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Abstract
Counterfactual explainability seeks to uncover
model decisions by identifying minimal changes
to the input that alter the predicted outcome. This
task becomes particularly challenging for graph
data due to preserving structural integrity and se-
mantic meaning. Unlike prior approaches that
rely on forward perturbation mechanisms, we in-
troduce Graph Inverse Style Transfer (GIST), the
first framework to re-imagine graph counterfac-
tual generation as a backtracking process, leverag-
ing spectral style transfer. By aligning the global
structure with the original input spectrum and pre-
serving local content faithfulness, GIST produces
valid counterfactuals as interpolations between
the input style and counterfactual content. Tested
on 8 binary and multi-class graph classification
benchmarks, GIST achieves a remarkable +7.6%
improvement in the validity of produced counter-
factuals and significant gains (+45.5%) in faith-
fully explaining the true class distribution. Addi-
tionally, GIST’s backtracking mechanism effec-
tively mitigates overshooting the underlying pre-
dictor’s decision boundary, minimizing the spec-
tral differences between the input and the coun-
terfactuals. These results challenge traditional
forward perturbation methods, offering a novel
perspective that advances graph explainability.

1. Introduction

Explainability is no longer a luxury but a necessity.

(European Union, 2023)

High-stake domains such as healthcare (Amann et al., 2020),
finance (Černevičienė & Kabašinskas, 2024), and digital
forensics (Shamoo, 2025) have seen an abrupt interest in
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Figure 1. The “gist” of GIST. Starting from an initial graph
G ∈ G \ G′, we overshoot to the other side of Φ’s boundary
on a randomly chosen graph Gε ∈ G′. We then learn a reverse pro-
cess to backtrack from Gε to a never-seen-before graph G∗ ∈ G′

while imitating the global structure or style (Lstyle) of G and main-
taining faithful local structure and preserve content (Lcont) with
Gε. Notice how Lstyle pulls the generation towards G, satisfying
the similarity condition in Equation (3). Meanwhile, Lcont pulls
G∗ to Gε since we do not want to cross the decision boundary
again and produce an invalid counterfactual.

equipping their users and service providers with explainable
components, usually post-hoc, allowing them to make in-
formed and reliable decisions (Guidotti et al., 2018). How-
ever, deep neural networks, commonly used for generat-
ing predictions, often suffer from a lack of interpretability,
widely referred to as the black-box problem (Petch et al.,
2021), hindering their wide adoption in these domains. Reg-
ulations such as the GDPR (European Union, 2016) and the
EU AI Act (European Union, 2023) emphasize the demand
for models that provide interpretable and actionable insights
into their predictions. Alas, black-box models demonstrate
superior performance and generalization capabilities when
dealing with high-dimensional data to their inherently in-
terpretable counterparts (Aragona et al., 2021; Diko et al.,
2025; Flaborea et al., 2023a;b; Prenkaj et al., 2023).

Recently, graph neural networks (GNNs) (Scarselli et al.,
2008) have achieved remarkable results in graph predic-
tion tasks, such as community detection (Wu et al., 2022),
link prediction (Wei et al., 2022), and session-based rec-
ommendations (Wu et al., 2019). Despite their remarkable
performance, GNNs are black boxes, making them unsuit-
able for high-impact and high-risk scenarios. The literature
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has proposed several post-hoc explainability methods to
understand what is happening under the hood of the predic-
tion models. Counterfactual explanations (Wachter et al.,
2017) have emerged as a key element in meeting regulatory
requirements, as they shed light on model decisions by pre-
senting alternative scenarios that would result in different
outcomes. Furthermore, to support explanations for GNNs,
a recent field in Graph Counterfactual Explainability (GCE)
has emerged (Prado-Romero et al., 2023).

Existing solutions in GCE learn a forward1 perturbation
mechanism to produce a counterfactual w.r.t. an underlying
decision model, hereafter called oracle Φ. One obvious
drawback of trying to forwardly cross Φ’s decision bound-
ary involves using Φ in the learning process (training) – e.g.,
see (Prado-Romero et al., 2024b) – which might not be
feasible in scenarios where its predictions are limited by
design.2 A strictly forward learning approach can discard
essential partial structure in the data by always starting from
an uninformative initialization, rather than building upon
already available signals. Without incremental corrective
feedback, it often removes valid relationships or overshoots
the decision boundary, resulting in suboptimal or oscillatory
convergence. Furthermore, since this method lacks a mech-
anism to selectively preserve beneficial features during the
transformation, it may converge to local minima that fail
to retain important topological patterns. Consequently, the
overall process can suffer from instabilities, inefficient ex-
ploration of parameter space, and diminished preservation of
informative characteristics in the produced counterfactual.

To tackle these challenges, we propose GIST, short for
Graph Inverse Style Transfer, a transformative framework,
inspired by the principles of style transfer in computer vi-
sion, that re-imagines counterfactual generation as a process
of structural backtracking. By first overshooting Φ’s deci-
sion boundary and then refining the graph towards a desir-
able configuration – i.e., the input graph’s spectral properties
(style) – GIST produces counterfactuals that preserve the
original graph’s global style and local node/edge content.

Specifically, we go beyond the related work by making the
following contributions:

1. First Graph Style Transfer Framework. We propose
GIST, a novel backtracking approach for graph coun-
terfactual explainability. Unlike prior methods that
forwardly cross the decision boundary, GIST leverages
spectral style transfer to interpolate between global

1Throughout this paper we use “forward” and “backward” in
their literal sense, and not to refer to machine learning aspects. For
the latter, we will refer to “forward learning pass” and “backward
learning pass” to discern between the literal and ML meanings.

2Imagine deploying Φ’s inference function as an API call. Call-
ing these APIs at every training step would saturate the network
bandwidth or, worse, get the caller IP blocked for ToS violations.

structure alignment and local content preservation, en-
suring semantically valid counterfactuals. We argue
that this opens a new perspective in generating counter-
factuals, as the overshooting factor (critical in forward
approaches) is controllable via the learning objective.

2. Theoretical Insights on Spectral Style Transfer. We
establish a rigorous theoretical foundation for GIST by
analyzing the spectral properties of graph Laplacians.
Specifically, we prove key results, including bounds
on the spectral gap and Frobenius norm differences
under convex combinations of Laplacians, ensuring
stylistically (w.r.t. input) coherent counterfactuals.

3. Scalable and Flexible Learning Framework. GIST
introduces a modular architecture that integrates
transformer-based graph convolutional layers and dif-
ferentiable edge sampling, enabling efficient backtrack-
ing. GIST supports a variety of GNN backbones, mak-
ing it adaptable to diverse application domains while
maintaining strong theoretical guarantees.

4. Comprehensive Empirical Evaluation. Extensive
experiments on 8 benchmark datasets – spanning syn-
thetic and real-world graphs with binary and multi-
class classification tasks – emphasizes GIST as con-
sistently outperforming SoTA. Specifically, GIST
achieves considerably higher validity (+7.6% over the
second-best) and improves fidelity by a large margin
(+45.5%). Our results highlight GIST’s ability to gen-
erate counterfactuals that are both more faithful and
spectrally aligned (preserved semantics) with the input.

2. Preliminaries
Graphs, their “style”, and content. Let G = (X,A)
be a graph consisting of node features X ∈ Rn×d and an
adjacency matrix A ∈ Rn×n representing the connectivity
among nodes with weights in the edges. We denote the
graph dataset with G = {G1, . . . , GN}. The Laplacian
matrix of a graph G is defined as

L(G) = D −A, (1)

where D is the degree matrix. The eigenvalues of L(G) are
denoted as λ1(L

(G)) ≤ λ2(L
(G)) ≤ · · · ≤ λn(L

(G)). The
normalized Laplacian is defined as

L̃(G) = I −D−1/2L(G)D−1/2, (2)

with eigenvalues λ1(L̃
(G)) ≤ λ2(L̃

(G)) ≤ · · · ≤ λn(L̃
(G)).

Notice how the content of the graph is encoded in the node
feature vectors, and the style is encoded in the eigenvalues,
summarizing global structural patterns. Laplacians capture
global structural patterns, e.g., connectivity and symmetry,
that are largely invariant to specific node identities. This
follows a similar rationale to neural style transfer in im-
ages, where Gram matrices of feature activations are used
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to model style since they encode correlation patterns among
features rather than spatial arrangements. Additionally, us-
ing the Laplacian aligns with prior work in spectral graph
theory, where the eigenvalues and eigenvectors of the Lapla-
cian are shown to be robust descriptors of global structure,
and have been used in graph matching (Yan et al., 2016) and
generation (Dwivedi et al., 2023).

Graph Counterfactuals. Given a black-box (oracle) pre-
dictor Φ : G → Y , according to (Prado-Romero et al.,
2023), a counterfactual for G is defined as

argmax
G′∈G′,Φ(G)̸=Φ(G′)

S (G,G′) (3)

where G′ is the set of all possible counterfactuals gener-
ated by perturbing G, and S(G,G′) calculates the similarity
between G and G′. Notice how it is trivial to express Equa-
tion (3) in terms of graph distance instead of similarity
function, which closely aligns with the counterfactual for-
malization in historically (Wachter et al., 2017), and more
recently, (Leemann et al., 2024). Interestingly, Prenkaj et al.
(2024) reformulate Equation (3) and take a probabilistic
perspective to produce a counterfactual that is quite likely
within the distribution of valid counterfactuals,

argmax
G′∈G′

P (G′ | G,Φ (G) ,¬Φ (G)) , (4)

where ¬Φ(G) indicates any other class from Φ(G).

3. Related Work
Our work directly relates to style transfer and graph coun-
terfactual explainability, which we describe below. To the
best of our knowledge, style transfer has never been defined
or applied to graphs due to their inherent complex struc-
tures. However, for completeness purposes, we include the
most interesting style transfer works in computer vision and
natural language processing.

3.1. Style Transfer

Computer Vision. Gatys et al. (2016b) separate the content
and style of images and combine them to generate new
images. Gatys et al. (2016a) use a simple linear model to
change the color of pictures by using a single image to
represent the style. Zhu et al. (2017) propose CycleGAN
to do image-image translation. It firstly learns a mapping
G : X → Y using an adversarial loss, and then a reverse
mapping F : Y → X with a cycle loss F (G(X)) ≈ X
which performs unpaired image to image translation. Li et al.
(2017) treat style transfer as a domain adaptation problem.
They theoretically show that Gram metrics is equivalent
to minimize the Maximum Mean Discrepancy (MMD) for
images. While these approaches capture style by effectively

representing global texture, they lack flexibility in class-
related structural properties. In contrast, GIST introduces a
style representation that captures both local (input-specific)
and global (class-related) structural patterns.

Natural Language Processing. Jhamtani et al. (2017) ex-
plore automatic methods to transform text from modern to
Shakespearean English. Their model is based on seq2seq
and enriched with pointer network (Vinyals et al., 2015).
They use a modern-Shakespeare word dictionary to form
candidate words for pointer network. However, paired-word
dictionaries are scarce resources that do not exist in most
style transfer tasks, requiring parallel corpora. Mueller et al.
(2017) propose a variational autoencoder (VAE) to revise a
new sequence to improve its associated outcome. Shen et al.
(2017) explore style transfer for sentiment modification, de-
cipherment of word substitution ciphers, and recovery of
word order. They use a VAE as the base model and an ad-
versarial network to align different styles. Braud & Søgaard
(2017) explore many types of features for style prediction,
ranging from n-grams to discourse, and found that simple
models perform well. Ficler & Goldberg (2017) control lin-
guistic style of generated text using conditioned recurrent
neural networks (CRNNs). Fu et al. (2018) propose two
models for text style transfer without parallel data: i.e., a
multidecoder sequence-to-sequence model and a style em-
bedding model. In line with (Fu et al., 2018), GIST finds
counterfactuals without relying on parallel data (i.e., graphs
whose style to imitate). Rather, we use the input to guide the
overshooting mechanism and then act as a style which pulls
the generation process towards it to preserve semantics.

3.2. Graph Counterfactual Explainability (GCE)

Prado-Romero et al. (2023) provide a detailed taxonomy
of GCE methods composed of search-, heuristic- and
learning-based approaches. Although a new category of
global (model-level) counterfactual explanations is emerg-
ing (Huang et al., 2023; Kosan et al., 2024), our focus
remains on instance-level and learning-based explainers.
Although RCExplainer (Bajaj et al., 2021) is a mixture of
heuristics and learned approaches – as per the taxonomy
in (Prado-Romero et al., 2023) – we include it here to ac-
knowledge its value with its multiple learned linear decision
boundaries and then the search over these boundaries to find
robust explanations.3

3Unfortunately, the official implementation could not be exe-
cuted, as it depends on proprietary Huawei Python packages that
are not publicly available. Despite extensive debugging and ef-
forts to adapt the code to the GRETEL framework (Prado-Romero
et al., 2024a) – in order to ensure consistency in the evaluation
pipeline – we were unable to reproduce the original results. Addi-
tionally, we attempted to use an unofficial implementation available
at https://github.com/idea-iitd/gnn-x-bench/
blob/main/source/rcexplainer.py. However, this ver-
sion lacks support for several benchmark datasets, including BBBP,

3
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Learning-based strategies include perturbation matri-
ces (Tan et al., 2022), reinforcement learning (Numeroso
& Bacciu, 2021; Wellawatte et al., 2022), and genera-
tive approaches (Ma et al., 2022; Prado-Romero et al.,
2024b). MEG (Numeroso & Bacciu, 2021) is a rein-
forcement learning approach that generates counterfactuals
for input molecules. Its reward function integrates task-
dependent regularization, influencing the policy to select
actions that lead to valid molecules (Zhou et al., 2019). CF-
GNNExp. (Lucic et al., 2022) learns a binary perturbation
matrix to sparsify the adjacency matrix of the original graph
G, guided by a sparse neural network (Srinivas et al., 2017).
CF2 (Tan et al., 2022) balances factual and counterfactual
reasoning via multi-objective optimization. Counterfactu-
als are generated by removing the factual subgraph from
the input and focusing on simplicity. CLEAR (Ma et al.,
2022) employs a VAE to generate counterfactuals as com-
plete graphs with stochastic edge weights, conditioned on
the input graph and a desired class. During decoding, a
graph matching step is required to address vertex reorder-
ing, an NP-hard problem (Livi & Rizzi, 2013). RSGG-
CE (Prado-Romero et al., 2024b) relies on a modified learn-
ing approach of GANs and a partial-order sampling strategy
on the learned edge distribution to generate robust graph
counterfactual candidates. It exploits the generator to learn
a graph representation, enabling stochastic estimations of
the graph’s topology, thus allowing the generation of coun-
terfactuals in zero-shot. Unrelated to graphs, Nemirovsky
et al. (2022) use GANs to generate counterfactuals for user-
defined classes, adapted in (Prado-Romero et al., 2023) into
G-CounteRGAN, treating adjacency matrices as black-and-
white images with 2d convolutions.

The SoTA methods follow a forward perturbation paradigm
(i.e., all learn how to cross Φ’s decision boundary). To the
best of our knowledge, GIST is the first that learns a back-
tracking mechanism (i.e., overshoot Φ’s boundary first and
then go backwards). By combining graph style transfer and
counterfactual content preservation, GIST produces expla-
nations that are spectrally and semantically aligned with the
input, instead of merely similarity-wise – see Equation (3).

4. Method
We propose GIST4 (short for Graph Inverse Style Transfer),
the first backtracking (inverse) mechanism towards the de-
cision boundary of the oracle Φ instead of as-per-usual
forwardly crossing it – see (Numeroso & Bacciu, 2021; Ma
et al., 2022; Prado-Romero et al., 2024b) among others. In
other words, given a graph G, our goal is to shoot over Φ’s
decision boundary and then move towards it in the opposite

BZR, ENZYMES, MSRC21, and COLORS-3, hindering us to di-
rectly compare against other SoTA methods and GIST.

4Code: https://github.com/bardhprenkaj/gist

direction without crossing it again. Figure 1 illustrates the
idea behind our explainer. More formally, Definition 4.1
illustrates the conditions that counterfactual graphs found
via style-transferring should meet.

Definition 4.1. Given a graph G = (X,A), s.t. n = |X|,
the goal is to generate G∗ = (X∗, A∗) by passing through
an intermediary known graph Gε = (Xε, Aε) ∈ G∗ with
Φ(G) ̸= Φ(Gε), such that the following conditions are met.

(1) Style transfer – the global structural properties of G∗

align with G, i.e.,

n∑
i=1

∣∣λi(L̃
(G))−λi(L̃

(G∗))
∣∣ ≤ n∑

i=1

∣∣λi(L̃
(G))−λi(L̃

(Gε))
∣∣,

(5)
(2) Content preservation – the local structure of G∗ resem-
bles Gε, i.e.,

min
G∗∈G′

∣∣∣∣X∗ −Xε
∣∣∣∣
1︸ ︷︷ ︸

reconstruct node feature

+ BCE(A∗, Aε)︸ ︷︷ ︸
reconstruct existing

and non-existing edges

.
(6)

Appendix B shows a simple overshooting algorithm used in
this paper.

4.1. Theoretical Implications

Definition 4.2. Given L̃(G) and L̃(Gε), two real, symmetric
and commuting matrices, the normalized Laplacian of G∗

is defined as the convex combination in Equation (7).

L̃(G∗) = α · L̃(Gε) + (1− α) · L̃(G), (7)

where α ∈ [0, 1] is the interpolation factor that controls the
trade-off between content and style.

Lemma 4.3. Given L̃(G) and L̃(Gε), two real, symmetric
and commuting matrices, the eigenvalues of G∗ are defined
as the convex combination

λi(L̃
(G∗)) = α · λi(L̃

(Gε)) + (1− α) · λi(L̃
(G)). (8)

Lemma 4.3 illustrates that the convexity of the Laplacian
operator ensures that eigenvalues interpolate linearly. In
other words, we show that the structure of the produced
counterfactual G∗ is an interpolation (balanced by α) be-
tween the structural style (i.e., from the input G) and the
class-related spectrum (i.e., from Gε).

Showing that the spectrum of G∗ is a linear interpolation of
those of G and Gε implies G∗ exhibits similar connectivity
patterns to those of G and Gε. Hence, if G and Gε are
connected graphs (i.e., absence of isolated nodes), then also
Gε is connected (see Theorem 4.4).

Theorem 4.4. If G and Gε are connected graphs, then G∗

whose normalized Laplacian is defined as in Equation (7)
is connected for any α ∈ [0, 1].

4
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Theorem 4.5. Let ∆(G) = λ2(L
(G)) − λ1(L

(G)) denote
the spectral gap of G, where λ2(L

(G)) and λ1(L
(G)) are

the second- and first-lowest eigenvalues of G. Then:

min(∆(G),∆(Gε)) ≤ ∆(G∗) ≤ max(∆(G),∆(Gε)).
(9)

Corollary 4.6. The Frobenius norm difference between Gε

and G∗ is∥∥L(Gε) − L(G∗)
∥∥
F

= (1−α)
∥∥L(Gε) − L(G)

∥∥
F
. (10)

Corollary 4.6 illustrates the bounded style similarity, i.e.,
the counterfactual G∗ cannot be arbitrarily dissimilar from
the input, but is bounded to be similar to the difference
of spectra between G and Gε controllable through α. In
simpler words, if we imagine G, G∗, and Gε as points on
a 1D-plane representing their spectra, then G∗ must be in-
between G and Gε. Appendix A contains omitted proofs.

4.2. Learning to Backtrack

Here, we describe how our proposed GIST model (see Al-
gorithm 1 for the forward pass of the network, and Figure 2
for GIST’s architecture) facilitates a reverse transformation
from a perturbed or intermediate graph Gε to a refined struc-
ture G∗ that better aligns with the target topology G. This
process, which we call learning to backtrack, addresses the
challenge of undoing distortions or noise, in our scenario
Gε, introduced into the original graph G – a critical step
in tasks such as graph denoising (Zhou et al., 2024), and
domain adaptation (Cai et al., 2024).

4.2.1. ARCHITECTURE OVERVIEW

Our architecture relies on two key ideas: i.e., (1)
transformer-based node embeddings, and (2) edge prob-
ability estimations to find G∗ starting from Gε.

Transformer-based Node Embeddings. We employ trans-
former convolution layers (Shi et al., 2021) to learn node
representations from the potentially noisy edges of Gε.
These layers are interleaved with ReLU activation func-
tions which produce intermediate node embeddings for each
vertex. These final node embeddings reflect the structural
roles of nodes despite the “edge noise” present in Gε.

Edge Probability Prediction. Using the learned node em-
beddings, we predict edge probabilities via a small multi-
layer perceptron (MLP). Specifically, we concatenate the
representations of any two nodes (i, j) and feed them to the
MLP to estimate the likelihood of an edge (i, j) existing.
This design effectively backtracks from the corrupted edges
by selectively reintroducing or discarding edges based on
how consistent they are with the learned embeddings.

Differentiable Sampling and Backpropagation: A key ob-
stacle in learning graph structure end-to-end is the discrete

nature of edge decisions. To circumvent this, we adopt the
Gumbel-Softmax relaxation (Jang et al., 2017), enabling
continuous approximations of binary sampling. Concretely,
for an edge with predicted probability pi,j , we introduce
Gumbel noise Γ and compute

ϱi,j = σ
[
(log(pi,j+ϵ)− log(1−pi,j+ϵ)+Γ) / T

]
, (11)

where σ is the sigmoid function, ϵ is a small constant for
numerical stability, and T is the temperature parameter con-
trolling the “hardness” of the sample. During training, these
soft samples ϱi,j remain differentiable w.r.t. the network pa-
rameters, thus allowing standard backpropagation to adjust
node embeddings and edge probabilities. At inference time,
one can threshold ϱi,j (or sample via a Bernoulli draw) to
yield a final, discrete adjacency matrix.

4.2.2. RECOVERY OF G∗

Once the edge probabilities are computed for each potential
connection, GIST derives a new edge set5 E∗ which is a
Bernoulli sample over ϱi,j ∀(i, j). In this way, we can
compute the spectral loss – i.e., L1 distance between the
eigenvalues – between the adjacency matrix A∗ induced on
E∗ and the original adjacency matrix A of G. Moreover,
according to Definition 4.1, we also account for the content
preservation between G∗ and Gε. Therefore, given the
graphs G and Gε, taken from the forward overshooting
procedure, GIST optimizes the loss in Equation (12).

L = argmin
G∗=(X∗,A∗),

A∗=g(|X∗|,E∗),
X∗,ϱ,E∗=fθ(G

ε)

α

[∣∣∣∣X∗ −Xε
∣∣∣∣
1
+ BCE(A∗, Aε)

]
︸ ︷︷ ︸

Lcont

+(1− α)

[ n∑
i=1

∣∣λi(L̃
(G))− λi(L̃

(G∗))
∣∣]

︸ ︷︷ ︸
Lstyle

,

(12)
where BCE(A∗, Aε) is defined in the second component
of Equation (6), α ∈ [0, 1] is the interpolation factor which
pulls (pushes) towards (away from) the decision boundary
of Φ w.r.t. G (Gε), fθ is the our network architecture, and
g(n,E) produces an adjacency matrix in Rn×n based on
the edge set E.

5. Experiments
5.1. Experimental setup

We compare GIST to other SoTA learning-based explana-
tion methods (i.e., CF-GNNExp. (Lucic et al., 2022), CF2

(Tan et al., 2022), CLEAR (Ma et al., 2022), and RSGG-CE
5Here, we abuse the notation of a graph introduced in Section 2,

and indicate a graph G = (V,E) with its vertex set V and edge
set E.
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Figure 2. Overview of GIST’s forward learning pass and backtracking optimization. Given a graph G = (X,A), we use Φ to
overshoot to Gε = (Xε, Aε) s.t. Φ(G) ̸= Φ(Gε). We feed Gε through transformer convolution layers that output node embeddings X∗.
For each embedding, we create edge pairs and feed them to an MLP which estimates probabilities pi,j . We can sample these probabilities
to compose a new adjacency matrix A∗. We maintain Gε faithfulness with G∗ by minimizing Lcont, and spectral similarity with G by
minimizing Lstyle. Overall GIST produces counterfactuals that strike a balance (linear interpolation) between G’s spectrum (style) and
the local properties (content) of Gε via αLcont + (1− α)Lstyle.

Table 1. Average validity (the higher, the better) on the test set over 5-cross validations. Bold-faced digits show the best performing
strategy; underline is the second-best. † depicts a binary-classification scenario; ‡ a multi-class scenario.

Real Synthetic

AIDS † BBBP † BZR † ENZYMES ‡ MSRC21 † PROTEINS † BAShapes † COLORS-3 ‡
iRand 0.013 0.151 0.332 0.134 0.035 0.018 0.000 0.392

CF-GNNExp. 0.936 0.931 0.810 0.910 0.965 0.378 0.516 0.736
CF2 0.019 0.208 0.185 0.437 0.018 0.039 0.000 0.676
CLEAR 0.037 0.267 0.176 0.370 0.933 0.563 0.908 0.217
RSGG-CE 0.128 0.404 0.732 0.447 0.912 0.237 1.000 0.884
GIST 0.969 0.956 0.810 0.970 0.965 0.791 1.000 0.884

Table 2. Average fidelity (the higher, the better) on the test set over 5-cross validations. Bold-faced digits show the best performing
strategy; underline is the second-best. † depicts a binary-classification scenario; ‡ a multi-class scenario.

Real Synthetic

AIDS † BBBP † BZR † ENZYMES ‡ MSRC21 † PROTEINS † BAShapes † COLORS-3 ‡
iRand 0.013 0.177 0.146 0.004 -0.035 -0.009 0.000 -0.007

CF-GNNExp. 0.924 0.784 0.741 0.077 0.825 0.202 0.484 0.091
CF2 0.015 0.178 0.176 0.017 -0.018 0.018 0.000 0.065
CLEAR 0.050 0.164 0.127 0.040 0.855 0.051 0.060 0.033
RSGG-CE 0.124 0.286 0.683 0.050 0.807 0.133 0.968 0.147
GIST 0.957 0.809 0.741 0.203 0.860 0.425 0.968 0.202

(Prado-Romero et al., 2024b) in 8 benchmarking datasets
(Appendix D) for graph classification with different evalua-
tion metrics (Appendix E) relying on the GRETEL frame-
work (Prado-Romero et al., 2023a; 2024a). We adapted
RSGG-CE and CLEAR, originally available only for binary,

to work in multi-class classifications scenarios. We rely on
the iRand baseline (Prado-Romero et al., 2023b) to verify
whether the SoTA actually learns to produce valid counter-
factual explanations or are random perturbations sufficient.
We use the default hyperparameters for the SoTA explainers,
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Algorithm 1 Forward learning pass of GIST

Require: Gε = (Xε, Aε) with vertex set V and edge set
E, temperature T , noise Γ, model parameters θ, number
of attention heads h, number of convolution layers ℓ

Ensure: X∗, ϱi,j ∀(i, j) ∈ V × V , E∗

1: X∗ ← Xε

2: for i = 1 . . . ℓ do
3: X∗ ← ReLU

(
TransformerConvi,θ(X

∗, Aε, h)
)

4: end for
5: pi,j ← MLPθ

(
X∗[i], X∗[j]

)
∀(i, j) ∈ V × V

6: ϱi,j ← GumbelSoftmax
(
pi,j , T,Γ

)
∀(i, j) ∈ V × V

7: E∗ ← {(i, j) | Bernoulli
(
ϱi,j

)
= 1} ∀ϱi,j

8: Return: X∗, ϱ, E∗

and p = .01 and t = 3 for iRand (Appendix C). Unless
differently stated, we set α = 0.9 for GIST. To generate
explainations, we first train the underlying oracles – three-
layered GCNs interleaved with ReLU activation functions
– and use the same weights for all explainers to ensure fair
performance comparisons. Table 5 – Table 12 illustrate the
accuracy of the oracles on the test sets of the datasets. We
use a 90:10 train-test split for all explainers and designate
10% of the training set as validation. We perform 5-fold
cross validations to assess the performances of the explain-
ers on one AMD EPYC 7002/3 64-Core CPU (for smaller
models) and one Nvidia TESLA V100 (for larger models)
totaling ∼450h of execution time.

5.2. Results

GIST has an average 7.6% gain over the second-best in
terms of validity, and 45.5% in fidelity. Table 1 illustrates
the validity of all explainers on binary and multi-class graph
classification tasks. GIST outperforms SoTA explainers on
4/8 datasets (+13.3%), performs on par with CF-GNNExp.
on 2/8 and RSGG-CE on 2/8. Although validity measures
the effectiveness of the explainers crossing the decision
boundary, we also measure the fidelity of the produced
counterfactuals w.r.t. the oracle (see Table 2). Notice that
GIST, in COLORS-3, reports a better fidelity that RSSG-CE
(i.e., +37.4% improvement) although the latter has a similar
validity. Finally, GIST is on par with CF-GNNExp. on BZR
and MSRC21 in terms of validity. However, we report an
average gain of 2.12% on fidelity, hinting that we are more
faithful to the true class distribution (see Appendix E). We
show all measured performances of the explainers for all
datasets in Appendix G.

5.3. Ablation studies

The interpolation factor α controls the trade-off between
the distances of G, G∗, and Gε, and the overall validity.

Figure 3. As α → 1, the distance between G and G∗ becomes
larger; the distance between G∗ and Gε decreases. We show
the relationship between the interpolation factor α, the GED, and
the validity of G∗ as guided by the oracle Φ on AIDS. Notice how
the validity of GIST increases when the distance between G∗ and
G increases.

According to Figure 1 and the intuition of Corollary 4.6,
we expect that, regardless of the value of the interpolation
factor α, the counterfactual G∗, if imagined as a point in a
1D-plane, must be in-between G and Gε. To support our
claim, we train GIST on 5-fold cross-validations on AIDS
with changing α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and measure the
GED and validity of the counterfactuals – see Figure 3.
When α→ 1, the GED between G and G∗ increases since,
according to Equation (12), GIST “prefers” to stay nearby
Gε. As a consequence, we expect that the GED between
G and Gε decreases when α → 1 (see the red curve). Fi-
nally, we show that if the GED between G and G∗ is high,
then GIST must have overshot “far away” from Φ’s bound-
ary to reach Gε.6 Hence, the chance of finding a correct
counterfactual is higher – i.e., GIST has a higher validity.

GIST finds counterfactuals whose eigenvalues are closely
aligned to the optimal convex combination of Equa-
tion (8). To demonstrate our theoretical findings, we in-
vestigate the eigenvalues of G∗ in accordance to the optimal
convex combination illustrated in Equation (8). Because
GIST is a learning approach which minimizes Equation (12),
it might happen that the spectrum of the produced counter-
factual G∗ is misaligned with the true combined spectra
of G and Gε. Figure 4 shows the spectra of 10 randomly
chosen (G,Gε) pairs from the AIDS dataset. Here, we il-
lustrate the eigenvalues of G∗ as produced by GIST, and
the true combined spectra with α = 0.9. Notice how there
is a directly proportional relationship between the GED –
see Figure 3 – and the spectral combination of G∗. There-
fore, for α = 0.9, we expect that the eigenvalues of G∗ are
more aligned with those of Gε. Indeed, the figure confirms

6Conceptually, GED(G,G∗) ≤ GED(G,Gε).
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our intuition and shows how G∗ is closely aligned with the
true spectra combination, reporting an average error of only
2.051× 10−3 for the reported samples (vs. 1.67×10−3 for
the whole dataset). Note that the zeros in the figure are due
to the padding between Gε and G to compute the spectral
differences, which need the adjacency and degree matrices
to be of same dimensions. To account for different graph
sizes, in the future, we will explore the Wasserstein distance
of the eigenvalues instead of L1.

Figure 4. GIST’s backtracking mechanism finds G∗ with under
2.051× 10−3 error vs. the optimal counterfactual in terms
of spectra convex combination in Equation (8). We show the
eigenvalues of 10 random (G,Gε) pairs on AIDS, and the finding
of G∗ according to GIST with α = 0.9. We also illustrate the
optimal counterfactual produced w.r.t. the spectral convex com-
bination 0.9L(Gε) + 0.1L(G). Zeros in the figure are due to the
padding between Gε and G to compute the spectral differences.
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Figure 5. GIST finds G∗ whose gap satisfies Theorem 4.5 with
only 1.3× 10−2 difference against the optimal spectral gap.
(left) We show the spectral gaps of G, Gε and the found G∗

according to α = 0.9 on 100 random samples of MSRC21. We
also show the optimal counterfactual to assess the distance with
G∗. (right) We show the first eigenvalue of G, Gε, and G∗ to
demonstrate the connectivity property in Theorem 4.4. We report
an error of only 5 × 10−3 from the optimal counterfactual. To
show zeros in log-scale, we correct them with by adding the lowest
gap/eigenvalue that is non-zero.

GIST finds counterfactuals that respect the spectral gap
of Theorem 4.5 and the connectivity property of The-
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Figure 6. GIST produces G∗ who are spectrally conformant
to the style and local structure. For α = 0.9, we illustrate
100 randomly chosen (G,Gε) on PROTEINS, and measure the
expected norm (1 − α)||L(Gε) − L(G)||F . We also measure
||L(Gε) − L(G∗)||F on the predicted G∗ and report a negligible
error of 6.04× 10−3.

orem 4.4. Figure 5 (left) shows the spectral gaps ∆(G),
∆(Gε), and ∆(G∗) for 100 random samples of MSRC21 –
see Appendix G.3.2 for more datasets. Notice that ∆(G∗)
is always within the boundaries established in Theorem 4.5
and closely aligns with the optimal gap produced by the
eigenvalues of the Laplacian from the convex combina-
tion 0.9L(Gε) + 0.1L(G), reporting a gap error of only
1.3× 10−2. For completeness purposes, in Figure 5 (right)
we illustrate the first eigenvalues of G, Gε and the produced
G∗. Recall that a graph is connected if its first lowest eigen-
value is connected (i.e., λ1(L

(G)) = 0). Notice how the
majority of Gε graphs is connected – we corrected zero
values to show in log-scale by adding the lowest eigenvalue
that is non-zero – thus, depicting (mostly) a horizontal line.
However, because G is not always connected, then G∗ will
also show λ1(L

(G∗)) > 0. However, for fairness purposes,
we notice that λ1(L

(G)) and λ1(L
(Gε)) are only an epsilon

away from zero (i..e, ∈ [10−10, 10−8]), practically result-
ing connected. Hence, as per Theorem 4.4, in the optimal
scenario, we expect that the first eigenvalue of the coun-
terfactual is 0. GIST generates G∗ whose connectedness
is close to the optimal with λ1(L

(G∗)) ≈ 5 × 10−3. See
Appendix G.3.2 for other datasets, and Figure 9 for a qual-
itative example of how two connected graphs G and Gε

produce a connected counterfactual G∗.

GIST produces spectrally conformant counterfactuals.
We show that the produced counterfactuals are meaning-
ful in terms of spectral similarity according to Corol-
lary 4.6. Figure 6 illustrates the expected norm (1 −
α)||L(Gε) − L(G)||F and the measured ||L(Gε) − L(G∗)||F
from the predicted G∗. As shown in the theoretical part, we
expect these two norm differences to be equal, showing that
G∗ cannot be arbitrarily dissimilar to G and Gε. We argue
that a spectral difference is a more principled measurement
than the GED which is a mere edit distance metric of two
graphs – i.e., it might happen that adding/removing edges
moves the counterfactual away from the input, however it
does not impact its spectrum. GIST reports a negligible
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error of 6.04 × 10−3 w.r.t. the scenario of producing the
optimal counterfactual according to norm differences de-
scribed above. It also reports lower differences between Gε

and G∗, which implies that G∗ gives more importance to
node and edge similarities rather than to G’s style properties.
We suspect this arises due to the non-aggressive learning
rate set for GIST which settles for a local minimum (see Ap-
pendix C). See Appendix G.3.3 for more experiments.

6. Limitations
Trade-off Between Content and Style (α = 0.5). When
equal weight is given to content and style, the model ex-
hibits reduced performance. Specifically, it struggles to
simultaneously preserve the original content structure while
accurately matching the target style. This imbalance leads
to significantly higher reconstruction errors compared to
cases where one objective is prioritized. Detailed quantita-
tive results supporting this observation are provided in Ap-
pendix G.4.

No guarantees of class maintenance during backtracking.
After overshooting G to Gε s.t. Φ(G) ̸= Φ(Gε), the back-
tracking mechanism only guarantees that Φ(G) ̸= Φ(G∗).
Nevertheless, while there are guarantees that G∗ has a struc-
ture which is an interpolation between the structural style
(G) and the class-related spectrum (Gε), it is not a given
that Φ(G∗) = Φ(Gε) in a multiclass classification scenario.
As mentioned in the next section, we leave this for further
investigation in the future.

7. Conclusion
We introduced GIST, a novel method for graph counter-
factual explainability by reformulating the task as a style
transfer problem. We addressed key limitations of forward-
based methods, such as compromising structural semantics,
by leveraging spectral properties in a learnable backtracking
mechanism. We integrated three core innovations: (1) style-
transfer that preserves structural coherence while refining
local node features and edge connections, (2) theoretical
guarantees on spectral alignment and connectivity preserva-
tion, and (3) modular architecture compatible with diverse
GNN backbones.

We highlighted GIST’s superiority across eight benchmarks,
achieving SoTA validity (+7.6%) and fidelity (+45.5%) on
8 benchmark datasets while maintaining computational ef-
ficiency. These results validate that backtracking, rather
than forward traversal, enables precise control over coun-
terfactuals, ensuring they remain structurally faithful to the
input. We also showed that the interpolation factor guides
the trade-off between distance and validity of the counter-
factuals, whose spectral properties are within negligible
empirical errors w.r.t. the optimal theoretical solution.

In the future, we will explore more efficient overshooting
algorithms that help GIST choose a perturbed graph who is
spectrally aligned to the input, thus improving convergence
rates. Another avenue for investigation is to make theoretical
guarantees that the counterfactuals maintain the class of
the overshot graph. Lastly, we will explore global-level
counterfactuality where the spectral commonalities of the
class to explain can be used as guidance for the style transfer.
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A. Omitted Proofs
A.1. Lemma 4.3: Spectral Mixing Property

A.1.1. COMMUTING CASE

Proof. The normalized Laplacians of G and Gε, L(G) and L(Gε), commute and are simultaneously diagonalizable. Two
matrices L(G) and L(Gε) commute if L(G)L(Gε) = L(Gε)L(G). If these matrices commute and are symmetric, there exists a
single orthonormal matrix U that diagonalizes both

L(G) = UΛU⊤, L(Gε) = UΛεU⊤, (13)

Following Equation (7), the styled Laplacian is therefore

L(G∗) = α · UΛεU⊤ + (1− α) · UΛU⊤. (14)

Thus, we can approximate
L(G∗) = U(αΛε + (1− α)Λ)U⊤. (15)

Since αΛε + (1− α)Λ is also a diagonal matrix, its diagonal entries are αλ(Gε)
i + (1− α)λ

(G)
i . Being diagonal in the same

basis U , the eigenvalues of L(G∗) = αL(Gε) + (1− α)L(G) are precisely{
αλ

(Gε)
i + (1− α)λ

(G)
i

}n

i=1

. (16)

Thus, the eigenvalues interpolate linearly under convex combinations. The same reasoning holds for the normalized
Laplacians L̃(G) and L̃(Gε).

A.1.2. NON-COMMUTING CASE

Although we assume that L(G) and L(Gε) commute, we provide the reader with a complete overview when these matrices
do not commute. Let their eigenvalues be sorted in non-decreasing order:

λ1

(
L(G)

)
≤ λ2

(
L(G)

)
≤ · · · ≤ λn

(
L(G)

)
, (17)

λ1

(
L(Gε)

)
≤ λ2

(
L(Gε)

)
≤ · · · ≤ λn

(
L(Gε)

)
. (18)

Because L(G) and L(Gε) do not commute, we cannot simply write λi

(
L(G∗)

)
= αλi

(
L(G)

)
+ (1− α)λi

(
L(Gε)

)
. Instead,

we use Weyl’s inequalities to bound λk

(
L(G∗)

)
.

Courant-Fischer (Min-Max) Theorem. Recall that for a real symmetric matrix M with eigenvalues λ1(M) ≤ · · · ≤
λn(M), the k-th eigenvalue λk(M) can be characterized by:

λk(M) = max
U⊂Rn

dim(U)=k

min
x∈U
x̸=0

x⊤M x

x⊤x︸ ︷︷ ︸
Rayleigh quotient

. (19)

Weyl’s Inequalities: Statement
Theorem A.1 (Weyl’s Inequalities). Let A and B be two real symmetric (or Hermitian) matrices of size n× n. Denote
their eigenvalues in non-decreasing order by

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A), λ1(B) ≤ λ2(B) ≤ · · · ≤ λn(B). (20)

Let C = A+B. Then its eigenvalues {λi(C)}ni=1 also arranged in non-decreasing order satisfy:

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B), for each 1 ≤ k ≤ n. (21)

More precise interlacing bounds also exist, but this basic version often suffices to show that every eigenvalue of A+B is
contained within an interval determined by sums of the individual eigenvalues of A and B.

In our context, A = αL(Gε) and B = (1− α)L(G). Since A and B are still real symmetric and α, (1− α) ≥ 0, Weyl’s
theorem directly applies.
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Applying Weyl’s Inequalities to αL(Gε) + (1 − α)L(G). Putting A = αL(Gε) and B = (1 − α)L(G) into Theo-
rem Theorem A.1, we get for each k = 1, . . . , n:

λk

(
αL(Gε)

)
+ λ1

(
(1− α)L(G)

)
≤ λk

(
αL(Gε) + (1− α)L(G)

)
≤ λk

(
αL(Gε)

)
+ λn

(
(1− α)L(G)

)
. (22)

Using the fact that scaling a matrix by a nonnegative real factor α scales all its eigenvalues by α, we have:

λk

(
αL(Gε)

)
= αλk

(
L(Gε)

)
, λj

(
(1− α)L(G)

)
= (1− α)λj

(
L(G)

)
. (23)

Hence:

αλk

(
L(Gε)

)
+ (1− α)λ1

(
L(G)

)
≤ λk

(
L(G∗)

)
≤ αλk

(
L(Gε)

)
+ (1− α)λn

(
L(G)

)
, (24)

where L(G∗) = αL(Gε) + (1− α)L(G).

Therefore, while the k-th eigenvalue of L(G∗) does not equal a simple pointwise interpolation of λk

(
L(G)

)
and λk

(
L(Gε)

)
,

it is constrained to lie within the interval:

[
αλk

(
L(Gε)

)
+ (1− α)λ1

(
L(G)

)
, α λk

(
L(Gε)

)
+ (1− α)λn

(
L(G)

)]
. (25)

Remark A.2 (Interpretation). This shows precisely why, in the non-commuting case, we only obtain bounds on the styled
eigenvalues rather than a direct, index-by-index convex combination of the form αλk(L

(Gε)) + (1 − α)λk(L
(G)). The

lack of commutativity prevents simultaneous diagonalization. Therefore, the eigenvectors of L(G∗) differ from those of
L(G) and L(Gε), making a simple one-to-one mapping of eigenvalues impossible.

A.2. Theorem 4.4: Connectedness Under Convex Combination of Laplacians

Theorem A.3. Let L(G) and L(H) be the (combinatorial or normalized) Laplacians of two simple, undirected, connected
graphs G and H on the same vertex set of size n. For any α ∈ [0, 1], define

L(F ) := αL(G) + (1− α)L(H).

Then L(F ) corresponds to a connected graph.

Proof. Assume for contradiction that the graph F corresponding to L(F ) is disconnected. Then there exists a nontrivial
partition of the vertex set V = S ∪ (V \ S), with S ̸= ∅ and S ̸= V , such that no edge in F connects a node in S to a node
in V \ S.

Let A(G) and A(H) denote the adjacency matrices of G and H , respectively. Since L(F ) = D(F ) −A(F ) and

A(F ) = αA(G) + (1− α)A(H),

the absence of any edge crossing the cut in F implies that for all i ∈ S, j ∈ V \ S,

A
(F )
ij = αA

(G)
ij + (1− α)A

(H)
ij = 0.

Because α, 1−α ≥ 0, this implies that A(G)
ij = A

(H)
ij = 0 for all such (i, j). That is, neither G nor H has any edge crossing

the cut between S and V \ S. But this contradicts the assumption that both G and H are connected.

Therefore, such a cut cannot exist, and F must be connected. Hence, L(F ) is the Laplacian of a connected graph.

A.3. Spectral Gap Bounds

Theorem A.4 (Spectral Gap Bounds). Let G and Gε be two connected graphs on the same vertex set, and let L(G) and
L(Gε) be their (combinatorial or normalized) Laplacians. Define

L(G∗) := αL(Gε) + (1− α)L(G), α ∈ [0, 1],
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and let the spectral gap be ∆(G) := λ2(L
(G)), with analogous definitions for Gε and G∗. Then,

min
(
∆(G), ∆(Gε)

)
≤ ∆(G∗) ≤ max

(
∆(G), ∆(Gε)

)
.

Proof. Since G and Gε are connected, their Laplacians satisfy λ1 = 0 < λ2, and the same holds for G∗ by convexity and
connectedness preservation (see Theorem A.3).

Let A := αL(Gε) and B := (1− α)L(G), so L(G∗) = A+B. By Weyl’s inequality for symmetric matrices, we have:

λ2(A+B) ∈
[
λ1(A) + λ2(B), λ2(A) + λ1(B)

]
.

Since λ1(L
(G)) = λ1(L

(Gε)) = 0, this becomes:

λ2(L
(G∗)) ∈

[
αλ2(L

(Gε)), (1− α)λ2(L
(G))

]
.

Swapping G and Gε gives the symmetric interval:

λ2(L
(G∗)) ∈

[
min

(
αλ2(L

(Gε)), (1− α)λ2(L
(G))

)
, max

(
αλ2(L

(Gε)), (1− α)λ2(L
(G))

)]
.

However, since α ∈ [0, 1], the maximum of λ2(L
(Gε)) and λ2(L

(G)) always bounds λ2(L
(G∗)) from above, and the

minimum from below. Thus,

min
(
∆(G), ∆(Gε)

)
≤ ∆(G∗) ≤ max

(
∆(G), ∆(Gε)

)
.

Remark A.5. For normalized Laplacians, the same bounds apply since they are also symmetric and positive semi-definite,
and Weyl’s inequality holds for all real symmetric matrices.

A.4. Frobenius Norm Difference Corollary

Corollary A.6. Let L(G), L(Gε), L(G∗) be Laplacians (combinatorial or normalized) of graphs G, Gε, and G∗ respectively,
where

L(G∗) = αL(Gε) + (1− α)L(G), α ∈ [0, 1].

Then, the Frobenius norm difference between Gε and G∗ satisfies∥∥L(Gε) − L(G∗)
∥∥
F

= (1− α)
∥∥L(Gε) − L(G)

∥∥
F
.

Proof. By linearity, we have

L(Gε) − L(G∗) = L(Gε) −
(
αL(Gε) + (1− α)L(G)

)
= (1− α)

(
L(Gε) − L(G)

)
.

Taking Frobenius norms and using absolute homogeneity gives the result:∥∥L(Gε) − L(G∗)
∥∥
F
= (1− α)

∥∥L(Gε) − L(G)
∥∥
F
.

B. GIST’s Overshooting Algorithm
Figure 2 illustrates the architecture of GIST and how it learns to backtrack (see Algorithm 1) into finding the counterfactuals
G∗. Notice that GIST, before performing the backtracking mechanism, needs to overshoot the decision boundary of Φ given
an input graph G. In this paper, given G, we rely on a simple overshooting algorithm which finds Gε as in Equation (26).

k∗ = min

{
k ∈ [1, n] | Φ(G) ̸= Φ(Gk)

}
∀Gk ∈ U({G | G ∈ G),

Gε := Gk∗ ,

(26)
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where U(∗) depicts a shuffling operation from the set given in input, and G is the set of graphs in the dataset. An interesting
overshooting algorithm, which would aid convergence and reduce the estimation errors shown in the main material, is that
of choosing Gε given G as in Equation (27).

k∗ = min

{
k ∈ [1, n] | Φ(G) ̸= Φ(Gk) ∧ (1− α)

∥∥L(Gk) − L(G)
∥∥
F

}
∀Gk ∈ U({G | G ∈ G),

Gε := Gk∗ .

(27)

Notice how we condition the selection of Gε on its Frobenius norm difference with G. This ensures that the chosen pair is
structurally similar yet belonging to different classes. In this case, GIST would have more chances of converging to the
optimal counterfactual G∗ than being agnostic to the choice of Gε as in Equation (26). We leave these investigations for
future work.

C. Hyperparameter Selection
In our experimental evaluation, we tested GIST against other learning-based explanation methods from the literature.
The competitors include RSGG-CE (Prado-Romero et al., 2024b), CF2 (Tan et al., 2022), CLEAR (Ma et al., 2022), and
CF-GNNExp. (Lucic et al., 2022). For each explainer, we used the optimal hyperparameters proposed in their respective
literature:

• For GIST we configured it to run the backtracking process for 50 epochs with a batch size of 16. We chose the number
of attention heads to be equal to 2, the node embedding dimension to 16. We set α = 0.9 to encourage higher validity,
which is beneficial for a helpful counterfactual. We train GIST with Adam optimizer with learning rate 10−3 and a
weight decay of 10−5.

• For CF2 (Tan et al., 2022), we configured: 20 epochs, batch size ratio of 0.2, learning rate (lr) initialized at 0.02, and
regularization parameters α = 0.7, λ = 20, and γ = 0.9.

• CF-GNNExp (Lucic et al., 2022) utilized: α = 0.01, K = 5, β = 0.6, and γ = 0.2.
• CLEAR (Ma et al., 2022) employed: 10 epochs, learning rate (lr) of 0.01, counterfactual loss regularization parameter

(λcfe) set to 0.1, trade-off parameter α = 0.4, and batch size 32.
• RSGG-CE (Prado-Romero et al., 2024b) was trained for 500 epochs with a GAN configuration: batch size 1 and

TopKPooling discriminator.

Concerning the oracle implementation, we used the following hyperparameters: 50 epochs, batch size 32, and early stopping
threshold 10−4. We trained the model using the RMS Propagation optimizer (learning rate lr = 0.01) with Cross Entropy
loss. The architecture consisted of a Graph Convolutional Neural Network with 3 convolutional layers and 1 dense layer,
convolutional booster 2, and linear decay factor 1.8.

D. Dataset description

Table 3. Summary of selected datasets and their characteristics. † depicts a real-world dataset and ‡ a synthetic one.

Dataset Graphs Classes Avg. Nodes Avg. Edges Node Labels Edge Labels Node Attr.

AIDS † 2000 2 15.69 16.20 ✓ ✓ ✓(4)
BAShapes ‡ 500 2 57.00 82.01 – – ✓(8)
BBBP † 2039 2 24.06 26.00 ✓ – –
BZR † 405 2 35.75 38.36 ✓ – ✓(3)
COLORS-3 ‡ 10500 11 61.31 91.03 – – ✓(4)
ENZYMES † 600 6 32.63 62.14 ✓ – ✓(18)
MSRC21 † 563 20 77.52 198.32 ✓ – ✓(3)
PROTEINS † 1113 2 39.06 72.82 ✓ – ✓(1)

We conducted our experiments on 8 popular real and synthetic datasets comprising of binary and multi-class graph
classification tasks to compare our approach with SoTA GCE methods. Table 3 illustrates the characteristics of the datasets
used in this paper.
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• AIDS (Riesen & Bunke, 2008) consists of graphs representing molecular compounds. These graphs are derived
from the AIDS Antiviral Screen Database of Active Compounds. This data set consists of two classes (active and
inactive), which represent molecules with or without activity against HIV. The molecules are converted into graphs in a
straightforward manner by representing atoms as nodes and the covalent bonds as edges. Nodes are labeled with the
number of the corresponding chemical symbol and edges by the valence of the linkage. There are 2,000 elements in
total (1,600 inactive elements and 400 active elements).

• BAShapes (Ying et al., 2019) is a synthetic dataset consisting of a base graph and motifs connected on the base. The
base graph is a Barabasi-Albert (BA) graph and motifs can be either a house-shaped (class 0) or a grid-shape (class 1).
Following the generation done in (Lucic et al., 2022), there are 8 nodes on the base graph with 5 edges connecting
them. Each base graph has 7 motives connected to it.

• BBBP (Blood-Brain Barrier Penetration) (Martins et al., 2012) is a dataset widely used in drug discovery and
neurological research to develop machine learning models that predict blood-brain barrier permeability. The blood-
brain barrier is a protective membrane that shields the central nervous system by regulating the passage of solutes.
Its presence is a critical consideration in drug development, whether for designing molecules that target the central
nervous system or for identifying compounds that should be restricted from crossing the barrier. BBBP contains binary
labels for 2,053 curated molecules, indicating whether a compound can penetrate the blood-brain barrier. Specifically,
1,570 molecules can penetrate the barrier, while 483 cannot.

• BZR (Sutherland et al., 2003) represents a set of 405 ligands for the benzodiazepine receptor. No differentiation
of agonists, antagonists, and inverse agonists is made. In vitro binding affinities as measured by inhibition of [3H]
diazepam binding are expressed as IC50 values, ranging from 0.34 nM to > 70µM (65 compounds have indeterminate
values). The authors selected pIC50 = 7.0 as the threshold for activity by considering a histogram plot of compound
counts vs pIC50 and the resulting balance of active and inactive compounds.

• COLORS-3 (Knyazev et al., 2019) is a synthetic graph benchmark designed to evaluate the interpretability and
generalization capabilities of graph-based machine learning models, particularly those leveraging attention mechanisms.
Each graph consists of nodes assigned one of three colors, with the task framed as a classification problem: models
must predict the count of nodes belonging to a specific target color. For generalization purposes, the dataset includes
training graphs of moderate size and test sets containing graphs that are significantly larger and more complex than
those seen during training.

• ENZYMES (Borgwardt et al., 2005) consists of protein graph models. The dataset includes 600 enzymes from the
BRENDA database (Schomburg et al., 2004), with 100 proteins sampled from each of the six Enzyme Commission
(EC) top-level classes. The original objective that the dataset was created for is to accurately predict the enzyme class
membership for these proteins.

• MSRC21 (Neumann et al., 2016) is a state-of-the-art dataset in semantic image processing originally introduced
in (Winn et al., 2005). Each image is represented by a conditional Markov random field graph, as illustrated in Figure 7.
The nodes of each graph are derived by over-segmenting the images using the quick shift algorithm,7 resulting in one
graph among the superpixels of each image. Nodes are connected if the superpixels are adjacent, and each node can
further be annotated with a semantic label. Imagining an image retrieval system, where users provide images with
semantic information, it is realistic to assume that this information is only available for parts of the images, as it is
easier for a human annotator to label a small number of image regions rather than the full image. As the images in
the MSRC dataset are fully annotated, the authors derive semantic (ground-truth) node labels by taking the mode
ground-truth label of all pixels in the corresponding superpixel. Semantic labels are, for example, building, grass, tree,
cow, sky, sheep, boat, face, car, bicycle, and a label void to handle objects that do not fall into one of these classes.

• PROTEINS is a dataset created by Borgwardt et al. (2005), originally proposed in (Dobson & Doig, 2003), comprising
1,178 proteins (59% enzymes, 41% non-enzymes). Proteins were selected to ensure low structural similarity. From this
set, 1,128 proteins (retaining the original class balance) were retained based on the availability of secondary structure
data in the Protein Data Bank (PDB). In their original study, Dobson and Doig represented proteins using feature
vectors. These vectors encoded various attributes, including the fraction of each amino acid (AA) type among all
residues, the fraction of the protein’s surface area occupied by each AA, the presence of ligands, the size of the largest

7https://www.vlfeat.org/overview/quickshift.html.
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Figure 7. Taken from (Neumann et al., 2016). The left-most RGB image is represented by a graph of superpixels (middle) with semantic
labels b building, c car, v void, and ? unlabeled. (right) Point clouds of household objects represented by labeled 4-nearest-neighbor
graphs with part labels top (yellow), middle (blue), bottom (red), usable-area (cyan), and handle (green). Edge colors are derived from the
adjacent nodes.

surface pocket, and the number of disulfide bonds. But, afterwards Borgwardt modeled proteins as graphs. This dataset
is notably challenging due to its strict non-redundancy constraint, emphasizing generalizable functional prediction over
sequence or structural homology.

E. Evaluation Metrics
We adopt the evaluation framework proposed by (Prado-Romero et al., 2023), employing a diverse set of metrics for a
comprehensive and fair evaluation. Our evaluation criteria include Runtime, Oracle Calls (Abrate & Bonchi, 2021), Validity
(Guidotti, 2022; Prado-Romero et al., 2023a), Sparsity (Prado-Romero et al., 2023a; Yuan et al., 2022), Fidelity (Yuan et al.,
2022), Oracle Accuracy, and Graph Edit Distance (GED) (Prado-Romero et al., 2023). Recall that Φ : G → Y is an oracle.

Runtime measures the time the explainer takes to generate a counterfactual example. This metric offers an efficient means
of evaluating the explainer’s performance, encompassing the execution time of the oracle. To ensure fairness, runtime
evaluations must be conducted in isolation on the same hardware and software platform.

Oracle Calls (Abrate & Bonchi, 2021) quantifies the number of times the explainer queries the oracle to produce a
counterfactual. This metric, akin to runtime, assesses the computational complexity of the explainer, especially in distributed
systems. It avoids considering latency and throughput, which are external factors in the measurement.

Oracle Accuracy evaluates the reliability of the oracle in predicting outcomes. The accuracy of the oracle significantly
impacts the quality of explanations, as the explainer aims to elucidate the model’s behaviour. Mathematically, for a given
input G and true label y, accuracy is defined as χ(G) = I[Φ(G) = y].

Validity (Guidotti, 2022; Prado-Romero et al., 2023a) assesses whether the explainer produces a valid counterfactual
explanation, indicating a different classification from the original instance. Formally, for the original instance G, the
counterfactual G′, and oracle Φ, validity is an indicator function Ω(G,G′) = I[Φ(G) ̸= Φ(G′)].

Sparsity (Yuan et al., 2022) gauges the similarity between the input instance and its counterfactual concerning input
attributes. If S(G,G′) ∈ R1

0 is the similarity between G and G′, we adapt the sparsity definition to 1−S(G,G′)
|G| for graphs.

Fidelity (Yuan et al., 2022) measures the faithfulness of explanations to the oracle, considering validity. Given the input G,
true label y, and counterfactual G′, fidelity is defined as Ψ(G,G′) = χ(G)− I[Φ(G′) = y]. Fidelity values can be 1 for the
correct explainer and oracle, or 0 and −1 indicating issues with either the explainer or the oracle.

Graph Edit Distance (GED) quantifies the structural distance between the original graph G and its counterfactual G′. The
distance is evaluated based on a set of actions {p1, p2, . . . , pn} ∈ P(G,G′), representing a path to transform G into G′.
Each action pi is associated with a ω(pi) cost. GED is computed as

min
{p1,...,pn}∈P(G,G′)

n∑
i=1

ω(pi)

Preference is given to counterfactuals closer to the original instance G, as they provide shorter action paths on G to change
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the oracle’s output. GED offers a global measure and can be complemented by a relative metric like sparsity to assess the
explainer’s performance across instances.

F. Time Complexity Analysis for GIST
In this section, we elaborate on the computational complexity of the calculations presented in Section 2. We identify four
key components that require explicit complexity analysis: the Laplacian matrix L(G), its normalized form L̃(G), and their
respective computations. Notice that we are not analyzing the forward learning pass of the backward mechanism illustrated
in Figure 2. The time complexity of the forward learning pass is dominated by the calculation of the following matrices.

Given an undirected weighted graph G with n nodes and m edges, the time complexities of the essential operations are as
follows:

Degree Matrix Computation D. The degree matrix D is a diagonal matrix where each diagonal element Dii represents
the degree of node i. The degree is computed as the sum of the weights of the edges connected to node i, which corresponds
to the row or column sum in the adjacency matrix A.

For dense graphs, where most nodes are highly connected, the adjacency matrix A contains a significant number of non-zero
entries. Computing the degree matrix by summing all entries in A requires O(n2) time. However, for sparse graphs
where m≪ n2, only the non-zero entries (corresponding to edges) are considered, reducing the time complexity to O(m).
Therefore, the complexity of computing the degree matrix is:

O(n2) for dense graphs, O(m) for sparse graphs.

Laplacian Matrix Formation L(G) = D −A. The Laplacian matrix L(G) is computed by subtracting the adjacency
matrix A from the degree matrix D. Both matrices have dimensions n × n. In dense graphs, element-wise subtraction
takes O(n2) time, since every entry must be processed. However, in sparse graphs, the adjacency matrix A contains only m
non-zero entries, and D is diagonal. Consequently, the subtraction operation can be performed in O(n +m) time. The
resulting complexity is:

O(n2) for dense graphs, O(n+m) for sparse graphs.

Eigenvalue Decomposition. Eigenvalue decomposition is crucial for analyzing the spectral properties of the Laplacian
matrix. The standard approach, such as QR decomposition, has a time complexity of O(n3) for dense graphs.

For large sparse graphs, computing all eigenvalues directly is impractical. Instead, iterative methods like the Lanczos
algorithm are employed, which approximate the largest (or smallest) eigenvalues efficiently. The Lanczos algorithm operates
in O(n+m) time per iteration without reorthogonalization, making it a practical alternative for sparse graphs. Thus, the
time complexity of eigenvalue decomposition is:

O(n3) for dense graphs, O(k(n+m)) for sparse graphs, where k denotes the iterations/eigenvalues.

Normalized Laplacian Computation L̃(G) = D−1/2L(G)D−1/2. The normalized Laplacian L̃(G) is obtained by
applying the diagonal matrix D−1/2 to both sides of the Laplacian matrix. Inverting the diagonal elements of D to compute
D−1/2 takes O(n) time, as it involves element-wise inversion.

For the matrix multiplication involved in forming L̃(G), we need to multiply first D−1/2 with L(G), which has a complexity
of O(n2), because D−1/2 is a diagonal matrix.8 Then, there is another multiplication step between D−1/2L(G) and D−1/2,
which also has a complexity of O(n2). Thus, the overall time complexity is O(n2) in dense graphs. However, for sparse
graphs, the multiplication can be optimized to O(m), since most elements in L(G) are zero, allowing efficient computation.
Thus, the time complexity is:

O(n2) for dense graphs, O(m) for sparse graphs.

This analysis demonstrates that our method does not introduce significant computational bottlenecks. As shown in Table 4,
utilizing sparse representations significantly improves computational efficiency. For large sparse graphs, iterative methods
for eigenvalue decomposition further reduce complexity to O(n+m) per iteration, making the calculations feasible.

8Notice that if D were not a diagonal matrix, the matrix multiplication would have a complexity of O(n3).
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Table 4. Overall complexity considerations for dense and sparse graphs.

Computation Dense Graphs Sparse Graphs

D O(n2) O(m)
L(G) = D −A O(n2) O(n+m)
Eigenvalue Decomposition O(n3) O(k(n+m)) (for k eigenvalues)
L̃(G) = D−1/2L(G)D−1/2 O(n2) O(m)

Figure 8. GIST is the most effective and reliable explainer (in terms of validity), reporting low input structural changes. Comparison
of GED across different explainers for generating counterfactuals on various datasets. GIST consistently achieves the best balance between
validity and structural proximity, with significantly lower GED than other methods w.r.t. the baseline iRand.

G. More Experiments
G.1. GIST vs. SoTA in terms of GED

GIST maintains reasonable Graph Edit Distance (GED) over the low-validity iRand baseline with 8.9% increase
against 2.1% reported by RSGG-CE. Figure 8 illustrates the structural proximity in counterfactual generation, as
measured by the GED. We invite the reader to assess the trade-off between validity and fidelity, shown in Table 1 and Table 2,
and the GED. While RSGG-CE demonstrates lower GED in many cases (indicating smaller structural changes), it often
sacrifices validity, which undermines its practical effectiveness in generating meaningful counterfactuals. Contrarily, GIST
prioritizes generating valid counterfactuals, even at the cost of slightly higher GED. This approach aligns with the goal of
counterfactual generation – providing actionable, interpretable, and valid examples – since low GED alone is insufficient if
the counterfactuals are not valid. Here, GIST strikes a crucial balance by producing counterfactuals that remain meaningful
and interpretable while requiring reasonable structural changes. This makes it a more dependable choice for real-world
applications where validity is essential. For instance, in datasets like BZR and MSCR21 – where GIST performs comparably
to CF-GNNExp in terms of validity – GIST achieves a GED that is approximately two orders of magnitude lower than
CF-GNNExp. Overall, GIST reports an increase of 8.9% over iRand on all datasets; RSGG-CE 2.1%, CLEAR 776.2%, CF2

180.8%, and CF-GNNExp. 366.7%. This highlights GIST’s effectiveness as a superior explainer that optimizes both validity
and structural proximity.
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Table 5. Average test-set performances on AIDS for 5-cross vali-
dations. The accuracy for the used GCN oracle in the test set is
99.4%.

GED ↓ Oracle Calls ↓ Validity ↑ Sparsity ↓ Fidelity ↑
iRand 0.23× 101 1.10× 101 0.013 0.001 0.013

CF-GNNExp. 1.36× 102 1.00× 100 0.936 3.454 0.924
CF2 7.82× 101 – 0.019 3.757 0.015
CLEAR 2.15× 102 – 0.037 27.35 0.037
RSGG-CE 3.49× 101 1.20× 102 0.128 0.059 0.124
GIST 5.20× 101 7.92× 100 0.940 2.072 0.928

Table 6. Average test-set performance on BAShapes for 5-cross
validations. The accuracy for the used GCN oracle in the test set
is 99.9%.

GED ↓ Oracle Class ↓ Validity ↑ Sparsity ↓ Fidelity ↑
iRand ∞ 9.95× 101 0.000 ∞ 0.000

CF-GNNExp. 9.09× 102 0.20× 101 0.516 11.09 0.484
CF2 ∞ − 0.000 ∞ 0.000
CLEAR 9.58× 102 − 0.908 6.365 0.060
RSGG-CE 8.88× 101 1.03× 102 1.000 0.575 0.968
GIST 1.11× 102 0.58× 101 1.000 0.816 0.968

Table 7. Average test-set performances on BBBP for 5-cross vali-
dations. The accuracy for the used GCN oracle in the test set is
92.2%.

GED ↓ Oracle Calls ↓ Validity ↑ Sparsity ↓ Fidelity ↑
iRand 0.37× 101 1.42× 101 0.151 0.008 0.177

CF-GNNExp. 3.23× 102 1.00× 100 0.931 5.227 0.784
CF2 1.34× 102 − 0.208 3.350 0.178
CLEAR 1.43× 103 − 0.267 11.27 0.164
RSGG-CE 2.33× 101 2.34× 102 0.404 0.167 0.286
GIST 4.24× 101 8.03× 101 0.956 0.810 0.809

Table 8. Average test-set performances on BZR for 5-cross vali-
dations. The accuracy for the used GCN oracle in the test set is
96.1%.

GED ↓ Oracle Calls ↓ Validity ↑ Sparsity ↓ Fidelity ↑
iRand 6.78× 101 2.93× 101 0.332 0.029 0.146

CF-GNNExp. 6.23× 102 0.10× 101 0.810 7.936 0.741
CF2 2.53× 103 – 0.185 0.341 0.176
CLEAR 6.90× 101 – 0.176 6.320 0.127
RSGG-CE 8.75× 101 2.48× 102 0.732 0.922 0.683
GIST 4.51× 101 0.74× 101 0.810 0.634 0.741

Table 9. Average test-set performances on COLORS-3 for 5-cross
validations. The accuracy for the used GCN oracle in the test set
is 27.7%.

GED ↓ Oracle Calls ↓ Validity ↑ Sparsity ↓ Fidelity ↑
iRand 3.52× 101 1.03× 102 0.392 0.043 -0.007

CF-GNNExp. 4.35× 103 0.10× 101 0.736 12.16 0.091
CF2 1.46× 102 – 0.676 3.915 0.065
CLEAR 8.93× 103 – 0.217 64.33 0.033
RSGG-CE 5.15× 101 3.70× 101 0.884 0.291 0.147
GIST 1.41× 102 0.43× 101 0.884 1.758 0.202

Table 10. Average test-set performances on ENZYMES for 5-
cross validations. The accuracy for the used GCN oracle in the
test set is 33.3%.

GED ↓ Oracle Calls ↓ Validity ↑ Sparsity ↓ Fidelity ↑
iRand 0.79× 101 2.84× 101 0.138 0.007 0.004

CF-GNNExp. 5.69× 102 0.10× 101 0.910 4.947 0.077
CF2 9.38× 101 – 0.437 1.524 0.017
CLEAR 9.34× 102 – 0.370 26.23 0.040
RSGG-CE 4.96× 101 2.57× 102 0.447 0.228 0.050
GIST 7.27× 101 0.44× 101 0.970 0.957 0.203

Table 11. Average test-set performances on MSRC21 for 5-cross
validations. The accuracy for the used GCN oracle in the test set
is 91.2%.

GED ↓ Oracle Calls ↓ Validity ↑ Sparsity ↓ Fidelity ↑
iRand 3.40× 101 1.88× 102 0.035 0.004 -0.035

CF-GNNExp. 2.98× 103 0.20× 101 0.965 10.47 0.825
CF2 6.30× 101 − 0.018 0.230 -0.018
CLEAR 1.23× 103 - 0.933 4.296 0.855
RSGG-CE 1.03× 102 4.78× 101 0.912 0.329 0.807
GIST 2.20× 102 0.52× 101 0.965 0.774 0.860

Table 12. Average test-set performances on PROTEINS for 5-
cross validations. The accuracy for the used GCN oracle in the
test set is 71.4%.

GED ↓ Oracle Calls ↓ Validity ↑ Sparsity ↓ Fidelity ↑
iRand 0.20× 101 5.43× 102 0.018 0.001 -0.009

CF-GNNExp. 1.52× 103 0.10× 101 0.378 6.273 0.202
CF2 5.94× 102 − 0.039 11.00 0.018
CLEAR 6.02× 103 − 0.563 703.8 0.051
RSGG-CE 4.39× 101 3.07× 102 0.237 0.141 0.133
GIST 1.11× 102 0.54× 101 0.791 1.463 0.425

G.2. Full Panorama of SoTA Performances

We assess the performances of GIST and the SoTA methods according to all the metrics described in Appendix E. Table 5 –
Table 12 illustrate these performances on the test-set for 5-cross validations on all the datasets. Notice how iRand and CF2

on BAShapes (see Table 6) fail to produce valid counterfactuals (i.e., validity at 0); therefore, it is useless to measure the
GED and sparsity of the produced candidates – hence, we report∞.

G.3. Spectra Combination L(G∗) = αL(Gε) + (1−α)L(G)

G.3.1. SPECTRA COMBINATION WITH VARYING α

The convex combination theorem for graph Laplacians provides a foundation for constructing intermediate graph structures
by interpolating between the spectra of two graphs. Let L(G) and L(Gε) denote the normalized Laplacians of graphs G
(e.g., a tree) and Gε (e.g., a cyclic graph), respectively. A convex combination of these Laplacians is defined in Equation (7).
This equation guarantees that the spectrum of L(G∗) lies within the convex hull formed by the spectra of L(G) and L(Gε).
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Figure 9. Heatmaps showing the spectra of G∗, obtained as a convex combination of the spectra of G (tree) and Gε (cyclic graph) for 10
different pairs of G and Gε. The interpolation parameter α varies from 0.1 to 1, transitioning from the eigenvalues of G (α = 0) to those
of Gε (α = 1). Each plot demonstrates the smooth spectral transition governed by the convex combination.

As α varies, the spectrum of G∗ transitions smoothly between the spectral properties of G (α = 0) and Gε (α = 1).

Figure 9 illustrates the spectra of G∗ for 10 different pairs of G (trees) and Gε (cyclic graphs). Each heatmap corresponds to
a unique pair, where the x-axis represents the interpolation parameter α, ranging from 0.1 to 1. The y-axis indicates the
eigenvalue index, while the color intensity reflects the magnitude of the eigenvalues. The leftmost region of each heatmap
aligns with the spectrum of G (α = 0), and the rightmost region aligns with the spectrum of Gε (α = 1). The gradual
change in spectral intensities demonstrates the blending of structural properties as α increases. This figure underscores the
potential of spectral interpolation to model continuous transitions between distinct graph structures, providing a tool for
exploring intermediate configurations and understanding the impact of structural variations. Moreover, notice how with
every α ∈ [0, 1], the connectivity property is maintained. In other words, because G and Gε are connected graphs (either
trees or cyclic graphs), then G∗ is also connected with λ1(L

(G∗)) = 0 illustrated with dark blue.

G.3.2. SPECTRAL GAP AND CONNECTEDNESS OF PREDICTED G∗

Figure 10 shows the spectral gaps and the lowest eigenvalues for G, Gε, and G∗ according to α = 0.9 on AIDS (up left),
COLORS-3 (up right), ENZYMES (down left), and PROTEIN (down right). We show log-scaled y-axes to highlight small
differences in the prediction of G∗ via the loss Equation (12) – see triangles – and the optimal counterfactual obtained
according to Definition 4.1 – see ×. Notice how, for each (G,Gε) pair, GIST finds G∗ whose spectral gap reports a
negligible error of ∼1.75× 10−2 w.r.t. the optimal counterfactual. Moreover, GIST satisfies Theorem 4.5 since ∆(G)∗ is
within the bounds of ∆(G) and ∆(Gε). This intuition is also shown in terms of GED in Figure 3 and in terms of Frobenius
norm differences in Figure 6 where G∗ is in-between G and Gε.

G.3.3. FROBENIUS NORM DIFFERENCES BETWEEN G, Gε AND G∗ ACCORDING TO COROLLARY 4.6

To support our claims that GIST produces spectrally similar counterfactuals, we illustrate (see Figure 11) the Frobenius
norm differences presented in Corollary 4.6. Since GIST is learns the backtracking mechanism it might estimate G∗ that are
not globally optimal, but rather locally. Therefore, we report a small estimation error of 5.62× 10−3 in terms of Frobenius
norm difference where G∗ “prefers” to be closer to the structure of Gε.
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Figure 10. We show the spectral gaps of G, Gε, and G∗ according to α = 0.9 on 100 random samples of AIDS (up left), COLORS-3 (up
right), ENZYMES (down left), and PROTEIN (down right). We also show the optimal counterfactual to assess the distance with the
spectral gap of G∗. Each subplot on the right illustrates the first eigenvalue of G, Gε, and G∗ to demonstrate the connectivity property
in Theorem 4.4. To show zeros in log-scale, we correct them by adding the lowest gap/eigenvalue that is non-zero.

G.4. Quantitative Analysis for α = 0.5 vs α = 0.9

To evaluate the sensitivity of GIST to the weighting parameter α, we compared performance at α = 0.5 (equal emphasis on
content and style) against α = 0.9 (content-dominant setting) across multiple benchmarks.

For the AIDS dataset, we computed the Frobenius norm between the expected and produced outputs as done in Figure 6 –
see Figure 13. At α = 0.5, the error reaches 0.537, which is over two orders of magnitude higher than the corresponding
error at α = 0.9. This substantial increase indicates that the model has difficulty reconciling competing objectives when
neither is strongly prioritized.

Similarly, when emulating the setup from Figure 5 – see Figure 14 – the model yields an error of 0.013 at α = 0.5, compared
to only 0.005 at α = 0.9. This further supports the observation that GIST performs more reliably when the optimization is
skewed toward either content or style, rather than balanced equally.

These results demonstrate that GIST’s performance degrades significantly under equal weighting conditions, and suggest
that fine-tuning α toward task-specific priorities is crucial for optimal output quality.

G.5. A Critique to SoTA papers using MUTAG and NCI1

We excluded all those datasets from TUDataset9 that do not have any node attributes. As per GNNs message passing
mechanism, the nodes share their feature vectors with their neighbors, hence then having meaningful embeddings. Given
a graph G = (X,A), GIST overshoots to Gε = (Xε, Aε) whose node features Xε go through TransConv layers. If
Xε are missing, then the convolution layer does not produce anything meaningful to then estimate the edge probabilities
(see Figure 2). To surpass this hurdle, we added 7 features regarding centralities: i.e., node degree, betweenness, closeness,
harmonic centrality, clustering coefficient, Katz centrality, Laplacian centrality. In this way, at least we have something
interesting to work with and not rely only on the topology of the graphs. Table 14 shows the performance against SoTA in
terms of validity and fidelity on 5-fold cross-validations where the oracle is a 3-layer GCN with test accuracy of 86.8% for
MUTAG.10 Unfortunately, even after hyperparameter optimization was done on NCI1 with the introduced node features, any

9https://chrsmrrs.github.io/datasets/docs/datasets/
10We could not reproduce the 89.97% accuracy as in paperswithcode – https://paperswithcode.com/sota/

graph-classification-on-mutag – with the parameters specified in the original paper of U2GNN.
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Figure 11. We show the Frobenius norm differences between the Laplacians of G, Gε and G∗ on AIDS (row=1, col=1), BZR (row=1,
col=2), COLORS-3 (row=2, col=1), ENZYMES (row=2, col=2), and MSRC21 (row=3) for α = 0.9.

kind of GCN (with any layer) and U2GNN (Nguyen et al., 2022) with the hyperparameter search space introduced in the
original paper does not reach more than 40% of accuracy in the test set. We ran experiments with these oracles for NCI1,
however the fidelity of the explainers was negative, which suggests that the explainers are actually doing adversarial attacks
rather than explanations on the oracle (Prado-Romero et al., 2023). Hence, we decided to discard NCI1 and show only
MUTAG. We want to point out that these two datasets are not suitable for benchmarking purposes since, again, message
passing mechanisms in GNNs rely on node feature aggregations on the neighbors. These two datasets do not have node
features, and we are a puzzled how SoTA methods used them to compare against each other.

G.6. Runs on IMDB-M: GIST vs CLEAR

We report the results of 5-fold cross-validation on the IMDB-M dataset, as summarized in Table 13. Notably, we re-ran the
CLEAR – the original paper that uses IMDB-M – from scratch and obtained a validity score of 0.45, which significantly
deviates from the 0.96 originally reported, raising questions about the reproducibility and robustness of the original
evaluation. Among all methods, GIST achieves the highest validity (0.87) and fidelity (0.17) w.r.t. 3-layer GCN oracle,
which itself exhibits poor predictive performance with a test accuracy of only 48%.

The iRand baseline fails to generate any valid counterfactuals, rendering fidelity evaluation inapplicable. Furthermore, the
uniformly low fidelity scores across all methods underscore a broader issue: the underlying GCN oracle performs poorly,
limiting the interpretability and utility of generated counterfactuals. We also attempted to replicate the performance of
U2GNN (Nguyen et al., 2022), a method claimed to be SoTA on IMDB-M, but achieved only 33% test accuracy using
the same hyperparameters reported in the original paper – substantially lower than the 89.2% listed on paperswithcode.
This discrepancy highlights the need for rigorous, transparent, and reproducible benchmarking practices in graph-based
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Figure 12. We show the eigenvalues of 100 randomly sampled instances on PROTEINS (α = 0.9).
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Figure 13. We show the Frobenius norm differences between the Laplacians of G, Gε and G∗ on AIDS for α = 0.5.
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Figure 14. We show the spectral gaps of G, Gε, and G∗ according to α = 0.5 on 100 random samples of MSRC21. We also show the
optimal counterfactual to assess the distance with the spectral gap of G∗. Each subplot on the right illustrates the first eigenvalue of G,
Gε, and G∗ to demonstrate the connectivity property in Theorem 4.4. To show zeros in log-scale, we correct them by adding the lowest
gap/eigenvalue that is non-zero.
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Table 13. Average test-set performance on IMDB-M for 5-cross
validation. The accuracy of the GCN oracle in the test set is 48%.

Validity Fidelity

iRand 0.000 –

CF-GNNExpl. 0.670 0.170
CF2 0.710 0.090
CLEAR 0.450 0.050
RSGG-CE 0.690 0.090
GIST 0.870 0.170

Table 14. Average test-set performance on MUTAG for 5-cross
validation. The accuracy of the GCN oracle in the test set is
86.6%.

Validity Fidelity

iRand 0.026 0.026

CF-GNNExpl. 0.447 0.237
CF2 0.026 0.026
CLEAR 0.921 0.395
RSGG-CE 0.947 0.737
GIST 1.000 0.737
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