0.54 0.55 0.54
25 0.58 0.59 0.57
50 0.64 0.64 0.63

100 0.68 0.69 0.67

PCA

Local Intrinsic Dim.

5 4.87 3.89 3.85
15 2.88 2.41 2.39
25 2.46 2.13 2.13
50 2.07 1.90 1.88

100 1.81 1.67 1.65

Participation Ratio

5 1.65 1.57 1.55
15 2.03 1.77 1.76
25 2.06 1.78 1.79
50 2.11 1.92 1.88

100 2.53 1.92 1.88

Tangent Space Approx.

5 2.17 2.07 2.05
15 2.79 2.29 2.28
25 3.04 2.30 2.31
50 3.40 2.49 2.47

100 3.53 2.69 2.58

Trustworthiness

5 0.98 0.98 0.98
15 0.98 0.98 0.98
25 0.98 0.98 0.98
50 0.98 0.97 0.97

100 0.97 0.97 0.97

Continuity

5 0.50 0.46 0.47
15 0.55 0.51 0.52
25 0.58 0.54 0.55
50 0.63 0.60 0.60

100 0.69 0.66 0.67
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