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ABSTRACT

Prevailing self-supervised learning paradigms, such as contrastive learning (CL)
and masked image modeling (MIM), exhibit opposing limitations. CL excels at
learning global semantic representations but sacrifices fine-grained detail, while
MIM preserves local details but struggles with high-level semantics due to its
semantically-agnostic masking, leading to “attention drift”. To unify the strengths
of both, we propose CFMAE, a coarse-to-fine vision pre-training framework that
explicitly learns a Masked AutoEncoder over a hierarchy of visual granulari-
ties. CFMAE synergistically integrates three data granularities: semantic masks
(coarse), instance masks (intermediate), and RGB images (fine). We enforce the
coarse-to-fine principle through two key innovations: (1) a cascaded decoder
that sequentially predicts scene-level semantics, then object-level instances, and
finally pixel-level details, ensuring a structured feature refinement process; and
(2) a progressive masking strategy that creates a dynamic training curriculum,
shifting the model’s focus from coarse scene context to fine local details. To
support this, we construct a large-scale, multi-granular dataset by generating high-
quality pseudo-labels for ImageNet-1K. Extensive experiments show that CFMAE
achieves state-of-the-art performance on image classification, object detection, and
semantic segmentation, validating the effectiveness of our hierarchical design in
learning more robust and generalizable representations.

1 INTRODUCTION
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Figure 1: Attention maps from different methods,
highlighting their representational focus. DINO ex-
cels at capturing high-level semantics, while MAE
and MultiMAE’s attention is directed toward low-
level features. In contrast, our CFMAE effectively
captures features across all levels, successfully
building a more robust hierarchical representation.

Among the diverse paradigms in computer vi-
sion pre-training, contrastive-based (He et al.,
2020; Chen et al., 2020; Caron et al., 2021) and
reconstruction-based (Bao et al., 2021; He et al.,
2022; Xie et al., 2022b) self-supervised learning
have been particularly influential. Despite their
tremendous success, both paradigms exhibit in-
herent, almost opposing, limitations that curtail
their ability to learn truly comprehensive and
universal visual representations.

Contrastive learning (CL), which pulls together
global features from different views of an im-
age, excels at learning high-level semantic rep-
resentations. This makes it highly effective for
image-level tasks like classification and pro-
duces clean, object-centric attention maps as
shown for DINO (Caron et al., 2021) in Fig-
ure 1. However, this strong focus on high-level
semantics inherently limits the capture of fine-
grained spatial information. The loss of low-level detail can limit its performance on dense prediction
tasks that require precise localization and texture understanding, such as object detection and semantic
segmentation (Zhang et al., 2020; Mahajan et al., 2018).
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In contrast, Masked Image Modeling (MIM) has emerged to learn rich spatial information by
reconstructing masked patches. While MIM’s pixel-level objective preserves fine-grained details, its
semantically-agnostic random masking strategy struggles to guide the model toward semantically
critical regions (Kakogeorgiou et al., 2022; Li et al., 2022a). The model often allocates significant
representational capacity to reconstructing simple, low-level areas, while only crudely modeling the
core objects of interest. As shown in Figure 1, MAE (He et al., 2022) and MultiMAE (Bachmann
et al., 2022) produce diffuse attention maps that fail to focus on salient objects.

We refer to these phenomenon as “attention drift”, where pre-training methods develop a biased focus
on certain representational levels, thus failing to learn a complete, hierarchical understanding of the
visual world. An intuitive solution is to introduce semantic guidance to focus the reconstruction on
salient foreground objects, a strategy shown to improve downstream performance (Li et al., 2022a;
Sick et al., 2025). However, existing methods often rely on inaccurate, self-generated attention
maps for this guidance. While modern segmentation models (Kirillov et al., 2023; Ren et al., 2024)
can provide far more precise masks, we argue that simply using them to distinguish foreground
from background offers only a rudimentary form of semantic guidance. A truly comprehensive
visual understanding is inherently multi-granular, requiring a model to perceive the world at multiple
levels of abstraction simultaneously—from coarse scene layouts to intermediate object instances and
fine-grained pixel details. This hierarchical, coarse-to-fine principle is not only a long-standing and
effective strategy in computer vision (Lin et al., 2017; Jiang et al., 2022) but is also deeply rooted
in the efficient processing pipeline of biological vision (Navon, 1977; Serre, 2014), offering proven
advantages in learning speed and generalization (Cho et al., 2021; Chen et al., 2023b).

An ideal pre-training framework should therefore unify the high-level semantic understanding of
CL with the fine-grained detail preservation of MIM through explicit hierarchical guidance. To
this end, we propose a coarse-to-fine strategy across three granularities: beginning with coarse,
scene-level semantics to establish spatial context; then using intermediate, object-level guidance
to focus on key regions; and finally, returning to fine, pixel-level reconstruction to capture local
details and enhance the overall representation. Based on this strategy, we propose CFMAE, a vision
pre-training framework that deeply integrates the coarse-to-fine principle. To provide the model with
hierarchical guidance signals, we incorporate three visual modalities of different granularities: RGB
images (pixel-level), instance segmentation masks (object-level), and semantic segmentation masks
(scene-level). And we enforce the coarse-to-fine principle through two synergistic innovations.

First, we design a cascaded decoder, as opposed to a traditional parallel structure (Bachmann et al.,
2022). It first predicts scene-level semantic masks, then object-level instance masks, and finally
reconstructs pixel-level RGB images. This pipeline ensures that the feature refinement process strictly
follows a path from high-level abstractions to low-level details. To combat the “attention drift” caused
by random masking, we design a dynamic masking strategy that aligns with the objectives of our
cascaded decoder. During training, the focus of the masking follows a carefully designed curriculum,
smoothly transitioning from semantic guidance (focusing on scene regions) to instance guidance
(focusing on objects), and finally refining with random masking (focusing on local details).

To support our framework, we construct a large-scale multi-granular dataset by generating high-quality
aligned instance and semantic segmentation pseudo-labels for all 1.28M images in ImageNet-1K.
Through the deep synergy of the cascaded decoder and progressive masking, CFMAE embeds the
coarse-to-fine principle into every stage of pre-training. This effectively overcomes the limitations
of previous paradigms, enabling the model to learn more robust and generalizable hierarchical
visual representations. As visually evidenced in Figure 1, our method produces attention maps
that perform well across different representation levels, thereby resolving the “attention drift” issue
and validating the successful construction of a true hierarchical visual representation. Extensive
experiments show CFMAE achieves significant performance gains across multiple vision tasks, such
as image classification, object detection, and semantic segmentation.

2 RELATED WORKS

2.1 MASKED IMAGE MODELING

Masked Image Modeling (MIM) has become a dominant self-supervised learning paradigm.
BEiT (Bao et al., 2021) pioneered masked prediction of discrete visual tokens, while MAE (He et al.,
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Figure 2: CFMAE pre-training framework. Multi-granular data (RGB, Instance, Semantic masks)
is first masked by Progressive Masking and then concatenated, and fed to a transformer encoder.
Encoded tokens subsequently flow into a cascaded decoder with three task-specific blocks. Each
block is a standard Transformer decoder block, composed of self-attention, cross-attention, and
feed-forward network layers. We use linear layers as the final predictor. As training progresses, the
masking strategy transitions from semantic-guided masking to instance-guided masking, and finally
to random masking to build hierarchical visual representations.

2022) introduced an influential asymmetric encoder-decoder architecture with a high masking ratio
for predicting raw pixels. Subsequent works like SimMIM (Xie et al., 2022b) (lighter decoder),
iBOT (Zhou et al., 2022) (online tokenizer), and MaskFeat (Wei et al., 2022) (HOG features) fur-
ther refined MIM. Other approaches explored reconstructing deep features (Wang et al., 2023; Ren
et al., 2023), frequencies (Xie et al., 2022a; Xiang et al., 2025), or learning from corrupted (Fang
et al., 2022) and noisy images (You et al., 2024; Xiang et al., 2024). MultiMAE (Bachmann et al.,
2022) extended this paradigm to multi-modal inputs, using a parallel decoder to reconstruct different
modalities simultaneously. Beyond random masking, structured strategies have been investigated:
MST (Li et al., 2021) and AttMask (Kakogeorgiou et al., 2022) used attention maps; ADIOS (Shi
et al., 2022) and AutoMAE (Chen et al., 2023a) employed adversarial mask generation; SemMAE (Li
et al., 2022a) leveraged semantic parts; and UnMAE (Li et al., 2022b) introduced Uniform Masking.
These methods use fixed strategies with specific inductive biases, unlike our progressive masking,
which learns hierarchical representations by evolving the masking focus from high-level semantics to
low-level details.

2.2 HIERARCHICAL REPRESENTATION LEARNING

Learning to capture multi-scale and multi-level features, from low-level textures to high-level se-
mantics, is a core objective in computer vision. Swin Transformer (Liu et al., 2021)introduces
structural biases into ViT through shifted windows and a hierarchical backbone. For specific tasks,
H-ViT (Ghahremani et al., 2024) also constructs a hierarchical Transformer architecture. In terms of
architecture-agnostic approaches, Hiera (Ryali et al., 2023) demonstrates that effective hierarchical
representations can be obtained simply by learning masked autoencoding on multi-scale features.
HGCLIP (Xia et al., 2023) aligns visual features with a predefined class hierarchy. Furthermore,
Zhang & Maire (2020) drives hierarchical learning through self-supervised region grouping. Exam-
ples of applying the coarse-to-fine strategy for specific downstream tasks include MIMO-UNet (Cho
et al., 2021) for image deblurring and CF-ViT (Chen et al., 2023b) for accelerating inference. Unlike

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

these methods, our model, through a unified progressive masking and cascaded decoder, is the
first to establish the coarse-to-fine philosophy as a general pre-training paradigm for hierarchical
representation learning.

3 METHOD

This section details the proposed CFMAE framework. A prerequisite for our coarse-to-fine pre-
training is a dataset with aligned annotations across different levels of granularity. We construct this
large-scale dataset by generating high-quality pseudo-labels for instance and semantic segmentation
on ImageNet-1K. The detailed methodology for this dataset construction is provided in Appendix B.

As illustrated in Figure 2, our CFMAE architecture is then built upon four core components that
leverage this data: multi-granular inputs, a shared encoder, a cascaded decoder, and a top-down
progressive masking strategy. Each of these components is detailed in the following subsections.

3.1 MULTI-GRANULAR INPUTS AND SHARED ENCODER

Our framework utilizes data at three distinct granularities: RGB images (Irgb ∈ RH×W×3), instance
segmentation masks (Iins ∈ ZH×W ), and semantic segmentation masks (Isem ∈ ZH×W ), where
H,W are the image dimensions. Each granularity of input Im for m ∈ {rgb, ins, sem} is first
divided into a sequence of N non-overlapping patches. These patches are then flattened and mapped
to D-dimensional embeddings through granularity-specific linear projection layers, resulting in a
sequence of tokens Zm = {z1m, . . . , zNm} ∈ RN×D. Following the application of our progressive
masking strategy (detailed in Section 3.3), which yields a binary mask, only the visible tokens of
each granularity are selected. The visible tokens across all granularities are then concatenated into a
single sequence Zvis and fed into a shared Vision Transformer (Dosovitskiy et al., 2021) encoder:

Henc = Encoder(Zvis), (1)

where Henc ∈ RNvis×D is the sequence of encoded visible tokens, with Nvis being the number of
visible tokens. This unified representation serves as a comprehensive foundation for the subsequent
hierarchical feature refinement in the cascaded decoder.

3.2 CASCADED DECODER ARCHITECTURE

Our framework features a cascaded decoder that progressively refines features across three sequential
task-specific blocks, indexed by k ∈ {1, 2, 3}. These blocks correspond to the reconstruction
tasks t ∈ {S, I,R} (Semantic, Instance, RGB), respectively, aligning with our top-down masking
strategy. As depicted in Figure 2, the input to the decoder is the sequence of encoded visible tokens
Henc ∈ RNvis×D. Each decoder block k is a standard Transformer decoder block, composed of
self-attention, self-attention, feed-forward network layers. We use simple linear layers for the final
prediction. For a given task t, the inputs to the decoder block k are defined as follows:

Query (Qk): The encoded visible tokens Henc are first combined with the mask tokens to get
full tokens H ∈ R3N×D. Since the tokens for different tasks maintain fixed positions within this
sequence, the query specific to task t is obtained by slicing H along the sequence dimension based
on pre-defined start and end indices (it, jt) as Qk = H[it : jt] ∈ RN×D.

Key (Kk) and Value (Vk): The key and value are formed by fusing the full token sequence H
with the output features from the preceding block, Fk−1 ∈ RN×D (initialized as F0 = 0). This is
achieved via element-wise addition of tokens at corresponding positions: Kk = Vk = H⊕ Fk−1.

The output feature of each task block, Fk ∈ RN×D, is obtained by applying the decoder block:

Fk = DecoderBlockk(Qk,Kk,Vk). (2)

Finally, a task-specific linear predictor generates the reconstruction for task t:

Ît = Predictort(Fk), (3)

where Ît is the reconstructed output for the corresponding task. In contrast to parallel architectures,
this progressive refinement allows each stage to build upon the last, enforcing a coarse-to-fine
information flow that is crucial for learning hierarchical representations.

4
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3.3 TOP-DOWN PROGRESSIVE MASKING STRATEGY

Our top-down progressive masking strategy facilitates hierarchical representation learning through
three pre-training phases using the following generated masks:

• Semantic-guided mask (MS): Applies random masking within each semantic region, with the
number of masked patches allocated to each region being proportional to its relative area.

• Instance-guided mask (MI ): Guides masking based on instance information, prioritizing the
occlusion of object regions over the background.

• Random mask (MR): Applies standard uniform random masking across the image with no
structural guidance.

The final mask M ∈ {0, 1}3N is generated from an intermediate score map Mscore. This score map
is a weighted combination of the binary masks MS ,MI ,MR ∈ {0, 1}N , controlled by coefficients
αI and αS :

Mscore = (1− αI − αS)MR + αIMI + αSMS . (4)

The final binary mask M is then obtained by masking r · 3N patches corresponding to higher scores
in Mscore, where r is the the overall masking ratio. The coefficients αI , αS (where 0 ≤ αI , αS and
αI + αS ≤ 1) are dynamically adjusted during pre-training to smoothly transition the masking focus
from semantic-guided to instance-guided and finally to random masking. This progression creates
a curriculum that guides the model to construct increasingly sophisticated visual representations.
Detailed formulations for generating MS , MI , and MR, and the schedule for αI , αS are provided in
the Appendix C.

3.4 TRAINING OBJECTIVES AND LOSS FUNCTIONS

Our framework is optimized with a multi-task objective to learn a comprehensive representation
across distinct granularity levels. The overall loss combines three reconstruction losses, each aligned
with a stage in our cascaded decoder:

Ltotal = λSLS + λILI + λRLR, (5)

where LS and LI are the cross-entropy losses for semantic and instance mask prediction, respectively,
while LR is the mean squared error for RGB image reconstruction. The coefficients λS, λI, and
λR are weighting factors that balance the contribution of each task, guiding the model to learn a
coarse-to-fine hierarchical visual representation.

4 EXPERIMENTS

This section outlines our experimental validation. We first present the main experimental results,
benchmarking CFMAE against state-of-the-art methods and evaluating its robustness. Following this,
we conduct comprehensive ablation studies to dissect the contributions of key components within
our framework. Finally, qualitative visualizations are provided to intuitively demonstrate the efficacy
of our proposed approach. Detailed experimental settings for the pre-training and downstream task
evaluations can be found in the Appendix D. All experiments were conducted on a server with 8×
NVIDIA Tesla-A100 GPUs.

4.1 MAIN RESULTS

Image Classification. We first evaluate our method on ImageNet-1K, comparing its fine-tuning
top-1 accuracy against key baselines and state-of-the-art methods. Alongside the foundational MAE
baseline, MultiMAE serves as a particularly strong counterpart, as it also leverages multi-modal data
but employs a parallel decoder and a simple random masking strategy.

As shown in Table 1, our CFMAE achieves fine-tuning accuracies of 83.7% and 84.2% after 400
and 1600 pre-training epochs, respectively. This represents a significant improvement over both the
baseline MAE (+0.8%/+0.6%) and MultiMAE (+1.0%/+0.9%). Notably, MultiMAE underperforms
the simpler MAE, suggesting that its parallel processing of modalities fails to effectively integrate

5
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Table 1: Performance comparison of self-supervised methods on ImageNet-1K. We report fine-tuning
Top-1 accuracy (%) of ViT-B. The input size is 224× 224. PT Cost is the relative time to MAE (400
epochs), which is taken as 1.0. * indicates results reproduced using the official code. † means using
multi-granular data as input for fine-tuning.

Method Model Modality Masking PT Epoch PT Cost Acc.

DINO (Caron et al., 2021) ViT-B RGB − 300 − 82.8
BEiT (Bao et al., 2021) ViT-B RGB Random 800 ∼7.0× 83.2
MAE (He et al., 2022)* ViT-B RGB Random 400 ∼1.0× 82.9
MAE (He et al., 2022) ViT-B RGB Random 1600 ∼4.0× 83.6
iBOT (Zhou et al., 2022) ViT-B RGB Random 1600 ∼5.7× 84.0
CAE (Chen et al., 2024) ViT-B RGB Random 800 ∼4.6× 83.6
MaskFeat (Cheng et al., 2022) ViT-B RGB Random 1600 ∼20.1× 84.0
SemMAE (Li et al., 2022a) ViT-B RGB Semantic 800 − 83.3
ConMIM (Yi et al., 2023) ViT-B RGB Random 800 ∼4.4× 83.7
MIRL (Huang et al., 2023) ViT-B RGB Random 800 − 84.1
ROPIM (Haghighat et al., 2024) ViT-B RGB Random 800 ∼10.4× 84.0
MFM (Xie et al., 2022a) ViT-B RGB/Frequency Random 300 ∼1.1× 83.1
MultiMAE* (Bachmann et al., 2022) ViT-B RGB/Dep./Sem. Random 400 ∼1.3× 82.7
MultiMAE (Bachmann et al., 2022) ViT-B RGB/Dep./Sem. Random 1600 ∼5.2× 83.3
CFMAE ViT-B RGB/Inst./Sem. Progressive 400 ∼1.3× 83.7
CFMAE ViT-B RGB/Inst./Sem. Progressive 1600 ∼5.2× 84.2

CFMAE† ViT-B RGB/Inst./Sem. Progressive 1600 ∼5.2× 84.4

Table 2: Object detection and instance segmentation
results on the COCO dataset, with evaluation metrics
of APb (%) and APm (%). The pre-trained ViT-B
backbone is integrated into the Mask R-CNN frame-
work for end-to-end fine-tuning.

Method Model PT Epoch APb APm

BEiT ViT-B 800 35.6 32.6
MAE ViT-B 1600 48.3 42.5
CAE ViT-B 800 49.8 43.9
iBOT ViT-B 1600 48.3 42.7
ConMIM ViT-B 800 47.8 42.5
MIRL ViT-B 800 49.3 43.7
MultiMAE ViT-B 1600 48.1 42.2
CFMAE ViT-B 1600 50.1 44.1

Table 3: Semantic segmentation results on
the ADE20K dataset, with evaluation metrics
of mIoU. The pre-trained ViT-B backbone is
integrated with UperNet for end-to-end fine-
tuning.

Method Model PT Epoch mIoU

BEiT ViT-B 800 47.1
MAE ViT-B 1600 48.1
MaskFeat ViT-B 1600 48.8
SemMAE ViT-B 800 46.3
ConMIM ViT-B 1600 46.0
ROPIM ViT-B 300 48.5
MultiMAE ViT-B 1600 47.8
CFMAE ViT-B 1600 49.1

hierarchical information. In contrast, CFMAE’s superior performance validates that our coarse-
to-fine framework, with its cascaded decoder and progressive masking, successfully learns more
powerful hierarchical representations. Furthermore, we explored fine-tuning on ImageNet-1K using
multi-granular data as input, achieving a final accuracy of 84.4%, which is competitive with current
state-of-the-art methods. This indicates that within our framework, the different data granularities
can also synergistically boost downstream task performance.

In terms of computational cost, CFMAE’s training time is nearly identical to MultiMAE’s and
only about 1.3 times that of MAE, primarily due to the increased number of input tokens. The
overhead from the cascaded decoder and progressive mask generation is negligible. Crucially, our
400-epoch model already surpasses the performance of MAE’s 1600-epoch model (83.7% vs. 83.6%).
This demonstrates that CFMAE not only achieves higher accuracy but does so more efficiently,
constructing rich hierarchical representations in a fraction of the training time.

Object Detection and Instance Segmentation. To evaluate the transferability of our approach to
dense downstream tasks, we conduct experiments on object detection and instance segmentation

6
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using the COCO dataset. As shown in Table 2, our pre-trained model achieves significant gains over
key baselines. Specifically, CFMAE outperforms MAE by +1.8 APb and +1.6 APm, and surpasses
MultiMAE by +2.0 APb and +1.9 APm in object detection and instance segmentation, respectively.
These substantial improvements underscore that our coarse-to-fine pre-training framework effectively
enhances the model’s ability to capture the hierarchical features crucial for complex dense prediction
tasks.

Semantic Segmentation. We also evaluate our method on semantic segmentation using the ADE20K
dataset, with mIoU as the evaluation metric. The results, summarized in Table 3, show that our
approach consistently surpasses the performance of competing methods. These findings further
highlight the effectiveness of our framework in capturing multi-level semantic information, enabling
superior generalization across diverse segmentation tasks.

Table 4: Robustness results of ViT-B on various Ima-
geNet OOD variants. Top-1 accuracy is reported for
all datasets, except for ImageNet-C, where the mean
corruption error (mCE) is the evaluation metric. And
(1-mCE) is used to calculate the average score.

Method IN-A IN-R IN-S IN-C ↓ Score

MAE 35.9 48.3 34.5 51.7 41.8
MFM 32.7 48.6 34.8 47.5 42.2
MultiMAE 33.2 49.9 37.2 49.6 42.7
CFMAE 35.2 50.6 37.4 48.8 43.6

Robustness Evaluation. We assess the
robustness of our methods across various
out-of-distribution (OOD) ImageNet bench-
marks, including ImageNet-A (Hendrycks
et al., 2021b), ImageNet-R (Hendrycks
et al., 2021a), ImageNet-Sketch (Wang et al.,
2019), and ImageNet-C (Hendrycks & Diet-
terich, 2019). Top-1 accuracy is the primary
evaluation metric for all datasets, except for
ImageNet-C, where we report mean corrup-
tion error (mCE). To derive the final robust-
ness score, we calculate 1− mCE and take
the average across all tested datasets. As
shown in Table 4, our method demonstrates
superior robustness compared to other ap-
proaches. We achieve improvements across all four OOD datasets, with the most significant gains
observed on ImageNet-R and ImageNet-Sketch. Specifically, our model shows an average score
increase of 1.8% and 0.9% over MAE and MultiMAE, highlighting that our framework helps the
model learn more robust visual representations, significantly enhancing its robustness against OOD
data.

4.2 ABLATION STUDIES

Table 5: Component analysis of CFMAE on ImageNet-
1K. Starting from a MultiMAE baseline, we incremen-
tally add our proposed components.

Configuration Top-1

Baseline (MultiMAE) 82.7
+ Our Dataset (R+I+S) 83.0 (+0.3)
+ Cascaded Decoder 83.3(+0.3)
+ Progressive Masking (Ours) 83.7(+0.4)

In this section, we perform ablation studies
to evaluate the key components of our frame-
work. All models are pre-trained for 400
epochs using ViT-B. We first conduct a step-
by-step component analysis. Starting from
the MultiMAE baseline, we incrementally
add our proposed components. The results
are presented in Table 5. This incremen-
tal performance gain at each step strongly
verifies the effectiveness and synergistic na-
ture of our proposed components. Then, we
further investigate the hyper-parameters and
design choices for different components, in-
cluding input tokens, masking strategy, decoder design, input modality, and loss weight. The results
are summarized in Table 6.

Input Tokens. We use the number of input tokens as a proxy for the mask ratio. Given that the
total number of tokens across the three modalities is set to 196× 3 by default, an input token count
of 98/147/196 corresponds to a mask ratio of 0.833/0.75/0.667. Table 6a demonstrates that in our
framework, a higher mask ratio (fewer input tokens) facilitates the model in capturing both modality-
specific features and cross-modal interactions. This leads to improved representation learning while
also enhancing training efficiency.
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Table 6: CFMAE ablation experiments on ImageNet-1K. The fine-tuning Top-1 accuracy (%) is
reported. The default settings include 98 for the number of input tokens, progressive masking with
the order of SG→IG→RD, a cascaded decoder with cross-attention and task sequence of S→I→R,
R+I+S for the input modality, and λS = λI = λR = 1 for loss weight. The selected settings are
underlined.

(a) Input Tokens.

Number Top-1

98 83.7
147 83.7
196 83.5

(b) Single Masking strategy.

Type Top-1

RD 83.3
IG 83.5
SG 83.4

(c) Masking order.

Type Top-1

IG→SG→RD 83.5
RD→IG→SG 83.5
SG→IG→RD 83.7

(d) Decoder Design.

Type Top-1

Parallel 83.3
w/o CA 83.2
R→I→S 83.5
S→I→R 83.7

(e) Input modality.

Modality Top-1

RGB 82.9
R+S 83.2
R+I 83.1

R+I+S 83.3

(f) Loss weight.

λS , λI , λR Top-1

1, 1, 1 83.7
1, 1, 2 83.7
1, 2, 1 83.4
2, 1, 1 83.5
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Figure 3: Predictions of CFMAE on masked multi-granular data. All the tested images are from the
ImageNet-1K validation set and masked with the random masking strategy.

Mask strategy. To verify the effectiveness of our proposed masking strategy, we first evaluate
the three core masking approaches, Random Masking (RD), Instance-Guided Masking (IG), and
Semantic-Guided Masking (SG) individually. The results in Table 6b demonstrate that both IG and SG
strategies contribute positively to representation learning compared to RD. Building on this, to assess
the impact of dynamically sequencing these strategies, we test our progressive masking approach with
different orders. As evidenced in Table 6c, our progressive masking strategy demonstrates superior
efficacy over static random masking in facilitating hierarchical visual representations. The top-down
masking order(SG→IG→RG), well-aligned with our cascaded decoder architecture, yields further
performance gains. Our progressive masking scheme enables the model to progressively construct
visual features through semantic abstraction hierarchies, beginning with high-level semantic concepts
and gradually refining localized detail representations.

Decoder Desgin. We evaluate the effectiveness of cascaded decoders within our framework, and
further investigate the impacts of cross-attention mechanisms and task sequencing in reconstruction
objectives. As demonstrated in Table 6d, the cascaded decoder architecture significantly enhances
the hierarchical construction of visual representations compared to the parallel decoder. The task
sequence, starting with semantic mask prediction, followed by instance mask prediction, and ending
with RGB image reconstruction, effectively supports hierarchical feature development. Notably, cross-
attention plays a critical role in the decoder design by facilitating effective cross-modal interaction.
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Figure 4: Single-modal prediction of CFMAE and MultiMAE on the ImageNet-1K validation set.

Input modality. We conduct an ablation study to isolate the contribution of each data granularity.
Here, we use random masking because progressive masking requires the presence of all granularities.
The results presented in Table 6e clearly illustrate that data from each distinct granularity positively
contributes to the visual model’s representation learning. Moreover, these granularities exhibit a
synergistic effect, collectively enhancing the model’s capacity to learn more robust and superior
visual representations.

Loss weight. We investigate the impact of different weighting schemes for the semantic (λS),
instance (λI ), and RGB (λR) reconstruction losses. As shown in Table 6f, we observe that when RGB
reconstruction is the dominant task (e.g., λR ≥ λS , λI ), downstream task performance is generally
strong, likely because RGB images implicitly contain the richest information. For simplicity, we
adopt equal weights (λS = λI = λR = 1) as our default setting.

4.3 VISUALIZATIONS

To highlight the improvements in representation learning achieved by our dataset and framework, we
visualize the reconstruction results of our pre-trained auto-encoder across different data modalities.
All images are from the ImageNet-1K validation set. Figure 3 illustrates the reconstruction capabilities
of CFMAE on masked multi-granular data. As shown, our model effectively reconstructs each
granular data under different input conditions. Thanks to the interactivity and complementarity
between the multi-granular dataset we have constructed, our model performs well in predicting fine
details. Moreover, in some cases, it can even correct errors in the pseudo-labels, as seen in the
instance prediction in Figure 3b. We further explore using single-modal data to predict data from
other modalities, e.g. leveraging fine-grained RGB images to predict coarse-grained instance and
semantic masks. The results shown in Figure 4 highlight the transferability of our method across
different modalities. Compared to MultiMAE, our model not only delivers superior performance in
predicting finer details but also demonstrates greater robustness, e.g. being unaffected by reflections
of birds in water in Figure 4b. More visualization results can be found in Appendix E.

5 CONCLUSION

In this paper, we propose CFMAE, a novel coarse-to-fine vision pre-training framework that hierar-
chically integrates RGB images, instance masks, and semantic masks through a cascaded decoder
and progressive masking strategy. By adhering to a strict coarse-to-fine principle, our method builds
hierarchical representations from global semantics to fine-grained details, achieving state-of-the-art
performance across classification, detection, and segmentation tasks. Furthermore, the large-scale,
multi-granular pseudo-labels dataset we constructed provides a valuable resource for future research
in hierarchical representation learning.

Limitations. While CFMAE shows promising results, future work could explore several directions.
First, despite its multi-granular scalability, the current CFMAE integrates only RGB, instance, and
semantic masks. Incorporating finer-grained segmentation or broader visual modalities could further
enhance hierarchical representation learning. Second, to inject richer semantic knowledge into the
hierarchy, a feature alignment module could be integrated at the initial decoder stages. By aligning
the model’s internal features with powerful external embeddings (e.g., from CLIP (Radford et al.,
2021)), this approach could significantly boost the final hierarchical representations. These aspects
are left for future exploration.
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Reproducibility Statement. The Key source code of MsTok has been included in the supplementary
materials. All execution configurations, relevant parameters, and tratectory sampling implementations
are provided within the associated scripts and data projects, facilitating reproducibility of the results.
The core CFMAE source code (cascaded decoder, progressive masking) is included in the supple-
mentary materials. All hyper-parameters for pre-training and downstream fine-tuning are specified
in the main paper and Appendix (Tables 7, 8, 9, 10). The dataset construction (instance/semantic
pseudo-label generation) is fully described in Appendix B. Together these resources enable faithful
reproduction of our results.
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APPENDIX

In this appendix, we first provide the statement about the use of large Language Models(LLMS) in
Section A. We then show the details of how to construct the multi-granular pseudo-label dataset based
on ImageNet-1K in Section B. Then, we present the detailed formulations of Progressive Masking
Strategy in Section C. Subsequently, we show more insightful visualization results on the proposed
dataset and single-modal/multi-modal predictions in Section D. Finally, we provide the detailed
experimental settings for the pre-training and fine-tuning stage in Section E.

A THE USE OF LARGE LANGUAGE MODELS(LLMS)

We acknowledge the use of large language models (LLMs) as writing assistants only for gram-
maticaand style. LLMs are not employed in the core research methodology, experimental design,
dataanalysis, or generation of research findings presented in this paper. All textual content has
beerrigorously reviewed and verified by the authors to ensure accuracy and authenticity of the
researchcontributions.

B DATASET CONSTRUCTION

To facilitate hierarchical visual representation learning, we construct a large-scale multi-granular
visual dataset that augments ImageNet with multi-level segmentation annotations. Building upon the
complete ImageNet-1K dataset (1.28M training images), we leverage SAM-based methods (Kirillov
et al., 2023; Ke et al., 2024; Zou et al., 2024; Ren et al., 2024) to generate high-quality instance
segmentation masks for individual objects, as well as corresponding semantic segmentation masks
for entire image regions. Each image in our dataset is accompanied by precisely aligned instance-
level and semantic-level annotations, enabling models to progressively learn scene-level semantics,
object-level structures, and pixel-level details.

To generate high-quality instance-level segmentation annotations, we develop a two-stage pipeline
referring to Grounded SAM (Ren et al., 2024). For each image in ImageNet, we first utilize
Grounded DINO (Liu et al., 2023) to detect all relevant objects based on the provided text prompts,
where we simply use category names as the prompts for efficient processing. The detected objects are
then cropped and processed as input to the SAM model to obtain instance masks. To further enhance
the mask quality, we employ HQ-SAM (Ke et al., 2024) as the second-stage segmentation model,
which significantly improves the mask details, particularly around object boundaries. During the
dataset construction process, we adopt an adaptive confidence thresholding strategy. Starting with
a high confidence threshold, we generate initial masks for images where target objects are clearly
visible. For images with few or no masks, we gradually lower the confidence threshold to ensure
comprehensive coverage while maintaining annotation quality. This approach effectively prevents the
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generation of excessive irrelevant masks within a single image, thereby ensuring the overall quality
of our instance-level annotations.

To generate high-quality semantic segmentation annotations for our ImageNet-based dataset, we
leverage another SAM-based framework SEEM (Zou et al., 2024). Previous work, MultiMAE (Bach-
mann et al., 2022), utilized the Mask2Former (Cheng et al., 2022) model with a Swin-S (Liu et al.,
2021) backbone trained on COCO (Lin et al., 2014) dataset. In contrast, our approach employs a
more advanced SAM-based methodology, which demonstrates superior boundary accuracy, better
handling of complex scenes, and enhanced ability to segment fine-grained details, compared to prior
techniques. Moreover, it exhibits stronger generalization capability across diverse object appearances
and scenarios, which is particularly crucial for the wide variety of images in ImageNet. To ensure
optimal segmentation quality, we employ the large-size model of the SEEM, which provides a more
comprehensive semantic understanding and more precise mask generation compared to smaller
architectures. Following the COCO categorical structure, we define a total of 133 classes, comprising
80 thing classes for countable objects and 53 stuff classes for uncountable background elements.
This rich categorical system enables our model to capture both foreground objects and contextual
information effectively.

We provide visualizations of our dataset in the Appendix D.1.

C DETAILED FORMULATIONS OF PROGRESSIVE MASKING

The progressive masking strategy guides the model through three distinct learning phases. Below we
detail each phase of our masking strategy and explain how they collectively contribute to hierarchical
representation learning.

Random Masking for Local Feature Understanding. In this phase, we employ random masking
to establish foundational visual understanding. Given input data from different modalities divided
into N patches, we apply independent random masking for each modality. For each modality
m ∈ {rgb, ins, sem} where rgb, ins, sem means RGB/Instance/Semantic, its masking ratio rm is
sampled from a Dirichlet distribution following MultiMAE (Bachmann et al., 2022), with a total
masking ratio of r. Therefore, the masking process can be described as:

Mm
R = frand(rm) ∈ {0, 1}N , (6)

where frand is a random select function, Mm
R denotes the binary masking matrix for modality m,

with 1 indicating masked positions. Note that |Mm
R | = ⌊rmN⌋, where | · | represents the matrix norm

of the mask, and ⌊·⌋ represents the floor function.

Instance-guided Masking for Object-level Understanding. In this phase, we transition to instance-
guided masking to promote object-centric learning. Given the instance masks Iins, we distribute
the masked patches with emphasis on object regions. Let Ωobj and Ωbg denote the sets of patches
belonging to object regions and background regions, respectively. The masking process can be
formulated as:

Mm
I = fins(Iins, rm, α) ∈ {0, 1}N , (7)

where fins is our instance-guided masking function, and α controls the distribution of masks between
object and background regions. Specifically, fins includes: 1) identifying complete object instances
from Iins; 2) selecting all or a subset of instances based on their size and spatial significance; 3)
generating masks by randomly and separately selecting masked patches in object and background
regions according to the ratio α, which means

|Mm
I ∩ Ωobj | = ⌊αrmN⌋, (8)

|Mm
I ∩ Ωbg| = rmN − ⌊αrmN⌋.

We assign α > 0.5 to prioritize masking object regions, ensuring that a larger portion of masked
patches is allocated to object regions while maintaining some masking in the background for contex-
tual learning.

Semantic-guided Masking for Scene-level Perception. In this phase, we introduce semantic-guided
masking based on the semantic regions. Given semantic masks Isem with C classes, we assign
different masking weights to different semantic regions. Let Ωc denote the set of patches belonging
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to semantic class c, and wc represent the corresponding class weight. The masking process can be
formulated as:

Mm
S = fsem(Isem, rm,w) ∈ {0, 1}N (9)

where fsem is the semantic-guided masking function, and w are the class-specific weights. Specifi-
cally, fsem includes: 1) grouping patches according to their semantic labels to regions; 2) calculating
the number of masked patches for each semantic region based on both region importance weights
and region sizes; 3) randomly selecting patches within each region. For semantic class c, the number
of masked patches is determined by:

|Mm
S ∩ Ωc| =

⌊
rmN · wc|Ωc|∑C

k=1 wk|Ωk|

⌋
. (10)

When all weights are equal, the masking distribution is solely determined by the region sizes,
effectively becoming region-wise random masking. We adopt this configuration in our framework for
simplicity.

Progressive Training Schedule. To facilitate seamless transitions across three pre-training phases,
we propose a progressive training schedule, that enables hierarchical knowledge accumulation while
maintaining training stability. The transition between phases is controlled by the mixing coefficients
α, αS , formulated as:

Mm = ft((1− αI − αS)M
m
R + αIM

m
I + αSM

m
S , rm), (11)

where Mm ∈ {0, 1}N is the final mask for modality m, 0 ≤ αI , αS , αI +αS ≤ 1, and ft prioritizes
positions with higher value when selecting the final masked patches. During pre-training, we
dynamically adjust the values of αI and αS to ensure smooth transitions of masking strategies from
the first phase to the third phase. We show the setting of αI and αS in Figure 5. This progressive

αI

αS

1 − αI − αS

𝑒1 𝑒2 𝑒3 𝑒40

1

value

epoch

Figure 5: The variation curves of αI and αS during the training process.

approach enables the model to build increasingly sophisticated visual representations, from local
patterns to object structures and semantic relationships, leading to more robust and hierarchical visual
representations.

D VISUALIZATION RESULTS

D.1 ILLUSTRATION OF OUR DATASET

In Figure 6, we randomly display images representing various categories from our dataset. Each
cell is structured in three columns: the first column presents the original RGB image, followed by
its corresponding instance masks and semantic masks. The visualization effectively illustrates our
dataset’s exceptional segmentation precision across diverse classes of images.

D.2 RECONSTRUCTION RESULTS ON RANDOMLY MASKED MULTI-MODAL DATA.

Figure 7 further illuminates our framework’s generative capabilities when addressing randomly
masked multi-modal data from the unseen ImageNet validation set. Despite the diverse object
categories, our method adeptly reconstructs RGB images, instance masks, and semantic masks,
demonstrating remarkable precision in object boundary delineation and semantic comprehension.
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Figure 6: Illustration of the proposed Dataset.
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Figure 7: Illustration of reconstructions on randomly masked multi-modal data.

D.3 SINGLE-MODAL PREDICTION WITH RGB IMAGES

For single-modality predictions, we start by utilizing fine-grained RGB images to predict coarse-
grained instance masks and semantic masks. As illustrated in Figure 8, even when RGB images are
the sole input, our model demonstrates remarkable accuracy in predicting both object and semantic
information within the images. Impressively, it can even correct errors present in the reference
pseudo-labels. This highlights the capability of our framework to help the model learn rich and robust
semantic representations from the images.
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Figure 8: Illustration of single-modal prediction with RGB images.
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D.4 SINGLE-MODAL PREDICTION WITH INSTANCE MASKS

We further investigate the use of instance masks to predict information in other modalities. As
shown in Figure 9, since instance masks primarily capture object contours and boundary details, the
predicted RGB images tend to lack texture, resembling 3D models without texture rendering. On
the other hand, when predicting from semantic masks, our model infers object categories based on
their contours and imaginatively predicts surrounding scene details using knowledge learned from the
multi-modal dataset. This highlights the model’s strong capability to capture and utilize interactive
information across diverse modalities.
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Figure 9: Illustration of single-modal prediction with instance masks.

D.5 SINGLE-MODAL PREDICTION WITH SEMANTIC MASKS

When using semantic masks to predict instance masks, as shown in Figure 10, our model effectively
captures the primary objects in the image and accurately predicts their contours. In the case of RGB
image prediction, the incorporation of semantic information enables the generated RGB images to
exhibit basic texture rendering corresponding to the semantics of different regions, compared to using
instance masks alone. This highlights our model’s inherent ability to decouple object contours, region
boundaries, and semantic information.

E DETAILED EXPERIMENT SETTINGS

E.1 PRETRAINING

Table 7 shows the default configuration. Our framework employs Vision Transformer (Dosovitskiy
et al., 2021) as the backbone network, processing 224× 224 input images from ImageNet-1K (Rus-
sakovsky et al., 2015). We utilize the ViT-B model with patch size of 16, adopting a masking ratio
of 1/6. The input data include three modalities: RGB images, instance masks, and semantic masks.
We design a dedicated decoder comprising one cross-attention and two self-attention transformer
blocks, featuring a dimensionality of 256 with 8 attention heads. The models are trained for 400
or 1600 epochs, including a 40-epoch warmup phase, with a total batch size of 2048. We employ
the AdamW (Loshchilov & Hutter, 2019) optimizer with a base learning rate of 1× 10−4, linearly
scaled as lr = base lr × batch size/256. The optimization parameters include a weight decay of 0.05,
momentum parameters β1 = 0.9 and β2 = 0.95, and a cosine learning rate decay schedule. Standard
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Figure 10: Illustration of single-modal prediction with semantic masks.

data augmentations such as random cropping and horizontal flipping are applied. All Transformer
blocks are initialized using Xavier uniform initialization (Glorot & Bengio, 2010), following the
MAE (He et al., 2022) approach.

Table 7: Pre-training settings.

config ViT-B
optimizer AdamW
base learning rate 1e-4
weight decay 0.05
optimizer momentum β1, β2= 0.9, 0.95
batch size 2048
learning rate schedule cosine decay
pre-training epochs 400/1600
warmup epochs 10/30, 10/40; 10/40
augmentation random cropping&

horizontal flip
mask ratio 1/6
pre-training resolution 224 × 224

E.2 IMAGE CLASSIFICATION

The default configuration is shown in Table 8. We conduct end-to-end supervised fine-tuning on
the ImageNet-1K dataset at 224 × 224 resolution, adhering to standard practices for fair method
comparison. For ViT-B, we train for 100 epochs with 5 warmup epochs, employing base learning
rates of 1e−3/5e−4 and layer-wise learning rate decay of 0.7/0.65 for 400/1600 epochs, respectively.
The training configuration maintains a batch size of 2048 and a drop path rate of 0.1 (Huang et al.,
2016). Robust data augmentation techniques are applied, including label smoothing (Szegedy et al.,
2016), mixup (Zhang et al., 2017), cutmix (Yun et al., 2019), and randAugment (Cubuk et al., 2020).
Following MAE, we replace class tokens with global pooling features during fine-tuning. The learning
rate adheres to the linear scaling rule: lr = base lr × batch size/256.
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Table 8: Fine-tuning settings for image classification.

config ViT-B
optimizer AdamW
base learning rate 1e-3(400e);5e-4(1600e)
weight decay 0.05
optimizer momentum β1, β2= 0.9, 0.999
layer-wise decay 0.7(400e);0.65(1600e)
batch size 2048
learning rate schedule cosine decay
training epochs 100
warmup epochs 5
augmentation RandAug (9, 0.5)
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path rate 0.1
fine-tuning resolution 224 × 224

E.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

Table 9 illustrates The default setup. We integrate the pre-trained ViT backbone into the Mask
R-CNN (He et al., 2017) framework, conducting fine-tuning on the COCO (Lin et al., 2014) dataset
using the MMDetection (Chen et al., 2019) implementation. The adaptation involves multi-scale
training, resizing images to have a short side between 480 and 800 and a long side no greater than
1333. We employ the AdamW optimizer with a learning rate of 3e−3, weight decay of 0.05, and
total batch size of 16. Layer-wise decay rates are 0.75, with drop path rates of 0.2, respectively. We
utilize a 1× training schedule of 12 epochs, decaying the learning rate by 10× at epochs 9 and 11.
Performance is evaluated on COCO val2017 using bounding box APb and mask APm metrics.

Table 9: Fine-tuning settings for object detection and instance segmentation.

config ViT-B
optimizer AdamW
base learning rate 3e-3
weight decay 0.05
optimizer momentum β1, β2= 0.9, 0.999
layer-wise decay 0.75
batch size 16
learning rate schedule step decay
training epochs 12
drop path 0.2

E.4 SEMANTIC SEGMENTATION

The default setup is depicted in Table 10. We incorporate the pre-trained ViT-B backbone into the
UperNet (Xiao et al., 2018) architecture for semantic segmentation on the ADE20K (Zhou et al.,
2017) dataset. The fine-tuning process spans 160k iterations with 512×512 input resolution, utilizing
the AdamW optimizer. Key training parameters include a base learning rate of 4e−4, weight decay
of 0.05, and batch size of 16. The learning rate follows a warmup of 1500 iterations before linear
decay. Segmentation performance is evaluated using mIoU on the validation set.
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Table 10: Fine-tuning settings for semantic segmentation.

config ViT-B
optimizer AdamW
base learning rate 4e-4
weight decay 0.05
optimizer momentum β1, β2= 0.9, 0.999
layer-wise decay 0.65
batch size 16
learning rate schedule linear decay
training iterations 160k
drop path 0.1
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