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Abstract
Large Language Models (LLMs) excel across001
various tasks. However, aligning them with hu-002
man demonstrations proves challenging. Prior003
approaches relied on Reinforcement Learning004
from Human Feedback (RLHF) using online005
RL methods like Proximal Policy Optimization006
(PPO). Recently, RL-free methods like Direct007
Preference Optimization (DPO) have emerged008
as appealing alternatives, offering improved009
stability and scalability while retaining com-010
petitive performance. However, these methods011
have a separate supervised fine-tuning (SFT)012
step for further learning and require sampling013
from the post-SFT model and ranking them. In014
this paper, we introduce Triple Preferences015
Optimization (TPO), a new preference learn-016
ing method designed to align an LLM with017
three preferences without requiring a separate018
supervised fine-tuning step. Our TPO aims to019
maximize the log probability of preferred to020
less-preferred responses while simultaneously021
learning the gold standard response in a single022
step. To provide a comprehensive evaluation,023
we use HuggingFace Open LLMs Benchmarks024
and MT-Bench (Zheng et al., 2023) involving025
dialogue systems and encompassing various026
NLP aspects. The results indicate that TPO027
surpasses other alignment methods, such as028
DPO and SFT, in average accuracy by 1.8%029
and 2.5%, respectively. Notably, TPO without030
the SFT part exhibits superior average accuracy031
compared to DPO and SFT by 4% and 4.7%,032
respectively. Overall, TPO resolves sampling033
challenges and combines the SFT part with the034
preference optimization part into a single step035
and provides better performance.1036

1 Introduction037

LLMs are trained across a wide array of tasks,038

demonstrating their remarkable versatility in solv-039

ing diverse tasks (Brown et al., 2020; Narayanan040

1Data and code are available at https://
anonymous.4open.science/r/triple_preferences_
optimization-E63F/
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Figure 1: Comparison of the loss functions of TPO
and DPO. TPO’s loss function incorporates two main
objectives. Its first term optimizes the log probabil-
ity of preferences (Lpreference (πθ)) that draws from
CPO’s insights (Xu et al., 2024), which demonstrated
that optimizing preferences doesn’t necessitate a refer-
ence model. Through its second term TPO aims to learn
the gold standard response (Lreference). This aspect of
the loss function is regulated by a parameter α, which
serves as a parameter controlling the extent to which the
policy model learns the gold standard response.

et al., 2021; Bubeck et al., 2023). However, their 041

training on data of varying quality can lead to many 042

issues, such as the generation of toxic or harmful 043

text under certain contexts (Perez et al., 2022; Gan- 044

guli et al., 2022), and in general generation of un- 045

desired (by humans) outputs. Hence, it is crucial to 046

align LLMs with human expectations and prefer- 047

ences that prioritize their helpfulness, honesty, and 048

harmlessness (Bai et al., 2022). 049

Supervised fine-tuning (SFT) is a direct align- 050

ment method that involves fitting a model to human- 051

written data (Sanh et al., 2022). However, this ap- 052

proach fails to fully impart the human perspective 053

to the model. During training, the model only re- 054
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Figure 2: (a) During the supervised fine-tuning step, a pre-trained model is fine-tuned to align with human
expectations. (b) To further enhance the performance of the SFT model, we train it with human preferences using
reinforcement learning. (c) Alternatively, we can directly align an SFT model with human preferences using RL-free
methods such as DPO. (d) In TPO, we merge preference optimization with gold standard response learning, enabling
direct fine-tuning of a pre-trained model based on three preferences.

ceives a reference response for each input, thus055

lacking exposure to incorrect answers and prefer-056

ences, which ultimately constrains its performance057

on downstream tasks (Touvron et al., 2023).058

A prominent method in AI alignment for LLMs059

is Reinforcement Learning with Human Feedback060

(RLHF) (Ouyang et al., 2022). Despite its impres-061

sive performance relative to SFT, RLHF faces limi-062

tations such as instability and susceptibility to re-063

ward hacking (Liu et al., 2024). Consequently, a064

recent approach called Direct Preference Optimiza-065

tion (DPO) (Rafailov et al., 2023) has emerged.066

DPO is an RL-free method that directly optimizes067

human preferences by shifting from RL to simple068

binary cross-entropy. However, DPO encounters069

several limitations: 1) high dependency on the SFT070

part , 2) tendency to overfit beyond a single epoch,071

and 3) inefficient learning and memory utilization.072

Various alignment methods have been proposed073

for dialogue systems (Tunstall et al., 2023), harm-074

ful and helpfulness question answering (Wu et al.,075

2023), summarization (Zhao et al., 2023), and trans-076

lation (Xu et al., 2024) to address these limitations.077

However, all these studies include a separate SFT078

component.079

During SFT, models are fine-tuned with respect080

to what response is appropriate for what input081

prompt, while during DPO optimization, models082

are fine-tuned to optimize the "relative log083

probability of preferred to dispreferred responses"084

(Rafailov et al., 2023) and not to stray far away085

from the SFT trained model. In this paper we086

combine these two steps into a single step, with the087

input data having both the gold standard response088

(as in SFT) and the preferences (as in PPO/DPO) 089

in a single format. Thus our training data will 090

be of the form (input prompt, gold standard 091

response, preferred response, less-preferred 092

response). Mostly we jointly optimize a policy 093

model with −E(x,yref)∼D [log πθ (yref | x)] and 094

−E(x,yw,yl)∼D [log σ (β log πθ (yw | x) −β log πθ (yl | x))] 095

in one step. We refer to our approach as Triple 096

Preferences Optimization (TPO). 097

Our results show that TPO exhibits impres- 098

sive performance compared to SFT across various 099

benchmarks and outperforms other alignment meth- 100

ods, including DPO. TPO surpasses SFT, DPO, 101

Kahneman-Tversky Optimization (KTO) (Etha- 102

yarajh et al., 2023), Identity Preference Optimiza- 103

tion (IPO) (Azar et al., 2023), and Constrictive 104

Preference Optimization (CPO) (Xu et al., 2024) in 105

the conventional alignment process involving the 106

SFT part by, on average, 2.54%, 1.81%, 1.62%, 107

2.95%, and 1.64% respectively, in terms of accu- 108

racy. Notably, TPO without the SFT part, on aver- 109

age, improves the performance by 2.2% compared 110

with SFT and other methods. On average, TPO 111

demonstrates comparable performance across both 112

MT-Bench and Big-Bench benchmarks. 113

Overall, TPO addresses two key shortcomings 114

in alignment tasks. Firstly, by removing πref as 115

done in CPO, TPO mitigates the inefficient learning 116

and memory utilization issues observed in DPO, 117

allowing for more computational efficiency with 118

less memory usage. Secondly, TPO resolves the 119

high dependency of alignment methods on the SFT 120

component by introducing a second term in the 121

loss function. We demonstrate that this approach 122
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not only achieves comparable performance with123

SFT across various benchmarks but also exhibits124

further improvement when incorporating the SFT125

model into the TPO method. These findings sug-126

gest that a separate SFT is not necessary for TPO127

and, in certain scenarios, may even hinder TPO’s128

performance.129

We summarize our primary contributions as:130

1. We propose a new preference learning method131

called Triple Preference Optimization (TPO)132

that simplifies the post-pretraining alignment.133

2. We show that TPO achieves comparable per-134

formance both with and without SFT com-135

pared to SFT and other alignment methods136

across various benchmarks. Additionally, we137

demonstrate that TPO without SFT exhibits138

superior performance.139

3. We examine the performance of TPO across140

different values of α which serves as a regu-141

larization parameter to control gold standard142

response learning. Our findings reveal that143

TPO achieves better performance at α = 1144

without SFT part, indicating the LLM’s capac-145

ity for more exploration.146

2 Related Works147

The performance of Large Language Models148

(LLMs) across diverse tasks is noteworthy (Anil149

et al., 2023). However, their efficacy in downstream150

tasks and alignment with user feedback has been151

notably enhanced through fine-tuning instructions152

and human-written completion datasets (Mishra153

et al., 2022). Fine-tuning models on instructions154

not only fosters generalization beyond the tun-155

ing set but also enhances overall usability (Chung156

et al., 2022). Despite the effectiveness of instruc-157

tion tuning, collecting relative human judgments158

of response quality is often simpler than obtaining159

expert demonstrations. Consequently, subsequent160

studies have fine-tuned LLMs using datasets of161

human preferences, leading to improvements in162

translation (Kreutzer et al., 2018), summarization163

(Stiennon et al., 2022), story-telling (Ziegler et al.,164

2019), instruction-following (Ramamurthy et al.,165

2023), and dialogue systems. In this section, we166

provide a succinct overview of various tasks and167

settings where LLMs have demonstrated notable168

performance in alignment.169

RLHF (Christiano et al., 2023), introduced in170

the literature, aims to optimize for maximum re-171

ward by interacting with a reward model trained172

using the Bradley-Terry (BT) model (Bong and 173

Rinaldo, 2022), typically through reinforcement al- 174

gorithms like Proximal Policy Optimization (PPO) 175

(Schulman et al., 2017). While RLHF enhances 176

model performance, it faces challenges such as in- 177

stability, reward hacking, and scalability inherent 178

in reinforcement learning. Recent works have pre- 179

sented techniques to overcome these challenges 180

by optimizing relative preferences without relying 181

on reinforcement learning. Utilizing the Bradley- 182

Terry (BT) model to optimize a model on prefer- 183

ence datasets is instrumental in ensuring alignment 184

with human preferences. 185

Sequence Likelihood Calibration (SLiC) (Zhao 186

et al., 2023) introduced a novel method for ranking 187

preferences generated by a supervised fine-tuned 188

(SFT) model, incorporating calibration loss and reg- 189

ularization fine-tuning loss during training. Mean- 190

while, RRHF (Yuan et al., 2023) trains the SFT 191

model using a zero-margin likelihood contrastive 192

loss, assuming multiple ranked responses for each 193

input. While both SLiC and RRHF are effective, 194

they lack theoretical foundations. In contrast, DPO 195

offers a method to directly fit an SFT model to 196

human preferences using the Bradley-Terry (BT) 197

model, providing theoretical insights into the align- 198

ment process. 199

Statistical Rejection Sampling Optimization 200

(RSO) (Liu et al., 2024) merges the techniques of 201

SLiC and DPO while introducing an improved ap- 202

proach for collecting preference pairs through sta- 203

tistical rejection sampling. IPO (Azar et al., 2023), 204

like DPO methods, has mathematically revealed the 205

limitations of the DPO approach concerning over- 206

fitting and generalization. It proposes a comprehen- 207

sive objective for learning from human preferences. 208

Zephyr (Tunstall et al., 2023) has improved DPO by 209

utilizing state-of-the-art (SOTA) models to gener- 210

ate responses for the same input and ranking them 211

using teacher models such as GPT-4. Moreover, 212

they emphasize the importance of SFT as an initial 213

step before implementing DPO. 214

KTO (Ethayarajh et al., 2023), drawing inspi- 215

ration from Kahneman and Tversky’s influential 216

work on prospect theory (TVERSKY and KAH- 217

NEMAN, 1992), seeks to maximize the utility of 218

LLM outputs directly rather than optimizing the 219

log-likelihood of preferences. By prioritizing the 220

determination of whether a preference is desirable 221

or undesirable, this method eliminates the require- 222

ment for two preferences for the same input. 223
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Self-Play fIne-tuNing (SPIN) (Chen et al., 2024)224

introduced a self-training approach to augment225

DPO using the dataset utilized in the SFT step.226

The core concept of this strategy is to leverage syn-227

thetic data generated as the rejected response and228

the gold standard response from the SFT dataset229

as the chosen response. On the other hand, CPO230

(Xu et al., 2024) proposed an efficient method for231

learning preferences by integrating the maximum-232

likelihood loss and the DPO loss function with the233

aim of enhancing memory and learning efficiency.234

We observe two primary challenges in the align-235

ment process addressed by the aforementioned236

studies. Firstly, there’s a significant reliance on the237

supervised fine-tuning (SFT) component. Zephyr’s238

findings indicate that the DPO approach fails239

to learn without SFT. Secondly, there are con-240

cerns regarding inefficient learning and memory241

usage. While CPO demonstrates that removing242

πref doesn’t decrease performance compared with243

DPO, it falls short in comparison to DPO and other244

alignment methods like KTO. In this investigation,245

we delve into these limitations and endeavor to246

introduce a novel method to address them.247

3 Method248

In this section, we introduce a novel preference249

learning method named Triple Preferences Opti-250

mization (TPO) for learning both gold and prefer-251

ence responses. This method is devised to train252

a model in dialogue systems to generate accurate253

responses to questions by considering three prefer-254

ences: one reference, one chosen, and one rejected,255

all for the same input.256

3.1 Triple Preferences Optimization257

In this subsection, we outline the objective of the258

TPO method. First, we begin with an analysis of259

DPO. Given a set of sources alongside preferred260

response yw and less-preferred response yl, for the261

same input, DPO can directly optimize a policy262

model. Consequently, the DPO loss function can263

drive towards a maximum likelihood objective for264

a parameterized policy (πθ):265

L (πθ;πref ) =

− E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

−β log
πθ (yl | x)
πref (yl | x)

)]
(1)266

where π is a fine-tuned model on downstream 267

tasks, σ is sigmoid function and β is a hypper- 268

parametter. DPO introduced an RL-free approach 269

by reformulating the reward model’s objective in 270

RLHF. They demonstrated that there’s no require- 271

ment for interaction with an environment to train 272

a model on human preferences, and a reward can 273

be explicitly incorporated into the loss function 274

without interaction. 275

Although the concept of directly optimizing a 276

model based on human preferences is intriguing, 277

DPO encounters two significant challenges. Firstly, 278

it suffers from inefficient learning and memory uti- 279

lization. Specifically, during model fine-tuning 280

with DPO, an additional policy model must be 281

loaded as a reference to maintain consistency be- 282

tween the model’s post-training and pre-training 283

states. Loading two models consumes more mem- 284

ory than SFT, leading to less efficient learning. Sec- 285

ondly, DPO exhibits a high dependency on achiev- 286

ing an optimal policy. The Zephyr (Tunstall et al., 287

2023) study demonstrated that the SFT component 288

is crucial for DPO, and without it, DPO’s effective- 289

ness is limited. 290

CPO, a new preference learning method, tack- 291

les DPO’s inefficient learning and memory utiliza- 292

tion by showing that removing the reference model 293

during DPO training does not affect performance. 294

However, the results suggest that CPO does not 295

achieve impressive performance compared to DPO 296

on dialogue systems and, like DPO, suffers from a 297

dependency on the SFT component. 298

Considering these limitations, we revise the 299

DPO loss function with dispiring CPO ideas. 300

In CPO, it was demonstrated that having 301

an optimal model πw for preferred data en- 302

ables truthful prediction of preferred data, i.e., 303

(πref (yw|x) = πw(yw|x)).In this context, for any 304

data point (x, yw, yl) from dataset D the condition 305

πw(yw|x) = 1 and 0 < πw(yl|x) < 1 hold true. 306

They proved that the DPO loss function does not 307

require πref , and for better learning of the policy 308

model πθ,they integrate the log-likelihood super- 309

vised fine-tuning loss for preferred data into the 310

DPO loss function without the πref term. 311

While CPO achieves generally comparable re- 312

sults with DPO on some benchmarks, this loss func- 313

tion may not be effective in dialogue systems. Its 314

main limitation lies in its high dependency on pre- 315

ferred data. Preferred data can be generated in 316

two ways: 1) by the SFT model and 2) by state-of- 317
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Model Align ARC TruthfulQA Winogrande HellaSwag MMLU Average

Zephyr SFT 60.41 43.73 74.19 81.69 60.92 64.18
Zephyr DPO 59.04 46.70 76.63 82.10 60 64.91
Zephyr IPO 59.30 42.22 76.4 81.02 59.93 63.77
Zephyr KTO 57.84 49.88 76.47 81.61 59.73 65.1
Zephyr CPO 57.50 53.22 75.92 80.37 58.41 65.08
Zephyr TPO (our) 58.02 59.05 76.47 80.6 59.48 66.72
Mistral TPO (our) 60.92 59.19 78.53 82.92 63 68.91

Table 1: Comparing TPO’s performance with other alignment methods reveals that the Zephyr-TPO model exhibits
comparable performance across different benchmarks and, on average, outperforms other methods. In particular,
Zephyr-TPO shows remarkable performance on the TruthfulQA benchmark. Additionally, the Mistral-TPO model
consistently outperforms other methods across all benchmarks. It’s worth noting that the Mistral-TPO model is
directly trained with TPO, which contributes to its superior performance. We clarify that Mistral is a base model of
the Zephyr model. We also note that the measure of performance for all benchmarks is accuracy.

the-art models such as LLaMA-2. If a portion of318

the preferred data is not suitable, the policy model319

may deviate significantly from the reference model.320

Since there is no reference model in this loss func-321

tion, in the worst-case scenario, the policy model322

may transition to a new distribution, leading to323

failed learning.324

To address this limitation, we propose that by325

incorporating an additional preference, we can mit-326

igate the aforementioned issues. In addition to con-327

sidering two, chosen and rejected preferences, we328

introduce the gold standard response as a third pref-329

erence in the loss function. Following the approach330

in SLiC, SLiC-HF, and CPO, we eliminate πref331

from the DPO loss function and integrate the log-332

likelihood supervised fine-tuning loss on the gold333

standard response. Thus, the TPO loss function is334

formulated as follows:335

Lreference = −E(x,yref)∼D [log πθ (yref | x)]
(2)336

Lpreference (πθ) =

− E(x,yw,yl)∼D [log σ (β log πθ (yw | x)
−β log πθ (yl | x))]

(3)337

LTPO = Lpreference + αLreference (4)338

Where yref , yw, and yl represent the gold stan-339

dard, chosen, and rejected responses, respectively.340

Additionally, α serves as a hyperparameter to regu-341

late the impact of the gold standard response dur-342

ing training. Broadly speaking, TPO has two main343

objectives: 1) optimizing the chosen and rejected344

preferences and 2) predicting the next token of 345

the gold standard response. The second objective 346

guides the model to learn the gold standard re- 347

sponse while directly optimizing between the cho- 348

sen and rejected responses. Despite the absence of 349

a reference model in the preference learning objec- 350

tive, the second objective helps maintain stability 351

by preventing significant changes in the distribution 352

of the policy model. Overall, TPO addresses the is- 353

sues of inefficient learning and memory utilization 354

by removing the reference model. Additionally, by 355

incorporating an SFT loss on the global response 356

(See Equation 2), TPO aims to ensure that the pol- 357

icy model remains close to the reference distribu- 358

tion. Furthermore, the TPO loss function resolves 359

the dependency of DPO on the supervised fine- 360

tuned model. This implies that TPO can achieve 361

comparable performance to DPO combined with 362

the supervised fine-tuned model, even without the 363

SFT component. We also evaluate TPO’s perfor- 364

mance across several benchmarks, as detailed in 365

Section 4. 366

4 Experiments and Results 367

In this section we present a comprehensive empiri- 368

cal analysis of TPO, yielding several key findings: 369

1) TPO with SFT outperforms other alignment 370

methods, boasting an average accuracy improve- 371

ment of 1.8%. 2) Directly training a model with 372

TPO surpasses the performance of TPO with SFT 373

by an average of 2.2%. 3) TPO with SFT excels no- 374

tably performance on the Truthful QA benchmark. 375

4) Factors such as training size, α parameter, and 376

epochs significantly influence TPO’s performance. 377

5) While TPO may experience overfitting with ex- 378
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Model Align MT-Bench BB-casual BB-sports BB-formal OpenBookQA

Zephyr SFT 5.94 51.57 61.76 51.4 43.8
Zephyr CPO 6.2 49.47 70.68 51.07 44.6
Zephyr DPO 6.64 52.1 71.9 51 46.2
Zephyr TPO (our) 6.66 54.21 73.93 50.84 45.6

Table 2: In our comparison of TPO with other alignment methods across more benchmarks, Zephyr-TPO emerges as
the top performer, surpassing other methods in MT-Bench and BB-causal, while showing comparable results in BB-
formal and OpenBookQA. The measure of performance on BB-causal, BB-sports, BB-formal, and OpenBookQA
are and for MT-Bench is a score between 0 and 10 that generated by GPT-4.

tended epochs, an SFT model aligned with TPO379

demonstrates enhanced performance, particularly380

on understanding tasks.381

4.1 Experimental Setup382

Models: All experiments were conducted using383

zephyr-sft-full and Mistral-7B0instruct-v0.1,384

which are among the current state-of-the-art mod-385

els at the 7B parameter scale. We utilized the Trans-386

former Reinforcement Learning (TRL) library for387

fine-tuning (von Werra et al., 2020). All models388

were trained using the AdamW optimizer without389

weight decay. Furthermore, parameter-efficient390

techniques such as LoRA (Hu et al., 2021) were391

not employed. The experiments were conducted392

on 6 A100 GPUs, utilizing bfloat16 precision, and393

typically required 5-8 hours to complete.394

Datasets: In this study, we employ two dialogue395

datasets: 1) UltraChat (Ding et al., 2023) and396

2) UltraFeedback (Cui et al., 2023). UltraChat397

comprises 200k examples generated by GPT-3.5-398

TURBO across 30 topics and 20 text material types,399

offering a high-quality dataset utilized for train-400

ing the SFT model. Meanwhile, UltraFeedback401

consists of a 64K set of responses generated by402

state-of-the-art models like LLaMA-2, Vicuna, Ul-403

traLM, and Alpaca, evaluated by a teacher model404

such as GPT-4. Each response is assigned a score405

indicating its quality given the same input. To train406

TPO, which requires three preferences, we create407

a custom dataset from the UltraFeedback dataset.408

Here, the response with the highest score serves409

as the reference response, the second-highest score410

as the chosen response, and the lowest score as411

the rejected response. For evaluating the perfor-412

mance of other alignment methods, we train them413

on the chosen and rejected responses from the cus-414

tom dataset. Due to computational limitations, we415

restrict our analysis to 12K data points, randomly416

selected from the dataset. 417

Evaluation Metrics: We evaluate our models in 418

both single-turn and multi-turn scenarios using the 419

MT-Bench benchmark (Ding et al., 2023). MT- 420

Bench consists of 160 questions spanning eight 421

knowledge domains for evaluation. In this bench- 422

mark, models are required to answer a question 423

and then address a predefined follow-up question. 424

Model responses are rated on a scale of 1 to 10 by 425

GPT-4, and the final score is calculated as the mean 426

over the two turns. Additionally, we assess mod- 427

els on the Open LLM Leaderboard Benckmarks 428

(Beeching et al., 2023), which assess the perfor- 429

mance of LLMs across five multiclass classification 430

tasks: ARC (Clark et al., 2018), HellaSwag (Zellers 431

et al., 2019), MMLU (Hendrycks et al., 2021), 432

Truthful QA (Lin et al., 2022), and Winogrande 433

(Sakaguchi et al., 2019). Furthermore, we explore 434

the performance of TPO across a broader variety of 435

tasks, including Big-Bench (bench authors, 2023) 436

and OpenBookQA (Mihaylov et al., 2018). To en- 437

sure a comprehensive evaluation, we include bench- 438

marks such as Causal Judgment (causal reasoning), 439

Sports Understanding (commonsense reasoning), 440

and Formal Fallacies in the Big Bench Hard dataset. 441

442

Detail of Training: All models are trained for 443

one epoch, employing a linear learning rate sched- 444

uler with a peak learning rate of 5e-7 and 10% 445

warmup steps. Additionally, the global batch size 446

is set to 8, and β = 0.1 is used to regulate the devia- 447

tion from the reference model. 448

4.2 Results 449

The primary results are depicted in Tables 1 and 2. 450

Demonstration of TPO Performance We com- 451

pare the TPO method with other alignment meth- 452

ods, including KTO, IPO, CPO, and DPO, on the 453
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Figure 3: In this figure, we present the performance of TPO across various values of hyperparameters, as discussed
in Section 4.3. It’s important to note that all models in this figure include the SFT part.
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Figure 4: Compare the performance of the Mistral-TPO
model with Zeyphr-DPO and Zephyr-TPO. We observe
that TPO generally outperforms DPO and SFT across all
benchmarks except BB-formal. Particularly noteworthy
is the significant performance gap between Mistral-TPO
and Zephyr-SFT in BB-Sports.

Open LLM Benchmarks. Our comparison involves454

two scenarios: 1) training an SFT model with TPO455

and other alignment methods, and 2) directly train-456

ing a pre-trained model with TPO and other align-457

ment methods.458

The results presented in Table 1 demonstrate that459

employing the TPO method on an SFT model not460

only enhances the performance of the SFT model461

itself but also exhibits remarkable overall perfor-462

mance compared to other methods. Specifically,463

TPO surpasses SFT and DPO in terms of aver-464

age accuracy across five different benchmarks by465

2.5% and 1.8%, respectively. On average, Zephyr-466

TPO model outperforms Zephyr-DPO model and467

achieves comparable performance on three out of468

five benchmarks (ARC, HellaSwag, and MMLU)469

compared with Zehyr-DPO model. We also, high-470

light that, TPO achieves notably high accuracy on471

the TruthfulQA benchmark, distinguishing it from472

other models. 473

However, these results do not align with our ini- 474

tial hypothesis, prompting us to directly train a 475

pre-trained model with TPO. Surprisingly, the find- 476

ings reveal that TPO without the SFT component 477

not only exhibits superior performance across five 478

benchmarks but also outperforms SFT and DPO in 479

terms of accuracy by 4.7% and 4%, respectively 480

(See Table ??). This suggests that while the SFT 481

method is an important component of alignment, it 482

may constrain alignment methods from achieving 483

their full potential. Consequently, TPO without 484

SFT may facilitate better exploration, resulting in 485

greater improvement compared to TPO with SFT. 486

Exploration on More Benchmarks For a com- 487

prehensive evaluation, we compare the TPO 488

method with CPO, DPO, and SFT across additional 489

benchmarks, including MT-Bench, Big-Bench, and 490

OpenBookQA, in addition to the tasks from the 491

Open LLM Leaderboard. Specifically, we incor- 492

porate tasks from Big Bench Hard, such as Casual 493

Judgment (casual reasoning), Sports Understanding 494

(common sense reasoning), and Fallacies (logical 495

reasoning). For further details, please refer to the 496

Appendix A. 497

Table 2 presents the performance of TPO and 498

other alignment methods. The results reveal that 499

TPO exhibits comparable performance on MT- 500

Bench compared to DPO and outperforms SFT and 501

CPO. While TPO falls short on OpenBookQA com- 502

pared to DPO, the directly trained TPO model en- 503

hances performance even further, surpassing DPO 504

(See Figure 4). Additionally, the finding indicates 505

that CPO performs poorly on all benchmarks ex- 506

cept BB-formal and does not achieve comparable 507

performance with TPO and DPO. 508
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4.3 Ablation Studies509

We found that the number of epochs has a notable510

effect on the performance of TPO. To thoroughly511

evaluate the performance improvement of TPO, we512

conduct additional evaluations across five bench-513

marks in the Open LLM Leaderboard Benchmarks.514

Training Size and Effect of α in TPO We as-515

sess TPO’s performance across different sizes of516

training sets. Figure 3 illustrates that increasing the517

training size with the same α leads to a decrease in518

TPO’s performance across all benchmarks. On av-519

erage, TPO’s performance exhibits a 2% decrease.520

In the TPO method, we define α as a hyper-521

parameter to control the effect of the reference re-522

sponse on learning. The results depicted in Figure 3523

indicate that, under the same configuration, TPO’s524

performance remains relatively consistent across525

different α values. However, we observe that for526

aligning an SFT model with TPO, better perfor-527

mance is achieved by decreasing α while aligning528

a pre-trained model directly with TPO benefits by529

increasing α.530

Figure 5: We show the overfitting impact on loss while
training the Zephyr-TOP model.

Training for More Epoch We examine the per-531

formance of TPO and the occurrence of overfitting532

on multiple epochs. Figures 5 and 6 illustrate that533

TPO experiences overfitting with an increase in534

epochs. This overfitting phenomenon suggests that535

while the accuracies of TPO improve during train-536

ing on additional epochs, the model’s accuracy dur-537

ing evaluation remains unchanged, indicating that538

the model may not be learning effectively. How-539

ever, TPO trained over two epochs demonstrates540

Figure 6: The accuracy of the Zephyr-TPO model in-
creases after one epoch, while the evaluation accuracy
remains constant.

a 2% improvement on MMLU and HellaSwang, 541

implying that more learning steps are necessary for 542

understanding tasks. 543

5 Conclusions 544

In this paper, we begin by addressing the limita- 545

tions inherent in existing alignment methods. Gen- 546

erally, alignment methods exhibit a high reliance 547

on the SFT component and encounter challenges 548

in sampling from policy models for training. To 549

mitigate these shortcomings, we introduce TPO, a 550

novel alignment approach aimed at concurrently 551

optimizing human preferences and gold standard 552

responses. TPO represents an RL-free method with 553

dual objectives: 1) optimizing human preferences 554

and 2) refining model predictions beyond gold stan- 555

dard responses. Our findings demonstrate the im- 556

pressive performance of TPO compared to other 557

alignment methods post the SFT phase. Particularly 558

noteworthy is the superior performance of TPO 559

without SFT compared to TPO with SFT. Moreover, 560

we identify SFT as a critical alignment method that 561

acts as a barrier for a model to engage in more ex- 562

ploration. While we examine TPO’s performance 563

across various α values, we emphasize the signif- 564

icance of exploring the impact of altering both β 565

and α on TPO performance. Furthermore, extend- 566

ing the application of TPO to diverse tasks presents 567

an opportunity for further exploration, which we 568

suggest for future works. We believe our study rep- 569

resents a pioneering effort in eliminating the SFT 570

part from alignment methodologies. 571
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6 Limitations572

While our study demonstrates the impressive per-573

formance of TPO compared to SFT and other align-574

ment methods, certain challenges remain. Creating575

a dataset with three preferences poses a notable576

challenge, and determining optimal values for α577

and β presents additional complexities. Moreover,578

TPO is susceptible to overfitting, and evaluation ac-579

curacy diminishes over multiple epochs. Addition-580

ally, assessing models on certain alignment bench-581

marks, such as MT-Bench and AlpacaEval (Dubois582

et al., 2023), incurs significant costs. These chal-583

lenges highlight areas for further investigation.584

Ethics Statement585

We have used AI assistants (Grammarly and586

ChatGPT) to address the grammatical errors and587

rephrase the sentences.588
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Appendix862

A More Exploration863

We present the details of the MT-Bench benchmark864

in Table 3. Figure 7 illustrates the scoring of GPT-4865

in various domains. Additionally, we provide some866

examples for models that fine-tuned by TPO and867

DPO.

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8

TPO
SFT+DPO
SFT+TPO
SFT

Figure 7: Generation another example of fine-tuned
model by TPO and DPO.

868

Model Align
First Turn

(Score)
Second Turn

(Score)
Average
(Score)

Zephyr TPO 7.13 6.2 6.66
Zephyr CPO 6.47 5.93 6.2
Mistral TPO 6.36 5.22 5.79

Table 3: The performance of alignment methods on
MT-Bench scores indicates that Mistral-TPO performs
comparably to SFT. As depicted in Table 1 and Figure
4, Mistral-TPO demonstrates impressive performance.
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Prompt Please describe the concept of machine learning. Could you elaborate on the
differences between supervised, unsupervised, and reinforcement learning? Provide
real-world examples of each.", "In your last example of reinforcement learning, can
we use supervised learning to solve it?

Model Response

Mistral-TPO Machine Learning is a subfield of Artificial Intelligence (AI) that focuses on
developing computer programs that can learn from data and improve their
performance over time. It involves the development of algorithms and models that can
automatically learn from data, make predictions, and adapt to new data without being
explicitly programmed.The concept of machine learning can be understood as a
process of teaching a computer to learn from data and make predictions or decisions
based on that learning. The goal is to create systems that can learn from data, adapt to
new situations, and perform tasks without being explicitly programmed.Machine
learning can be divided into [...]

Zephyr-TPO Machine learning is a subfield of artificial intelligence (AI) that involves designing
algorithms and models that enable computer systems to improve their performance on
specific tasks over time, without being explicitly programmed. It’s a process of
training a system to learn from data, identify patterns, and make predictions or
decisions based on that knowledge.There are three main categories of machine
learning:1. **Supervised Learning**: In this approach, the system is trained using
labeled data, where the input data (features) and the corresponding output (labels) are
known. [...]

Zephyr-DPO Machine learning is a subset of artificial intelligence (AI) that involves the
development of algorithms and statistical models that allow computer systems to
improve their performance on a specific task over time, without being explicitly
programmed. Essentially, machine learning involves teaching a computer to learn
from data and make predictions or decisions based on that data. There are three main
types of machine learning: supervised, unsupervised, and reinforcement learning. 1.
Supervised Learning: In supervised learning, a machine[...]

Table 4: Generation example of fine-tuned model by TPO and DPO on MT-Bench questions.
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Prompt Act as a math teacher. I will provide some mathematical equations or concepts, and it
will be your job to explain them in easy-to-understand terms. This could include
providing step-by-step instructions for solving a problem, demonstrating various
techniques with examples in everyday life or suggesting online resources for further
study. My first request is "I need help understanding how probability works.", "What
are the differences between Riemannian geometry and euclidean geometry?

Model Response

Mistral-TPO Probability is a fascinating concept, representing the likelihood or chance that a
specific event or outcome will occur. It plays a crucial role in various fields, such as
statistics, science, and even gambling. If you’re looking to understand probability
better, I’m happy to help by providing you with clear, step-by-step instructions.To
start, let’s consider a simple example of flipping a coin. If you were to flip a coin,
there are only two possible outcomes [...]

Zephyr-TPO As an AI assistant, I’m happy to explain probability in simple terms. Probability is a
measure of the likelihood or chance that a particular event occurs. It’s a crucial
concept in mathematics, science, and everyday life. Here’s a step-by-step
explanation:1. **Understanding the basics:** Probability is a number between 0 and
1 that represents the possibility of an event happening. A probability of 0 means an
event never happens, while a probability of 1 means it’s certain to occur.2.
**Calculating Probability:** To calculate the[...]

Zephyr-DPO Probability is the study of how likely an event is to occur based on a set of conditions
or outcomes. It is often expressed as a percentage or a fraction. Here are some basic
concepts to help you understand probability:1. Sample Space: This is the set of all
possible outcomes in a given situation. For example, if you are flipping a coin, the
sample space would be heads or tails.2. Events: These are the different outcomes that
can occur in a given situation. For example, if you are flipping a coin, [...]

Table 5: Generation another example of fine-tuned model by TPO and DPO on MT-Bench questions.
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Prompt Explain what’s base rate fallacy and list five specific examples of how politicians use
it for campaigns.", "Provide a detailed plan for an election campaign using the first
example.

Model Response

Mistral-TPO Base rate fallacy is a logical fallacy that occurs when a person ignores the base rate of
an event and focuses on the probability of an event given a certain condition. In other
words, it is the tendency to overestimate the probability of an event based on the
specific information provided, without considering the overall likelihood of that event
occurring. Here are five specific examples of how politicians use base rate fallacy in
their campaigns: 1. **Crime Statistics:** Politicians often use crime statistics to
create fear and promote their tough-on-crime policies. They [...]

Zephyr-TPO Base rate fallacy, also known as the base rate neglect or the conjunction fallacy, is a
cognitive error where individuals tend to overemphasize or underestimate the
significance of specific information while ignoring the overall probability or base rate.
It occurs when people focus too much on a particular piece of information, leading
them to make incorrect judgments or decisions. In the context of politics, this fallacy
can manifest in various ways during campaigns.1. **Appeal to Emotion:**
Politicians often [...]

Zephyr-DPO Base rate fallacy, also known as the fallacy of the fallacious generalization, is a type
of fallacy where a conclusion is drawn based on a small sample or a single case,
without considering the larger context or base rate. In other words, it is assuming that
a small sample or a single case is representative of the larger population.Politicians
often use base rate fallacy in their campaigns to make their arguments more
convincing and to appeal to voters’ emotions. Here are five specific examples:[...]

Table 6: Generation another example of fine-tuned model by TPO and DPO on MT-Bench questions.
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Prompt Describe a vivid and unique character, using strong imagery and creative language.
Please answer in fewer than two paragraphs.", "Revise your previous response and
incorporate an allusion to a famous work of literature or historical event in each
sentence.

Model Response

Mistral-TPO The man was like a human, but not really. He stood eight feet tall and his body looked
like a mixture of a lion and a human. His skin was a deep gold color, and his mane
was as long as a lion2̆019s, but unlike a lion2̆019s mane, his was the color of a
lion2̆019s fur. His eyes were the brightest blue of any human eyes, and his smile
radiated warmth. He had a thick, bushy mustache that, along with his thick, dark
eyebrows, gave the impression that he was a kind, wise man. But, the strangest thing
about him was not [...]

Zephyr-TPO Amidst the crimson waves of sunset, a figure emerges - a woman etched from the very
essence of the night sky. Her hair a tapestry of starlight, cascading down her naked
shoulders like a cosmic waterfall. Her eyes, a celestial dance of iridescence, shifting
from a deep indigo to a shimmering sapphire as she gazes upon the universe with
reverence. Her voice, a symphony of [...]

Zephyr-DPO Meet Aria, a woman with skin as pale as moonlight, eyes that glitter like emeralds,
and hair as black as ebony. Her slender frame is adorned with intricate tattoos that
seem to pulse with a life of their own, depicting fantastical creatures and ethereal
landscapes. She moves with the grace of a serpent, her every step delicate and precise.
Her voice is a symphony of music, a melody that seems to lure those around her,
beckoning them closer to her mystical world. Her presence is a force to be reckoned
with, leaving [...]

Table 7: Generation another example of fine-tuned model by TPO and DPO on MT-Bench questions.
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Prompt Photosynthesis is a vital process for life on Earth. Could you outline the two main
stages of photosynthesis, including where they take place within the chloroplast, and
the primary inputs and outputs for each stage?", "How much energy can a tree
produce through photosynthesis in its lifetime? Please provide an estimate using
actual numerical values and thoroughly explain your thought process step-by-step.

Model Response

Mistral-TPO Photosynthesis is a process that converts light energy into chemical energy, which is
stored in the form of carbohydrates. It is a vital process for life on Earth, as it
provides the energy that sustains most organisms. Photosynthesis occurs in two
stages: the light-dependent reactions and the light-independent reactions. These two
stages take place within the chloroplast, which is a specialized organelle found in
plants, algae, and some bacteria.1. Light-Dependent Reactions: These reactions occur
in the thylakoid membranes of the chloroplast. They involve the absorption of [...]

Zephyr-TPO Photosynthesis is a complex biochemical process that occurs in the chloroplasts of
plant cells, algae, and some bacteria. It involves two main stages: the light-dependent
reactions (also known as the light reactions) and the light-independent reactions (also
known as the dark reactions or the Calvin cycle).1. Light-dependent reactions: a.
Location: These reactions occur in the thylakoid membranes of the chloroplasts,
which are flattened, stacked membranes that form a network of sacs. b. Inputs: Water
(H2O), [...]

Zephyr-DPO Photosynthesis is a process by which plants, algae, and some bacteria convert light
energy into chemical energy in the form of glucose. It occurs in the chloroplasts of
plant cells, which are specialized organelles that contain chlorophyll, the pigment that
gives plants their green color. Photosynthesis can be divided into two main stages:1.
Light-dependent reactions: This stage takes place in the thylakoid membranes of the
chloroplasts. The primary inputs for this stage are light energy and water. The
primary output is ATP (adenosine triphosphate), a molecule that stores energy, and
NADPH (nicotinamide adenine dinucleotide phosphate), a molecule that carries
electrons.During the light-dependent reactions, light energy is absorbed by
chlorophyll [...]

Table 8: Generation another example of fine-tuned model by TPO and DPO on MT-Bench questions.
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