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ABSTRACT

In multi-agent systems, intelligent agents are tasked with making decisions that
lead to optimal outcomes when actions of the other agents are as expected, whilst
also being prepared for their unexpected behaviour. In this work, we introduce
a novel risk-averse solution concept that allows the learner to accommodate low
probability actions by finding the strategy with minimum variance, given any level
of expected utility. We first prove the existence of such a risk-averse equilibrium,
and propose one fictitious-play type learning algorithm for smaller games that
enjoys provable convergence guarantees in games classes including zero-sum and
potential. Furthermore, we propose an approximation method for larger games
based on iterative population-based training that generates a population of risk-
averse agents. Empirically, our equilibrium is shown to be able to reduce the utility
variance, specifically in the sense that other agents’ low probability behaviour is
better accounted for by our equilibrium in comparison to playing other solutions.
Importantly, we show that our population of agents that approximate a risk-averse
equilibrium is particularly effective against unseen opposing populations, especially
in the case of guaranteeing a minimum level of performance, which is critical to
safety-aware multi-agent systems.

1 INTRODUCTION

Game Theory (GT) has become an important analytical tool in solving Machine Learning (ML)
problems; the idea of "gamification" has become popular in recent years (Wellman, 2006; Lanctot
et al., 2017) particularly in multi-agent systems research. The importance of risk-aversion in the
single-agent decision making literature (Zhang et al., 2020; Mihatsch & Neuneier, 2002; Chow et al.,
2017) is obvious, whilst there still exist many open questions in the current game theory research
domain. This paper aims to add to the current research in the multi-agent strategic decision-making
literature based on the notion of risk-aversion through the lens of a new equilibrium concept.

One reason that risk-aversion is important is that multi-agent interaction is rife with strategic uncer-
tainty; this is because performance doesn’t solely depend on ones own action. It is rarely the case that
one will have certainty over the execution and the strategy of the opponent in situations ranging from
board games to economic negotiations (Calford, 2020). This presents a dilemma for autonomous
decision-makers in human-AI interaction as one can no longer rely on perfect execution or complete
strategy knowledge. Therefore, an important issue is what happens when actors take dangerous low
probability actions such that could be considered as mistakes. These issues in play can arise in an
array of circumstances, from misunderstandings of reward structures to execution fatigue, leading to
the execution of an unexpected pure strategy. Hedging against unexpected play is important for the
agents as otherwise it can lead to large costs. As demonstrated in Fig. (1), a mistake in the execution
of the pure-strategy Nash equilibrium (NE) could lead to both cars overtaking and crashing into each
other, a negative yet critical outcome in multi-agent system.

Traditional equilibrium solutions in GT (e.g. NE, Trembling Hand Perfect Equilibrium (THPE)
(Bielefeld, 1988)) lack the ability to handle this style of risk as either: 1) they assume strategies
are executed perfectly, and/or, 2) large costs may be undervalued if there is a low probability
attached to them. We address these by introducing a new framework for studying risk in multi-agent
systems through mean-variance analysis. In our framework, strategies are evaluated both in terms of
expected utility against the opponent, but also the potential utility variance if the opponent played
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Stay in Lane Overtake

Stay in 
Lane 5, 5 0, 20

Overtake 20, 0 -50, -50 Risk Averse Equilibrium

Pure Strategy Nash Equilibrium

Figure 1: Cars are rewarded for reaching their destination. They are behind slow tractors but can
stay in their lanes and arrive safely, but slowly. They can overtake to arrive quickly, but if the other
also overtakes they will crash, leading to large negative payoffs. The Overtake strategy is high-risk,
high-reward and susceptible to errors, and is selected under a Nash equilibrium. The Stay in Lane
strategy is low-risk, low-reward with low variance and selected by our mean-variance RAE approach.

low probability pure strategies. For example, the driving example in Fig. (1) describes a simple
scenario where, due to the critical nature of wanting to avoid crashing, the benefits of overtaking may
be entirely redundant with the possibility of low probability play leading to crashes. We summarise
the contributions of our paper here:

1. We introduce a novel risk-averse equilibrium (RAE) based on mean-variance components of
the available strategies. Our framework generalises the single-agent mean-variance decision
framework to multi-agent settings.

2. We show that the RAE always exists in finite games, and that it is solvable in the class of
games with the fictitious-play property. This, as we later show, unlocks a powerful array of
computational methods for solving games.

3. We demonstrate that: 1) RAE is able to locate a minimum variance solution for any given
level of utility 2) A by-product of RAE is that it can be used as a Nash equilibrium selection
tool in the presence of a "risk-dominant" equilibrium 3) RAE is able to find a low risk
strategy in a safety-sensitive autonomous driving environment.

2 RELATED WORK

There exists three relevant bodies of work, those works that empirically study the presence of risk-
aversion in humans, those that aim to develop new equilibrium frameworks and those that study how
risk-averse agents alters classical game-theoretic results.

On the empirical side, the first paper to show that humans prefer to bet on known probability
devices, rather than on other human choices, suggesting strategic uncertainty avoidance (Camerer
& Karjalainen, 1994). Bohnet & Zeckhauser (2004) similarly found that subjects are more trusting
in an objective randomisation device rather than other humans. Eichberger et al. (2008) found that
more trust is placed in game theorists than “grannies" as the latter is a source of strategic ambiguity.
Similar practices are noted in the game setting which more closely model multi-agent interactions,
especially in the form of ambiguity aversion, such as those games outside of 3-color Ellsberg Urn
tasks (Kelsey & Le Roux, 2015), public goods and weakest link games (Kelsey & Le Roux, 2017), or
in the presence of strategic complements and strategic substitutes (Kelsey & le Roux, 2018). For an
extensive survey of the experimental evidence, we refer readers to (Harrison & Rutström, 2008).

The equilibrium literature can be divided into three distinct sections. Harsanyi et al. (1988) introduced
risk-dominant Nash equilibria (NE) (Nash, 1951), which suggests that increasing levels of strategic
ambiguity will lead to the equilibrium with the lowest deviation losses. Risk dominance is limited as
it is restricted to the set of NE strategies, and therefore may be risk-dominant in comparison to other
NE but not particularly risk-averse at all. Bielefeld (1988) set out the THPE which deals with strategic
risk by accounting for off-equilibrium play. However, this is sensitive to strictly dominated strategies
and, because all trembles happen with marginal probability large downside risk can be masked, (In
Fig.1 an error probability of 0.01 would only impact the utility function by 0.5, whereas we later
show that our variance solution values the error at 47.6γ, where γ > 0 and non-marginal), which is
problematic for safety-sensitive systems (e.g., autonomous driving). McKelvey & Palfrey (1995)
utilises the Quantal Response Equilibrium (QRE) to introduce errors into strategy selection, but with
lower percentages on big mistakes which also discounts the impact of large downside risk. We argue
that QRE undervalues big costs which are particularly damaging in real-world settings, whereas
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our mean-variance approach hedges away from high cost risk even in the presence of marginal
probabilities. Yekkehkhany et al. (2020) utilises a similar mean-variance equilibrium concept based
on risk derived from one-shot play in the probabilistic setting, rather than the expectation setting
of this work. This does not apply more generally to the model-free machine learning setting where
utility probabilities are not known and is therefore more difficult to apply practically.

In terms of risk-aversion outside of equilibrium concepts, competitive network games Wardrop (1952)
and the non expected utility maximising setting Fiat & Papadimitriou (2010) have been studied
the most. Risk aversion in the network setting is based on a generalisation of the classical selfish
routing model Beckmann et al. (1956) to incorporate uncertain delays. Nikolova & Stier-Moses
(2014) consider a mean-variance framework for Wardrop equilibria in this setting, whilst Lianeas
et al. (2019) extend this research to looking at how risk aversion degrades the performance of a
routing system. Whilst the mean-variance approach is the same underlying notion as our work, we
instead propose a solution for general games rather than routing games. In general games, Fiat &
Papadimitriou (2010) remove the assumption of expectation maximisation and show that under risk
averse utility functions there may exist no Nash equilibria. Further works have generally focused on
Price of Anarchy Piliouras et al. (2016); Kesselheim & Kodric (2018), which study how removing the
assumptions of risk neutrality in general games impacts the difference between the achieved worst
equilibrium and the maximum possible welfare of the system. Our work follows a similar strand in
looking at general games, but focuses on defining a new equilibrium concept rather than establishing
how risk-averse agents change the convergence properties to classical equilibrium concepts. In
addition, we frame our work such that it is more scalable for usage alongside RL techniques.

Our framework fits broadly into the areas of risk-sensitive RL ((Chow & Ghavamzadeh, 2014;
Keramati et al., 2020; Zhang et al., 2021)) and risk measures, such as mean-variance, value at risk
(VaR) and conditional value at risk (CVaR), in RL ((Garcıa & Fernández, 2015; Tang et al., 2019;
Hiraoka et al., 2019; Ma et al., 2020)). The focus of risk-sensitive RL has remained predominately in
single-agent settings where risk is due to the environment, rather than from other inhabitants of the
environment. Multi-agent solutions include: RMIX (Qiu et al., 2021) which optimises decentralised
CVaR policies in cooperative risk-sensitive settings, RAM-Q and RA3-Q (Gao et al., 2021) which
tackles algorithmic trading by utilising an adversarial approach to promote variance reduction, or
risk-sensitive DAPG (Eriksson et al., 2022) which approaches risk in Bayesian games in terms of the
CVaR induced by the possible combinations of types in the game. However, as we are specifically
concerned with game-theoretic equilibrium concepts we will not directly compare to these methods.

Historically, the key challenge of computational GT is how to solve for a NE. For example, in two-
player zero-sum games, it is theoretically possible to solve for an NE directly via linear programming
(LP) (Morgenstern & Von Neumann, 1953). Another approach to finding an equilibrium is the
iterative method Fictitous Play (FP) (Brown, 1951), where players make best-responses to the time-
average action of the opponent. However, in practice both the above approaches can be strictly
intractable. Limitations due to action space size led to a general wave of methods that focus on
starting with a "restricted" action space and iteratively expanding said space in order to approximate
an equilibrium with the best possible strategies. Notably, Double Oracle (DO) (McMahan et al.,
2003; Dinh et al., 2021; McAleer et al., 2021) and Policy-Space Response Oracles (PSRO) (Lanctot
et al., 2017; McAleer et al., 2020; Perez-Nieves et al., 2021; Feng et al., 2021) methods are the two
major frameworks in this area. In this work we face a similar challenge in terms of the difficulty of
solving for our own equilibrium. In this paper we demonstrate how FP and PSRO can be applied
as a solver for our new equilibrium concept. In doing so, we provide a concrete methodology for
obtaining solutions in our setting. However, we must adapt them as they are generally designed for
risk-neutral equilibria which is not the case for this work.

3 PRELIMINARIES & NOTATIONS

In this section, we introduce the preliminaries and notation required to understand our formulation.
A normal-form game (NFG) is the standard representation of strategic interaction in GT. A finite
n-person NFG is a tuple (N,A, u), where N is a finite set of n players, A = A1×, ...,×An is the
joint action profile, with Ai being the strategies available to player i, and u = (u1, ..., un) where
ui : A → R is the real-valued expected utility function for each player. A player plays a mixed-
strategy, σi ∈ ∆Ai , which is a probability distribution over their possible actions. In Sec. 6 we
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replace our atomic pure strategies with neural network based strategies and therefore re-define our
notation to keep clarity between the two game schemes.

The central equilibrium concept in game-theory is the Nash equilibrium (NE), which is a strategy
profile where no players have an incentive to deviate. Let a−i ∈ A−i be the pure strategy sets for all
players other than i. Let ui(ai, a−i) be the expected utility function for player i versus all players
other than i, the strategy profile a∗ = (a∗i , a

∗
−i) is a NE if,

ui(a
∗
i , a

∗
−i) ≥ ui(ai, a

∗
−i) ∀ai ∈ ai (1)

4 MEAN-VARIANCE EQUILIBRIUM

In the following section, we introduce our mean-variance based total utility function and then show
how it can be used as an equilibrium concept. Our proposed variance method aims to deal with the
main downside of QRE and THPE, that they both undervalue large downsides. For example, QRE
is designed that action probabilities are proportional to expected utility and THPE assigns ’error’
probability to all zero-probability actions. In both of these cases, variance from the average expected
utility will provide a more pronounced effect of risk than using the raw values.

4.1 UTILITY FUNCTION

Here we propose a total utility function that measures both the expected utility, but also the potential
variance of utility dependent on the opponent’s strategy.

For simplicity we provide definitions based on playing a symmetric game, such that two players share
an action setA, a utility function u. We extend this to the non-symmetric case in Appendix H. Define
the expected utility of action ai ∈ A against action aj ∈ A as u(ai, aj) and the full expected utility
table as M, where the entry Mi,j refers to u(ai, aj) and Mi refers to u(ai, aj) ∀j, i.e. the vector of
expected utilities that action ai receives against all other actions. We now define the expected utility
of the mixed-strategy for player 1 σ versus the mixed strategy for player 2 ς as

u(σ, ς,M) =
∑
ai∈A

∑
aj∈A

σ(ai)ς(aj)u(ai, aj) = σT ·M · ς. (2)

The weighted co-variance matrix for M is a |A| × |A| matrix ΣM,ς = [cij ] with entries

cjk =
∑
ai∈A

ς(ai)
(
u(ai, aj)− M̄j

)(
u(ai, ak)− M̄k

)
, (3)

where M̄i =
1
|A|

∑|A|
k=1 ςku(ai, ak) is the weighted average expected utility for action i. This is a

standard co-variance matrix where the values for each action are weighted by the likelihood of them
being selected by the opponent. A uniform weighting could be used, however we believe that in
terms of utility variability avoidance it is more intuitive to hedge against the variance caused by high
likelihood actions. However, as will be discussed later, all actions will still receive positive probability
under our framework and therefore will always provide some weight in the variance calculation,
leading to low likelihood high-variance actions still having a large impact on the final result. This
accounts for the idea that mistakes may happen such that all actions can be played with at least a low
probability. This allows us to define the mixed-strategy σ variance utility as follows:

Var(σ, ς,M) =

|A|∑
k=1

|A|∑
n=1

σ(ak)σ(an)ckn =

|A|∑
i=1

σ(ai)
2cii +

|A|∑
k=1

|A|∑
n=k+1

σ(ak)σ(an)ckn

= σT ·ΣM,ς · σ.
(4)

The final total utility function r which considers expected and variance utility for strategy σ is,

r(σ, ς,M) = u(σ, ς,M)− γVar(σ, ς,M), (5)

where γ ∈ R is the risk-aversion parameter. Applying Eq. (5) to Fig. (1) we show how we
arrive at a strategy profile that has our desired properties. Consider two joint strategy profiles,
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S1 = ((1−ϵ, 0+ϵ), (1−ϵ, 0+ϵ)) and a Nash equilibrium S2 = ((0+ϵ, 1−ϵ), (1−ϵ, 0+ϵ)) where
(1− ϵ, 0 + ϵ) represents playing Stay in Lane with probability (1− ϵ). ϵ is arbitrarily small and used
to ensure fully mixed strategies, for the example we use ϵ = 0.01. Profile S1 receives u(S1) = 5 and
the Nash profile receives u(S2) = 20. However, Var(S1) = 0.32 and Var(S2) = 47.6, i.e. the Nash
strategy has huge variance for Player 1. Therefore, r(S1) = 5− 0.32γ and r(S2) = 20− 47.6γ and
we have for any risk-aversion parameter γ > 0.32 it is optimal to play S1.

4.2 EQUILIBRIUM CONCEPT

We now define our new equilibrium concept based on the total utility function (5). First start by
defining the best-response map:

σ∗(ς) ∈ argmax
σ

r(σ, ς,M)

s.t. σ(a) ≥ 0 ,∀a ∈ A

σT 1 = 1,

(6)

where due to the quadratic term σT · ΣM,ς · σ and the constraints, we have a Quadratic Programme
(QP). The above programme finds σ such that the total utility is maximised, whilst ensuring no
strategies are assigned negative action probability, and that the action probabilities sum to one. We
now propose the following:
PROPOSITION 1. For any given expected utility µb, there exists γ such that the solution to (6) is
the minimum variance solution.

We defer the proof to Appendix (A). This proposition implies that when using 6, given any expected
utility value µb, there exists γ that achieves µb with the minimum possible variance. Therefore, γ can
be tuned to provide a desired expected utility whilst giving the user the minimum viable variance
solution. Therefore, based on Eq. (6), we define the equilibrium for the strategy profile σ,
DEFINITION 2 (Risk-Averse Equilibrium (RAE)). A strategy profile {σ, ς} is a risk-averse equi-
librium if both σ and ς are risk-averse best responses to each other.

Finally, a property of most game-theoretic equilibria is that a solution exists, at least in the finite
game setting. For our equilibrium, we note the following result in mixed-strategies:
THEOREM 3. For any finite N-player game where each player i has a finite k number of pure
strategies, Ai = {ai1, ..., aik}, an RAE exists.

We defer the proof of the result to Appendix (A). Importantly, Theorem 3 establishes the existence of
solutions providing practical relevance for our equilibrium concept.

5 EQUILIBRIUM LEARNING VIA STOCHASTIC FICTITIOUS PLAY

We start by showing that our total utility function can be used as a form of stochastic fictitious
play (SFP) (Fudenberg & Kreps, 1993) for finding an RAE in small NFGs. SFP has convergence
guarantees in a selection of games, most notably potential games (Monderer & Shapley, 1996a;b) and
finite two-player zero-sum games (Robinson, 1951). Furthermore, SFP is robust to games outside of
the above game classes (Ganzfried, 2020), and we extend these observations in Appendix (B).

SFP describes a learning process where each player chooses a best response to their opponents’
time-average strategies. In SFP, a group of n ≥ 2 players repeatedly play a n−player NFG. The state
variable is Zt ∈ ∆S , whose components Zi

t describe the time averages of each player’s behaviour,

Zi
t =

1

t

t∑
u=1

σi
t

where σi
t ∈ ∆Ai represents the observed strategy of player i at time-step t. A SFP process is one

where each player best responds to the time-average strategy of their opponent, Z−i
t such that,

σi
t+1 ∈ argmax

σ
ui(σ, Z−i

t ,M)− λvi(σ) (7)
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!t σt Best Response OracleRAE Solver

σt(ς) ∈ argmaxσu(σ, ς, M) − γ Var(σ, ς, M) ϕBR(σt) = argmaxϕ

t

∑
k=1

σk
t (u(ϕ, ϕk) − γ Var(ϕ, ϕk))
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Figure 2: Iterative agent generation process. Note that u(·) and Var(·) are overloaded to represent
utility/variance between distributions over a population or utility/variance between two policies.

vi(σ) : ∆A → R is a strictly convex function, and the gradient of vi(σ) becomes arbitrarily large
near the boundary of the strategy simplex, i.e. limσ→∂(Ai) |vi(σ)| =∞. We propose the following
with regards to our total utility function (Proofs are deferred to Appendix (A))

THEOREM 4. Given the total utility function Eq. (5) there exist RAE convergence guarantees in
the category of games that are solved by SFP.

SFP does not necessarily converge in all game classes (but is robust empirically). Therefore, we show
that if the SFP process does converge to a strategy then that strategy is guaranteed to be an RAE,

PROPOSITION 5. Suppose the SFP sequence {Zt} converges to σ in observed strategies 1, then σ
is a risk-averse equilibrium.

Note that for SFP we require a stronger notion of convergence in observed strategies σi
t rather than

in beliefs Zi
t , but the usage of a converged final σi

t guarantees a risk-averse equilibrium.

6 EQUILIBRIUM LEARNING VIA ITERATIVE AGENT GENERATION

For games that can’t be tractably displayed in the normal-form, we use iterative solution frameworks,
which make use of reinforcement learning (RL) policies as proxies for actions. This approach aims
to approximate equilibria in large games by finding a small representative collection of risk-averse
policies which can instead be selected over by RAE. We provide a visualisation of the following
iterative agent generation process in Fig. (2), and provide an algorithm in Appendix D.

Consider two-player stochastic games G defined by the tuple {S,A,P,R}, where S is the set of
states,A = A1×A2 is the joint action space, P : S ×A×S → [0, 1] is the state-transition function
and Ri : S ×A → R is the reward function for player i. An agent is a policy ϕ, where a policy is a
mapping ϕ : S ×A → [0, 1] which can be described in both a tabular form or as a neural network.
The expected utility between two agents is defined to be M(ϕi,ϕj) (i.e., in the same manner defined
for NFGs in Sec. 4.1), and represents the expected utility to agent ϕi against opponent ϕj .

Our iterative framework does T ∈ N+ iterative updates on a meta-game M (an NFG made up of
RL agents as actions) following the framework of PSRO (Lanctot et al., 2017). At every iteration
t ≤ T , a player is defined by a population of fixed agents Φt = Φ0 ∪ {ϕ1,ϕ2, ...,ϕt}, where Φ0 is
the initial random agent. For notation convenience, we consider the single-population case where
players share the same Φt. As such, the population will generate a meta-game Mt, an expected utility
matrix between all the agents in the population, with individual entries M(ϕi,ϕj) ∀ϕi,ϕj ∈ Φt.

To make use of a population Φt we require a way to select which agents ϕt ∈ Φt will be utilised for
training. This function f is a mapping f : Mt → [0, 1]t which takes as input a meta-game Mt and
outputs a meta-distribution σt = f(Mt). The output σt is a probability assignment to each agent in
the population Φt and, as we are in the single-population setting (i.e., symmetric play), we do not
distinguish between populations. This is the equivalent of a mixed-strategy in a NFG, except now the

1Convergence in the time-average Zt does not imply convergence in the actual strategy taken at each t, but
may for example imply cyclic actual behaviour that results in average behaviour converging.

6



Under review as a conference paper at ICLR 2023

Fictitious Play PSRO

0 5 10 15 20
Variance Utility

6

8

10

12

14

E
xp

ec
te

d
U

ti
lit

y

∞ = 0.1∞ = 0.2

∞ = 0.22

∞ = 0.23

∞ = 0.3

∞ = 0.4

∞ = 0.7
∞ = 1.0

QRE

THPE

Nash

Risk Dominant Eqm

Expected Utility vs. Variance Utility

0 5 10 15 20 25 30 35 40
Variance Utility

6

8

10

12

14

E
xp

ec
te

d
U

ti
lit

y

QRE

NashSelf-Play

Uniform

Risk Dominant

∞ = 0.04

∞ = 0.1

∞ = 0.2

∞ = 0.3

∞ = 0.5
∞ = 1.0

Expected Utility vs. Variance Utility

Figure 3: a) SFP on NFGs with 100 actions, b) PSRO on NFGs with 500 actions. Both compare final
expected utility vs. variance utility results. We plot RAE values for multiple γ to form an ’efficient
frontier’ and show that, whilst baselines achieve similar expected utilities they are always finding
solutions that are too high in variance utility. In Fig. a) we exclude the Payoff Dominant result as it
provided huge final variance utility, whilst in Fig. b) we exclude the THPE result for the same reason.

actions are RL policies. We apply our risk-averse equilibrium concept (Def. 2) as the meta-solver. As
ϕ are RL policies then the policies are sampled by their respective probability in σt.

At each epoch the population Φt is augmented with a new agent that is a best-response to the
meta-distribution σt. Generally, this will be purely in terms of the expected reward, and can be found
with any optimisation process such as Reinforcement Learning. In our setting there are two properties
that we are concerned with when adding a new agent to the population. Notably, how it impacts the
expected return but also how it impacts the variance utility of the population σt+1 ·ΣMt+1,σt+1

·σt+1.

To do this, we follow the PPO approach of (Zhang et al., 2020) that optimises both performance
and per-step RL-reward variance. It is shown by (Bisi et al., 2019) that the variance of the per-step
RL-reward bounds the variance of the total-RL reward from above. Notably, the variance utility of a
population is measured in terms of the variance of the total RL-reward, and therefore shrinking the
variance of the per-step RL-reward will also shrink the variance of the total RL-reward. To achieve
this, an augmented MDP is used where the MDP-reward, git is replaced as follows:

ĝit = git − λ(git)
2 + (2λgityi)

where yi = 1
T

∑T
t=1 g

i
t is the average of the RL-rewards during the data collection phase. Notably, as

this variance is also with respect to the sampling probability defined by σt this optimises the correct
co-variance matrix which is similarly weighted by σt.

7 EXPERIMENTS

We validate the effectiveness of RAE on three environments that all display some risk component.

1. Randomly generated coordination games where some actions provide a high expected utility
if the other player selects the same action, but have large costs if not. There also exist actions
that have lower coordinated expected utility but lower costs. We conduct experiments testing
SFP on games with 100 actions, and utilising our iterative approach on games with 500
actions. Vanilla policy gradient RL agents are used for the iterative approach.

2. A generalised grid-world stag-hunt (Peysakhovich & Lerer, 2017) game that has a payoff-
dominant and risk-dominant equilibrium. In this game it is not possible tractably to list out
all actions and therefore our iterative approach is applied. PPO RL agents are used.

3. An autonomous driving environment (Leurent, 2018) based on Fig. (1) for testing that our
RAE in Fig. (1) is attainable in an RL setting. PPO RL agents are used.

For SFP we select the baselines to be NE (including risk/dominant payoff NE), THPE (Bielefeld,
1988) and QRE (McKelvey & Palfrey, 1995). For our iterative experiments, we select the baselines to
be PSRO-{Nash, Uniform, Self-Play, THPE, QRE} where the brackets refer to the meta-solver used.
In the population-based setting we believe it is fair to restrict our baselines to algorithms that operate
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Num. Stag Catch Num. Stag Gore Num. Plant Gather

Self-Play 28.81 ± 0.78 2.81 ± 1.00 1.19 ± 0.09
PSRO-Uniform 25.79 ± 1.24 6.84 ± 0.69 1.24 ± 0.28

PSRO-THPE 27.48 ± 1.22 4.49 ± 1.15 1.17 ± 0.23 
PSRO-RAE (Ours) 0.48 ± 0.19 5.65 ± 0.72 19.87 ± 0.86

PSRO-QRE 26.9 ± 0.75 4.89 ± 0.51 1.24 ± 0.11
PSRO-Nash 28.11 ± 2.13 4.42 ± 0.98 1.09 ± 0.21 
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Figure 4: Stag-hunt environment results. a) Visualisation of the environment b) Results for intra-
population play c) Results for RAE population vs. Nash population.

within this framework, and to not consider non-population risk-aversion algorithms and opponent
modelling frameworks. In addition, our goal is to introduce and evaluate a new game-theoretic
concept and therefore we believe the most natural comparisons are those from GT. We present our
results in the form of answering three critical questions w.r.t. the effectiveness of RAE.

Question 1. Do RAE solutions have similar expected utility whilst lowering variance?

We start by investigating performance in randomly generated coordination NFGs. These NFGs
are designed so that there are actions in the games that perform well if your opponent follows the
same strategy but have large negative payoffs otherwise. There also exist actions that perform worse
(but still positively) when coordinated on, but also maintain better performance (albeit worse than
coordination) when the opponent plays a different action. We provide an example in Appendix F.

These games draw out potential pitfalls in current GT solution concepts (e.g. Nash) that focus on
appealing coordination utility, without considering the variability of expected utility. We present our
results in Fig. (3) where (a) represents games with 100 actions solved using SFP, and (b) represents
games with 500 actions solved using our iterative framework. We plot our RAE results across multiple
values of γ in order to generate a theoretical ’efficient frontier’. An efficient frontier shows for values
of expected utility what are the minimum possible variance solutions that you can find to attain said
expected utility. Our figures show that, whilst our baselines are able to achieve a diverse range of
expected utility values, they are unable to find the minimum variance solution which our RAE is able
to find. We believe this shows the strong flexibility of our approach, in that it is able to attain any
utility reward that the baselines can achieve, whilst finding a better solution in terms of variance.

Question 2. Can RAE act as a NE selection method?

A by-product of RAE is that it can be used as a NE selection tool. We evaluate this in a generalised
stag-hunt grid world (Peysakhovich & Lerer, 2017) where there exist both ’payoff-dominant’ and
’risk-dominant’ NEs. We provide full environment details in Appendix (F) and provide a visualisation
in Fig. (4a). There are two differing goals in the environment: 1) Collect plants on your own and
receive low expected utility or 2) Hunt the stag and receive a large positive expected utility if the
agents catch the stag together, and a large negative expected utility if only one agent hunts the stag.
These are the ’risk-dominant’ safe strategy and the ’payoff-dominant’ risky strategy.

In Fig. (4) we demonstrate how RAE can effectively act as a NE selection method. In Fig. (4b) we
present the expected utility where each meta-solver population is trained against itself. Notably, the
final strategy of all the baselines focus on capturing the stag, which is the risky payoff-dominant
strategy. However, our RAE instead finds the risk-dominant strategy in which it focuses on gathering
plants and not going after the stag. The impact of this is particularly noticeable when we place an
RAE population and a Nash population into the environment together as co-players, shown in Fig.
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Eqm Reward Eqm Variance Worst-Case Num. Crashes Num. Arrivals
PSRO-Nash 0.85 ± 2.64 1.51 ± 0.24 -4.84 ± 5.76 39.5 ± 2.12 10.5 ± 2.12

PSRO-Uniform -0.69 ± 0.87 1.70 ± 0.09 -7.00 ± 2.01 42 ± 2.81 8.00 ± 2.83
PSRO-THPE 0.34 ± 1.29 1.60 ± 0.14 -5.32 ± 3.40 41.5 ± 2.16
 8.50 ± 2.12
PSRO-QRE 1.60 ± 0.97 1.44 ± 0.13 -2.84 ± 0.94 43 ± 2.85 7.00 ± 2.85

Self-Play 0.97 ± 2.14 1.53 ± 0.12 -4.80 ± 5.92 38.5 ± 4.95

±

11.50 ± 4.95
PSRO-RAE (Ours) 4.36 ± 2.07 0.33 ± 0.004 0.10 ± 2.68 5.5 ± 0.71
 46.00 ± 1.41

(a)

(b) (c)

Figure 5: Results on autonomous driving environment. a) Results on 100 episodes over 5 seeds b)
Position heat-map for RAE solution c) Position heat-map for Nash solution.
(4c). The Nash population still attempts to hunt the stag, but in this case the RAE population is
still gathering plants therefore leading to the Nash population being caught by the stag a numerous
amount of times leading to very negative expected utility. This is an overall desirable property of
RAE as it suggests, in the case that RAE and NE overlap, RAE will find the risk-dominant strategy.

Question 3. In safety-sensitive environments what sort of strategy does RAE learn to follow?

Finally, how does RAE act in an environment where avoiding any large downside possibility is
critical, for example autonomous driving. Our environment is modelled on the example in Fig. (1)
where there exists two-way traffic with slow-moving vehicles and faster moving agents behind that
may be interested in overtaking. From a game-theoretic standpoint this is a surprisingly difficult
problem. A NE prescribes that one agent overtakes and the other waits, which is a strategy that is
exposed to errors and low probability play. We provide full environment details in Appendix (F).

In Fig. (5) we provide our results. In Table (a) we provide metrics where the average value is based
off of 100 episodes in the environment and the standard deviation is based over 5 different training
seeds. Firstly, we note that in terms of expected utility and variance-utility RAE outperforms the
baselines, whilst also maintaining strong worst-case performance. Notably, RAE arrives at a strategy
that very rarely crashes, and nearly always arrives at the final destination. The same conclusion can
not be drawn for any of the provided baselines.

To see why this is happening, in Fig. (4b) and (4c) we provide position heat-maps of the cars utilising
the RAE strategy and the Nash strategy respectively. In the RAE heat-map one can see that the
strategy taken is the safe strategy, i.e. follow behind until all vehicles in the on-coming lane have
passed and then proceed to overtake. This strategy provides little expected utility for the vast majority
of the episode, but remains sensitive to the risk-element of the environment which is our desired
outcome. On the other hand, the Nash heat-map shows that the strategy is to overtake straight away
and nearly always ends up in a crash due to car congestion in the middle of the episode.

8 CONCLUSION

We introduce a new risk-averse equilibrium concept, RAE, based on mean-variance analysis. Theo-
retically, we prove the existence and solvability of RAE and provide methods for arriving at an RAE
in both small and large scale game settings. Empirically, we show that our RAE is able to locate
minimum variance solutions for any expected utility, act as a NE selection method in the presence of
risk-dominant equilibria and is effective at finding a safe equilibrium in a safety-sensitive autonomous
driving environment. Avenues for future work should focus on the limitations of the current RAE
approach, namely non-convergence guarantees in certain classes of games and the fact that RAE
minimises upside and downside variance, where minimising downside variance only would be a
desirable property.
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Marc Lanctot, Vinicius Zambaldi, Audrūnas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 4193–4206, 2017.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

Thanasis Lianeas, Evdokia Nikolova, and Nicolas E Stier-Moses. Risk-averse selfish routing.
Mathematics of Operations Research, 44(1):38–57, 2019.

Xiaoteng Ma, Li Xia, Zhengyuan Zhou, Jun Yang, and Qianchuan Zhao. Dsac: distributional soft
actor critic for risk-sensitive reinforcement learning. arXiv preprint arXiv:2004.14547, 2020.

Stephen McAleer, John Lanier, Roy Fox, and Pierre Baldi. Pipeline PSRO: A scalable approach for
finding approximate nash equilibria in large games. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Stephen McAleer, John Lanier, Kevin Wang, Pierre Baldi, and Roy Fox. XDO: A double oracle algo-
rithm for extensive-form games. Advances in Neural Information Processing Systems (NeurIPS),
2021.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form games.
Games and economic behavior, 10(1):6–38, 1995.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003.

Robert C. Merton. An analytic derivation of the efficient portfolio frontier. Journal of Financial and
Quantitative Analysis, 7(4):1851–1872, 1972. doi: 10.2307/2329621.

Oliver Mihatsch and Ralph Neuneier. Risk-sensitive reinforcement learning. Machine learning, 49
(2):267–290, 2002.

Dov Monderer and Lloyd S Shapley. Fictitious play property for games with identical interests.
Journal of economic theory, 68(1):258–265, 1996a.

Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior, 14(1):124–143,
1996b.

11

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env


Under review as a conference paper at ICLR 2023

Oskar Morgenstern and John Von Neumann. Theory of games and economic behavior. Princeton
university press, 1953.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286–295, 1951.

Evdokia Nikolova and Nicolás E Stier-Moses. A mean-risk model for the traffic assignment problem
with stochastic travel times. Operations Research, 62(2):366–382, 2014.

Nicolas Perez-Nieves, Yaodong Yang, Oliver Slumbers, David H Mguni, Ying Wen, and Jun Wang.
Modelling behavioural diversity for learning in open-ended games. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8514–8524. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/perez-nieves21a.html.

Alexander Peysakhovich and Adam Lerer. Prosocial learning agents solve generalized stag hunts
better than selfish ones, 2017. URL https://arxiv.org/abs/1709.02865.

Georgios Piliouras, Evdokia Nikolova, and Jeff S Shamma. Risk sensitivity of price of anarchy under
uncertainty. ACM Transactions on Economics and Computation (TEAC), 5(1):1–27, 2016.

Wei Qiu, Xinrun Wang, Runsheng Yu, Rundong Wang, Xu He, Bo An, Svetlana Obraztsova, and
Zinovi Rabinovich. Rmix: Learning risk-sensitive policies for cooperative reinforcement learning
agents. Advances in Neural Information Processing Systems, 34:23049–23062, 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.
html.

Julia Robinson. An iterative method of solving a game. Annals of Mathematics, 54(2):296–301,
1951. ISSN 0003486X. URL http://www.jstor.org/stable/1969530.

Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst cases policy gradients. arXiv
preprint arXiv:1911.03618, 2019.

John Glen Wardrop. Road paper. some theoretical aspects of road traffic research. Proceedings of
the institution of civil engineers, 1(3):325–362, 1952.

Michael P Wellman. Methods for empirical game-theoretic analysis. In AAAI, pp. 1552–1556, 2006.

Ali Yekkehkhany, Timothy Murray, and Rakesh Nagi. Risk-averse equilibrium for games, 2020.

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Mean-variance policy iteration for risk-averse
reinforcement learning. arXiv preprint arXiv:2004.10888, 2020.

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Mean-variance policy iteration for risk-averse rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 10905–10913, 2021.

12

https://proceedings.mlr.press/v139/perez-nieves21a.html
https://arxiv.org/abs/1709.02865
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://www.jstor.org/stable/1969530


Under review as a conference paper at ICLR 2023

A FULL PROOFS

A.1 PROPOSITION 1 [MINIMUM VARIANCE SOLUTION]

PROPOSITION 1. The solution to the optimisation (6) provides the same solutions to the following:,

σ∗ ∈ argmin
σ

σT · ΣM · ς

s.t. σT ·M · σ ≥ µb

σ(a) ≥ 0 ∀a ∈ A

σT 1 = 1

(8)

where µb ∈ R is the lowest level of expected return that the actor is willing to accept.

Proof. (Merton, 1972) shows by a Lagrange multiplier argument that the optimisation problem,

σ∗ ∈ argmin
σ

σT · ΣM · σ

s.t. σT ·M · ς ≥ µb

σ(a) ≥ 0 ∀a ∈ A

σT 1 = 1

(9)

can be rewritten as
σ∗ ∈ argmin

σ
σT · ΣM · σ − τ

(
σT ·M · ς

)
s.t. σ(a) ≥ 0 ∀a ∈ A

σT 1 = 1

(10)

which can be equivalently expressed as,

σ∗ ∈ argmin
σ

−
(
σT ·M · ς − λσT · ΣM · σ

)
s.t. σ(a) ≥ 0 ∀a ∈ A

σT 1 = 1

(11)

where λ = 1
τ .

A.2 THEOREM 3 [RAE EXISTENCE]

THEOREM 3. For any finite N-player game where each player i has a finite k number of pure
strategies, Ai = {ai1, ..., aik}, an RAE exists

Proof. We base our proof on Kakutani’s Fixed Point Theorem

Lemma (Kakutani Fixed Point Theorem). Let A be a non-empty subset of a finite
dimensional Euclidean space. Let f : A ⇒ A be a correspondence, with x ∈ A 7−→
f(x) ⊆ A, satisfying the following conditions:

1. A is a compact and convex set.

2. f(x) is non-empty for all x ∈ A.

3. f(x) is a convex-valued correspondence: for all x ∈ A, f(x) is a convex set.
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4. f(x) has a closed graph: that is, if {xn, yn} → {x, y} with yn ∈ f(xn), then
y ∈ f(x).

Then, f has a fixed point, that is, there exists some x ∈ A, such that x ∈ f(x).

We define our best-response function as Bi(σ−i) = argmaxa∈∆i
ri(a,σ−i) where ui is defined as

in Eq. (5) and by definition s must satisfy all of the properties of a proper mixed-strategy, and the
best-response correspondence is B : ∆ ⇒ ∆ such that for all σ ∈ ∆, we have:

B(σ) = [Bi(σ−i)]i∈N (12)

We show that B(σ) satisfies the conditions of Kakutani’s Fixed Point Theorem

1. ∆ is compact, convex and non-empty.

By definition
∆ = Πi∈N∆i (13)

where each ∆i = {a|∑j aj = 1} is a simplex of dimension |Ai| − 1, thus each ∆i is
closed and bounded, and thus compact. Their product set is also compact.

2. B(σ) is non-empty.

By the definition of Bi(σ−i) where ∆i is non-empty and compact, and ri is a quadratic and
hence a polynomial function in a. It is known that all polynomial functions are continuous,
we can invoke Weirstrass’s Extreme Value Theorem which states

Lemma. If a real valued-function f is continuous on the closed interval [a, b], then f must
attain a maximum and a minimum, each at least once. That is, there exist numbers c and d
in [a, b] such that:

f(c) ≥ f(x) ≥ f(d) ∀x ∈ [a, b]

Therefore, as ∆i is non-empty and compact and ri is continuous in a, Bi(σ−i) is non-empty,
and therefore B(σ) is also non-empty.

3. B(σ) is a convex-valued correspondence.

Equivalently, B(σ) ⊂ ∆ is convex if and only if Bi(σ−i) is convex for all i.

In order to show that Bi(σ−i) is convex for all i, we instead show that the Quadratic
Programme defined by Eq. (6) is a special case of convex optimisation under certain
conditions, and therefore by definition has a feasible set which is a convex set.

A convex optimisation problem is one of the form,

minimize f0(x)

s.t. fi(x) < 0, i = 1, ...,m

aTi x = bi, i = 1, ..., p

(14)

where f0, ..., fm are convex functions. The requirements for a problem to be a convex
optimisation problem are:

(a) the objective function must be convex
(b) the inequality constraint functions must be convex
(c) the equality constraint functions hi(x) = aTi x = bi must be affine

We note that a quadratic form xTAx is convex if A is positive semi-definite, and strictly
convex if A is positive definite (we can guarantee strict convexity by adding a small constant
to the diagonal of A without impacting the variance values). In our constrained optimisation,
the quadratic term σTΣσ is always guaranteed to be at least convex as Σ, the covariance
matrix, is always at least PSD. Therefore, our objective function is convex. Additionally, it

14



Under review as a conference paper at ICLR 2023

is easy to see that our inequality constraint functions are also convex and that our equality
constraint function is affine. Therefore, our Quadratic Programme is an instance of a convex
optimisation problem.

Importantly, the feasible set of a convex optimisation problem is convex, since it is the
intersection of the domain of the problem

D =

m⋂
i=0

domfi, (15)

, which itself is a convex set.

Therefore, for all members of the feasible set x, y ∈ Bi(σ−i) and all θ ∈ [0, 1] we have that
θx+ (1− θ)y ∈ S and we have a convex-valued correspondence.

4. B(σ) has a closed graph.

Suppose to obtain a contradiction, that B(σ) does not have a closed graph. Then, there
exists a sequence (σn, σ̂n) → (σ, σ̂) with σ̂n ∈ B(σn), but σ̂ /∈ B(σ), i.e. there exists
some i such that σ̂i /∈ Bi(σ−i). This implies that there exists some σ′

i ∈ ∆i and some
ϵ > 0 such that

ri(σ
′
i,σ−i) > ri(σ̂i,σ−i) + 3ϵ. (16)

By the continuity of ri and the fact that σn
−i → σ−i, we have for sufficiently large n,

ri(σ
′
i,σ

n
−i) ≥ ri(σ

′
i,σ−i)− ϵ. (17)

and combining the preceding two relations we obtain

ri(σ
′
i,σ

n
−i) > ri(σ̂i,σ−i) + 2ϵ ≥ ri(σ̂

n
i ,σ

n
−i) + ϵ (18)

where the second relation follows from the continuity of ri. This contradicts the assumption
that σ̂n

i ∈ B(σn
−i) and completes the proof.

Therefore, B(σ) satisfies the conditions of Kakutani’s Fixed Point Theorem, and therefore if σ∗ ∈
B(σ∗) then σ∗ is an equilibrium.

A.3 THEOREM 4 [SFP CONVERGENCE]

THEOREM 4. Given the total utility function Eq. 5 there exist RAE convergence guarantees in the
category of games that are solved by SFP.

Proof. We show that our utility measure can be embedded as a version of stochastic fictitious play
and therefore can be used to find equilibrium in two-player zero-sum games and potential games.

A smooth fictitious play procedure is one in which the best-response, B(σ), is derived from maximis-
ing a function of the form ri(σ)− λvi(σi) where,

1. vi(σi) : Ai → R is a strictly convex function.

2. The gradient of vi(σi) becomes arbitrarily large near the boundary of the strategy simplex,
i.e. limσi→∂Ai |vi(σi)| =∞

which ensures that there exists a unique solution to the best-response, and that all pure strategies
receive strictly positive probability in the best-response.

We have shown that our variance measure is a strictly convex objective under the assumption that Σi

is positive-definite. Therefore, we need to show that the gradient satisfies the boundary condition.

We start by showing that lim ||xn|| = || limxn|| if limxn = x,
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Theorem. Let X and Y be normed spaces. If limxn = x in X and T : X → Y is
continuous, then

limT (xn) = T (limxn)

Proof. Let ϵ > 0. As T is continuous, by the epsilon-delta definition of continuous
functions, there exists δ > 0 such that,

||x− y|| < δ ⇒ ||T (x)− T (y)|| < ϵ

As limxn = x, there exists n0 ∈ N such that,

n > n0 ⇒ ||xn − x|| < δ

and it follows that,

n > n0 ⇒ ||T (xn)− T (x)|| < ϵ

and thus

limT (xn) = T (x) = T lim(xn)

Since,

T : X → R
x 7→ ||x||

is continuous, we have lim ||xn|| = || limxn||.
Next, we show that our gradient has a lower bound that satisfies the boundary condition. Note for this
proof we replace σ with x and Σ with Cov as the proof relies upon the singular value decomposition
and notation may become confusing.

Due to the symmetry of Cov,∇xCovx = 2Covx = W , and we show that as x →
∂A, limx→∂A ||Wx|| > +∞.

lim
x→∂A

||Wx|| = lim
x→∂A

||UΣV Tx||

= lim
x→∂A

||ΣV Tx|| as U is orthogonal

= lim
x→∂A

||Σ(V Tx)||

= lim
x→∂A

∑
i

σi|(V Tx)i| where σi is the i-th singular value

≥ lim
x→∂A

σmin

∑
i

|(V Tx)i|

= lim
x→∂A

σmin||V Tx||
= lim

x→∂A
σmin||x|| as V is orthogonal

= σmin lim
x→∂A

||x||
= σmin|| lim

x→∂S
x|| due to Theorem 4

At the boundary of the simplex, i.e. utilising a pure strategy, this is the specific case of a mixed-
strategy where only Dirac probability distributions can be used. Therefore, in the limit there is infinite

16



Under review as a conference paper at ICLR 2023

density upon the pure strategy at the edge of the simplex and we have that limx→∂A x = +∞. We
can replace this in the above,

lim
x→∂A

||Wx|| ≥ σmin|| lim
x→∂A

x||
= σmin(+∞)

as Cov is restricted to positive-definiteness, all singular values are strictly positive and we have the
desired result

lim
x→∂A

||Wx|| ≥ +∞ (19)

Therefore, our variance function is admissible as the perturbation function vi(σi) in stochastic
fictitious play, and retains convergence guarantees.

A.4 PROPOSITION 5 [SFP IS RAE]

PROPOSITION 5. Suppose the SFP sequence {Zt} converges to σ in the observed strategy sense
2, then σ is a Risk-Averse equilibrium.

Proof. Assume the observed strategy has converged to σ = (σ1,σ2) and that the strategy is not an
RAE. This implies there exists some σi,′ such that:

ri(σi,′,σ−i) > ri(σi,σ−i) (20)

However, because σ has converged then the SFP sequence {Zt} will also converge such that
limt→∞ Zt = σ and because we are in an SFP process it must be the case that:

ri(σi,σ−i) > ri(σi,′,σ−i) ∀σi,′ ∈ ∆i (21)

and therefore σi,′ can not be a best response to σ−i.

2Convergence in the time-average Zt does not imply convergence in the actual strategy taken at each t, but
may for example imply cyclic actual behaviour that results in average behaviour converging.
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B SFP ROBUSTNESS
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Figure 6: Euclidean distance between observed actions after each iteration on randomly generated
anti-coordination games. A distance of 0 implies that the process has converged.
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Figure 7: Euclidean distance between observed actions after each iteration on randomly generated
coordination games. A distance of 0 implies that the process has converged.
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Figure 8: Euclidean distance between observed actions after each iteration on randomly generated
games. A distance of 0 implies that the process has converged.
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C FIGURE 3 TRAINING CURVES
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Figure 9: Training curves over multiple seeds for Figure 3.
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D PSEUDO-CODE

Algorithm 1 Iterative RAE Solver

1: Initialise: the “high-level" policy set Φ =
∏

i∈N Φi

2: for iteration t ∈ {1, 2, ...} do:
3: for each player i ∈ N do:
4: Compute meta-policy πt by SFP (Eq.7).
5: Find new policy by Oracle: ϕi

t = Oi(π−i
t ).

6: Expand Φi
t+1 ← Φi

t ∪ {ϕi
t}.

7: Update meta-payoff Mt+1.
8: Return: π and Φ.
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E HYPERPARAMETER SETTINGS

Table 1: Hyper-parameter settings for our experiments.

SETTINGS VALUE DESCRIPTION

SFP COORDINATION GAMES

ACTION DIMENSION 100 NUMBER OF PURE STRATEGIES AVAILABLE
FP ITERATIONS 100 NUMBER OF FP BELIEF UPDATES
TREMBLE PROBABILITY 0.001 PROBABILITY OF TREMBLING TO ANOTHER STRATEGY
QUANTAL TYPE SOFTMAX TYPE OF QUANTAL RESPONSE EQUILIBRIUM
# OF SEEDS 50 # TRIALS

PSRO NFG COORDINATION GAMES

ORACLE METHOD REINFORCE SUBROUTINE OF GETTING ORACLES
PSRO ITERATIONS 15 NUMBER OF PSRO ITERATIONS
ACTION DIMENSION 500 NUMBER OF PURE STRATEGIES AVAILABLE
LEARNING RATE 0.005 ORACLE LEARNING RATE
ORACLE EPOCHS 2000 ORACLE TOTAL EPOCHS
ORACLE EPOCH TIMESTEPS 100 TIMESTEPS PER ORACLE EPOCH
RAE GAMMA 0.1, 0.5 VARIANCE AVERSION PARAMETER
METASOLVER RAE SFP METASOLVER METHOD
METASOLVER ITERATIONS 100 METASOLVER ITERATIONS
# OF SEEDS 20 # OF TRIALS

STAG-HUNT GRID-WORLD

ORACLE METHOD MV-PPO (ZHANG ET AL., 2020) SUBROUTINE OF GETTING ORACLES
PSRO ITERATIONS 10 NUMBER OF PSRO ITERATIONS
GORE COST 2 COST FOR GETTING CAUGHT BY STAG
PPO HYPERPARAMS DEFAULT SB3 (RAFFIN ET AL., 2021) PPO HYPERPARAMETER VALUES
MV-PPO VARIANCE AVERSION 0.15 PPO VARIANCE AVERSION PARAMETER
RAE GAMMA 0.15 VARIANCE AVERSION PARAMETER
METASOLVER RAE SFP METASOLVER METHOD
METASOLVER ITERATIONS 100 METASOLVER ITERATIONS
# OF SEEDS 5 # OF TRIALS

TWO-WAY ENVIRONMENT

ORACLE METHOD MV-PPO (ZHANG ET AL., 2020) SUBROUTINE OF GETTING ORACLES
PSRO ITERATIONS 7 NUMBER OF PSRO ITERATIONS
PPO HYPERPARAMS DEFAULT SB3 (RAFFIN ET AL., 2021) PPO HYPERPARAMETER VALUES
MV-PPO VARIANCE AVERSION 0.5 PPO VARIANCE AVERSION PARAMETER
RAE GAMMA 0.5 VARIANCE AVERSION PARAMETER
METASOLVER RAE SFP METASOLVER METHOD
METASOLVER ITERATIONS 100 METASOLVER ITERATIONS
# OF SEEDS 5 # OF TRIALS
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F ENVIRONMENTS

F.1 RANDOMLY GENERATED NFGS

We randomly generate coordination games with N actions in the following way:

Algorithm 2 Iterative RAE Solver

1: Initialise: Empty N ×N payoff matrix P
2: for each action i do:
3: Sample coordination element, pii ∼ U(5, 15)
4: Set Payoff matrix element Pii = |pii|
5: if P (X ≤ pii) > 0.9 do
6: for all other actions j do
7: Sample anti-coordination element pij ∼ U(−10, 15)
8: Set Payoff matrix element Pij = Pji = pij
9: else do

10: for all other actions j do
11: Sample anti-coordination element pij ∼ U(0, 10)
12: Set Payoff matrix element Pij = Pji = pij
13: Return: P .

A simple 3 action example of a NFG generated following the above would be:

High Risk, High Reward

7,7 3,3 1,1

4,4 9,9 2,2

0,0 -4,-4 15,15

S1

S1 S2 S3

S2

S3

Low Risk, Low Reward

Figure 10: Game where one strategy (dotted outline) provides a high return assuming successful
coordination but high variance in case the opponent does not coordinate correctly.

F.2 STAG HUNT GRID WORLD

Our stag-hunt environment is taken from (Peysakhovich & Lerer, 2017) where we slightly alter the
parameters of the game. A 5× 5 grid is used with 2 players, 1 stag and 2 plants randomly spawned
in. The action set of the players is A = {left, right, up, down}. The stag at every time-step will move
one grid space closer to the closest player on the grid, the plants do not move.

There are 3 different rewards signals in the game:
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1. If a player moves over a plant they get r = 2 and the plant respawns elsewhere on the grid.
2. If both players move over the stag at the same time both receive r = 5 and the stag respawns

elsewhere on the grid.
3. If a player moves over the stag on their own, or the stag moves over them on their own the

player receives r = −2 and the stag respawns elsewhere on the grid.
4. Otherwise r = 0.

F.3 AUTONOMOUS DRIVING ENVIRONMENT

Our driving environment is based on the two-way environment from (Leurent, 2018) where we make
modifications to the reward function to introduce a larger factor of risk-aversion into the game. The
goal of the controlled drivers is to reach the end of the road (the destination) whilst avoiding crashing
and coming into too close contact with other vehicles. Slow moving drivers populate the roads
moving at a constant speed of 20.

There are four reward signals in the environment:

1. If the car crashes r = −2.
2. If the car arrives at the destination r = 2.
3. If the car is travelling at a good speed ([25,30]), r = 0.2.
4. If the car comes very close to another car r = −0.1
5. Otherwise r = 0.
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G COMPUTE ARCHITECTURE

All experiments run on one machine with:

• AMD Ryzen Threadripper 3960X 24 Core
• 1 x NVIDIA GeForce RTX 3090
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H ASYMMETRIC FORMULATION

In the following section we will show the formulation of Sec. 4 but for the asymmetric case.

H.1 UTILITY FUNCTION

Player i has an action set Ai, and a utility function ui. We define the on-equilibrium utility of action
aki ∈ Ai against action ak

′

j ∈ Aj as u(aki , a
k′

j ) and the full utility table for player i as Mi, where

the entry Mk,k′

i refers to u(aki , a
k′

j ) and Mk
i refers to u(aki , a

k′

j ) ∀k′, i.e. the vector of utilities that
action aki receives against all other actions. Take the 2-player case, we now define the utility of the
mixed-strategy for player 1 σ versus the mixed strategy for player 2 ς as

u(σ) =
∑

ak
1∈A1

∑
ak′
2 ∈A2

σkςk′u(ak1 , a
k′

2 ) = σT ·M1 · ς. (22)

The weighted co-variance matrix for the utility matrix Mi is a |Ai| × |Aj | matrix ΣMi
= [ckk′ ] with

entries

ckk′ =
1

1−∑|Aj |
i=1 ς2i

|Aj |∑
z=1

ςi
(
u(ak1 , a

z
2)− M̄k

1

)(
u(ak

′

1 , az2)− M̄k′

1

)
, (23)

where M̄k
1 = 1

|A1|
∑|A2|

z=1 σku(a
k
1 , a

z
2), i.e. the weighted average utility for action i. As we are trying

to minimise variance with respect to the opponent strategy we used a weighted covariance matrix
such that potential variance caused by each action is weighted by its probability of selection under the
opponent strategy. As will be discussed later, all actions will receive positive probability under our
framework and therefore will always provide some weight in the variance calculation. This allows us
to define the mixed-strategy σ utility variance based as follows:

Var(σ,M) =

|A1|∑
k=1

|A1|∑
n=1

σkσnckn =

|A1|∑
i=1

σ2
i cii +

|A1|∑
k=1

|A1|∑
n=k+1

σkσnckn = σT ·ΣM1
· σ. (24)

The final utility function r which considers both on- and off-equilibrium utility for strategy σ is,

r(σ, ς) = σT ·M1 · ς − γ
(
σT ·ΣM1

· σ
)
, (25)

where γ ∈ R is the risk-aversion parameter.

H.2 EQUILIBRIUM CONCEPT

We now define our new equilibrium concept based on the utility function (25). First start by defining
the best-response map:

σ∗(ς) ∈ argmax
σ

σT ·M1 · ς − γ
(
σT · ΣM1

· σ
)

s.t. σ(a) ≥ 0 ,∀a ∈ A

σT 1 = 1,

(26)
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I QRE FAILURE CASE

In the following section we present results on the two-action driving game described in Sec. 1 of the
main article and displayed in Fig. 5.

Stay in Lane Overtake

Stay in 
Lane 5, 5 0, 20

Overtake 20, 0 -50, -50 Risk Averse Equilibrium

Pure Strategy Nash Equilibrium

Figure 11: Two-action driving risk game.

We specifically utilise this game to show a failure case of QRE as a risk-sensitive solution. Ideally, a
risk-sensitive solution concept would only play the Stay in Lane strategy as the Overtake strategy has
far too high potential downside risk.

Figure 12: QRE and RAE results on two-action driving game.

As can be seen from the results in Fig. 6, for a large sample of QRE hyperparameters the equilibrium
found is high variance with potential poor downside performance. We believe this is because the very
large costs of the errors are easily picked up by variance analysis, but not so easily by the setup of
QRE.

27


	Introduction
	Related Work
	Preliminaries & Notations
	Mean-Variance Equilibrium
	Utility Function
	Equilibrium Concept

	Equilibrium Learning via Stochastic Fictitious Play
	Equilibrium Learning via Iterative Agent Generation
	Experiments
	Conclusion
	Full Proofs
	Proposition 1 [Minimum Variance Solution]
	Theorem 3 [RAE Existence]
	Theorem 4 [SFP Convergence]
	Proposition 5 [SFP is RAE]

	SFP Robustness
	Figure 3 Training Curves
	Pseudo-code
	Hyperparameter Settings
	Environments
	Randomly Generated NFGs
	Stag Hunt Grid World
	Autonomous Driving Environment

	Compute Architecture
	Asymmetric Formulation
	Utility Function
	Equilibrium Concept

	QRE Failure Case

