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Decomposed Linear Dynamical Systems (dLDS) for identifying the latent
dynamics underlying high-dimensional time-series
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Abstract
Learning interpretable representations of neural
population dynamics is a crucial step to under-
standing how brain activity relates to behavior.
Models of neural dynamics often focus on ei-
ther low-dimensional projections that overlook
the temporal relationships within the data, over-
simplify the dynamics to linear and stationary pat-
terns, or provide un-interpretable representations.
Here, we consider dynamical systems as repre-
sentative of flows on a low-dimensional manifold,
and propose a new decomposed Linear Dynam-
ical Systems (dLDS) model that captures com-
plex nonstationary dynamics. dLDS models the
latent state’s evolution as following a sparse com-
bination of simple interpretable components iden-
tified through a dictionary learning procedure.
Importantly, the decomposed nature of the dy-
namics enables identifying overlapping co-active
processes—-a feature unavailable to other meth-
ods. Through several examples, we demonstrate
our model’s ability to learn interpretable repre-
sentations of multiple systems and demix popula-
tion dynamics of multiple sub-networks. Finally,
when applying our model to neural recordings of
C. elegans, we identified unique patterns of dy-
namics emerging across behavioral states, which
are obscured by other methods.

1. Introduction
The past decade has seen emergence of new technologies
that enable the simultaneous recording of hundreds of neu-
rons (Demas et al., 2021; Steinmetz et al., 2021), requiring
the development of new computational models capable of
modeling the dynamics of large neuronal populations (Sax-
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ena & Cunningham, 2019). Existing models often rely on ei-
ther dimensionality reduction or dynamical systems model-
ing. Dimensionality reduction primarily addresses the iden-
tification of a small number of degrees of freedom that char-
acterize a time series recording, however often treat individ-
ual time points independently. Traditional dimensionality-
reduction methods (e.g., PCA, ICA, POD (Berkooz et al.,
1993)), and their variants (e.g., (Yu et al., 2008; Wu et al.,
2017)), can be viewed as decomposing time signals into a
linear summation of components with time-changing coeffi-
cients. However, these methods are not tailored to capture
the dynamical properties of the system. These methods have
recently given way to more flexible descriptions of dimen-
sionality reduction. Particularly, recent methods rely on the
manifold hypothesis (Wu et al., 2017; Nieh et al., 2021; Gal-
lego et al., 2017; Cunningham & Yu, 2014; Benisty et al.,
2021; Mishne et al., 2016), including local embeddings (Bal-
asubramanian & Schwartz, 2002; Roweis & Saul, 2000) and
variational auto-encoders (Han et al., 2019). This neural
manifold assumption (i.e., that instantaneous neural activity
patterns lie on a low-dimensional manifold) removes the
linearity assumption and thus enables the identification of
correlated activity that corresponds to a potentially much
lower-dimensional geometric structure. Similar to the lin-
ear dimensionality reduction methods, however, nonlinear
methods also do not explicitly capture the temporal nature
of the data.

Dynamical systems models, on the other hand, focus on cap-
turing the temporal relationships within the data but often do
not consider the geometric structure within it. Existing dy-
namical systems models offer provide either an interpretable,
but over-simplified, representation that cannot capture the
complexities in real-world dynamics (Churchland et al.,
2012; Pillow et al., 2008), or, alternatively, powerful, yet
un-interpretable, representations (e.g., RNNs (Pandarinath
et al., 2018; Keshtkaran & Pandarinath, 2019)).

Newer models, as Switched Linear Dynamical Systems
(SLDS) and its recurrent (rSLDS) variants (Ackerson & Fu,
1970; Chang & Athans, 1978; Hamilton, 1990; Bar-Shalom
& Li, 1990; Ghahramani & Hinton, 1996; Murphy, 1998;
Fox et al., 2008; Linderman et al., 2017; Nassar et al., 2018)
solves the interpretability issue by capturing system’s transi-
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tions over time between a discrete set of linear systems based
on Markov process. Although SLDS and its extensions can
discover latent dynamics and non-stationarities, they in-
herently cannot capture multiple co-occurring processes or
overlapping subsystems (e.g., simultaneous observation of
slow-timescale and faster-timescale systems).

Consequently, there is a critical need to develop methods
that remain interpretable while maintaining the ability to
capture rich non-linear structures, here termed “expressiv-
ity”. In particular, we currently lack methods that inte-
grate the manifold hypothesis into a dynamical systems
model, thus maintaining both expressivity and interpretabil-
ity. As a prime example, one challenge is the identification
of multiple co-active dynamics subnetworks underlying the
data whose overall effect is potentially non-linear and non-
stationary.

To address this limitation, we choose to draw inspiration
from sparse coding. Sparse coding assumes a form of effi-
ciency in representation under a linear generative model (Ol-
shausen & Field, 1996; Aharon et al., 2006). In the sparse
coding representation, each data point yk can be linearly
generated from a latent vector xk such that yk = Dxk + ϵ,
where the matrix D contains representational features as
its elements and ϵ is some zero-mean noise. For any yk,
only a few features (columns of D) are required to construct
the data point (i.e., the number of non-zero entries in xk

for any yk is small). D is unknown and must be learned
from data via “dictionary learning”. Dictionary learning is
a variational approach that includes iteratively inferring the
sparse vector xk and updating the dictionary D by gradient
descent.

2. decomposed Linear Dynamical Systems
Here, we introduce dLDS that captures high-dimensional
data as a sparse time-varying decomposition of dynamical
flows on a low-dimensional manifold, thus enabling the
modeling of complex behaviors while maintaining inter-
pretability.

Let Y = [y1, ..., yT ] ∈ Rk×T be a sequence of T k-
dimensional observations y1, ..., yT . A loading matrix
D ∈ Rk×p links each observation vector yt to its under-
lying latent state, xt ∈ Rp, such that yt = Dxt + ϵt, where
ϵt is an i.i.d noise. Critical to dLDS is modeling the tempo-
ral evolution of latent states along the underlying geometry.
We assume xt lies on a d-dimensional manifoldM⊂ Rp,
governed by flows that guide it according to its per-point
tangent space (Fig. 1).

An appropriate discrete-time model is xt = Ftxt−1 + νt
where Ft is a local transformation between consecutive time-
points and νt ∼ N (0, σν) is noise. Moreover, as the tangent
space is a subspace, the operator Ft can be decomposed at

each time point into a linear combination of M dictionary
elements {fm} (fm ∈ Rp×p for all m = 1 . . .M ) which
we refer to as dynamic operators (DOs). The DOs span
the space of possible local motions at different points on
the manifold. Through their time-changing sparse linear
decomposition Ft =

∑M
m=1 fmcmt, with the coefficients

ct = [c1t, ..., cMt]
T , they dictate the movement along the

manifold by xt = Ftxt−1 + νt =
∑M

m=1 fmcmtxt−1 + νt.

We distinguish between model parameters (D, {fm}m=1:M )
and model coefficients (xt, ct). The parameters define the
global latent geometry, while the coefficients dictate specific
trajectories.

Training. We frame the learning as optimization over

{x̂t, ĉt}Tt=1 = arg min
{xt,ct}

[
T∑

t=1

∥yt −Dxt∥22

+

T∑
t=2

λ0

∥∥∥∥∥xt −
M∑

m=1

fmcmtxt−1

∥∥∥∥∥
2

2

+

T∑
t=1

(λ1∥xt∥1 + λ2∥ct∥1)

+

T∑
t=2

λ3∥ct − ct−1∥22

]
.

The first and second terms are data and dynamics fidelity,
the third and fourth terms encourage sparsity in latent state
and dynamics coefficient, while the fifth term is for temporal
smoothness. λ0, λ1, λ2, and λ3 are scalar regularization
weights. To optimize this objective, we follow the dic-
tionary learning literature (Olshausen & Field, 1996) and
perform coordinate descent, alternating between estimating
latent variables x and c, and updating model parameters
{fm}m=1:M and D.

Inference of Latent Variables x and c. First, we derive an
efficient process for inferring xt and ct given the data and
an estimate of the model parameters, assuming isotropic
Gaussian noise in the observation and dynamics model. For
inferring {xt}Tt=1, {ct}Tt=1 in every time point, we adopt the
recent Basis Pursuit De-Noising with Dynamical Filtering
(BPDN-DF) (Charles et al., 2016) approach for dynamic
filtering of sparse signals. Inferring all coefficients at each
time step reduces to LASSO

x̂t, ĉt = arg min
xt,ct

[
∥yt −Dxt∥22

+ λ0

∥∥∥∥∥xt − (

M∑
m=1

fmcmt)xt−1

∥∥∥∥∥
2

2

+ λ1∥xt∥1

+ λ2∥ct∥1 + λ3∥ct − ĉt−1∥22

]
.
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Figure 1. dLDS illustration. A: Trajectories along the manifold are guided by local DOs. The latent state xt is indirectly observed
through the observation model D. The transport space is learned through a discretized approximation {fm}m=1:M . B: dLDS enables
capturing non-stationary dynamics, with coefficients that can flexibly adjust the contribution of different DOs over time.

Updating parameters. We update the model pa-
rameters (D, {fm}) by gradient descent in every
iteration D̂ ← ΠCD

(D − ηD∇D

∑T
t=1 ∥yt −Dxt∥22) and

f̂m ← ΠCf
(f̂m − ηf∇fmΣT

t=2∥xt −
∑M

m=1 cmtfmxt−1∥22)
where

∏
CD

and ΠCf
are projections of D’s columns and

each fm spectral radius, respectively, to have a unit-norm.

In lower-dimensional data settings, we also consider the
specific-case scenario where the observation matrix D is
the identity matrix (i.e., yt = xt). This provides direct ob-
servations of manifold points and reduces computational
complexity. We also intermittently perturb model parame-
ters to avoid local minima.

2.1. Experiments

We showcase our model’s to recover shared underlying oper-
ators from synthetic, low-dimensional, nonlinear systems in
the case of changing stability regimes (Fig. 2), independent
but simultaneously observed systems (Fig. 3), and obscured
patterns in real-world data (Fig. 4).

dLDS flexibly models different stability regimes. We
consider a simple transition of a spiral system that shifts
from a stable, decaying regime to an unstable, expand-

ing regime, following xt =

{
0.99fxt−1 if 0 < t ≤ T

2 ,
1

0.99fxt−1 if T
2 < t ≤ T

Figure 2. dLDS captures changes in system stability.
A: Schematic behavior of dLDS and switching dynamics in mod-
eling transitions. B: The generated coefficients (blue) vs. dLDS’
recovered coefficients (red), and rSLDS coefficients (teal). C:
Ground truth dynamics (blue) vs. the recovered dynamics by
dLDS (red) and rSLDS (teal).

where f =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
with θ = π

5 . (Fig. 2A). We

first found that dLDS manages to well capture the system
(Fig. 2C red), in contrast to the switching model that is un-
capable of capturing a changing direction when constrained
to a single dynamic operator (Fig. 2C teal).Moreover, dLDS
can further recover the ground truth dynamic operator with
high precision, as well as its dynamic coefficient (Fig. 2B).

dLDS disentangles simultaneously observed systems. An
additional benefit of dLDS is the ability to account for multi-
plexed sub-systems within the same recorded data. We focus
on the case of two neural populations, each encompasses
multiple unobserved sub-circuits, can be presented simulta-
neously or alone, with varying activation levels. We simu-
late a ten-dimensional state xt with two populations (first

3
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Figure 3. dLDS identifies independently evolving groups from
combined time series. A: Ground truth DOs (top), DOs recovered
by dLDS (middle), DOs recovered by rSLDS (bottom). B: Ground
truth coefficients (top), dLDS recovered coefficients (middle, accu-
rate recovery of structure), and rSLDS recovered coefficients (bot-
tom). C: Generated dynamics (left), dLDS reconstruction (middle),
rSLDS reconstruction (right). D: Correlations between ground
truth data and reconstructions of dLDS vs. rSLDS. E: Correlations
of ground truth DOs (rows) with recovered DOs (columns), for
dLDS (left) vs. rSLDS.

vs. last five elements). We generate six ground truth DOs,
three for each population (maroon vs. cyan, Fig. 3A). Each
population switches between LDSs or goes silent (Fig. 3C
blue). This process is repeated 50 times with random initial
states and switch patterns.

In contrast to rSLDS, dLDS recovered a basis of operators
localized to the relevant population that match the ground
truth (Fig. 3A, middle row) with a correlation close to 1
(Fig. 3E, left). The identified coefficients also captured cor-
rectly when each subsystem switched (Fig. 3B, red). In
contrast, rSLDS learned dynamical systems with both upper
and lower diagonal blocks active, indicating it learned com-
bined dynamics of the subsystems and failed to capture the
underlying independence between them (Fig. 3A, bottom).

dLDS identifies latent dynamics in C. elegans data. Fi-
nally, we apply dLDS to “whole brain” C. elegans calcium
imaging recordings from (Kato et al., 2015; Zimmer, 2021)
(Fig. 4). The data (Kato et al., 2015) we considered in-
clude the immobilized worms’ pirouetting behavior under
four states (forward crawl, reverse crawl, sustained reverse
crawl, and post-reversal turn). dLDS revealed obscured dif-
ferences in the neural dynamics during different behavioral
states, and that the map D from the latent space to the neu-
ral observations was able to highlight neurons that heavily
overlapped with known neurons of interest. Moreover, we
identified obscured within-state evolving dynamics (Fig. 4),

Figure 4. Results on c. elegans show that our model captures real-
world non-stationary dynamics.

a feature unavailable to rSLDS, which may indicate a grad-
ual change in the worm’s internal state or behavior in the
middle of these discretely-labeled behavioral states.

Additional experiments. We further tested dLDS in addi-
tional settings in the Appendix.

3. Summary and Future work:
Summary. Here, we present a manifold-flow-inspired
model of learning decomposed Linear Dynamical Systems
(dLDS). dLDS expands on the idea of switching linear sys-
tems to a model where linear combinations of a finite dic-
tionary of systems can represent a richer set of dynamics.
The examples we present highlight a series of both sim-
ple and more complex systems. We demonstrate that even
simple systems represent plausible system behaviors in real
data that are not captured well by existing techniques. Our
model thus estimates dynamical systems that while are lo-
cally linear at each point, whose parameters change over
time, thus enabling the capture of overall non-linear and
non-stationary behavior. dLDS thus enable to model com-
plex patterns while maintaining interpretability through the
globality of the DOs and the sparsity applied on each time
point. This way, it also enables the identification of overlap-
ping networks active simultaneously as well as the smooth
transition between dynamic behaviors. It further benefits
from the efficiency, sparsity, and convergence guarantees of
the BPDN-DF algorithm (Charles et al., 2016), which filters
forward in time.

Limitations and future work: dLDS requires tuning sev-
eral hyperparameters, and an important future target is to
develop approaches to auto-set them. In addition, our work
assumes linearity of the observation model, but non-linear
projections might better fit certain cases. We acknowledge
that advancements in modeling may aim to establish a more
explicit relationship between c and x or the inclusion of a
driving term in the dynamics equation, however assert that
such endeavors go beyond the core model’s scope.
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A. Duffing Dynamics and Linearization
Components Recovery

As an example of the application of our model’s abilities, we
demonstrate its capability in recovering the latent compo-
nents of a linearization of the Duffing oscillator. The Duffing
oscillator is a classical example of a nonlinear, second-order
differential equation that exhibits chaotic behavior. It is
described by the following equation:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt), (1)

where α, β, and γ are parameters that control the behavior
of the oscillator, and γ cos(ωt) represents a periodic driving
force with amplitude γ and frequency ω.

To apply our model to the Duffing oscillator, we define
y = ẋ. We can then rewrite the Duffing oscillator equation
in terms of y as follows:

ẏ + δy + αx+ βx3 = γ cos(ωt). (2)

We can represent the Duffing oscillator using a decomposed
linear dynamical systems model by discretizing the system
over time. We use the state vector [xt, yt] to represent the
state of the system at time t. The discrete-time model of the
Duffing oscillator is given by the following equation:

[
ẋt

ẏt

]
=

[
0 1

−α− βx2
t −δ

] [
xt

yt

]
+

[
0

γ cos(ωt)

]
. (3)

We can then apply our model to this discrete-time Duffing
oscillator equation. We estimate the transition matrix At by
fitting our model to the time series data. We can decompose
At into two matrices, Ft = Ft,1+Ft,2, where Ft,1 and Ft,2

correspond to distinct physical processes.

Specifically, the matrix Ft,1 =

[
1 ∆t

−α∆t 1− δ∆t

]
de-

scribes the linear dynamics of the system, while Ft,2 =[
0 0

−βx2
t∆t 0

]
describes the nonlinearity of the system.

Using these matrices, we can write the discrete-time Duffing
oscillator equation in matrix multiplication form as follows:[
xt+1

yt+1

]
=

([
1 ∆t

−α∆t 1

]
+

[
0 0

−βx2
t∆t 0

])[
xt

yt

]
+ bt

(4)

where bt =

[
0

− cos(t)

]
, cos(t) represents the cosine func-

tion evaluated at time t. By estimating the matrices Ft,1

and Ft,2 using our model, we can recover the underlying
linear and nonlinear components of the Duffing oscillator
dynamics.

1
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Figure 5. Results of dLDS analysis on the Duffing oscillator. A)
Time traces (orange and green) of each dynamic operators (DO)
for different initial conditions (I.C.) in separate subplots. B) Com-
parison between the real dynamics of the Duffing oscillator and
the reconstructed dynamics by dLDS for each I.C. The color repre-
sents time. C) Heatmaps of each DO, where the first DO shows
the main diagonal and other non-zero elements, as its coefficient in
A is 2, while the second DO shows the lower left diagonal element
and all other elements are zero.

By applying dLDS to the Duffing oscillator, we highlight
the model’s capacity to reconstruct nonlinear dynamics us-
ing basic linear components whose coefficients change over
time and to recover the ground-truth basic linear elements
that underlie these complex dynamics. These results empha-
size the potential of dLDS for extracting valuable insights
from intricate systems, by facilitating the reconstruction of
nonlinear dynamics with basic linear components, and by
retrieving the underlying basic linear elements.

B. A note on LASSO solvers
We found that the correlations between fmx̂t could be large
for certain time points. These correlations meant that some
ℓ1 regularize least-squares solvers would exhibit instability
during learning. We noticed this in particular for the primary
LASSO functions in both MATLAB and Python. We found
that instead, the SPGL1 solver of the pylops package (Ravasi
& Vasconcelos, 2020) was more robust in Python, and the
TFOCS software 1 (Becker et al., 2011) was more robust
in MATLAB. While TFOCS solves the LASSO program
directly, SPGL1 solves a slightly modified version:

ĉt = argmin
c

∥∥∥∥∥xt+1 −
M∑

m=1

fmcm(t) ∗ xt

∥∥∥∥∥
2

s.t. ||ct||1 ≤ τ .

(5)

Importantly, despite presenting only the SPGL1 results

1https://github.com/cvxr/TFOCS

in the above paper, the Python code enables the user to
choose from a wide range of solvers (including FISTA,
ISTA, Sklearn LASSO (Pedregosa et al., 2011), OMP), and
the decision of which solver to use is up to the user and
should depend on the data properties and the user’s goals in
running the model.

C. Comparison between dLDS and rSLDS for
the FHN model

Here we further demonstrate the comparison between dLDS
to rSLDS on the FitzHugh–Nagumo model (Fig. 6). In
contrast to the rSLDS model, for which the coefficients are
binary, in our model the coefficients can take on continuous
values. Hence, contrasting the observed coefficients-space
spanned by rSLDS (6D) and dLDS (6E,F), in dLDS the
dynamics representations are not limited to discrete loca-
tions on the axes, but can travel along them, resulting in a
more flexible representation without the need to increase
the number of dynamical systems learned. Specifically, we
identify that while rSLDS learns slightly varying dynamical
systems, while dLDS learns reorientations to different axes
which more smoothly trade off with each other as the system
rotates about the attractor.

Additionally, as the ℓ1 regularization over ct in dLDS in-
creases, the coefficients become more similar to those ob-
tained by rSDLS, namely, more restricted to the axes. Thus,
modulating the regularization in our model makes possible
the creation and exploration of a continuum of representa-
tions whose coefficients-space range from switched systems
(high regularization) to arbitrary structured (unregularized),
as described in Figure 1B.

D. FitzHugh-Nagumo (discrete-time model)
We used the Python discrete code for the FHN case. The
iterative model ran until convergence (reconstructed error
¡ 1e-8) or until reaching a maximum of 6,000 iterations.
The ground truth for the FHN dynamics was using 1000
samples with time intervals of 0.2 (s.t. tmax = 200). We
used M = 2 dictionary elements, an initial value of η = 30,
while its decay rate over the training iterations was set to
γ = 0.99; The standard-deviation of the perturbations added
randomly to each fm in case of local minimum, was set to
0.1.

For the regularized dynamics case, the hyperparameters of
the SPGLl solver, ”iter lim”, the maximum number of solver
iterations in each coefficients updating step, was set to 10,
and τ (from (5)) was set to 0.3.

For the unregularized case, the following pseudo-inverse
was used for each the updating step of the coefficients in

2
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Figure 6. Learned representations using dLDS and rSLDS for
the FHN oscillator. Note three time points of interest: repolariza-
tion, action potential peak, and hyperpolarization. With M = 2,
dLDS can reconstruct the three distinct states, while rSLDS can
only capture two reconstructed states in this case. A, B, C: All
three models were able to reconstruct the FHN dynamics. D: The
coefficients obtained by the rSLDS are restricted to the axes, result-
ing in no more than two distinct reconstructed states to describe the
action potential cycle. E: Although the coefficients of the regular-
ized dLDS tend to live on the axes due to the sparse regularization,
this constraint is softer than of the rSLDS (in which living outside
the axes is not possible). F: Coefficients space obtained for the
unregularized dLDS model. Most coefficients do not necessarily
live on the axes, since no regularization was applied.

each time point and in each iteration:

F̃t = [f1xt, f2xt, ..., fMxt] ∈ R(2×M)

xt+1 = F̃tct

ĉt = F̃t

†
xt+1, (6)

where † denotes the pseudo-inverse.

E. Sparse video example
To test the model in a sparse higher-dimensional setting we
simulate a single dynamics function is present (M = 1) and
the sparsity dictionary as the canonical basis (D = I). This
test will check if our algorithm can accomplish simple sys-
tem identification as a special case. We modeled the single
dynamics function as a permutation matrix concatenated
with a scaling matrix, i.e., signal coefficients move around
and may be scaled (Fig. 7A). The learned and true models
are a very close match, differing by only a permutation and
sign change (the same ambiguity present in all dictionary
learning methods).

In a more complex simulation, we simulate a dictionary of
twelve distinct scaled permutation functions, only two of
which are used at any time step (i.e. the sparsity of ct is
two). This system induces complex, highly non-stationary
dynamics. Figure 7B,C depicts the results of the learn-

True dictionaryA True dynamics

Learned dictionary Learned dynamics

C

B Learned dictionary

Learned dynamics

Figure 7. Pixel permutation example. A: Example test set consist-
ing of a sparse number of pixels being permuted via an unknown
permutation matrix. dLDS recovers in this case both the pixel-
sparse dictionary as well as the ground truth permutation matrix. B:
For a more complex example where multiple permutation matrices
may be used (sometimes in tandem to split or merge pixels), the
correct pixel-sparse dictionary is again learned. C: For the same
example as B, the set of permutation matrices is learned, capturing
the underlying dynamics.

ing procedure, demonstrating that the sparsity dictionary
is again learned up to a permutation and sign change, and
the learned dynamics functions are again close matches to
the true dynamics (i.e., we recover 12 scaled permutation
matrices).

F. BBC video example
To test dLDS on higher-dimensional real data, we learn
a dynamics dictionary for natural video sequences. For
computational considerations we restricted our algorithm to
learn representations of 12x12 pixel patches, and learned a
4x overcomplete sparsity dictionary concurrently with 25
576x576 DOs. As no ground truth is available for video se-
quences, we instead qualitatively explore learned dictionar-
ies. First we note that the sparsity dictionary recovered the
expected Gabor-like statistics for image patches (Olshausen
& Field, 1996; Aharon et al., 2006) (Fig. 8A). This result
matches the intuition that the spatial statistics are not quali-
tatively changed by including the temporal model. To assess
the dynamics we note that despite the high-dimensional
nature of the data, the learned dynamics were relatively
low-dimensional (rank 2-10), with one exception that had
almost full rank (Fig. 8B). Additionally, the top eigenvectors
tend to be correlated, but not overly so. The correlations
cluster around ∼ 0.2 with some correlations as high as 0.8
(Fig. 8C). This indicates that the learned functions are nei-
ther independent nor identical. Thus, interactions between
the dLDS DOs permit flexible nonlinear behaviors.

Three such examples are shown in Figure 8D-F. First we
project a single frame forward by a combination of two
overlapping dynamics, f1 and f5. As the weight on f1 is re-
duced and that on f5 increased, the projection changes from
exaggerating the linear feature in the top-left to inverting the
image with an emphasis on the bottom right. Similar effects

3
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Figure 8. Results of dynamics learning on natural image
patches. A: The spatial dictionary interestingly retains the Gabor-
like structure seen in previous static dictionary learning algorithms.
B: Learned dynamics are low rank. The typical rank of each fm
(aside from one almost full-rank function) ranges from 2-10. C:
the correlations between the top two eigenvectors show that the
dynamics are mostly non-aligned, yet overlap, allowing for second-
order effects when combining dynamics. D: Linear combinations
of dictionary elements can achieve nonlinear effects. Starting from
the same frame, the next frame changes continuously between
two possible next frames as the fraction of each dynamic function
used is swept from completely using f8 to f5. E,F: Examples of
dynamics combinations that achieve nonlinear effects. For each of
changing from using more of f1 and f12 and f1 and F23, the over-
all effect (rotation/expansion and outward expansion respectively)
happens with faster or slower speeds.

appear in iterated dynamics projections, for example chang-
ing the weights on f1 and f12. This combination effectively
rotates a bar over time, and the speed of rotation depends
on the amount of f1 vs. f12 in the linear combination. This
type of speed modulation is impossible in a switched model
unless one mode for each speed is included, which is un-
tenable for a continuum of speeds. Similarly when f1 and
f23 are traded off, a vertical bar slowly has the bottom edge
expand to encompass the bottom-right corner, again with
different speeds depending on the ratio chosen.

G. Invariance of the model to transformations
in the latent state

Consider the base model complete with the observation
equation and decomposed dynamics,

yt = Dxt, xt11 =

[
M∑

m=1

fmcmt

]
xt−1. (7)

For any learned model, we can always define a transfor-
mation of the latent space via an invertible matrix U such
that

zt = U−1xt xt = Uzt. (8)

This transformation results in an equivalent solution

yt = DUzt, zt =

[
U−1

M∑
m=1

fmUcmt

]
zt−1,

(9)

i.e., an equivalent set of parameters D̃ = DU and f̃m =
U−1

∑M
m=1 fmU result in the same sequence of dynamics

but in a transformed latent space. One way to prevent the
rotational ambiguity is to assume structure over the latent
space, such as we implement via sparsity over xt, which
enables us to learn the correct representation (up to a per-
mutation and sign-flip) of observation model (Fig. 7).
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