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Abstract

This report presents a benchmarking study on
intent classification using the ATIS dataset.
The study aims to compare the performance
of traditional machine learning models, such
as Naive Bayes and Support Vector Machines
(SVM), against advanced NLP architectures,
including DistilBERT, which is a state-of-
the-art transformer-based model. Our results
demonstrate that advanced NLP architectures,
particularly DistilBERT, significantly outper-
form traditional machine learning models in
terms of accuracy, precision, and recall, even
when the data is highly imbalanced. These
findings indicate that transformer-based mod-
els are highly effective in solving the intent
classification problem and have significant im-
plications for the design and development of
natural language processing systems. These
results are particularly relevant for intent clas-
sification tasks in specific domains, such as
airline reservations.

1 Introduction

Dialog act classification is a key component of
goal-oriented dialog systems, which are designed
to help users achieve specific objectives through
natural language interaction. The task of dialog
act classification involves identifying the purpose
or intention behind each turn in the dialog, such
as making a request, providing information, or
expressing gratitude. This information is critical
for the system to understand the user’s goals and
respond appropriately, making it a key aspect of
natural language understanding in dialog systems
[36; 26; 17; 44, 23; 39; 30; 34].

However, beyond its practical importance, dia-
log act classification also raises important issues
related to fairness [49; 47; 32; 43], multimodality
[42], and robustness [51; 3; 33; 1;46; 15;55;2]. In
this paper, we take a practical approach to evaluate
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and benchmark various machine learning and ad-
vanced NLP methods for dialog act classification,
focusing on their applicability and performance on
the ATIS dataset.

2 Choice of the dataset

Although  there are numerous datasets
available  for  dialog act classification
[24; 4; 8;40; 19; 11; 35;5;7;22;21; 10; 6;9; 31],
this study focuses specifically on the Airline
Travel Information System (ATIS) dataset, which
is a widely recognized benchmark in natural
language processing (NLP) for intent classifi-
cation. The ATIS dataset comprises over 4,000
spoken English language queries collected from
real-world airline reservation systems, which are
classified into different intent classes such as
flight booking, flight query, flight schedule, and
ground service. First introduced in 1990, the
dataset has since become a standard reference for
evaluating the performance of intent classification
models.

Performing intent classification on the ATIS
dataset is relevant because it simulates real-world
scenarios where users interact with airline reser-
vation systems to make bookings or inquiries.
Accurately classifying user intents from these
queries can help improve the overall user experi-
ence by providing more personalized and efficient
responses. The ATIS dataset is also useful for
evaluating the effectiveness of different intent
classification algorithms and comparing their
performance.

In this report, we will explore the performance
of different intent classification models on the
ATIS dataset. Specifically, we will focus on
comparing the performance of traditional ma-



chine learning algorithms such as Logistic Regres-
sion, Support Vector Machines (SVM), and Naive
Bayes with state-of-the-art deep learning models
such as DistilBERT [29]. The results of our ex-
periments will provide insights into the effective-
ness of different intent classification techniques on
the ATIS dataset and their potential applications in
real-world scenarios.

3 Experiments Protocol

The main objective of our experiments was to
assess how classical ML methods in NLP com-
pared to state-of-the-art models for this particu-
lar dataset in intent classification. The approach
that was taken was to incrementally evaluate more
and more complex methods with out-of-the-box
parameters on typical classification metrics (accu-
racy, precision, recall, fl-score). Details on the
code implementation can be found in this github
repository!.

3.1 Preliminary data analysis

The first step was to analyze the ATIS dataset.
The data was collected using Kaggle?) where
train and test csv files were directly given.

Intent distribution One of the major aspects
that we had to look into was the distribution of
data in regards to the target variable (that is the in-
tent). In this dataset, a total of 8 intent categories
were identified:

* flight: e.g. what flights are available from
pittsburgh to baltimore on thursday morning

* flight time: e.g. what is the arrival time in
san francisco for the 755 am flight leaving
washington

* airfaire: e.g. cheapest airfare from tacoma to
orlando

e aircraft: e.g. what kind of aircraft is used on
a flight from cleveland to dallas

» ground service: e.g. what kind of ground
transportation is available in denver

e airline: e.g. which airline serves denver pitts-
burgh and atlanta

"https://github.com/chrisahn99/nlp_project_intent
Zhttps://www.kaggle.com/datasets/hassanamin/atis-
airlinetravelinformationsystem

* abbreviation: e.g. what is fare code h

* quantity: e.g. please tell me how many non-
stop flights there are from boston to atlanta

A plot chart was visualized to see how intents
were distributed across the dataset:
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Figure 1: Distribution of intents across the ATIS

dataset

Looking at the data, it can clearly be seen that it
is heavily skewed, as the flight is the predominant
label. The proportion of other intents is compara-
tively very small. The heavily imbalanced nature
of the intent distribution was a major issue that we
kept in mind throughout the project.

Query length analysis We observe in 2 that the
length of the query follows a gaussian distribu-
tion. One solution to the variance in query length
is to fix the length of the query. To do that we fix
the length (here 100), then we truncate all query
that are longer and we pad all the queries that are
shorter. The result is a dataset in which all the
queries have the same length.
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Figure 2: Distribution of the query lengths

One approach we considered was to compare
the performance of the models trained on the un-
changed queries, and another with these truncated
queries. However, since we obtained good results
on the unchanged dataset with models that we dis-
cuss about further down, we decided to leave this
comparison for future works.

3.2 Classical ML algorithms

The first approach was to train test traditional ma-
chine learning techniques on the ATIS dataset.
Manual and well-known pre-processing methods
were also injected in the ML pipeline.

Pre-processing The pre-processing can be de-
composed into the following steps:

1. punctuation removal

2. tokenization (using the NLTK

TreebankWordTokenizer)

3. stopwords removal (using the NLTK corpus

stopwords)
4. lemmatization (using the NLTK
WordNetLemmatizer
These pre-processing steps were inte-
grated within a pipeline function called

preprocess_atis.

Implementation Once pre-processing was im-
plemented, the queries were vectorized us-
ing TF-IDF vectorization (using the scikit-learn
TfidfVectorizer, and three types of ML
classifiers were trained on top of these vectorized
entries:

* Logistic Regression

¢ SVM classifier

* Naive Bayes classifier

These classifiers were trained
using the scikit-learn library on
atis_intents_train.csv which has

762 data points, and metrics (loaded through the
metrics.classification_report
function) were evaluated on
atis_intents_test.csv which has 4498
data points.

3.3 Advanced NLP methods

Once results were obtained for the traditional
approaches, it was time to assess how Deep
Learning methods performed. Numerous deep
learning architectures have been tested in liter-
ature for intent classification, such as LSTMs
[12], attention-based CNNs [13], and adversial
multi-task learning [18].

For our implementation, we decided to take
a widely-used library, HuggingFace®, and test a
very popular network, DistilBERT. DistilBERT is
a transformer-based language model that has been
pre-trained on a large corpus of text data. Its ar-
chitecture consists of multiple transformer blocks
that enable it to understand the contextual relation-
ships between words and phrases. During train-
ing, the model learns to generate contextualized
embeddings that capture the meaning of the input
text. In comparison to its predecessor, BERT [20],
DistilBERT is computationally lighter and faster,
while maintaining a similar level of performance.

Pre-processing For the pre-processing, we de-
cided to take automated processing pipelines from
the HuggingFace transformers module. As
such:

* AutoTokenizer loaded from a pretrained
model (distilbert-base-uncased
was used for the tokenization.

* DataCollatorWithPadding was used
for sentence padding.

implementation For implementation, the Hug-
ginFace PyTorch API was used, and training was
done on top of a pretrained DistilBERT model
(distilbert-base—uncased) on 8 labels.
In terms of training parameters, we used:

*https://huggingface.co/



* learning._rate: 2”5

* weight_decay: 0.01

* number of training epochs: 2

Once again, train and test were done on the
same datasets as the ones mentioned in the clas-
sical ML approach.

4 Results

4.1 Performance table

Here are the results that were obtained for each of
the models on atis_intents_test.csv.

Table 1: Performance of models

Model accuracy precision recall fl
Log. Reg. 0.96 0.80 0.76 0.78
SVM 0.96 0.69 0.69 0.68
Naive Bayes 0.89 0.67 0.48 0.52
DistilBERT 0.99 0.93 1.00 0.95

4.2 Confusion matrices

The macro performance metrics given for the
models does not show their performance for each
of the individual intent classes. That is why confu-
sion matrices were visualized to see which of the
intents the models were having difficulties with.
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Figure 3: Confusion matrix on ATIS dataset (test) for
logistic regression
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Figure 4: Confusion matrix on ATIS dataset (test) for
SVM classifier
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Figure 5: Confusion matrix on ATIS dataset (test) for
Naive Bayes classifier
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Figure 6: Confusion matrix on ATIS dataset (test) for
DistilBERT

5 Discussion

5.1 Imbalanced data

What is clearly visible by comparing the clas-
sification results (2) with the confusion matrix
(3,4,5,6) is that for classical ML approaches, the
models have very good macro performances in



terms of accuracy, but are very poor for certain
classes. Often times, these classes correspond to
intents that are very poorly represented (e.g. flight
time - class 1, quantity - class 7), in the dataset,
whereas for the predominant intents (e.g. flight -
class 0) the performance is very good across all
classification metrics.

This highlights the issue of having a imbal-
anced dataset and therefore a need to address
this issue. Data augmentation through synthetic
data generation methods that are adapted for NLP
contexts could be integrated to enhance these
problems.

5.2 Advanced NLP methods

The results shown by the DistilBERT model
however really prove the high performance of
state-of-the-art architectures, notably transformer
architectures. Despite the imbalanced nature of
the dataset, the fine-tuning of a pretrained Distil-
BERT model achieves near perfect classification
results. It should be noted that advanced NLP
models have really come far in natural language
understanding (NLU) tasks, and that now libraries
such as HugginFace allow for quick, easy and
efficient training and implementations of such
powerful models.

We can further compare the results obtained in
this benchmark with existing benchmarks in liter-
ature. Comparing with the benchmark provided
in [27], we see that our DistilBERT model out-
performs state-of-the-art models from three years
ago.

Table 2: DL model benchmark

Model accuracy
RNN-LSTM [16] 0.93
Atten.-BiRNN [14] 0.91
Slot-Gated [25] 0.94
Joint BERT [27] 0.97
Joint BERT + CRF [27] 0.98
DistilBERT (our work) 0.99

6 Future Works

In conclusion, dialog act classification is an im-
portant task in natural language understanding that
has significant implications for the development
of goal-oriented dialog systems. This study has
demonstrated the effectiveness of various models
for classifying dialog acts, including traditional
machine learning approaches and advanced NLP
architectures such as transformer-based models
like DistilBERT. However, there is still much work
to be done in this area, particularly in terms of en-
suring fairness, handling multimodal inputs, and
ensuring robustness in the face of unexpected or
noisy data.

Furthermore, as dialog systems become increas-
ingly sophisticated and rely more heavily on au-
tomatic generation of natural language responses,
it will be important to develop new automatic
metrics to evaluate the performance of these sys-
tems in a more fine-grained and nuanced way. In
particular, there is a need for automatic metrics
[41; 38; 28; 52; 45; 53; 50; 54; 48; 37] that can
accurately capture the quality and appropriateness
of responses in different dialog contexts, as condi-
tioned by the predicted dialog act.

Overall, the findings of this study highlight the
importance of ongoing research and development
in dialog act classification and its application in
the design and evaluation of goal-oriented dialog
systems. By continuing to explore new methods
and metrics for dialog act classification, we can
help to ensure that these systems are more effec-
tive, robust, and equitable for users in a wide range
of domains and contexts.
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