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Abstract

Large Language Models (LLMs) excel across
various tasks. However, aligning them with hu-
man demonstrations proves challenging. Prior
approaches relied on Reinforcement Learning
from Human Feedback (RLHF) using online
RL methods like Proximal Policy Optimization
(PPO). Recently, RL-free methods like Direct
Preference Optimization (DPO) have emerged
as appealing alternatives, offering improved
stability and scalability while retaining com-
petitive performance. However, these methods
have a separate supervised fine-tuning (SFT)
step for further learning and require sampling
from the post-SFT model and ranking them. In
this paper, we introduce Triple Preferences
Optimization (TPO), a new preference learn-
ing method designed to align an LLM with
three preferences without requiring a separate
supervised fine-tuning step. Our TPO aims to
maximize the log probability of preferred to
less-preferred responses while simultaneously
learning the gold standard response in a single
step. To provide a comprehensive evaluation,
we use HuggingFace Open LLMs Benchmarks
and MT-Bench (Zheng et al., 2023) involving
dialogue systems and encompassing various
NLP aspects. The results indicate that TPO
surpasses other alignment methods, such as
DPO and SFT, in average accuracy by 1.8%
and 2.5%, respectively. Notably, TPO without
the SFT part exhibits superior average accuracy
compared to DPO and SFT by 4% and 4.7 %,
respectively. Overall, TPO resolves sampling
challenges and combines the SFT part with the
preference optimization part into a single step
and provides better performance. !

1 Introduction

LLMs are trained across a wide array of tasks,
demonstrating their remarkable versatility in solv-
ing diverse tasks (Brown et al., 2020; Narayanan
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Figure 1: Comparison of the loss functions of TPO
and DPO. TPO’s loss function incorporates two main
objectives. Its first term optimizes the log probabil-
ity of preferences (Lpreference (9)) that draws from
CPO’s insights (Xu et al., 2024), which demonstrated
that optimizing preferences doesn’t necessitate a refer-
ence model. Through its second term TPO aims to learn
the gold standard response (Lyeference)- This aspect of
the loss function is regulated by a parameter o, which
serves as a parameter controlling the extent to which the
policy model learns the gold standard response.

et al., 2021; Bubeck et al., 2023). However, their
training on data of varying quality can lead to many
issues, such as the generation of toxic or harmful
text under certain contexts (Perez et al., 2022; Gan-
guli et al., 2022), and in general generation of un-
desired (by humans) outputs. Hence, it is crucial to
align LL.Ms with human expectations and prefer-
ences that prioritize their helpfulness, honesty, and
harmlessness (Bai et al., 2022).

Supervised fine-tuning (SFT) is a direct align-
ment method that involves fitting a model to human-
written data (Sanh et al., 2022). However, this ap-
proach fails to fully impart the human perspective
to the model. During training, the model only re-
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Figure 2: (a) During the supervised fine-tuning step, a pre-trained model is fine-tuned to align with human
expectations. (b) To further enhance the performance of the SFT model, we train it with human preferences using
reinforcement learning. (c) Alternatively, we can directly align an SFT model with human preferences using RL-free
methods such as DPO. (d) In TPO, we merge preference optimization with gold standard response learning, enabling
direct fine-tuning of a pre-trained model based on three preferences.

ceives a reference response for each input, thus
lacking exposure to incorrect answers and prefer-
ences, which ultimately constrains its performance
on downstream tasks (Touvron et al., 2023).

A prominent method in Al alignment for LLMs
is Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022). Despite its impres-
sive performance relative to SFT, RLHF faces limi-
tations such as instability and susceptibility to re-
ward hacking (Liu et al., 2024). Consequently, a
recent approach called Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) has emerged.
DPO is an RL-free method that directly optimizes
human preferences by shifting from RL to simple
binary cross-entropy. However, DPO encounters
several limitations: 1) high dependency on the SFT
part , 2) tendency to overfit beyond a single epoch,
and 3) inefficient learning and memory utilization.

Various alignment methods have been proposed
for dialogue systems (Tunstall et al., 2023), harm-
ful and helpfulness question answering (Wu et al.,
2023), summarization (Zhao et al., 2023), and trans-
lation (Xu et al., 2024) to address these limitations.
However, all these studies include a separate SFT
component.

During SFT, models are fine-tuned with respect
to what response is appropriate for what input
prompt, while during DPO optimization, models
are fine-tuned to optimize the "relative log
probability of preferred to dispreferred responses"
(Rafailov et al., 2023) and not to stray far away
from the SFT trained model. In this paper we
combine these two steps into a single step, with the
input data having both the gold standard response

(as in SFT) and the preferences (as in PPO/DPO)
in a single format. Thus our training data will
be of the form (input prompt, gold standard
response, preferred response, less-preferred
response). Mostly we jointly optimize a policy
model with _E(:v,yref)ND [log 79 (Yrey | )] and
~E(2y )~ [log o (Blog g (yw | ) —Blogme (yi | 2))]
in one step. We refer to our approach as Triple
Preferences Optimization (TPO).

Our results show that TPO exhibits impres-
sive performance compared to SFT across various
benchmarks and outperforms other alignment meth-
ods, including DPO. TPO surpasses SFT, DPO,
Kahneman-Tversky Optimization (KTO) (Etha-
yarajh et al., 2023), Identity Preference Optimiza-
tion (IPO) (Azar et al., 2023), and Constrictive
Preference Optimization (CPO) (Xu et al., 2024) in
the conventional alignment process involving the
SFT part by, on average, 2.54%, 1.81%, 1.62%,
2.95%, and 1.64% respectively, in terms of accu-
racy. Notably, TPO without the SFT part, on aver-
age, improves the performance by 2.2% compared
with SFT and other methods. On average, TPO
demonstrates comparable performance across both
MT-Bench and Big-Bench benchmarks.

Overall, TPO addresses two key shortcomings
in alignment tasks. Firstly, by removing m,.; as
done in CPO, TPO mitigates the inefficient learning
and memory utilization issues observed in DPO,
allowing for more computational efficiency with
less memory usage. Secondly, TPO resolves the
high dependency of alignment methods on the SFT
component by introducing a second term in the
loss function. We demonstrate that this approach



not only achieves comparable performance with
SFT across various benchmarks but also exhibits
further improvement when incorporating the SFT
model into the TPO method. These findings sug-
gest that a separate SFT is not necessary for TPO
and, in certain scenarios, may even hinder TPO’s
performance.
We summarize our primary contributions as:

1. We propose a new preference learning method
called Triple Preference Optimization (TPO)
that simplifies the post-pretraining alignment.

2. We show that TPO achieves comparable per-
formance both with and without SFT com-
pared to SFT and other alignment methods
across various benchmarks. Additionally, we
demonstrate that TPO without SFT exhibits
superior performance.

3. We examine the performance of TPO across
different values of o which serves as a regu-
larization parameter to control gold standard
response learning. Our findings reveal that
TPO achieves better performance at « = 1
without SFT part, indicating the LLM’s capac-
ity for more exploration.

2 Related Works

The performance of Large Language Models
(LLMs) across diverse tasks is noteworthy (Anil
etal., 2023). However, their efficacy in downstream
tasks and alignment with user feedback has been
notably enhanced through fine-tuning instructions
and human-written completion datasets (Mishra
et al., 2022). Fine-tuning models on instructions
not only fosters generalization beyond the tun-
ing set but also enhances overall usability (Chung
et al., 2022). Despite the effectiveness of instruc-
tion tuning, collecting relative human judgments
of response quality is often simpler than obtaining
expert demonstrations. Consequently, subsequent
studies have fine-tuned LLMs using datasets of
human preferences, leading to improvements in
translation (Kreutzer et al., 2018), summarization
(Stiennon et al., 2022), story-telling (Ziegler et al.,
2019), instruction-following (Ramamurthy et al.,
2023), and dialogue systems. In this section, we
provide a succinct overview of various tasks and
settings where LL.Ms have demonstrated notable
performance in alignment.

RLHF (Christiano et al., 2023), introduced in
the literature, aims to optimize for maximum re-
ward by interacting with a reward model trained

using the Bradley-Terry (BT) model (Bong and
Rinaldo, 2022), typically through reinforcement al-
gorithms like Proximal Policy Optimization (PPO)
(Schulman et al., 2017). While RLHF enhances
model performance, it faces challenges such as in-
stability, reward hacking, and scalability inherent
in reinforcement learning. Recent works have pre-
sented techniques to overcome these challenges
by optimizing relative preferences without relying
on reinforcement learning. Utilizing the Bradley-
Terry (BT) model to optimize a model on prefer-
ence datasets is instrumental in ensuring alignment
with human preferences.

Sequence Likelihood Calibration (SLiC) (Zhao
et al., 2023) introduced a novel method for ranking
preferences generated by a supervised fine-tuned
(SFT) model, incorporating calibration loss and reg-
ularization fine-tuning loss during training. Mean-
while, RRHF (Yuan et al., 2023) trains the SFT
model using a zero-margin likelihood contrastive
loss, assuming multiple ranked responses for each
input. While both SLiC and RRHF are effective,
they lack theoretical foundations. In contrast, DPO
offers a method to directly fit an SFT model to
human preferences using the Bradley-Terry (BT)
model, providing theoretical insights into the align-
ment process.

Statistical Rejection Sampling Optimization
(RSO) (Liu et al., 2024) merges the techniques of
SLiC and DPO while introducing an improved ap-
proach for collecting preference pairs through sta-
tistical rejection sampling. IPO (Azar et al., 2023),
like DPO methods, has mathematically revealed the
limitations of the DPO approach concerning over-
fitting and generalization. It proposes a comprehen-
sive objective for learning from human preferences.
Zephyr (Tunstall et al., 2023) has improved DPO by
utilizing state-of-the-art (SOTA) models to gener-
ate responses for the same input and ranking them
using teacher models such as GPT-4. Moreover,
they emphasize the importance of SFT as an initial
step before implementing DPO.

KTO (Ethayarajh et al., 2023), drawing inspi-
ration from Kahneman and Tversky’s influential
work on prospect theory (TVERSKY and KAH-
NEMAN, 1992), seeks to maximize the utility of
LLM outputs directly rather than optimizing the
log-likelihood of preferences. By prioritizing the
determination of whether a preference is desirable
or undesirable, this method eliminates the require-
ment for two preferences for the same input.



Self-Play fIne-tuNing (SPIN) (Chen et al., 2024)
introduced a self-training approach to augment
DPO using the dataset utilized in the SFT step.
The core concept of this strategy is to leverage syn-
thetic data generated as the rejected response and
the gold standard response from the SFT dataset
as the chosen response. On the other hand, CPO
(Xu et al., 2024) proposed an efficient method for
learning preferences by integrating the maximum-
likelihood loss and the DPO loss function with the
aim of enhancing memory and learning efficiency.

We observe two primary challenges in the align-
ment process addressed by the aforementioned
studies. Firstly, there’s a significant reliance on the
supervised fine-tuning (SFT) component. Zephyr’s
findings indicate that the DPO approach fails
to learn without SFT. Secondly, there are con-
cerns regarding inefficient learning and memory
usage. While CPO demonstrates that removing
Tref doesn’t decrease performance compared with
DPO, it falls short in comparison to DPO and other
alignment methods like KTO. In this investigation,
we delve into these limitations and endeavor to
introduce a novel method to address them.

3 Method

In this section, we introduce a novel preference
learning method named Triple Preferences Opti-
mization (TPO) for learning both gold and prefer-
ence responses. This method is devised to train
a model in dialogue systems to generate accurate
responses to questions by considering three prefer-
ences: one reference, one chosen, and one rejected,
all for the same input.

3.1 Triple Preferences Optimization

In this subsection, we outline the objective of the
TPO method. First, we begin with an analysis of
DPO. Given a set of sources alongside preferred
response ¥, and less-preferred response y;, for the
same input, DPO can directly optimize a policy
model. Consequently, the DPO loss function can
drive towards a maximum likelihood objective for
a parameterized policy (7g):

L (73 Trer ) =

— E(w,yw‘y1)~D {loga (6 log
Blog ™ (i | z) )}

Tref (yl ‘ -L)

7 (Yw | @)
Tret (Yo ‘ )

(1

where 7 is a fine-tuned model on downstream
tasks, o is sigmoid function and 3 is a hypper-
parametter. DPO introduced an RL-free approach
by reformulating the reward model’s objective in
RLHF. They demonstrated that there’s no require-
ment for interaction with an environment to train
a model on human preferences, and a reward can
be explicitly incorporated into the loss function
without interaction.

Although the concept of directly optimizing a
model based on human preferences is intriguing,
DPO encounters two significant challenges. Firstly,
it suffers from inefficient learning and memory uti-
lization. Specifically, during model fine-tuning
with DPO, an additional policy model must be
loaded as a reference to maintain consistency be-
tween the model’s post-training and pre-training
states. Loading two models consumes more mem-
ory than SFT, leading to less efficient learning. Sec-
ondly, DPO exhibits a high dependency on achiev-
ing an optimal policy. The Zephyr (Tunstall et al.,
2023) study demonstrated that the SFT component
is crucial for DPO, and without it, DPO’s effective-
ness is limited.

CPO, a new preference learning method, tack-
les DPO’s inefficient learning and memory utiliza-
tion by showing that removing the reference model
during DPO training does not affect performance.
However, the results suggest that CPO does not
achieve impressive performance compared to DPO
on dialogue systems and, like DPO, suffers from a
dependency on the SFT component.

Considering these limitations, we revise the
DPO loss function with dispiring CPO ideas.
In CPO, it was demonstrated that having
an optimal model m, for preferred data en-
ables truthful prediction of preferred data, i.e.,
(Tref (Yw|x) = 7w (yw|x)).In this context, for any
data point (x, y,, y;) from dataset D the condition
Tw(Yw|r) = 1 and 0 < 7y, (y|z) < 1 hold true.
They proved that the DPO loss function does not
require 7., and for better learning of the policy
model my,they integrate the log-likelihood super-
vised fine-tuning loss for preferred data into the
DPO loss function without the 7. s term.

While CPO achieves generally comparable re-
sults with DPO on some benchmarks, this loss func-
tion may not be effective in dialogue systems. Its
main limitation lies in its high dependency on pre-
ferred data. Preferred data can be generated in
two ways: 1) by the SFT model and 2) by state-of-



Model Align ARC TruthfulQA Winogrande HellaSwag MMLU Average
Zephyr SFT 60.41 4373 74.19 81.69 60.92 64.18
Zephyr DPO 59.04 46.70 76.63 82.10 60 64.91
Zephyr 1PO 59.30 42.22 76.4 81.02 59.93 63.77
Zephyr KTO 57.84 49.88 76.47 81.61 59.73 65.1
Zephyr CPO 57.50 53.22 75.92 80.37 58.41 65.08
Zephyr TPO (our) | 58.02 59.05 76.47 80.6 59.48 66.72
Mistral TPO (our) | 60.92 59.19 78.53 82.92 63 68.91

Table 1: Comparing TPO’s performance with other alignment methods reveals that the Zephyr-TPO model exhibits
comparable performance across different benchmarks and, on average, outperforms other methods. In particular,
Zephyr-TPO shows remarkable performance on the Truthful QA benchmark. Additionally, the Mistral-TPO model
consistently outperforms other methods across all benchmarks. It’s worth noting that the Mistral-TPO model is
directly trained with TPO, which contributes to its superior performance. We clarify that Mistral is a base model of
the Zephyr model. We also note that the measure of performance for all benchmarks is accuracy.

the-art models such as LLaMA-2. If a portion of
the preferred data is not suitable, the policy model
may deviate significantly from the reference model.
Since there is no reference model in this loss func-
tion, in the worst-case scenario, the policy model
may transition to a new distribution, leading to
failed learning.

To address this limitation, we propose that by
incorporating an additional preference, we can mit-
igate the aforementioned issues. In addition to con-
sidering two, chosen and rejected preferences, we
introduce the gold standard response as a third pref-
erence in the loss function. Following the approach
in SLiC, SLiC-HF, and CPO, we eliminate 7.
from the DPO loss function and integrate the log-
likelihood supervised fine-tuning loss on the gold
standard response. Thus, the TPO loss function is
formulated as follows:

Lreference = _]E(l",yref)ND [log o (yref ’ $)}
(2)

Lopreference (T9) =
—E(y g, )~p [log o (Blog o (yu | )
—Blogms (y1 | x))]
3)

Ltpo = »Cpreference + a&Lreference 4

Where y;cf, yw, and y; represent the gold stan-
dard, chosen, and rejected responses, respectively.
Additionally, « serves as a hyperparameter to regu-
late the impact of the gold standard response dur-
ing training. Broadly speaking, TPO has two main
objectives: 1) optimizing the chosen and rejected

preferences and 2) predicting the next token of
the gold standard response. The second objective
guides the model to learn the gold standard re-
sponse while directly optimizing between the cho-
sen and rejected responses. Despite the absence of
a reference model in the preference learning objec-
tive, the second objective helps maintain stability
by preventing significant changes in the distribution
of the policy model. Overall, TPO addresses the is-
sues of inefficient learning and memory utilization
by removing the reference model. Additionally, by
incorporating an SFT loss on the global response
(See Equation 2), TPO aims to ensure that the pol-
icy model remains close to the reference distribu-
tion. Furthermore, the TPO loss function resolves
the dependency of DPO on the supervised fine-
tuned model. This implies that TPO can achieve
comparable performance to DPO combined with
the supervised fine-tuned model, even without the
SFT component. We also evaluate TPO’s perfor-
mance across several benchmarks, as detailed in
Section 4.

4 Experiments and Results

In this section we present a comprehensive empiri-
cal analysis of TPO, yielding several key findings:
1) TPO with SFT outperforms other alignment
methods, boasting an average accuracy improve-
ment of 1.8%. 2) Directly training a model with
TPO surpasses the performance of TPO with SFT
by an average of 2.2%. 3) TPO with SFT excels no-
tably performance on the Truthful QA benchmark.
4) Factors such as training size, o parameter, and
epochs significantly influence TPO’s performance.
5) While TPO may experience overfitting with ex-



Model Align MT-Bench | BB-casual BB-sports BB-formal | OpenBookQA
Zephyr SFT 5.94 51.57 61.76 514 43.8
Zephyr CPO 6.2 49.47 70.68 51.07 44.6
Zephyr DPO 6.64 52.1 71.9 51 46.2
Zephyr TPO (our) 6.66 54.21 73.93 50.84 45.6

Table 2: In our comparison of TPO with other alignment methods across more benchmarks, Zephyr-TPO emerges as
the top performer, surpassing other methods in MT-Bench and BB-causal, while showing comparable results in BB-
formal and OpenBookQA. The measure of performance on BB-causal, BB-sports, BB-formal, and OpenBookQA
are and for MT-Bench is a score between 0 and 10 that generated by GPT-4.

tended epochs, an SFT model aligned with TPO
demonstrates enhanced performance, particularly
on understanding tasks.

4.1 Experimental Setup

Models: All experiments were conducted using
zephyr-sft-full and Mistral-7BOinstruct-v0.1,
which are among the current state-of-the-art mod-
els at the 7B parameter scale. We utilized the Trans-
former Reinforcement Learning (TRL) library for
fine-tuning (von Werra et al., 2020). All models
were trained using the AdamW optimizer without
weight decay. Furthermore, parameter-efficient
techniques such as LoRA (Hu et al., 2021) were
not employed. The experiments were conducted
on 6 A100 GPUs, utilizing bfloat16 precision, and
typically required 5-8 hours to complete.

Datasets: In this study, we employ two dialogue
datasets: 1) UltraChat (Ding et al., 2023) and
2) UltraFeedback (Cui et al., 2023). UltraChat
comprises 200k examples generated by GPT-3.5-
TURBO across 30 topics and 20 text material types,
offering a high-quality dataset utilized for train-
ing the SFT model. Meanwhile, UltraFeedback
consists of a 64K set of responses generated by
state-of-the-art models like LLaMA-2, Vicuna, Ul-
tralLM, and Alpaca, evaluated by a teacher model
such as GPT-4. Each response is assigned a score
indicating its quality given the same input. To train
TPO, which requires three preferences, we create
a custom dataset from the UltraFeedback dataset.
Here, the response with the highest score serves
as the reference response, the second-highest score
as the chosen response, and the lowest score as
the rejected response. For evaluating the perfor-
mance of other alignment methods, we train them
on the chosen and rejected responses from the cus-
tom dataset. Due to computational limitations, we
restrict our analysis to 12K data points, randomly

selected from the dataset.

Evaluation Metrics: We evaluate our models in
both single-turn and multi-turn scenarios using the
MT-Bench benchmark (Ding et al., 2023). MT-
Bench consists of 160 questions spanning eight
knowledge domains for evaluation. In this bench-
mark, models are required to answer a question
and then address a predefined follow-up question.
Model responses are rated on a scale of 1 to 10 by
GPT-4, and the final score is calculated as the mean
over the two turns. Additionally, we assess mod-
els on the Open LLM Leaderboard Benckmarks
(Beeching et al., 2023), which assess the perfor-
mance of LLMs across five multiclass classification
tasks: ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021),
Truthful QA (Lin et al., 2022), and Winogrande
(Sakaguchi et al., 2019). Furthermore, we explore
the performance of TPO across a broader variety of
tasks, including Big-Bench (bench authors, 2023)
and OpenBookQA (Mihaylov et al., 2018). To en-
sure a comprehensive evaluation, we include bench-
marks such as Causal Judgment (causal reasoning),
Sports Understanding (commonsense reasoning),
and Formal Fallacies in the Big Bench Hard dataset.

Detail of Training: All models are trained for
one epoch, employing a linear learning rate sched-
uler with a peak learning rate of 5e-7 and 10%
warmup steps. Additionally, the global batch size
is set to 8, and 5 = 0.1 is used to regulate the devia-
tion from the reference model.

4.2 Results
The primary results are depicted in Tables 1 and 2.
Demonstration of TPO Performance We com-

pare the TPO method with other alignment meth-
ods, including KTO, IPO, CPO, and DPO, on the
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Figure 3: In this figure, we present the performance of TPO across various values of hyperparameters, as discussed
in Section 4.3. It’s important to note that all models in this figure include the SFT part.
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Figure 4: Compare the performance of the Mistral-TPO
model with Zeyphr-DPO and Zephyr-TPO. We observe
that TPO generally outperforms DPO and SFT across all
benchmarks except BB-formal. Particularly noteworthy
is the significant performance gap between Mistral-TPO
and Zephyr-SFT in BB-Sports.

Open LLM Benchmarks. Our comparison involves
two scenarios: 1) training an SFT model with TPO
and other alignment methods, and 2) directly train-
ing a pre-trained model with TPO and other align-
ment methods.

The results presented in Table 1 demonstrate that
employing the TPO method on an SFT model not
only enhances the performance of the SFT model
itself but also exhibits remarkable overall perfor-
mance compared to other methods. Specifically,
TPO surpasses SFT and DPO in terms of aver-
age accuracy across five different benchmarks by
2.5% and 1.8%, respectively. On average, Zephyr-
TPO model outperforms Zephyr-DPO model and
achieves comparable performance on three out of
five benchmarks (ARC, HellaSwag, and MMLU)
compared with Zehyr-DPO model. We also, high-
light that, TPO achieves notably high accuracy on
the Truthful QA benchmark, distinguishing it from

other models.

However, these results do not align with our ini-
tial hypothesis, prompting us to directly train a
pre-trained model with TPO. Surprisingly, the find-
ings reveal that TPO without the SFT component
not only exhibits superior performance across five
benchmarks but also outperforms SFT and DPO in
terms of accuracy by 4.7% and 4%, respectively
(See Table ??). This suggests that while the SFT
method is an important component of alignment, it
may constrain alignment methods from achieving
their full potential. Consequently, TPO without
SFT may facilitate better exploration, resulting in
greater improvement compared to TPO with SFT.

Exploration on More Benchmarks For a com-
prehensive evaluation, we compare the TPO
method with CPO, DPO, and SFT across additional
benchmarks, including MT-Bench, Big-Bench, and
OpenBookQA, in addition to the tasks from the
Open LLM Leaderboard. Specifically, we incor-
porate tasks from Big Bench Hard, such as Casual
Judgment (casual reasoning), Sports Understanding
(common sense reasoning), and Fallacies (logical
reasoning). For further details, please refer to the
Appendix A.

Table 2 presents the performance of TPO and
other alignment methods. The results reveal that
TPO exhibits comparable performance on MT-
Bench compared to DPO and outperforms SFT and
CPO. While TPO falls short on OpenBookQA com-
pared to DPO, the directly trained TPO model en-
hances performance even further, surpassing DPO
(See Figure 4). Additionally, the finding indicates
that CPO performs poorly on all benchmarks ex-
cept BB-formal and does not achieve comparable
performance with TPO and DPO.



4.3 Ablation Studies

We found that the number of epochs has a notable
effect on the performance of TPO. To thoroughly
evaluate the performance improvement of TPO, we
conduct additional evaluations across five bench-
marks in the Open LLM Leaderboard Benchmarks.

Training Size and Effect of o in TPO We as-
sess TPO’s performance across different sizes of
training sets. Figure 3 illustrates that increasing the
training size with the same « leads to a decrease in
TPO’s performance across all benchmarks. On av-
erage, TPO’s performance exhibits a 2% decrease.

In the TPO method, we define a as a hyper-
parameter to control the effect of the reference re-
sponse on learning. The results depicted in Figure 3
indicate that, under the same configuration, TPO’s
performance remains relatively consistent across
different o values. However, we observe that for
aligning an SFT model with TPO, better perfor-
mance is achieved by decreasing o while aligning
a pre-trained model directly with TPO benefits by
increasing o.

TPO Loss on the Train / Test Sets
= Zephyr-TPO (2 epochs) train/loss

== Zephyr-TPO (2 epochs) eval/loss
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500 1k 1.5k 2k 2.5k

Figure 5: We show the overfitting impact on loss while
training the Zephyr-TOP model.

Training for More Epoch We examine the per-
formance of TPO and the occurrence of overfitting
on multiple epochs. Figures 5 and 6 illustrate that
TPO experiences overfitting with an increase in
epochs. This overfitting phenomenon suggests that
while the accuracies of TPO improve during train-
ing on additional epochs, the model’s accuracy dur-
ing evaluation remains unchanged, indicating that
the model may not be learning effectively. How-
ever, TPO trained over two epochs demonstrates

TPO accuracies on the Train / Test Sets

= Zephyr-TPO (2 epochs) train/rewards/accuracies

== Zephyr-TPO (2 epochs) eval/rewards/accuracies

0.8

0.6

0.4

0.2
train/global_step

500 1k 1.5k 2k 2.5k

Figure 6: The accuracy of the Zephyr-TPO model in-
creases after one epoch, while the evaluation accuracy
remains constant.

a 2% improvement on MMLU and HellaSwang,
implying that more learning steps are necessary for
understanding tasks.

5 Conclusions

In this paper, we begin by addressing the limita-
tions inherent in existing alignment methods. Gen-
erally, alignment methods exhibit a high reliance
on the SFT component and encounter challenges
in sampling from policy models for training. To
mitigate these shortcomings, we introduce TPO, a
novel alignment approach aimed at concurrently
optimizing human preferences and gold standard
responses. TPO represents an RL-free method with
dual objectives: 1) optimizing human preferences
and 2) refining model predictions beyond gold stan-
dard responses. Our findings demonstrate the im-
pressive performance of TPO compared to other
alignment methods post the SFT phase. Particularly
noteworthy is the superior performance of TPO
without SFT compared to TPO with SFT. Moreover,
we identify SFT as a critical alignment method that
acts as a barrier for a model to engage in more ex-
ploration. While we examine TPO’s performance
across various « values, we emphasize the signif-
icance of exploring the impact of altering both 3
and « on TPO performance. Furthermore, extend-
ing the application of TPO to diverse tasks presents
an opportunity for further exploration, which we
suggest for future works. We believe our study rep-
resents a pioneering effort in eliminating the SFT
part from alignment methodologies.



6 Limitations

While our study demonstrates the impressive per-
formance of TPO compared to SFT and other align-
ment methods, certain challenges remain. Creating
a dataset with three preferences poses a notable
challenge, and determining optimal values for
and [ presents additional complexities. Moreover,
TPO is susceptible to overfitting, and evaluation ac-
curacy diminishes over multiple epochs. Addition-
ally, assessing models on certain alignment bench-
marks, such as MT-Bench and AlpacaEval (Dubois
et al., 2023), incurs significant costs. These chal-
lenges highlight areas for further investigation.

Ethics Statement

We have used Al assistants (Grammarly and
ChatGPT) to address the grammatical errors and
rephrase the sentences.
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Appendix
A More Exploration

We present the details of the MT-Bench benchmark
in Table 3. Figure 7 illustrates the scoring of GPT-4
in various domains. Additionally, we provide some
examples for models that fine-tuned by TPO and
DPO.

Writing
. en| TPO
Humanities Roleplay SFT+DPO
SFT+TPO
SFT
STEM Reasoning
0 274 6 8
Extraction Math
Coding

Figure 7: Generation another example of fine-tuned
model by TPO and DPO.

First Turn Second Turn  Average

Model Align (Score) (Score) (Score)
Zephyr  TPO 7.13 6.2 6.66
Zephyr  CPO 6.47 5.93 6.2
Mistral  TPO 6.36 5.22 5.79

Table 3: The performance of alignment methods on
MT-Bench scores indicates that Mistral-TPO performs
comparably to SFT. As depicted in Table 1 and Figure
4, Mistral-TPO demonstrates impressive performance.
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Prompt

Please describe the concept of machine learning. Could you elaborate on the
differences between supervised, unsupervised, and reinforcement learning? Provide
real-world examples of each.", "In your last example of reinforcement learning, can
we use supervised learning to solve it?

Model

Response

Mistral-TPO

Zephyr-TPO

Zephyr-DPO

Machine Learning is a subfield of Artificial Intelligence (Al) that focuses on
developing computer programs that can learn from data and improve their
performance over time. It involves the development of algorithms and models that can
automatically learn from data, make predictions, and adapt to new data without being
explicitly programmed.The concept of machine learning can be understood as a
process of teaching a computer to learn from data and make predictions or decisions
based on that learning. The goal is to create systems that can learn from data, adapt to
new situations, and perform tasks without being explicitly programmed.Machine
learning can be divided into [...]

Machine learning is a subfield of artificial intelligence (AI) that involves designing
algorithms and models that enable computer systems to improve their performance on
specific tasks over time, without being explicitly programmed. It’s a process of
training a system to learn from data, identify patterns, and make predictions or
decisions based on that knowledge.There are three main categories of machine
learning:1. **Supervised Learning®*: In this approach, the system is trained using
labeled data, where the input data (features) and the corresponding output (labels) are
known. [...]

Machine learning is a subset of artificial intelligence (Al) that involves the
development of algorithms and statistical models that allow computer systems to
improve their performance on a specific task over time, without being explicitly
programmed. Essentially, machine learning involves teaching a computer to learn
from data and make predictions or decisions based on that data. There are three main
types of machine learning: supervised, unsupervised, and reinforcement learning. 1.
Supervised Learning: In supervised learning, a machine]...]

Table 4: Generation example of fine-tuned model by TPO and DPO on MT-Bench questions.

13



Prompt

Act as a math teacher. I will provide some mathematical equations or concepts, and it
will be your job to explain them in easy-to-understand terms. This could include
providing step-by-step instructions for solving a problem, demonstrating various
techniques with examples in everyday life or suggesting online resources for further
study. My first request is "I need help understanding how probability works.", "What
are the differences between Riemannian geometry and euclidean geometry?

Model

Response

Mistral-TPO

Zephyr-TPO

Zephyr-DPO

Probability is a fascinating concept, representing the likelihood or chance that a
specific event or outcome will occur. It plays a crucial role in various fields, such as
statistics, science, and even gambling. If you’re looking to understand probability
better, I’'m happy to help by providing you with clear, step-by-step instructions.To
start, let’s consider a simple example of flipping a coin. If you were to flip a coin,
there are only two possible outcomes [...]

As an Al assistant, I'm happy to explain probability in simple terms. Probability is a
measure of the likelihood or chance that a particular event occurs. It’s a crucial
concept in mathematics, science, and everyday life. Here’s a step-by-step
explanation:1. **Understanding the basics:** Probability is a number between 0 and
1 that represents the possibility of an event happening. A probability of 0 means an
event never happens, while a probability of 1 means it’s certain to occur.2.
**Calculating Probability:** To calculate the[...]

Probability is the study of how likely an event is to occur based on a set of conditions
or outcomes. It is often expressed as a percentage or a fraction. Here are some basic
concepts to help you understand probability:1. Sample Space: This is the set of all
possible outcomes in a given situation. For example, if you are flipping a coin, the
sample space would be heads or tails.2. Events: These are the different outcomes that
can occur in a given situation. For example, if you are flipping a coin, [...]

Table 5: Generation another example of fine-tuned model by TPO and DPO on MT-Bench questions.
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Prompt

Explain what’s base rate fallacy and list five specific examples of how politicians use
it for campaigns.", "Provide a detailed plan for an election campaign using the first
example.

Model

Response

Mistral-TPO

Zephyr-TPO

Zephyr-DPO

Base rate fallacy is a logical fallacy that occurs when a person ignores the base rate of
an event and focuses on the probability of an event given a certain condition. In other
words, it is the tendency to overestimate the probability of an event based on the
specific information provided, without considering the overall likelihood of that event
occurring. Here are five specific examples of how politicians use base rate fallacy in
their campaigns: 1. **Crime Statistics:** Politicians often use crime statistics to
create fear and promote their tough-on-crime policies. They [...]

Base rate fallacy, also known as the base rate neglect or the conjunction fallacy, is a
cognitive error where individuals tend to overemphasize or underestimate the
significance of specific information while ignoring the overall probability or base rate.
It occurs when people focus too much on a particular piece of information, leading
them to make incorrect judgments or decisions. In the context of politics, this fallacy
can manifest in various ways during campaigns.1. **Appeal to Emotion:**
Politicians often [...]

Base rate fallacy, also known as the fallacy of the fallacious generalization, is a type
of fallacy where a conclusion is drawn based on a small sample or a single case,
without considering the larger context or base rate. In other words, it is assuming that
a small sample or a single case is representative of the larger population.Politicians
often use base rate fallacy in their campaigns to make their arguments more
convincing and to appeal to voters’ emotions. Here are five specific examples:|...]

Table 6: Generation another example of fine-tuned model by TPO and DPO on MT-Bench questions.
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Prompt Describe a vivid and unique character, using strong imagery and creative language.
Please answer in fewer than two paragraphs.”, "Revise your previous response and
incorporate an allusion to a famous work of literature or historical event in each
sentence.

Model Response

Mistral-TPO

Zephyr-TPO

Zephyr-DPO

The man was like a human, but not really. He stood eight feet tall and his body looked
like a mixture of a lion and a human. His skin was a deep gold color, and his mane
was as long as a lion2019s, but unlike a lion2019s mane, his was the color of a
lion2019s fur. His eyes were the brightest blue of any human eyes, and his smile
radiated warmth. He had a thick, bushy mustache that, along with his thick, dark
eyebrows, gave the impression that he was a kind, wise man. But, the strangest thing
about him was not [...]

Amidst the crimson waves of sunset, a figure emerges - a woman etched from the very
essence of the night sky. Her hair a tapestry of starlight, cascading down her naked
shoulders like a cosmic waterfall. Her eyes, a celestial dance of iridescence, shifting
from a deep indigo to a shimmering sapphire as she gazes upon the universe with
reverence. Her voice, a symphony of [...]

Meet Aria, a woman with skin as pale as moonlight, eyes that glitter like emeralds,
and hair as black as ebony. Her slender frame is adorned with intricate tattoos that
seem to pulse with a life of their own, depicting fantastical creatures and ethereal
landscapes. She moves with the grace of a serpent, her every step delicate and precise.
Her voice is a symphony of music, a melody that seems to lure those around her,
beckoning them closer to her mystical world. Her presence is a force to be reckoned
with, leaving [...]

Table 7: Generation another example of fine-tuned model by TPO and DPO on MT-Bench questions.
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Prompt

Photosynthesis is a vital process for life on Earth. Could you outline the two main
stages of photosynthesis, including where they take place within the chloroplast, and
the primary inputs and outputs for each stage?", "How much energy can a tree
produce through photosynthesis in its lifetime? Please provide an estimate using
actual numerical values and thoroughly explain your thought process step-by-step.

Model

Response

Mistral-TPO

Zephyr-TPO

Zephyr-DPO

Photosynthesis is a process that converts light energy into chemical energy, which is
stored in the form of carbohydrates. It is a vital process for life on Earth, as it
provides the energy that sustains most organisms. Photosynthesis occurs in two
stages: the light-dependent reactions and the light-independent reactions. These two
stages take place within the chloroplast, which is a specialized organelle found in
plants, algae, and some bacteria.1. Light-Dependent Reactions: These reactions occur
in the thylakoid membranes of the chloroplast. They involve the absorption of [...]

Photosynthesis is a complex biochemical process that occurs in the chloroplasts of
plant cells, algae, and some bacteria. It involves two main stages: the light-dependent
reactions (also known as the light reactions) and the light-independent reactions (also
known as the dark reactions or the Calvin cycle).1. Light-dependent reactions: a.
Location: These reactions occur in the thylakoid membranes of the chloroplasts,
which are flattened, stacked membranes that form a network of sacs. b. Inputs: Water
(H20), [...]

Photosynthesis is a process by which plants, algae, and some bacteria convert light
energy into chemical energy in the form of glucose. It occurs in the chloroplasts of
plant cells, which are specialized organelles that contain chlorophyll, the pigment that
gives plants their green color. Photosynthesis can be divided into two main stages:1.
Light-dependent reactions: This stage takes place in the thylakoid membranes of the
chloroplasts. The primary inputs for this stage are light energy and water. The
primary output is ATP (adenosine triphosphate), a molecule that stores energy, and
NADPH (nicotinamide adenine dinucleotide phosphate), a molecule that carries
electrons.During the light-dependent reactions, light energy is absorbed by
chlorophyll [...]

Table 8: Generation another example of fine-tuned model by TPO and DPO on MT-Bench questions.
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