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Abstract

Graph anomaly detection (GAD) has become a critical research area, with suc-
cessful applications in financial fraud and telecommunications. Traditional Graph
Neural Networks (GNN5s) face significant challenges: at the topology level, they
suffer from over-smoothing that averages out anomalous signals; at the feature
level, discriminative models struggle when fraudulent nodes obfuscate their fea-
tures to evade detection. In this paper, we propose a Conditional Graph Anomaly
Diffusion Model (CGADM) that addresses these issues through the iterative refine-
ment and denoising reconstruction properties of diffusion models. Our approach
incorporates a prior-guided diffusion process that injects a pre-trained conditional
anomaly estimator into both forward and reverse diffusion chains, enabling more
accurate anomaly detection. For computational efficiency on large-scale graphs,
we introduce a prior confidence-aware mechanism that adaptively determines the
number of reverse denoising steps based on prior confidence. Experimental results
on benchmark datasets demonstrate that CGADM achieves state-of-the-art per-
formance while maintaining significant computational advantages for large-scale
graph applications. E]

1 Introduction

Graph anomaly detection (GAD) has become a critical research area, with successful applications
in financial fraud detection [Huang et al., 2022} Dou et al., [2020] and telecommunication fraud
detection [[Yang et al,|2021]]. Graph Neural Networks (GNNs) have gained prominence for GAD
due to their ability to model topological structures through message passing, which aggregates
neighborhood information to generate node representations that are then classified as normal or
anomalous [Kipf and Welling, [2017, Hamilton et al.} 2017, |Velickovic et al., 2018 [ Xu et al., [2019].

However, discriminative models based on feature aggregation exhibit inherent shortcomings.

1. From topology-level perspective, vanilla GNNs suffer from over-smoothing, acting as low-pass
filters that average anomalous representations, making them less distinguishable. As illustrated in
the left part of Figure|l} fraudulent nodes exploit this by strategically connecting with carefully
selected neighbors to disguise their anomalous patterns. For instance, in money laundering trans-
actions, fraudsters can distribute transactions or create numerous interactions with bot accounts to
blend in with the crowd.

*Corresponding author. He works at Big Data and Responsible Artificial Intelligence for National Governance,
Renmin University of China
The code is available on https:/github.com/weicy15/CGADM.
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Figure 1: An illustration of Generative Graph Anomaly Detection.

2. From feature-level perspective, discriminative models detect anomalies by learning decision
boundaries between normal and anomalous points. As fraudulent nodes evolve and obfuscate their
features, they can cross these boundaries, evading detection.

Diffusion models (DMs) can address these limitations through their two key properties: iterative
refinement and denoising reconstruction. Iterative refinement applies GNN-based denoisers that
incorporate neighborhood information while preserving high-frequency anomaly signals via residual
propagation, preventing over-smoothing. Meanwhile, denoising reconstruction recovers underlying
anomaly patterns even when nodes disguise their features. (See Appendix [R]for theoretical analysis).

Applying DMs for GAD introduces two major challenges, as shown in right part of Figure|[I}

Effectiveness. Traditional denoising models have primarily focused on unconditional generative
modeling [Song and Ermon, 2019} Song et al., [2021bl [Ramesh et al.l [2022]]. While many tasks
in the image or video domain have introduced guided-diffusion models to generate photo-realistic
images that match the semantic meanings or content of the label, text, or corrupted images, most
work in the graph domain has started generating from white noise or empty or fully connected
graphs. However, for anomaly detection on graphs, due to various deceptive and obfuscating tactics
employed by anomalous nodes, directly recovering the underlying true distribution from a random
noise distribution may not yield satisfactory results.

Efficiency. The reverse process of DMs requires numerous iterative denoising samplings [Y1 et al.,
2023||Chen et al.||2023]]. Existing graph diffusion models utilize a GNN-based encoder to update all
nodes at time step ¢ during each iterative refinement to obtain the nodes at time step ¢ — 1. While
this approach is feasible for standard graph generation tasks, it becomes computationally prohibitive
for anomaly detection tasks on extremely large graphs. Performing such iterative operations across
potentially millions of nodes in the entire graph can significantly increase computational overhead,
thereby affecting the practical applicability of the algorithm.

We propose a novel Conditional Graph Anomaly Diffusion Model (CGADM) for graph anomaly
detection to address the aforementioned challenges synergistically. Unlike existing diffusion-based
approaches that performing data augmentation to address class imbalance, CGADM directly generates
anomaly judgments through joint distribution modeling, representing a fundamentally new model-
centric paradigm for GAD.

To tackle the effectiveness issue, we propose a prior-guided diffusion process, which injects a pre-
trained conditional anomaly estimator into both the forward and reverse diffusion chains. This
approach constructs a denoising diffusion probabilistic model for more accurate anomaly detection.
Specifically, we introduce a lightweight model to estimate an anomaly prior for each node, serving as
the endpoint for our forward noise addition process and the starting point for our reverse denoising
process. Based on this new probabilistic model, we redesign the probability model and optimization
objective of our CGADM.

To tackle the efficiency issue, we build on the intuition that normal nodes are generally farther from
the decision boundary compared to anomalous nodes that have narrowly evaded detection. Therefore,



in the reverse process, we introduce a prior confidence-aware mechanism to adaptively determine the
reverse time step for each node. Nodes with high confidence in their anomaly prior require fewer time
steps, while those with lower confidence require more sampling time steps. This approach not only
accurately estimates the anomaly probability for each node but also reduces the number of predictions
in the reverse process, thereby decreasing computational time.

Through experiments on benchmarks for GAD, CGADM achieves state-of-the-art results. Additional
studies confirm the computational advantages of our framework.

2 Related Work

2.1 Graph Anomaly Detection

Graph anomaly detection [Duan et al.,|2023]] aims to identify nodes that deviate significantly from
most other nodes. Various GNN-based methods have been proposed to address this challenge.
Early approaches like FdGars [Wang et al.,2019] and CARE-GNN [Dou et al., 2020] focused on
user classification and neighbor aggregation respectively. Follow-up works tackled specific issues:
FRAUDRE [Zhang et al.,[2021]] and PC-GNN [Liu et al., 2021]] addressed class imbalance, while
AMNet [Chai et al.,2022], BWGNN [Tang et al.,|2022], and GHRN [Gao et al.,2023b]] improved
feature handling through frequency-based approaches.

Recent advancements have explored novel directions: GDN [Gao et al.| 2023a] addressed structural
distribution shifts, SEC-GFD [Xu et al.,|2024]| handled heterophily via spectral filtering, GGAD [Qiao
et al., |2024] generated pseudo-anomalies, and ADA-GAD [He et al., 2024] mitigated anomaly
overfitting. Unlike these approaches, our CGADM introduces a generative diffusion framework that
models the joint anomaly distribution over the graph, enabling holistic detection without relying on
augmentation strategies.

However, existing methods rely on discriminative models with feature aggregation, making them
vulnerable to over-smoothing and camouflage tactics. Our approach departs from this paradigm by
proposing a generative model that jointly models the anomaly distribution of each node on the graph.

2.2 Diffusion Model

Denoising diffusion probabilistic models (DDPMs) [Ho et al., [2020, [Song et al., | 2021a]], or simply
diffusion models, are a class of probabilistic generative models that transform noise into data samples,
hence primarily used for generative tasks [Dhariwal and Nichol, 2021, Rombach et al.| 2022].
Diffusion-based generative models have demonstrated strong capabilities in generating high-quality
graphs [Niu et al., 2020, [Liu et al., 2019, Jo et al., 2022} Haefeli et al.l 2022| (Chen et al., 2022,
Vignac et al., 2023| |[Kong et al., [2023]]. [Haefeli et al.| [2022] designed a model limited to graphs
without attributes and similarly observed the benefits of discrete diffusion for graph generation.
Previous graph diffusion models were based on Gaussian noise. Niu et al.|[2020] generated adjacency
matrices indicating the presence of edges by thresholding continuous values, while Jo et al.| [2022]]
extended this model to handle node and edge attributes. Digress [[Vignac et al., 2023|] was the first
to propose a discrete diffusion model for graphs. Regarding the severe label imbalance problem
in anomaly detection, many existing anomaly detection methods improve datasets by generating
synthetic anomalies [[Chen et al.,2020b| |Ding et al.,[2020], creating a more balanced environment.

We approaches from a different angle, using diffusion models to model the joint distribution of
anomalies on large-scale graphs for more precise and robust anomaly detection.

3 Preliminaries

Attributed Graph. An attributed graph is denoted as G = {V, &, X}, where V = {v1,v9,...,un}
represents the set of all N nodes on graph G, and £ = {e;;|v;,v; € V} signifies the set of edges,
indicating the existence of an edge between nodes v; and v;. For each node v;, there exists a d-
dimensional feature vector, z; € R%. The feature vectors of all nodes form the feature matrix of the
graph, denoted as X = [z1, 29, ..., 2x] € RVN*4 An adjacency matrix A records the relationships
between nodes on graph G. Each entry A;; = 1 if there exists e;; € &£, otherwise, A;; = 0.



Anomaly Detection on Graph. Consider two disjoint subsets of V, namely V, and V), such that
V., NV, = 0. V, contains all nodes labeled as anomalous, and V,, comprises all normal nodes.
The goal of graph anomaly detection (GAD) is to compute anomaly probability p(y|E, X) of the
unlabeled nodes with partial node labels. Please refer Appendix [F{for challenges of GAD.

Diffusion Probabilistic Model. An efficient diffusion model must satisfy three key properties: (1)
The conditional distribution ¢(z;|z) should possess a closed-form equation to circumvent the recursive
application of noise during training. (2) The posterior ¢(z;—1|z¢, ) should also have a closed-form
solution to serve as the neural network’s target. (3) The limiting distribution oo = limy_, 0 ¢(27|2)
should be independent of z, enabling its use as a prior distribution for inference. These properties are
all met when the noise follows a Gaussian distribution. The common steps in the diffusion model are
shown in Appendix B}

4 Methodology

We formulate the GAD problem as a task of modeling the joint conditional distribution of anomalies
on the graph. This prior distribution serves as the endpoint for adding noise and the starting point
for inference. CGADM gradually transforms the ground truth anomaly distribution into the prior
distribution instead of the conventional Guassian distribution. By utilizing a topological-guided
denoising network, CGADM is capable of simultaneously modeling the topological information
and features of nodes to iteratively recover the ground truth. To expedite the inference process, we
introduce a prior-aware strided sampling strategy. To enable inference over arbitrary numbers of
steps, we propose a conditional non-Markovian reverse process.

4.1 Diffuse Ground Truth to Prior

In light of Section[3] we propose to cast the graph anomaly detection problem as a generative task.
We set yg as the anomaly ground truth and y;.7 as the intermediate predictions generated in the
forward process of the diffusion model. The objective of graph anomaly detection then becomes the
maximization of the log-likelihood p(y|€, X). Consequently, Equation 2 can be restructured as the
following Conditional Evidence Lower Bound (CELBO) to serve as our new optimization target:

po(yo.r|€, X)
10gp9(Y0|87X) - log/pe(YO:T|57X)dY1:T 2 Eq(}'l:T‘yoﬁ‘:,X) q(y11T|y0,€,X) ) (1)
where py(yo.7|€, X) is the joint distribution of the target and the predictions under the denoising
model parameters 0, and ¢(y1.7|yo, £, X) is the conditional distribution of forward process given
the ground truth and the input data.

By substituting Equation[I]into Equation we can express our optimization objective as follows:
L=E,[-logpe(yoly1,&, X)] + Eq [Dkr (a(yrlyo, &, X) || p(yr|E, X)]

- )
+ ZEq Drr (¢(ye-1lyt, yo, € X) || po(ye-1lyt €, X)] .
=2

Following the conventions of Denoising Diffusion Probabilistic Models (DDPM) [Ho et al.,|2020],
we respectively name the first, second, and third terms of the above objective function as the
reconstruction term L,¢con, the prior matching term £,,;,,, and the consistency term L.y, .

To avoid our CGADM recovering the joint anomaly distribution starting from random noise [Han
et al 2022bf], we modify the endpoint of the diffusion process from the conventional Guassian
distribution N (0, I) to:

where g4 (€, X) is a parameterized network pretrained on training set D to estimate the mean value of
the final normal distribution. By doing so, we effectively utilize the condition £, X in the distribution
p(yr|€, X) to help us establish a prior understanding of the joint anomaly distribution.

The prior matching term L., is a parameter-free term. In order to make it close to zero, we need to
adjust the forward process in combination with the calculation of the prior g4 (€, X). Following the
practice of Pandey et al|[2022], we define the noise-adding process at each step as follows:

ayelyi—1,96(E, X)) = N(ye; V1 = Beye—1+ (1 — V1 = Br)ge(E,X), Be]), 4



where A represents the Gaussian Distribution, and ; € (0, 1) regulates the noise scales added at
step ¢. This noise-adding step allows for a closed-form sampling distribution at any arbitrary timestep
t, according to the additivity of the Gaussian distribution:

4(yelyo, €.X) = q(yilyo, 96(€, X)) = N(yu; Vauyo + (1 — Var)ge (€. X), (1 —a)I), (5)

where oy := 1 — f3; and &; := [[, . This sampling distribution enables L, ;o to be close to zero
when ¢ = T'. Intuitively, the noise-adding process defined by Equation [5|can be interpreted as an
interpolation between the true data y( and the estimated prior g4 (&, X), which exhibits a gradual
transition from the true data towards the estimated prior over the course of the forward process.

With the above formulation, we can derive a tractable posterior that serves as the target for our
denoising network. It can be expressed as follows:

Q(Yt—l‘YmYm&X) = Q(Yt—1|Yt7YOag¢(5aX)) = N (ytfl;ﬂ(yt7y07g¢>(€7x))aﬁ~tl) 3 (6)

where fi := Y0y0 + 1Yt + 7294(€,X) and B, := 1:(3; By, with:

_ - _ (1—as1)/on 1
Yo =VBdu-1, M= - D/a+vas) 2 i-a O

For detailed derivation, please refer to Appendix [C]

4.2 Topological-guided Denoising Network

According to Equation we define po(yi—1]yt, €, X) as N(yi—1; po(ye, t, €, X), Loy, t, €, X))
for 1 < t < T. Following the setup of DDPM, we set ¥4(y,t,&,X) = 021 to untrained time-
dependent constants and set o7 = ;. For the parameterization, we may select:

ﬂ@(yhtag?X) = (ytvtvgax))7 (8)

. (v B €o
= NS
O V31— oy
where €y is a parameterized network predicting the forward diffusion noise e sampled for anomaly
scores .

An anomalous node is typically strongly correlated not only with its node features but also with
the its local topological structure. The bias brought about by a few anomalous nodes is high-
frequency information in the frequency domain. Most existing GNNs act as low-pass filters and
cannot effectively capture the high-frequency signals carried by anomalous nodes. Borrowing the
idea from GCNII [Chen et al., [2020al], we adopt a residual propagation mechanism that prevents the
high-frequency information of nodes from being overlooked due to over-smoothing in the multi-layer
graph convolution process:

1
V()]

hi; =0 Wl_l hlv_l - Z hi;,_l ) hfinal = AGG(hga h11)7 .. ?h5)7 (9)

ueN (v)

where L is the number of graph convolution layers and AGG(-) can be a simple aggregation
function such as summation or concatenation. With this message-passing mechanism, we define our
topological-aware denoising network as ey (y;, t, &, X) = ep(y¢, t, H/%!). For more details about
the denoising network, please refer to Appendix [H]

To execute our training, we sample y; according to Equation[5] Through the reparameterization trick,
we can derive:

yi = Varyo + (1 — Vay)gg(E,X) + V1 — aqe. (10)
We simplify L,.ccon and L., to obtain the final loss L:
EE — HE - 69(@)’0 + (1 - \/a)gd)(gvx) + V 1 - dt67t787X)||2 (11)

Where elements in t is uniformly distributed between 1 and 7". The case of ¢ = 1 corresponds to
L recon- Similar to DDPM, the cases where ¢t > 1 correspond to an unweighted version of L.,,,. The
whole process of training is shown in Appendix|[I]



4.3 Inference for Anomaly Detection

For image synthesis, DMs typically draw random Gaussian noise for the reverse process, with
generation guided by pre-trained classifiers or other signals. However, for graph anomaly detection,
generating directly from pure noise may not yield accurate results due to the deceptive tactics
employed by anomalous nodes.

We propose an inference strategy that aligns with CGADM training, starting from a prior-guided
initialization yr ~ N (g4(€,X), I) rather than standard Gaussian noise. At each step t, we first
estimate the denoised anomaly score:

Yo = f(yt - (]- -V dt)g¢(€7x) Y 1- O_étee(ytatagax)) (12)
Vv

Then we use this estimate to predict the intermediate state: y;—1 = Yo¥o0 + 71yt +7290(E, X) + Bt z,

where 2 ~ N(0, I) and the coefficients g, 1, 72 and 3; are defined in Equation@ This process

iteratively refines the anomaly representations until we obtain the final anomaly scores y. The

complete algorithm is provided in Algorithm [T}

Algorithm 1 Inference for Anomaly Detection

1: Initialize y7 ~ N(g4(€,X), 1)
2: fort =T to1do
3:  Calculate reparameterized ¥y according to Equation

N 1 - —
Yo = — (Yt - (1 - \/OTt)g¢(£a X) —V1- O‘tge(yt7t7g7 X)) (13)
Vay
4 if t > 1 then
5 Draw z ~ N (0, I)
6: Vi—1 = Y0¥o + MYt + 7294(E, X) + Biz, according to Equation@
7. else
8: Sety:i—1 =Yo
9: endif
10: end for

11: return yo

The key advantage of this approach is that it leverages our prior knowledge of anomaly patterns to
guide the generation process, making it more resistant to deceptive tactics employed by anomalous
nodes compared to generating directly from random noise.

4.4 Prior-aware Strided Sampling

As can be seen from Equation [TT] our training actually results in a topological-aware denoising
network capable of denoising the predicted prior score at arbitrary time step ¢. Inspired by [Song et al.
[2021a], we can use this denoising network to perform time-step skipping sampling, greatly reducing
the number of sampling steps. By discarding the Markov constraint brought by Equation ] we can
obtain the conditional non-Markovian reverse process different from Equation[6]as follows:

Yio1 = Var1yo + (1 = Vai1)g¢(E,X) + /1 — @1 — ofea(ye, t,€,X) + ove (14)

where ¥ is the denoised score in Equation For detailed derivation, please refer to Appendix D]
By substituting Equation[I3]into Equation[14] we can obtain:

Vi1 =y 2 (ys = (1 = Vay)gs (€, X) = VT —aseg(yi, £, €, X))

o (15)

+ (1 Y at—l)gqb(ga X) + \/ 1-— Qi1 — 025260(}’75,75757)() + o€y
This allows the use of a forward process defined only on a subset of the latent variables y,,,...,y-,
where 71, ..., 7; is an increasing subsequence of 1, ..., T" with length S, where S could be much



smaller than 7. To reduce the number of sampling steps from 7" to K, we use K evenly spaced real
numbers between 1 and 7" (inclusive), and then round each resulting number to the nearest integer, as
, K

follows: {7;}5£, = {1 + 7@_[?7(11_1)} :

i=1
When our prior is more confident, fewer sampling steps, or a smaller K, are needed, and vice versa.
‘We propose a heuristic strategy to dynamically adjust the size of K according to the confidence of
different prior scores of anomalies. We choose the inverse sigmoid function to simulate the decay of
the ratio as the confidence |4(€, X) — 0.5| increases:

K= - x T (16)
1+ exp (|g¢)(67()>§5)—0-5\)

Typically, with r set to 2, our framework adjusts the sampling steps K to around 1000 for ambiguous
priors near 0.5, and reduces it to about 500 for high-confidence priors close to 1. Notably, most
nodes on the graph are associated with high prior confidence, which leads to a substantial decrease
in computational demand. Conversely, for anomalous nodes that are adept at camouflage, the lower
prior confidence necessitates a larger number of diffusion steps, facilitating their accurate detection.
Our method thus strikes a balance between computational efficiency and thorough identification. We
show the inference process with our prior-aware strided sampling in Appendix [J}

S Experiments

5.1 Experimental Setup

Datasets We have extensively employed five diverse datasets from various domains to verify our
method. They are the e-finance category dataset Elliptic [Weber et al., 2019], crowd-sourcing category
datasets Tolokers [Platonov et al.||2023]] and YelpChi [Rayana and Akoglu}2015]], and Social media
datasets Question [Platonov et al.,[2023]] and Reddit [Kumar et al.,|2019]. For the detail of dataset
statistics and processing, please refer to Appendix [G|

Baselines We have compared our CGADM with two categories of methods in the context of graph
anomaly detection: (1) Standard GNNs, which include GCN [Kipf and Welling, 2017]], GIN [Xu
et al., 2019]], GraphSAGE [Hamilton et al.| [2017]], and GAT [Velickovic et al., 2018]]; (2) GNNs
specifically designed for anomaly detection, such as GAS [Li et al., [2019], PCGNN [Liu et al.}
2021]], BWGNN [Tang et al.,2022]], GHRN [Gao et al.,[2023b]], XGBGraph [Tang et al.| |2023]], and
CONSISGAD [Chen et al., [2024]; (3) diffusion-based data-centric approaches for GAD: GODM [Ma
et al.| 20244], CGenGA [Liu et al.||2023|). For detailed descriptions, please refer to Appendix E}

Metrics Following the evaluation setup employed by most anomaly detection works [Han et al.,
2022al], we have chosen the Area Under the Receiver Operating Characteristic Curve (AUROC) and
the Area Under the Precision-Recall Curve (AUPRC) as our metrics for graph anomaly detection.
Both of these metrics range between 0 and 1, and we record them as percentages for convenience.
For both metrics, a higher value indicates better performance.

Implementation Details For CGADM, the layer number of graph convolution is set to three, a
value considered reasonable by most works [Liu et al.,|2021]]. For our diffusion process, the noise
levels at the initial and final time steps, 5, and (7, are set to 1e-4 and 0.02, respectively. Additionally,
we employ linear interpolation to divide the time steps between them, which is consistent with
DDPM [Ho et al,[2020]. For other implementation details, please refer to Appendix [K]

5.2 Overall Comparison

We summarize the performance of all algorithms in terms of AUROC and AUPRC across different
datasets in Table I} We put more results of Fl-score in Appendix |N| and results on additional
datasets in Appendix [A]and[[] The results demonstrate that our CGADM outperforms most other
baselines across all metrics. We conduct two-sample t-tests, and p — value < 0.05 indicates that
the improvements are statistically significant. In addition to these findings, we make the following
observations:



Table 1: Performance Comparison on Graph Anomaly Detection

Ellip Tolo Yelp Quest Reddit Average
Model AUPRC AUROC | AUPRC AUROC | AUPRC AUROC | AUPRC AUROC | AUPRC AUROC | AUPRC AUROC
GCN 80.19 95.12 41.44 73.58 23.59 59.89 10.27 67.73 5.65 62.55 32.23 71.77
GIN 83.88 96.21 37.89 74.02 38.13 77.40 11.23 68.07 5.38 65.25 35.30 76.19
Graphsage 86.16 96.61 43.73 71730 50.23 83.24 13.86 70.64 5.78 63.67 39.95 78.29
GAT 87.59 97.11 42.18 76.66 46.64 80.95 13.19 68.19 5.42 63.55 39.00 77.29
GAS 87.54 97.14 42.39 74.55 39.18 78.63 12.41 66.09 5.66 61.23 37.44 75.53
PCGNN 67.29 93.88 36.76 71.28 45.32 79.61 13.79 69.12 4.13 54.58 33.46 73.69
BWGNN 87.90 96.99 45.02 77.80 49.15 81.85 14.64 69.96 5.42 60.63 40.43 77.45
GHRN 88.13 97.04 45.25 77.98 49.78 82.36 14.61 69.32 5.85 63.51 40.72 78.04
XGBGraph 90.47 94.35 44.47 77.28 7591 91.85 14.33 64.90 4.59 60.58 45.95 77.79
CONSISGAD | 86.42 96.38 40.59 76.03 41.74 79.35 12.85 70.54 5.57 66.99 37.43 77.86
GODM 85.89 93.92 46.15 76.42 51.77 84.33 15.11 68.86 5.55 62.10 40.89 77.13
CGenGA 87.36 96.07 44.89 78.95 52.76 85.65 15.34 68.46 5.78 64.78 41.23 78.78
CGADM | 97.03 99.34 | 46.02 79.68 | 76.54 92.69 | 1851 69.41 | 579 65.85 | 48.78 81.39

T Boldface denotes the highest score, and underline indicates the best result of the baselines.

* In terms of average performance, CGADM achieves 48.78% AUPRC and 81.39% AUROC,
representing significant improvements of 6.15% in AUPRC and 4.53% in AUROC over the best
baseline (XGBGraph for AUPRC and CONSISGAD for AUROC).

* GAD methods represent state-of-the-art methods. This indicates that GAD, with its unique
challenges of data imbalance, data heterogeneity, and deliberate node obfuscation, cannot be
adequately addressed by general GNNs and requires specialized design.

* No single baseline method consistently outperforms on all datasets. We believe this is because these
discriminative models identify anomalous nodes through decision boundaries. Many anomalous
nodes manage to cross these boundaries by obfuscating their features, making it difficult for these
methods to adapt to various scenarios. In contrast, our CGADM consider the joint distribution of
anomaly in a generative way, making it difficult for anomalous nodes to obfuscate.

* Diffusion-based approaches (GODM, CGenGA) that use data augmentation show competitive
performance, but CGADM consistently outperforms them by directly modeling the joint anomaly
distribution rather than relying on data augmentation techniques.

* Among standard GNN methods, GraphSage and GAT perform better than the other two methods,
especially on the YelpChi dataset, which has significantly more edges. This aligns with our analysis
in the introduction, where GNN, as a low-pass filter, blurs the distinctive features of anomalies
in its inherent feature aggregation mechanism, a problem that worsens with an increased number
of edges. GraphSage and GAT to some extent mitigate the over-smoothing issue by sampling
neighbors or amplifying the weight of important neighbors, respectively.

5.3 Comparison with Different Prior Model

In generating the final anomaly value with CGADM, to ensure effectiveness, we do not start the
reverse process from a random state. Instead, we opt for a conditional anomaly estimator to guide
the reverse process of the model. For efficiency, we employ a lightweight ensemble trees model
as the estimator. Here, we explore both Random Forest (RF) and Extreme Gradient Boosting Tree
(XGBT) as estimator. We denote CGADM using RF and XGBT as conditional anomaly estimators
as CGADMpgr and CGADM x ¢ 1, respectively. Figure [Z] records the performance of these models
on the Elliptic and YelpChi datasets. Two observations can be made from figure 2] Firstly, both
CGADMpgr and CGADM x g pr outperform their corresponding initial priors. This proves that
our CGADM’s diffusion process can significantly enhance the performance of GAD. Secondly, the
performance gap between CGADM pr and CGADM x ¢ is significantly smaller than that between
RF and XGBT. This indicates that our CGADM possesses strong robustness. Even in the face of
initially inaccurate prior estimates, our CGADM can effectively correct the results under the iterative
refinement of the topological-guided denoising network.

5.4 Parameter Sensitivity

Impact of Graph Convolution Layer I. In order to better capture the topological information sur-
rounding nodes for joint distribution modeling, we employ a GNN-based encoder in our topological-
guided denoising network. We explored the impact of the number of graph convolution layers on the
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Elliptic and YelpChi datasets. The results are shown in Figures|z| (1) and (2). From the results, we can
observe a slowly gradual improvement in performance as the number of layers increases, reaching
farther topological structure information. Even at a depth of five layers, there is no performance
degradation. This suggests that our CGADM can effectively overcome the over-smoothing problem
commonly encountered in traditional discriminative methods based on GNNs. We attribute this
mainly to two factors. First, the paradigm shift to generating the joint distribution of anomaly on
the graph allows considering the influence of surrounding neighbor nodes. Second, our residual
propagation mechanism prevents the high-frequency information of nodes, thereby retaining more
valuable information for anomaly value generation.

Impact of the Final Noise Scale 3 We modify the endpoint of CGADM'’s diffusion process from
the conventional Gaussian distribution N (0, I) to N(g4(E,X),I). Intuitively, 8 represents the
maximum degree to which our noise-added y, can deviate from the ground truth. It also represents
the maximum scale at which our denoising network can correct the prior. We studied the magnitude of
this degree on the Tolokers and Questions datasets, with the results shown in Figure|z| (3) and (4). We
can observe that as the maximum correction scale increases, the performance initially improves. This
suggests that the bias of the prior can be better corrected at this point. However, when the correction
scale exceeds 0.02, the performance begins to decline as the maximum correction scale continues to
increase. This may because the maximum correction scale has already surpassed the maximum bias
produced by the prior. Overcorrection of the prior could prevent CGADM from modeling the true
distribution. Therefore, we recommend using 57 = 0.02 in our cases,

5.5 Efficiency Analysis

In Section[d.4] we designed a prior-aware strided sampling strategy to adaptively reduce the reverse
steps needed to generate anomaly values. To verify its efficiency, we designed the following two
ablation experiments. In the first experiment, we tested the computation time and corresponding
model performance of our CGADM with different sampling steps during generation. The results
are shown in Figure[d] As can be seen, as our striding magnitude increases, i.e., the reverse steps
of sampling become fewer, both computation time and model performance decrease. However, the
decline in computation time is much greater than the decline in graph anomaly detection performance.
Even when the striding is not large at the beginning, the decline in performance is not significant.
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This implies that sacrificing a little performance can result in substantial savings in computation
time. Therefore, we designed another ablation experiment. Here, we denote CGADM configured
with prior-aware strided sampling as CGADM; and present its model performance and average
reverse steps during inference in Table 2] Compared to the original 1000 sampling steps, our method
reduces the average sampling steps for all nodes to 583, while ensuring only a slight drop in model
performance, which remains highly competitive.

6 Conclusions and Limitation

Existing GNN-based graph anomaly detection methods are vulnerable to fraudulent nodes due to
their feature aggregation and discriminative nature. To address this, we propose the Conditional
Graph Anomaly Diffusion Model (CGADM), which considers node anomalies holistically across
the graph, generating a distribution of anomaly values. We introduce a prior-guided diffusion
process with a pre-trained conditional anomaly estimator to constrain the diffusion. Additionally,
we implement a confidence-aware mechanism to adaptively determine reverse time steps, improving
computational efficiency. Experimental results on standard benchmarks demonstrate that CGADM
achieves state-of-the-art performance.

While CGADM shows strong performance, a few limitations remain. First, the model’s reliance on
pre-trained anomaly priors may require adaptation for applications with dynamic graph structures.
Second, the current approach assumes a supervised setting, while real-world applications often
require adaptation to unsupervised scenarios. These issues are areas for future improvement.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide all the proof in Appendix S.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide our code in the supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide our code in the supplementary material. And we will provide a
github repository containing the code once accepted.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In the Appendix L
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct two-sample t-tests, and p-value < 0.05 indicates that the improve-
ments are statistically significant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In the Appendix L.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This research conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In appendix T.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers or website links about the dataset and open-source
codes.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not Applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not Applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Evaluation on Additional Datasets

To further validate the generalizability of our approach, we conducted experiments on four additional
real-world datasets Tang et al.|[2023]]: Weibo, Amazon, T-Finance, and T-Social. These datasets
represent diverse application domains and vary in their structural properties and anomaly distributions.
Tables [3|and ] present the AUPRC and AUROC results, respectively, comparing our CGADM with
state-of-the-art methods XGBGraph and CONSISGAD.

Table 3: AUPRC comparison on additional datasets
Model Weibo Amazon T-Finance T-Social
XGBGraph 0.9516  0.9020 0.8836 0.9203

CONSISGAD 0.8847  0.8047 0.7283 0.5212
CGADM (Ours) 09735 0.9191 0.9154 0.9408

Table 4: AUROC comparison on additional datasets
Model Weibo Amazon T-Finance T-Social
XGBGraph 0.9937  0.9682 0.9623 0.9914

CONSISGAD 0.9654  0.9409 0.9026 0.8963
CGADM (Ours) 0.9879  0.9736 0.9708 0.9761

The results demonstrate that CGADM consistently outperforms both XGBGraph and CONSISGAD
in terms of AUPRC across all four additional datasets. While XGBGraph achieves marginally higher
AUROC on Weibo and T-Social datasets, CGADM maintains competitive performance and excels
on Amazon and T-Finance datasets. These comprehensive evaluations across nine diverse datasets
underscore the robustness and effectiveness of our generative approach to graph anomaly detection
across various domains and graph structures.

B Common Process of Diffusion Probabilistic Model

Here we show the common steps in the diffusion model as follows:

» Forward process: Given an input data sample xg ~ ¢(x¢), the forward process constructs the latent
variables z 1.7 in a Markov chain by progressively adding Gaussian noises over 7" steps. Specifically,
the forward transition x;_1 — z; is defined as q(z¢|z—1) = N(x4; /1 — Byxy—1, Bel), where
t € {1,...,T} refers to the diffusion step, A/ denotes the Gaussian distribution, and 3; € (0, 1)
regulates the noise scales added at step ¢. If ' — oo, zp approaches a standard Gaussian
distribution [Ho et al.,[2020].

* Reverse process: Diffusion models (DMs) aim to remove the added noises from z; to recover
41 in the reverse step, striving to capture minor alterations in the complex generation process.
Formally, taking z as the initial state, DMs learn the denoising process x; — ;1 iteratively
by po(xi—1|ze) = N(i—1; (24, t), Xo (24, 1)), where pg(xy,t) and Xg (x4, t) are the mean and
covariance of the Gaussian distribution predicted by a neural network with parameters 6.

* Optimization: DMs are optimized by maximizing the Evidence Lower Bound (ELBO) of the

likelihood of observed input data xo. Denote D 1,(p||q) as the Kullback-Leibler (KL) divergence
from distribution p to distribution ¢:

p(fL'O:T)
log p(zo) = log/p(xo:T)dka = log Bq(arrieo) {m]
p(-TO:T)
>E T1.7|T q(z1:7|70)
= Sq(z1.7|z0) |:q(l'1:T‘a70):|

a7
= Eq(ay|20) [log po(zo|r1)] — Dxr(q(zr|w0)||p(2T))

T
= Eglarlzo) Drcr(q(@e—1]ze, z0)|[po(z:-1]a:))]

t=2
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* Inference: After training 6, DMs can draw zr ~ N'(0, I) and use pg(x;_1|x¢) to iteratively repeat
the generation process x7 — Tr—_1 — ... = Zg.

C Posterior Coefficients Derivation
Similar toHan et al.| [2022D]], here we give the detailed derivation of Equation [6]and

q(yt—l ‘yta Yo, 57 X)
= q(ye-1ly+,¥0,94(E, X)) < q(yt|ye—1,94(E, X)) a(yi-1]y0, 94(E, X))

o exp <_1 <(yt - (1 — \/OTt) g¢(€7X) - @yt71)2
2

Bt
_ _ 2
n (ytfl — a1y — (1 - Vat_l)g¢(€,X))
1—ag—
o exp 1 ayi o — 2/ (yt - (1 - \/at) 96 (E, X)) Yi_1
2 B (18)
+'!lt2—1 —2(Va—1yo + (1 — air—1) 94(€, X)) Y, 4
1—ay
1 O 1 2
=exp(—=((= _
P55+ i
Term 1
a1 £\ Ot \ Ot (./Oétfl) 1— /a1
-2 - + + + — &, X))y—1))
T o, Yot 5 ¥ < 5, a. 96(€,X))Y;-1))
Term 2
where
ar (1 —ay—1) + B 11—
Term 1 = - = — , (19)
B (1 —ay—1) B (1 —ay—1)
~ 1 11—
- - - =t 20
ﬁt (1) 1 — dt 6ta ( )
Afterwards, we divide each coefficient in Term 2 by Term 1.
o= YL = YL, @1
1-— (o7} 1— (67
NG 1—ay
= 1= \/ 22
71 3, / 1— oy Qi (22)
and
1/ozt(,/at—l) 1— /a1
’}/2 = — 1
Bt 1—a;
o —Jag (1 — 1) + By — B/t (23)
o 1—ay
—1 I (\/O_[t — ].) (\/th + \/O_[tfl)
B 1—ay ‘
Finally, we put every 7o, 1, and 7y, together and obtain Equation [] and 7}
B (Y, Yo, 96(E, X)) = v0Yo + 1Yy + 7296(E, X) 24)
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D Derivation of conditional non-Markovian reverse process

Following DDIM, we formally carry out the derivation of discarding the Markov constraint in-
troduced by Equation []in our prior-conditional reverse step Equation[6] First, let’s organize our
target: given ¢ (y: | yo, 94(€, X)) and ¢ (yi—1 | Yo, 94(€, X)), without ¢ (y: | yt—1), we aim to
find q (Yt—l | Y¢, Yo, g(b(gv X

Here we assume that y;_; is a linear combination of y;, yo and prior g4(&, X) with coefficients
denoted as my, ny and oy, respectively. That is,

Vi—1 = Myt + neyo + 0194 (€, X) + op€q (25)

‘We also know that
Vi = Vayo + (1 —Vau)gs (€, X) + V1 — aye, (26)
Vie1 = Var—1yo + (1 — vVa—1)g4(E,X) + /1 — ay—1€s. 27)

Here, the subscripts of €,, are used to distinguish different samples from the Gaussian distribution.
Substituting Equation [26]into Equation 25} we get

yi—1 =my (Varyo + (1 — Vo) gs(E,X) + V1 — agez) + nuyo + 0196(E, X) + orer (28)

= (mt\/&t + nt) Yo + (my — mu/ay + 01) g6 (E,X) + myv/1 — duea + orer (29)
Therefore, we have

M/ O + Ny = A/ Qy—1, (30)

mi(l—oy)+of=1—a;1, (31)

m¢ — M/ O + 0 = 1-— VOi_1 (32)

Immediately, we can calculate m; and n;:

1_*7 2
my = || —t=L Ot (33)
1—Oét

- a _
ne = /01 — \/1 to? (1 -1 —0o2), (34)
- &g
_ 1—ay_1 — o} _
0y = 1-— Vo1 — #(1 — \/O[t). (35)
- G
Substituting back into Equation 23] we have
1— a1 — o} +(vars Qg (1-a 2)
= —t a1 — -y 1—0
Yi-1 1— oy Yt t—1 1— oy t—1 t) ] Yo
_ 1—ay_1 — o} _
+ (1 — a1 — ﬁ(l — V) ge(E,X) + o€ (36)
— 0y

=Vou_1yo+ (1 — Vai—1)94(€,X)
/ 1 % 1— /&
=Vai1yo + (1 — Vai-1)gs(€,X)
— aryo — (1 — Vange(€,X
+/1— a1 — o2 ¥ Varys % = a;/OTe)%( X) + o€ (38)

Substituting the model’s predicted value, we have

Vi1 = Vo 1Yo + (1 — Var—1)g¢(E,X) + /1 — a1 — oteg(ye,t,€,X) +oe  (39)
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At this point, the derived result Equation [39]is completely consistent with Equation [I3] That is, we
use the two conditions ¢ (y: | ¥o,94(E,X)) and ¢ (y¢—1 | Yo, 96(E, X)), without ¢ (y¢ | y+—1), and
obtain ¢ (y¢—1 | ¥t, Y0, 94(€,X)). DDPM removes the condition ¢ (y; | y:—1), leading to the more
general DDIM sampling formula.

E Baselines

In this section, we introduce the baseline models, which can be broadly bifurcated into two cate-
gories: (1) General-purpose graph neural networks, and (2) Techniques specifically designed for
graph anomaly detection, and (3) Diffusion-based data augmentation approaches for graph anomaly
detection. We have annotated each model with their respective categories for easy differentiation.

GCOCN [Kipf and Welling} 2017]] (1): This technique employs the convolution operation on
graphs to propagate information from a node to its adjacent nodes. This allows the network
to learn a representation for each node, grounded on its local neighborhood.

GIN [Xu et al.,[2019]] (1): A variant of GNN, GIN is designed to encapsulate the graph’s
structure while maintaining graph isomorphism. This implies that it yields identical embed-
dings for graphs that are structurally indistinguishable, irrespective of permutations in their
node labels.

GraphSAGE [Hamilton et al.l 2017] (1): This is an inductive learning framework that
generates node embeddings by sampling and aggregating features from a node’s local
neighborhood.

GAT [Velickovic et al. 2018] (1): This GNN framework incorporates the attention mecha-
nism, assigning varying degrees of importance to different nodes during the neighborhood
information aggregation process. This enables the model to concentrate on the most infor-
mative neighbors.

GAS [Li et al.,[2019] (2): This is a highly scalable technique for detecting spam reviews. It
expands GCN to manage heterogeneous and heterophilic graphs and adapts to the graph
structure of specific GAD applications using the KNN algorithm.

PCGNN |[Liu et al.l |2021]] (2): This framework is designed for imbalanced GNN learning in
fraud detection. It employs a label-balanced sampler to select nodes and edges for training,
leading to a balanced label distribution in the induced sub-graph. Additionally, it uses a
learnable parameterized distance function to select neighbors, filtering out superfluous links
and incorporating beneficial ones for fraud prediction.

BWGNN [Tang et al., [2022] (2): This technique is proposed to address the ’right-shift’
phenomenon of graph anomalies, where the spectral energy distribution focuses less on
low frequencies and more on high frequencies. It utilizes the Beta kernel to tackle higher
frequency anomalies through multiple flexible, spatial/spectral-localized, and band-pass
filters.

GHRN |[Gao et al.|[2023b]] (2): This approach addresses the heterophily issue in the spectral
domain of graph anomaly detection by pruning inter-class edges to highlight and outline the
graph’s high-frequency components.

XGBGraph [Tang et al.,|2023]] (2): A gradient boosting framework that combines traditional
XGBoost with graph structural features.

CONSISGAD [Chen et al., [2024] (2): A consistency training approach that leverages
learnable data augmentation for graph anomaly detection with limited supervision.

GODM [Ma et al.| 2024af] (3): A data-centric approach for graph anomaly detection with
few labels. It employs a diffusion model to generate positive examples in the latent space,
addressing the label imbalance problem that is inherent in anomaly detection tasks.

CGenGA [Liu et al., 2023]] (3): A framework that uses latent diffusion models for data
augmentation in graph anomaly detection. It generates synthetic graph data to enhance the
training of supervised outlier detection methods, particularly effective in scenarios with
limited labeled anomalies.
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F Challenge of Graph Anomaly Detection

Although GAD is essentially a binary node classification problem, it presents several unique chal-
lenges. Firstly, anomalous nodes typically constitute a small fraction of the total nodes, leading to a
significant data imbalance [Liu et al.,2021]]. Secondly, graphs containing anomalies often exhibit
strong heterophily, where connected nodes possess diverse features and labels [|Gao et al., |2023b,
Tang et al.| 2023]]. This heterophily necessitates the development of methods that can effectively
handle neighborhood feature disparities during message passing. Lastly, anomalous nodes tend to
camouflage their features and connections, striving to blend in by mimicking normal patterns within
the graph [Liu et al., [2020].

G Details of the datasets

The detailed statistics of the datasets we used are in Table[3l In line with the data characteristics of
anomaly detection, the selected datasets each contain over 100 anomaly points, and the proportion
of anomalies does not exceed 25%, satisfying the inherent imbalance problem in graph anomaly
detection [Tang et al.}2023]]. For each dataset, we randomly selected 20% of the points as training
data, 10% of the points as validation data, and the remaining points as test data.

Table 5: Descriptive statistics of the datasets.

#Nodes #Edges  Feature Dim  Anomaly Ratio Feature Type
Elliptic 203,769 234,355 166 9.8% Timestamps and transaction information
Tolokers 11,758 519,000 10 21.8% User profile with task performance statistics
YelpChi 45954 3,846,979 32 14.5% Hand-crafted review features and statistics
Questions 48,921 153,540 301 3.0% FastText embeddings for user descriptions
Reddit 10,984 168,016 64 3.3% Hand-crafted review features and statistics

H Implementation of Topological-guided Denoising Network

Reflecting upon Equation[9] we initially extend the formula of graph convolution to matrix form to
facilitate computation across the entire graph, as shown below:

H =W 1-D'AH'™))

After conducting L rounds of convolution, we use weighted summation as our aggregation function
for the hidden representations obtained from each layer of graph convolution. The formula is as
follows:

L
H/"l = AGGH', H?, ... H") =) o/H'
=0

Here, o are the weights for each layer’s representation, which can be learned during training. Having
obtained the representation of nodes that integrates both topological structure and node features, we
construct our denoising function e (y;, ¢, H/¥") through a Multilayer Perceptron (MLP). Following
the original DDPM |Ho et al.|[2020]], we also adopt position embedding to encode time ¢. Therefore,
the denoising function €y is as follows:

€p = JWLP(Concat[POS(t)7 Ve, Hfinal])

In this equation, Pos(t) represents the position embedding of time mathbft, y; is the current
representation of the nodes, and HY?"%! is the final aggregated representation after L layers of graph
convolution.

I Training of CGADM

According to the loss in Equation|[TT] the pseudo algorithm for training is shown in Algorithm 2]
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Algorithm 2 CGADM Training

1: Pre-train g,4(€, X) that predicts the anomaly prior
2: repeat

3:  Draw t ~ Uniform({1,...,T})

4:  Draw e ~ N(0,1)

5:  Compute the noise estimation loss:

£E - ||€_ 60(@)’0 + (1 - \/Et)g¢(g>x) + V 1 _@t67t>g>X)||2

6:  Take a numerical optimization step on VgL,
7. until Convergence

J Inference with Prior-aware Strided Sampling

We show the complete pseudo algorithm for inference with our prior-aware strided sampling strategy
in Algorithm

Algorithm 3 Inference for Anomaly Detection with Sampling Strategy

1: Initialize yr ~ N (g¢(&,X),I)
2: Compute K based on the prior confidence |g4 (€, X) — 0.5 using:

,
K = x T
1+ exp (7‘94’(55(5)70'0')

where 7 is a hyperparameter.
3: Generate sampling time steps {7; } /1
T = {1+7(T_1)(2_1)J , i=1,...,K

K-1

4: fori = Kto1ldo
50 Sett=1m;
6:  Calculate reparameterized yo using Equation

N 1 — =
Yo = — (vt — (1 = Var)ge(€,X) = V1 — aseo(ys, t,€,X))
VO
7:  ifi > 1then
8: Draw z ~ N(0,1)
9: Update y;—1 using the modified non-Markovian reverse process:
Yt—1 =/ Qr;_ Yo+ (1 Y @Ti—l)g¢(g7x) + \/ 1—ar_, - O’?Eg(yt, i, &, X) t oz

10:  else
11: Sety:—1 = Yo
12:  endif
13: end for

14: return yo

K Implementation Detail

All experiments were conducted on a Linux machine equipped with an Nvidia GeForce RTX 3090.
The CUDA version used was 11.1, and the driver version was 455.45.01. We implemented our
algorithm and the corresponding baseline methods using PyTorch [Paszke et al.,[2019]] and the graph
computation framework Pytorch-Geometric [Fey and Lenssen, 2019]. For the Random Forest (RF)
and Extreme Gradient Boosting Tree (XGBT) that serve as conditional anomaly estimators, we used
the RF version implemented in the Scikit-Learn library Pedregosa et al.| [2011]]. For XGBoost|Chen
and Guestrin| [2016]], we utilized its official implementation.
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Table 6: Performance comparison on the DGraph dataset.

Method AUPRC AUROC
GCN 3.66 74.97
GIN 3.22 73.14
GraphSAGE 3.43 73.81
GAT 3.65 75.17
GAS 291 71.21
PCGNN 2.82 71.78
BWGNN 3.63 75.16
GHRN 3.68 75.15
CGADM 3.83 76.43

We initialize the latent vectors for all models with a Gaussian Distribution, having a mean value
of 0 and a standard deviation of 0.01. To ensure a level playing field, the dimension of the hidden
layer for all baseline models, as well as our CGADM, is set to 64. We conducted a grid search for
hyper-parameter tuning. The learning rates were selected from the set [0.005, 0.01, 0.02, 0.05]. To
prevent overfitting, we incorporated an L2 norm with the coefficient tuned from the set [0.001, 0.005,
0.01, 0.02, 0.1]. For all methods, we selected the best models by implementing early stopping when
the AUROC on the validation set did not increase for five consecutive epochs.

L. Efficacy in Highly Imbalanced Scenarios

We conducted additional experiments on the DGraph datasetHuang et al.|[2022], a highly imbalanced
real-world financial fraud detection dataset where anomalies constitute only 1.3% of the data. The
results are presented in Table [6}

As Table[6]illustrates, CGADM consistently outperforms all baseline methods on both AUPRC and
AUROC metrics in this extremely imbalanced setting. Notably, the AUPRC metric demonstrates
CGADM’s ability to handle rare event detection by excelling in anomaly-specific precision and recall.
Similarly, the superior AUROC indicates robust overall discriminative performance.

M Empirical Results on Efficiency

We conducted experiments to compare memory usage, training time, and inference time with baselines
specifically designed for anomaly detection on the Elliptic dataset, which contains 203,769 nodes
and 234,355 edges. The results are summarized in Table

Table 7: Efficiency comparison on the Elliptic dataset.

Model Memory (MB) Training Time (s/epoch) Inference Time (s)
GAS 1418 14.96 2.3865
PCGN 914 1.86 0.0827
BWGNN 446 0.75 0.1185
GHRN 924 1.57 0.1249
CGADM (ours) 1048 2.21 0.5691

From these empirical results, we draw the following observations:

* Memory Efficiency: The use of sparse matrix computations ensures that CGADM remains
efficient in terms of memory usage, even for large-scale graphs. The marginal increase in
memory usage is negligible compared to the scalability benefits.

* Training Efficiency: While CGADM’s training time is moderately higher than discrim-
inative methods (2.21s vs 0.75s for BWGNN), the performance gains (+10% AUPRC
improvement over BWGNN) justify this reasonable overhead, especially considering the
substantial improvement in detection capability.

29



* Inference Time: While our inference time is higher than most discriminative methods, the
increase is justified given the novel generative anomaly detection paradigm. Considering the
already low baseline inference time of anomaly detection tasks, the additional time overhead
is acceptable, especially in scenarios where performance improvements are critical.

Overall, these results demonstrate that CGADM achieves state-of-the-art detection performance with
reasonable computational demands, striking an effective balance between accuracy and efficiency.
The slightly higher computational cost compared to discriminative methods is a worthwhile trade-off
given the substantial performance improvements observed in our experiments.

N Additional Experiment Results

We computed the F1-scores for our model and baseline methods across all datasets. These results
further confirm the superior performance of our model. Table ] presents the F1-scores, which show
consistency with the experiment results in Table

Table 8: F1-scores comparison across datasets.

Model Ellip Tolo Yelp Quest  Reddit
GCN 73.672 47.376 27.658 6.856 7.794
GIN 75.338 49.443 42214 10.288  6.443
GraphSAGE 81.096 50.226 43.949 12.041 10.075
GAT 80.498 50.878 48.891 11.157 8.432
GAS 77.844 48.253 43.404 10.867 9.071
PCGNN 45.090 47.213 44.608 5.796 6.981
BWGNN 83.134 49983 47.323 12.788  6.501
GHRN 85.678 51493 45970 12.696 6.702
XGBGraph 87.555 51.079 65.121 16.088 2.954

CONSISGAD 79.120 49.762 41.606 9.848  6.443
Ours (CGADM) 93.390 51.595 69.396 17.162 9.754

O Robustness of CGADM against Feature Manipulation

To evaluate the robustness of CGADM against feature manipulation, we introduced feature perturba-
tions in the Elliptic and Tolokers datasets. Specifically, we randomly perturbed the features of nodes
with varying proportions (10%, 20%, and 30%) by randomly selecting values from their possible
ranges with uniform probability. We then compared the performance of CGADM with GHRN (the
best-performing baseline from our original experiments) under these conditions.

The results are summarized in Figure[5] As the proportion of perturbed nodes increases, the perfor-
mance of both models decreases. However, CGADM consistently exhibits a slower decline compared
to GHRN. This highlights CGADM’s superior robustness to feature perturbations, which we attribute
to its denoising reconstruction mechanism. This mechanism leverages information from neighboring
nodes during the reverse diffusion process to iteratively restore the true anomaly signals.

P Effect of High- and Low-frequency Signals

To further substantiate that the high-frequency components are indeed reflected in the residual propa-
gations, we designed an ablation study comparing our original CGADM (denoted as CGAD My p)
with a variant (denoted as CG AD M7, p) that only propagates low-frequency signals. In CGAD M, p,
the graph convolution operation is replaced with the standard GCN:

1
———— [ hi™" b 40
(o) +1 | +ug;(v) N “0)

where the feature representation is averaged across the node and its neighbors, propagating only
low-frequency signals.
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Figure 5: Robustness against Feature Manipulation

We conducted experiments on the Elliptic and YelpChi datasets, varying the number of GNN layers in
the denoiser module. The results are shown in Table [0}

Table 9: Performance comparison of CGAD M p and CGAD My, p with varying GNN layers.

GNN Layers Model AUPRC (Elliptic) % AUROC (Elliptic) % AUPRC (YelpChi) % AUROC (YelpChi) %

1

2

3

CGADMpyp 97.13 99.22 75.04 92.37
CGADMp 95.71 98.43 72.23 91.88
CGADMpyp 97.31 99.38 75.20 92.62
CGADMp 93.73 97.60 70.92 90.88
CGADMpyp 97.32 99.44 76.54 92.69
CGADMp 90.83 95.58 71.43 89.64
CGADMpyp 97.53 99.44 77.27 93.05
CGADMp 87.12 92.60 69.98 87.71
CGADMpyp 97.57 99.50 77.29 92.92
CGADMp 81.20 89.49 68.71 86.08

According to Table[9] we have the following observations:

1.

High-Frequency Signal Preservation Matters: CGADMpyp, which retains high-
frequency signals through residual propagation, consistently outperforms CGADM . p
across all metrics and datasets. This highlights the importance of preserving high-frequency
information for anomaly detection, as anomalies often manifest as local deviations that are
captured by these components.

. Sensitivity to GNN Layers: For CGAD M| p, performance declines significantly as the

number of GNN layers increases. This is indicative of the well-known over-smoothing issue,
where stacking multiple low-pass filters causes node representations to converge, losing
discriminative information. Conversely, CGAD M p remains robust, and its performance
even improves slightly with additional layers, demonstrating the effectiveness of residual
propagation in mitigating over-smoothing.

. Iterative Refinement Amplifies Over-Smoothing: In the context of our diffusion model,

the iterative refinement process repeatedly aggregates neighborhood information, exacer-
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bating the impact of over-smoothing in CGAD My p. This leads to a failure to capture
new anomaly-relevant signals at each stage of refinement. In contrast, CGAD My p avoids
this issue by leveraging high-frequency signals to refine anomaly detection throughout the
iterative process.

Q More Comparison with Data-augmentation Methods

The main distinction between CGADM and the existing data-augmentation methods lies in the
underlying approach to anomaly detection. While prior works focus on using diffusion models for
data augmentation to improve detection performance, CGADM adopts a generative, model-centric
paradigm to directly model the joint distribution of anomalies on the entire graph. Below, we
summarize the key differences:

CAGAD [Xiao et al.,[2024]: Uses a graph-specific diffusion model to generate counterfactual
representations by transforming normal neighbors into anomalous ones. This is a classic
data augmentation technique to enhance anomaly distinguishability.

DEGAD [Pang et al., 2024]: Employs diffusion models to generate manipulated neigh-
bors, enhancing graphs by creating augmented data. This technique is used as a data
enhancement module within a contrastive learning framework.

ConGNN [Li et al.l [2024]): Introduces a generator based on diffusion models to control
neighborhood aggregation and create augmented data for better anomaly detection perfor-
mance.

GD [Liu et al.}[2024]): Tackles the label imbalance problem by generating positive examples
using a diffusion model in the latent space. The primary goal is to balance datasets, not
directly detect anomalies.

Diffad [Ma et al., |[2024b]: Investigates denoising diffusion models to synthesize graph
structures and enhance existing methods. This approach focuses on data synthesis rather
than directly detecting anomalies.

We have conducted a detailed experimental comparison of our proposed Conditional Graph Anomaly
Diffusion Model (CGADM) with some diffusion-based data augmentation methods CAGAD [Xiao
et al., 2024]], DEGAD [Pang et al.| [2024]], ConGNN |[Li et al.l [2024]], GD [Liu et al.| [2024]], and
Diffad [Ma et al., |2024b]. We analyzed their performance across several standard benchmark datasets
(Elliptic, Tolokers, and YelpChi), and the key results are summarized below:

Table 10: AUPRC and AUROC comparison with Data Augmentation Methods
Metric Model Ellip Tolo Yelp

CAGAD 89.75 40.80 72.30
DEGAD 93.86 4351 75.11
ConGNN 91.60 4222 73.60

AUPRC  ""6p 88063 3990 68.01
Diffad  90.05 4175 71.28

CGADM 9728 4511 76.54

CAGAD 9482 7222 9034

DEGAD 97.88 7620 92.22

AUROC CONGNN 9560 74.56 9133

GD 93.53 70.70 83.84
Diffad 92.72 7331 88.21
CGADM 99.34 78.11 92.69

As shown in the Table|10, CGADM consistently outperforms the data-augmentation methods in both
AUPRC and AUROC across all datasets. This underscores the efficacy of our generative framework
in addressing graph anomaly detection challenges.
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Q.1 Quantitative Analysis of Over-smoothing Mitigation

To provide quantitative evidence that CGADM effectively mitigates the over-smoothing problem, we
conducted a Dirichlet Energy analysis, which measures the preservation of high-frequency signals in
node embeddings. Dirichlet Energy is defined as:

1 . .
E(f)= B} Z wi; (f (i) — f()?
(i,j)€E
where w;; represents the weight of edge (4, j), and f(7) is the value of the embedding at node i.

Higher Dirichlet Energy indicates better preservation of high-frequency signals, which is critical for
distinguishing anomalous nodes.

We compared our CGADM with a variant where the GNN layers were replaced with traditional GCN
layers, and the results are presented in Table[IT]

Table 11: Dirichlet Energy comparison between CGADM and GCN-based variant

Model Dirichlet Energy (Elliptic) Dirichlet Energy (Tolo)
CGADM 105,002 3,977
CGADM with GCN 66,345 1,383

The results demonstrate that CGADM consistently produces embeddings with significantly higher
Dirichlet Energy compared to the GCN-based variant across both datasets. This confirms that our
residual propagation mechanism effectively preserves high-frequency signals that are critical for
anomaly detection, thereby mitigating the over-smoothing problem common in traditional GNN
approaches.

These findings complement our ablation studies in Section [5.4] where we showed that CGADM’s
performance improves with deeper GNN layers, and our analysis in Appendix P, which demonstrates
the importance of preserving high-frequency components for effective anomaly detection.

R Theoretical Analysis of Over-smoothing Mitigation in CGADM

In this section, we provide a rigorous theoretical analysis of how our Conditional Graph Anomaly
Diffusion Model (CGADM) effectively mitigates the over-smoothing problem typically encountered
in deep GNNs while still capturing long-range dependencies.

R.1 Background: Over-smoothing in GNNs

Over-smoothing in GNNs occurs when node representations become increasingly similar as more
layers are stacked, eventually converging to indistinguishable representations. For a standard GNN
with L layers, the representation of a node v at layer [ can be expressed as:

1
h) =g WDy h{(Y (41)
ueN (v)U{v} |N(U)| +1

It has been shown that as . — 0o, all node representations converge: thL) N || = 0 for any
nodes v and w in a connected graph.

R.2 Receptive Field Analysis

We define the receptive field R, (v) of a node v after L layers of message passing as the set of nodes
whose features contribute to the final representation of v:

Rr(v) ={u eV |dist(u,v) < L} (42)

where dist(u, v) represents the shortest path distance between nodes « and v.
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Theorem R.1. For a CGADM model with an L-layer GNN denoiser and T denoising steps, the
effective receptive field of a node v is Rlgupy(v) = Rixr(v), equivalent to an (L x T)-layer
traditional GNN without the over-smoothing effect.

Proof. In CGADM, each denoising step ¢ applies an L-layer GNN to refine the node representations.
The key difference from traditional GNNs is our residual propagation mechanism in Equation (9):

1
hl =o | W [0t - > nit (43)
NS

For each denoising step ¢, we define the influence set Z! X as the set of nodes that contribute to the
representation of node v after ¢ denoising steps, each involving L graph convolution layers.

For t = 1, the influence set is identical to the receptive field of an L-layer GNN:

T = Rp(v) (44)

For successive denoising steps, the influence set expands recursively:

= | Rulw (45)
uEL(,t'* 1)XL
This recursive expansion leads to:
I = Rixr(v) (46)

Thus, after T" denoising steps, the effective receptive field of node v in CGADM encompasses nodes
up to L x T hops away, equivalent to an (L x T')-layer traditional GNN.

To prove that over-smoothing is mitigated, we analyze the residual propagation mechanism. Unlike
standard GNNs that apply a low-pass filter by averaging features, our approach computes the
difference between the node’s feature and the average of its neighbors’ features:

1
hl, - ——~ Y hli! (47)
NI S

This operation is equivalent to a high-pass filter that preserves the high-frequency components of
the signal. In the spectral domain, for a graph signal x with Fourier coefficients X, the residual
propagation applies a transfer function:

H(\)=1-\; (48)

where )\; are the eigenvalues of the normalized Laplacian matrix. This transfer function amplifies
the contribution of eigenvectors corresponding to larger eigenvalues (high-frequency components)
while reducing the contribution of eigenvectors corresponding to smaller eigenvalues (low-frequency
components).

Consequently, even after multiple denoising steps, the node representations retain their distinctive
high-frequency signals, preventing over-smoothing while still capturing information from distant
neighborhoods. O

R.3 Dirichlet Energy Analysis

To further support our theoretical findings, we analyze the Dirichlet energy, a measure of smoothness
in graph signals. For a graph signal f, the Dirichlet energy is defined as:

E(f) =5 > wy(f(i) —£() (49)



where w;; is the weight of edge (4, j). Higher Dirichlet energy indicates preservation of more
high-frequency components.

Proposition R.2. The residual propagation mechanism in CGADM preserves higher Dirichlet energy
compared to standard GNN aggregation, resulting in less smoothed node representations.

Proof. Let () represent the node representations at layer /. For standard GNN aggregation:

NP 1 -1 (1-1)
fGNN(U) ‘N(’U)| 4 1 f (U) + ue;(v) f (U) (50)

For CGADM’s residual propagation:

0 e 1 _
fClGADM(v) - f(l 1)(1)) - |N(U)| ugf:(v) f(l 1)(u) (51)

Focusing on the edge (i, j), for standard GNN:

1
£ (i) — FRn () = VD1 OB Z £ (u) (52)
wEN ()
1
_ : U= 5y 4 -1 33
YOS () gvj(j) () (53)

This averaging operation reduces the difference between adjacent nodes, decreasing the Dirichlet
energy.

For CGADM’s residual propagation:

1
féi%ADMu)—fézADM(j)=f<l-”<z'>—W Y () (54)
weN (i)
1
EV0) - gy 2 @ (55)

ueN(5)

This operation emphasizes the differences between a node and its neighborhood average, preserving
and potentially amplifying the differences between adjacent nodes, thus maintaining higher Dirichlet
energy.

Empirically, as shown in our experiments (Table[TT), CGADM maintains significantly higher Dirichlet
energy compared to standard GNN aggregation, confirming our theoretical analysis. O

S Broader Impact

This research on Conditional Graph Anomaly Diffusion Model (CGADM) has significant potential
for positive social impact across multiple domains. By improving the detection of anomalous nodes
in large-scale graphs, our work can enhance fraud detection systems in financial networks, helping
protect consumers and institutions from financial crimes. In social networks, it can identify malicious
actors attempting to spread misinformation or engage in coordinated inauthentic behavior. By
providing more accurate, efficient anomaly detection, CGADM can contribute to creating safer digital
environments while minimizing false positives that might otherwise affect legitimate users.
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