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ABSTRACT

Quantification of uncertainty is one of the most promising approaches to estab-
lish safe machine learning. Despite its importance, it is far from being gener-
ally solved, especially for neural networks. One of the most commonly used ap-
proaches so far is Monte Carlo dropout, which is computationally cheap and easy
to apply in practice. However, it can underestimate the uncertainty. We propose
a new objective, referred to as second-moment loss (SML), to address this issue.
While the full network is encouraged to model the mean, the dropout networks
are explicitly used to optimize the model variance. We analyze the performance
of the new objective on various toy and UCI regression datasets. Comparing to
the state-of-the-art of deep ensembles, SML leads to comparable prediction ac-
curacies and uncertainty estimates while only requiring a single model. Under
distribution shift, we observe moderate improvements. From a safety perspective
also the study of worst-case uncertainties is crucial. In this regard we improve con-
siderably. Finally, we show that SML can be successfully applied to SqueezeDet,
a modern object detection network. We improve on its uncertainty-related scores
while not deteriorating regression quality. As a side result, we introduce an in-
tuitive Wasserstein distance-based uncertainty measure that is non-saturating and
thus allows to resolve quality differences between any two uncertainty estimates.

1 INTRODUCTION

Having attracted great attention in both academia and digital economy, deep neural networks (DNNs,
Goodfellow et al. (2016)) are about to become vital components of safety-critical applications. Ex-
amples are autonomous driving (Pomerleau, 1989; Bojarski et al., 2016) or medical diagnostics (Liu
et al., 2014), where prediction errors potentially put humans at risk. These systems require methods
that are robust not only under lab conditions (i.i.d. data sampling), but also under continuous domain
shifts, think e.g. of adults on e-scooters or growing numbers of mobile health sensors. Besides shifts
in the data, the data distribution itself poses further challenges. Critical situations are (fortunately)
rare and thus strongly under-represented in datasets. Despite their rareness, these critical situations
have a significant impact on the safety of operations. This calls for comprehensive self-assessment
capabilities of DNNs and recent uncertainty mechanisms can be seen as a step in that direction.

While a variety of uncertainty approaches has been established, stable quantification of uncertainty
is still an open problem. Many recent machine learning applications are e.g. equipped with Monte
Carlo (MC) dropout (Gal & Ghahramani, 2016) that offers conceptual simplicity and scalability.
However, is tends to underestimate uncertainties thus bearing disadvantages compared to more re-
cent approaches such as deep ensembles (Lakshminarayanan et al., 2017). We propose an alternative
uncertainty mechanism. It builds on dropout sub-networks and explicitly optimizes variances (see
Fig. 1 for an illustrative example). Technically, this is realized by a simple additive loss term, the
second-moment loss. To address the above outlined requirements for safety-critical systems, we
evaluate our approach systematically w.r.t. continuous data shifts and worst-case performances.
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Figure 1: Sampling-based uncertainty mechanisms on toy datasets. In contrast to MC dropout (left),
the second-moment loss (right) induces uncertainties that capture aleatoric uncertainty. The ground
truth data is shown in red. Each grey line represents the outputs of one of 200 random sub-networks
that are obtained by applying dropout-based sampling to the trained full network. For details on the
data sets (‘toy-hf’, ‘toy-noise’), the neural architecture and the uncertainty methods please refer to
section 4 and references therein.

In detail, our contribution is as follows:

• we introduce a novel regression loss for better calibrated uncertainties applicable to dropout
networks,

• we reach state-of-the-art performance in an empirical study and improve on it when con-
sidering data shift and worst-case performances, and

• we demonstrate its applicability to real-world applications by example of 2D bounding box
regression.

2 RELATED WORK

Approaches to estimate predictive uncertainties can be broadly categorized into three groups:
Bayesian approximations, ensemble approaches and parametric models.

Monte Carlo dropout (Gal & Ghahramani, 2016) is a prominent representative of the first group.
It offers a Bayesian motivation, conceptual simplicity and scalability to application-size neural net-
works (NNs). This combination distinguishes MC dropout from other Bayesian neural network
(BNN) approximations like Blundell et al. (2015) and Ritter et al. (2018). A computationally more
efficient version of MC dropout is one-layer or last-layer dropout (see e.g. Kendall & Gal (2017)).
Alternatively, analytical moment propagation allows sampling-free MC-dropout inference at the
price of additional approximations (e.g. Postels et al. (2019)). Further extensions of MC dropout tar-
get tuned performance by learning layer-specific drop rates using Concrete distributions (Gal et al.,
2017) and the integration of aleatoric uncertainty (Kendall & Gal, 2017). Note that dropout train-
ing is used—independent from an uncertainty context—for better model generalization (Srivastava
et al., 2014).

Ensembles of neural networks, so-called deep ensembles (Lakshminarayanan et al., 2017), pose
another popular approach to uncertainty modelling. Comparative studies of uncertainty mechanisms
(Snoek et al., 2019; Gustafsson et al., 2020) highlight their advantageous uncertainty quality, making
deep ensembles a state-of-the-art method. Fort et al. (2019) argue that deep ensembles capture multi-
modality of loss landscapes thus yielding potentially more diverse sets of solutions.

The third group are parametric modelling approaches that extend point estimations by adding a
model output that is interpreted as variance or covariance (Nix & Weigend, 1994; Heskes, 1997).
Typically, these approaches optimize a (Gaussian) negative log-likelihood (NLL, Nix & Weigend
(1994)). A more recent representative of this group is, e.g., Kendall & Gal (2017), for a review
see Khosravi et al. (2011). A closely related model class is deep kernel learning. It approaches
uncertainty modelling by combining NNs and Gaussian processes (GPs) in various ways, e.g. via
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an additional layer (Wilson et al., 2016; Iwata & Ghahramani, 2017), by using networks as GP
kernels (Garnelo et al., 2018) or by matching NN residuals with a GP (Qiu et al., 2019).

In the context of object detection, various uncertainty approaches can be encountered, e.g. MC
dropout in Bhattacharyya et al. (2018) and Miller et al. (2018), or parametric approaches in He et al.
(2019). Hall et al. (2020) advocate to account for uncertainty in bounding box detection.

The quality of uncertainties is typically evaluated using negative log-likelihood (Blei et al., 2006;
Walker et al., 2016; Gal & Ghahramani, 2016), expected calibration error (ECE) (Naeini et al.,
2015; Snoek et al., 2019) and its variants and by considering correlations between uncertainty esti-
mates and model errors, e.g. area under the sparsification error curve (AUSE, Ilg et al. (2018)) for
image tasks. Moreover, it is common to study how useful uncertainty estimates are for solving aux-
iliary tasks like out-of-distribution classification (Lakshminarayanan et al., 2017) or robustness w.r.t.
adversarial attacks. An alternative approach is the investigation of qualitative uncertainty behaviors:
Kendall & Gal (2017) check if the epistemic uncertainty decreases when increasing the training set
or Wirges et al. (2019) studies how the level of uncertainty depends on the distance of the object to
a car for some 3D environment regression task.

3 SECOND-MOMENT LOSS

Monte Carlo (MC) dropout was proposed as a computationally cheap approximation of perform-
ing Bayesian inference in neural networks (Gal & Ghahramani, 2016). Given a neural network
fθ : Rd → Rm with parameters θ, MC dropout samples sub-networks fθ̃ by randomly dropping
nodes from the main model fθ. During MC dropout inference the prediction is given by the mean
estimate over the predictions of a given sample of sub-networks, while the uncertainty associated
with this prediction can be estimated, e.g. , in terms of the sample variance. During MC dropout
training the objective function, e.g. , (in our case) the mean squared error (MSE), is applied to the
sub-networks separately. Due to this training procedure, all sub-network predictions are shifted
towards the same training targets, which can result in overconfident predictions, i.e. in an underesti-
mation of prediction uncertainty.1

Based on this observation, we propose to use the sub-networks fθ̃ in a different way: they are
explicitly not encouraged to fit the data mean directly. This is the task of the full network fθ. The
sub-networks fθ̃ instead model aleatoric uncertainty and prediction residuals if the prediction of the
full network fθ is incorrect. Thus, we deliberately assign different ‘jobs’ to the main network fθ
on the one hand and its sub-networks on the other hand. Formalizing this idea into an optimization
objective yields

L = Lregr + Lsml =
1

M

M∑
i=1

[
(fθ(xi)− yi)2︸ ︷︷ ︸
regression loss

+ β ( |fθ̃(xi)− fθ(xi)| − |fθ(xi)− yi|)
2︸ ︷︷ ︸

second−moment loss

]
, (1)

where the sum runs over a mini-batch of size M < N taken from the set of observed samples
D = {(xi, yi)}Ni=1, xi ∈ Rd denotes the input, yi ∈ Rm the ground-truth label, and β > 0 is a
hyper-parameter that weights both terms. The first term, Lregr, is the MSE w.r.t. the full network
fθ. The second term, Lsml, seeks to optimize2 the sub-networks fθ̃. It aims at finding sub-networks
such that the distance |fθ̃(xi)− fθ(xi)| matches the prediction residual, quantified by |fθ(xi)− yi|,
which also serves as a proxy to the aleatoric uncertainty (compare Fig. 2, top). As our choice of Lsml

removes all directional information of the residual, possible (optimal) solutions for the fθ̃ are not
uniquely determined.3 This leads to a significant increase in the variance of the sub-networks, i.e. the
second moment of fθ̃, compared to standard MC dropout, which is why we name Lsml the second-
moment loss (SML).4 The standard deviations σtotal of the predictions of the sub-networks w.r.t.

1An intuitive explanation is as follows: Let fθ be a NN with one-dimensional output. For MC dropout with
the MSE loss we get

〈
(fθ̃(x)− y)

2
〉
= (〈fθ̃(x)〉 − y)

2 + σ2(fθ̃(x)). Therefore, it simultaneously minimizes
the squared error between sub-network mean and target and the variance σ2(fθ̃(x)) = 〈f2

θ̃
(x)〉 − 〈fθ̃(x)〉

2

over the sub-networks.
2To avoid unintended optimization of full fθ in direction of fθ̃ , we only back-propagate through fθ̃ in Lsml.
3For an analytical study of the loss landscape induced by Lsml see appendix A.1.
4For brevity, we also refer to the entire loss objective L as second-moment loss during evaluation.
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the prediction of the mean network induced by the SML have two components: the spread σdrop of
the sub-networks and an offset

∣∣fθ − 〈fθ̃〉∣∣ between the full network and the sub-network mean that
our loss might cause, concretely, σtotal = σdrop + |fθ − 〈fθ̃〉|. While |fθ − 〈fθ̃〉| is reminiscent of
residual matching, σdrop seems to be more closely related to modelling uncertainties. We show in
appendix A.2 that σdrop accounts on average for more than 80% of σtotal in our experiments.

Note that while we investigate the proposed objective in terms of dropout sub-networks in this paper,
our arguments as well as the actual approach are generally applicable to other models that allow to
formulate sub-networks given some kind of mean model. Besides the regression tasks considered
here our approach could be useful for other objectives which use or benefit from an underlying
distribution, e.g. uncertainty quantification in classification.

4 EXPERIMENTS

We begin this section with an illustrative and visualizable toy dataset (section 4.1) and continue
with benchmarks on various UCI datasets (Dua & Graff, 2017) in section 4.2. To conclude in 4.3,
the second-moment loss is applied to a more complex task: object detection in the form of a 2D
bounding box regression using the compact SqueezeDet architecture (Wu et al., 2017). Technical
details for this section are relegated to appendix B.

For the first two parts we use an identical set-up of 2 hidden layers with 50 neurons each and
ReLu activations. As benchmark methods we consider: MC dropout (abbreviated as MC), last-layer
MC dropout (MC-LL), parametric uncertainty (PU), deep ensembles with (PU-DE) and without
(DE) explicit PU and PU combined with MC (PU-MC). All considered types of networks provide
estimates (µi, σi), where σi is obtained directly as model output (PU), by sampling (MC, MC-LL,
SML) or as an ensemble aggregate (DE, PU-DE). For PU-MC, a combination of parametric output
and sampling is employed.

While the toy model has a stronger focus on visual inspection, the UCI evaluation relies on a variety
of measures: root-mean-square error (RMSE), negative log-likelihood (NLL), expected calibration
error (ECE), and a novel usage of the Wasserstein distance (WS). In using a least squares regression,
we make the standard assumption that errors follow a Gaussian distribution. This assumption is re-
flected in the (standard) definitions of above named measures, i.e. all uncertainty measures quantify
the set of outputs {(µi, σi)} relative to a Gaussian distribution.5 Details on the definition of those
measures, as well as on the network and training procedure and the implementation of methods can
be found in appendix B.1.

4.1 TOY DATASETS

To illustrate qualitative behaviors of the different uncertainty techniques, we consider two R → R
toy datasets. This benchmark puts a special focus on the handling of data-inherent uncertainty. The
first dataset is Gaussian white noise with an x-dependent (non-linear) amplitude, see first row of
Fig. 2. The second dataset is a polynomial overlayed with a high-frequency, amplitude-modulated
sine, see fourth row of Fig. 2. The explicit equations for the toy datasets used here can be found in
appendix B.2. While the uncertainty in the first dataset (‘toy-noise’) is clearly visible, it is less obvi-
ous for the fully deterministic second dataset (‘toy-hf’). There is an effective uncertainty though, as
the shallow networks employed are empirically not able to fit (all) fluctuations of ‘toy-hf’ (see fifth
row of Fig. 2). One might (rightfully) argue that this is a sign of insufficient model capacity. But,
in more realistic, e.g., higher dimensional and sparser datasets the distinction between true noise
and complex information becomes exceedingly difficult to make. As the Nyquist-Shannon sampling
theorem states, with limited data deterministic fluctuations above a cut-off frequency can no longer
be resolved (Landau, 1967). They therefore become virtually indistinguishable from random noise.

The mean estimates of all uncertainty methods (second and fifth row in Fig. 2) look alike on both
datasets. They approximate the noise mean and the polynomial, respectively. In the latter case,
all methods rudimentarily fit some individual fluctuations. The variance estimation (third and sixth
row in Fig. 2) in contrast reveals significant differences between the methods: While PU, PU-

5While different distributions, e.g. exponentially decaying or mixtures, could be used, we restrict the scope
here to the standard Gaussian case.

4



Under review as a conference paper at ICLR 2021

DE, and the network trained with SML are capable of capturing aleatoric uncertainty, MC dropout
variants and non-parametric ensembles are not. This behavior of MC dropout is expectable as it
was introduced to account for model uncertainty not data-inherent uncertainty. The non-parametric
ensemble is effectively optimized in a similar fashion. In contrast, NLL-optimized PU networks
have a home-turf advantage on these datasets since the parametric variance is explicitly optimized
to account for the present aleatoric uncertainty. The SML provides comparably good uncertainty
estimates. They are evoked by the Lsml-term that incentivizes sub-networks fθ̃ to keep an adequate
distance from fθ. The results on the ‘toy-hf’ dataset exemplify that the SML can provide good
uncertainty estimates even for networks with insufficient expressiveness. While the outcomes of
both PU (PU-DE) and SML-trained network look similar, the mechanics of the two approaches are
fundamentally different. We investigate the drivers behind the adjustments of the sub-networks in
appendices A and A.3. Accompanying quantitative evaluations can be found in appendix B.2.

In the following, we substantiate the corroborative results of the SML on toy data by an empirical
study on UCI datasets and an application to a modern object detection network.

Figure 2: Comparison of uncertainty approaches (columns) on two 1D toy functions: a noisy one
(top) and a high-frequency one (bottom). Test data ground truth (respective first row) is shown with
mean estimates (resp. second row) and standard deviations (resp. third row).

4.2 UCI REGRESSION DATASETS

Next, we study UCI regression datasets, extending the dataset selection in Gal & Ghahramani (2016)
by adding three further datasets: ‘diabetes’, ‘california’, and ‘superconduct’. Apart from train- and
test-data results, we study regression performance and uncertainty quality under data shift. Such
distributional changes and uncertainty quantification are closely linked since the latter ones are rudi-
mentary “self-assessment” mechanisms that help to judge model reliability. These judgements gain
importance for model inputs that are structurally different from train data. Appendix B.3 elaborates
on different ways of splitting the data, namely pca-based splits in input space (using the first princi-
pal component) and label-based splits. For both we consider interpolation testing and extrapolation
testing, where the training omits data within or at the edges of the full data range, respectively. For
example, for labels running from 0 to 1, (label-based) extrapolation testing would consider only data
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with a label larger 0.9, while training would be performed on the smaller label values. More general
information on training and dataset-dependent modifications to the experimental setup are relegated
to the technical appendix B.1. For brevity of exposition, we limit our discussion here largely to the
ECE and the worst-case uncertainty performance. An evaluation of the remaining measures, includ-
ing the Wasserstein measure, is given in appendix B.3. All presented results are 5- or 10-fold cross
validated.

Fig. 3 provides average ECE values of the outlined uncertainty methods under i.i.d. conditions (first
and second panel), under label-based data shifts (third and fourth panel) and under pca-based data
shifts (fifth and sixth panel). For the shifts we either use interpolation or extrapolation where we The
visualized mean (median) values and quantile intervals are obtained by averaging over ECE values
on 13 UCI datasets. On training data, ECEs are smallest for PU, followed by PU-MC, PU-DE and
the SML-trained network. On test data, however, PU-MC, PU-DE and the SML-trained network
share the first place. Looking at the stability w.r.t. data shift, i.e. extra- and interpolation based on
label-split or pca-split, PU loses in performance while PU-DE, PU-MC and SML reach the smallest
calibration errors. Regarding the 75% quantiles, SML consistently provides one of the best result
on the standard test set and on all out-of-data test sets.

For NLL and Wasserstein measure, PU-DE, PU-MC and the SML-trained network reach comparably
small average values with advantages for the SML-trained network under data shift, see Fig. 9 and
Fig. 10 in appendix B.3 for detailed evaluations. Especially for NLL a strong difference can be
seen with respect to the consistency of performance under label-based data shifts, which suggests
that SML is more “reliable” compared to PU based approaches. In contrast to uncertainty quality,
regression performances are almost identical for all uncertainty methods (see Fig. 8 and Table 5 in
appendix B.3).

Summarizing these evaluations on UCI datasets, we find SML to be as strong as the state-of-the-
art methods of PU-DE and PU-MC. In comparison to PU-DE, PU-MC and SML use only a single
network compared to an ensemble of 5 networks. We moreover observe advantages for SML under
PCA- and label-based data shifts. Three datasets lead to overestimated uncertainties for the SML,
see discussion in appendix B.3. A visual tool to further inspect uncertainty quality are residual-
uncertainty scatter plots as shown in appendix B.4. For a reflection on NLL and comparisons of the
different uncertainty measures on UCI data see again appendix B.3.

From a safety perspective the study of worst-case uncertainties is crucial. A better understanding
of these least appropriate uncertainties might allow to determine lower bounds on operation qual-
ity of safety-critical systems. For this we define normalized residuals ri = (µi − yi)/σi based
on the prediction estimates (µi, σi) for a given data point (xi, yi). We restrict our analysis to un-
certainty estimates that under-estimate prediction residuals, i.e. |ri| � 1. These cases might be
more harmful than overly large uncertainties, |ri| � 1, that likely trigger a conservative system
behavior. We quantify worst-case uncertainty performance as follows: for a given (test) dataset, the
absolute normalized residuals {|ri|}i are calculated. We determine the 99% quantile q0.99 of this set
and calculate the mean value over all |ri| > q0.99, the so-called expected tail loss at quantile 99%
(ETL0.99) (Rockafellar & Uryasev, 2002). The ETL0.99 measures the average performance of the
worst performing 1%.

For both toy datasets and 12 UCI datasets, the test data ETL0.99’s of all trained network are cal-
culated, yielding a total of 105 ETL0.99 values per uncertainty method. Table 1 reports the mean
value and the maximal value of these ETL0.99’s for PU-MC, PU-DE and SML-trained networks as
these three methods show the strongest performances throughout this work. While none of these
methods gets close to the ideal ETL0.99’s of a N (0, 1), SML-trained networks exhibit significantly
less pronounced tails and therefore higher stability compared to PU-MC and PU-DE. This holds true
over all considered test sets. Deviations from standard normal grow from i.i.d. test over PCA-based
train-test split to label-based train-test split. We attribute the lower stability of PU-DE to the nature
of the PU networks composing the ensemble. The inherent instability of parametric uncertainty es-
timation (see Table 5 in appendix B.3) is largely suppressed by ensembling. Considering the tail
of the |ri|-distribution however reveals that regularization of PU by ensembling works not in every
single case. It is unlikely that larger ensemble are able to fully cure this instability issue. Regulariz-
ing PU by applying dropout (PU-MC) leads to comparably weak results. SML-trained networks in
contrast encode uncertainty into the structure of the entire network thus yielding preferable stability
compared to parametric approaches.
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Figure 3: Expected calibration errors (ECEs) of different uncertainty methods under i.i.d. conditions
(first and second panel) and under various kinds of data shift (third to sixth panel, see text for details).
SML (‘ours’) is compared to 5 benchmark approaches. Each blue cross is the mean over ECE values
from 13 UCI regression datasets. Orange line markers indicate median values. The gray vertical bars
reach from the 25% quantile (bottom horizontal line) to the 75% quantile (top horizontal line).

Table 1: Worst-case uncertainty quality for different uncertainty methods: SML-induced uncertain-
ties (‘Ours’), PU-DE and PU-MC are compared to the ideal Gaussian case for i.i.d. and non-i.i.d.
data splits. Worst-case uncertainty quality is quantified by the expected tail loss at the 99% quantile
(ETL0.99). Each mean and max value is taken over the ETLs of 105 models trained on 14 different
datasets.

measure data split N (0, 1) Ours PU-DE PU-MC

mean ETL0.99 i.i.d. 2.89 3.80 5.03 5.55
max ETL0.99 i.i.d. 3.01 9.71 19.69 30.35

mean ETL0.99 pca 2.89 4.62 6.71 6.12
max ETL0.99 pca 3.01 13.0 39.34 21.58

mean ETL0.99 label 2.89 5.18 38.65 49.82
max ETL0.99 label 3.01 35.96 799.78 631.84

4.3 APPLICATION TO OBJECT REGRESSION

After studying toy and UCI datasets, we turn towards the challenging real-world task of object
detection, namely the SqueezeDet model (Wu et al., 2017), a fully convolutional neural network. It
is trained and evaluated on KITTI (Geiger et al., 2012). For details on the SqueezeDet architecture
and the KITTI data split, see B.5. We compare standard SqueezeDet with SML-SqueezeDet that
uses the second-moment loss instead of the original MSE regression loss (see appendix B.5 for
more details). In both settings the model is trained for 150,000 mini-batches of size 20, i.e. for 815
epochs. After training, we keep dropout active and compute 50 forward passes for each test image.
For standard SqueezeDet, all forward passes are individually matched with ground truth. We exclude
predictions from the evaluation if their IoU with ground truth is ≤ 0.1. While standard SqueezeDet
(with activated dropout at inference) uses the mean of the dropout samples for prediction, SML-
SqueezeDet uses the full network instead (see section 3). These predictions and their corresponding
dropout samples are matched based on the respective anchor. The dropout samples are summarized
by their means and variances.

To assess model performance, we report the mean intersection over union (mIoU) and RMSE (in
pixel space) between predicted bounding boxes and matched ground truths. The quality of the un-
certainty estimates is measured by (coordinate-wise) NLL, ECE and Wasserstein distance. Table 2
shows a summary of our results on train and test data. The results for NLL, ECE and WS have been
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averaged across the 4 regression coordinates. SqueezeDet and SML-SqueezeDet show comparable
regression results, with slight advantages for SML-SqueezeDet on test data. Considering uncer-
tainties quality, we find substantial advantages for SML-SqueezeDet across all evaluation measures.
These findings resemble those on the UCI regression datasets and indicate that the second-moment
loss works well on a modern application-scale network.

Table 2: Regression performance and uncertainty quality of SqueezeDet-type networks on KITTI
test data. SML-trained SqueezeDet (ours) is compared with the default SqueezeDet that uses one-
layer dropout to estimate uncertainties. The measures of NLL, ECE and WS are aggregated along
their respective four dimensions, for details see appendix B.5 and Table 6 therein.

measure SqueezeDet SML-SqueezeDet SqueezeDet SML-SqueezeDet

train test

mIoU (↑) 0.816 0.812 0.738 0.744
RMSE (↓) 6.418 6.862 18.225 17.492
NLL (↓) 20.746 3.916 98.807 17.875
ECE (↓) 0.996 0.554 1.198 0.834
WS (↓) 2.487 0.874 4.587 1.734

5 CONCLUSION

We approach dropout-based uncertainty quantification from a new direction: sub-networks are ex-
plicitly not encouraged to model the data mean, they capture data-inherent uncertainties and po-
tential fitting residuals of the full network instead. Technically, this is realized by an additional
loss term that accompanies the standard regression objective: the second-moment loss. Our loss
enables stable training. Training complexity and runtime behavior at inference are comparable to
MC dropout. Task performances and uncertainty qualities of these models are on par with (para-
metric) deep ensembles, the widely used state-of-the-art for uncertainty quantification. However,
unlike deep ensembles, we use single networks. In practice, this might allow to reduce training ef-
fort significantly compared to deep ensembles, especially for application-scale networks. Moreover,
a single network requires only a fraction of the storage of a deep ensemble, making models with
competitive uncertainties more accessible for mobile or embedded applications.

An extensive study of uncertainties under data shift revealed advantages of SML-trained models
compared to deep ensembles: while both methods on average provide comparable results, we find a
higher stability across a variety of datasets and data shifts. With respect to worst-case uncertainties
SML-trained networks are by a large margin better than deep ensembles. A quite relevant finding
for safety-critical applications like automated driving or medical diagnosis where (even rarely occur-
ring) inadequate uncertainty estimates might lead to injuries and damage. Technically, we attribute
this gain in stability to our sub-network-based approach: like MC dropout, we integrate uncertainty
estimates into the very structure of the network, rendering it more robust towards unseen inputs than
a parameter estimate.

Moreover, the second-moment loss can serve as a general drop-in replacement for MC dropout on
regression tasks. For already trained MC dropout models, post-training with the second-moment
loss might suffice to improve on uncertainty quality. As an outlook, our first such post-training
experiments on UCI datasets are encouraging. Another interesting variant is the combination of
SML with last-layer dropout as it enables sampling-free inference (Postels et al., 2019). Preliminary
experiments on UCI datasets show clearly improved uncertainties qualities compared to standard
MC-LL. A potentially interesting avenue for near-real time applications.

The simple additive structure of the second-moment loss makes it applicable to a variety of opti-
mization objectives. For classification, we might be able to construct a non-parametric counterpart
to prior networks (Malinin & Gales, 2018). Taking a step back, we demonstrated an easily feasible
approach to influence and train sub-network distributions. This could be a promising avenue, for
distribution matching but also for theoretical investigations.
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SUPPLEMENTARY MATERIAL

This part accompanies our paper “Second-Moment Loss: A Novel Regression Objective for Improved
Uncertainties” and provides further in-depth information. In Section A we provide both theoretical
and numerical insight into the resulting uncertainties of our loss modification. Large parts of the
empirical evaluation on UCI can be found in section B, including details on the setup, data splits
as well as further uncertainty measures. Details for our use and modification of SqueezeDet are
located in sub-section B.5. As the second-moment loss couples to the usual MSE regression loss
via a hyper-parameter β we test various values in section C, finding no strong correlation between
result and parameter. We close with a discussion on the relation between uncertainty measures and
their respective sensitivity in section D.

A MECHANICS OF THE SECOND-MOMENT LOSS

We analytically study the optimization landscape evoked by the second-moment loss in A.1. This
analysis provides building blocks to better understand the composition of the SML-uncertainties as
detailed in the remainder of this section.

A.1 ANALYTICAL PROPERTIES OF THE SECOND-MOMENT LOSS

In the following, we look closer at the behaviour of the second-moment loss with respect to aleatoric
uncertainty. For this, we assume that the residuals, compare eq. (1), are given by a Gaussian distri-
bution with, for simplicity, µRes. = 0 and σRes. = 1. We want to determine the resulting loss for the
Lsml term in eq. (1) governing the uncertainty estimation of the model. It depends on the underling
distribution of the effective MC dropout distribution, which me model as N (µdrop, σdrop) such that:

Lsml =

∫ ∞
−∞

dy1dy2 (|y1| − |y2|)2 p1(y1) p2(y2) , (2)

where p1 and p2 are the Gaussian distributions discussed above. After some calculation this yields:

Lsml = −
4

π
σdrop exp

(
−1

2

µ2
drop

σ2
drop

)
−
√

8

π
µdrop Erf

(
µdrop√
2σdrop

)
+ σ2

drop + µ2
drop + 1 , (3)

which is visualized in Fig. 4. The two global minima can be found for σdrop = 0 and µdrop =

±
√
2/π. However, as we model a randomized residual y1 these minima do not reach zero. We

find that it is favourable to move µdrop away from the network prediction of µRes. = 0, the mean of
the underlying data distribution. But, this is only the case as long as the inherent uncertainty in the
dropout distribution can be brought below σdrop < 2/π, which is still smaller than the uncertainty
of σRes. = 1 assumed within the training data distribution. Otherwise, it is more favourable to have
µdrop = µRes. = 0. In the following sections we investigate the practical implications of this finding.
For instance, as detailed in section B.2, the highly oscillating or noisy toy model experiments clearly
exhibited the type of separation discussed here. Decomposing the uncertainty for the UCI datasets
in section A.2, on the other hand, showed mixed behaviour with indications for bi-modal shifts in
µdrop as well as improved values of σdrop.

We already showed the effect of this bi-modality in Fig. 1 at the beginning of the paper, where
various sub-networks where sampled. Clearly visible is a stronger variation between the networks
compared to MC, but also a concentration around the two possible minima. While this Fig. provides
a good visual estimate of σdrop the total uncertainty σtotal would additionally contain the systematic
shift |fθ − 〈fθ̃〉|. Given the roughly symmetric distribution of the sub-networks we can expect it to
be comparatively small.

A.2 COMPOSITION OF THE UNCERTAINTY ESTIMATE

The uncertainty estimate of the second-moment loss is comprised of two parts: σtotal = σdrop +
|fθ − 〈fθ̃〉|. Fig. 5 reveals that σdrop contributes to more than 80% of σtotal for the three presented
datasets and for all applied data splits. A highly similar behavior can be observed for all other
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Figure 4: Shown is the value of the loss component L2 as given by eq. (3) over µdrop and σdrop
describing the implicit dropout ensemble. The blue line shows the position of the minima of L2

for fixed values of σdrop. Clearly visible are the global minima at σdrop = 0 and the bifurcation at
σdrop = 2/π.

datasets. The analytical consideration in appendix A.1 suggests that for cases without data-inherent
uncertainty the SML provides no incentive for |fθ − 〈fθ̃〉| > 0. The same holds true in the presence
of aleatoric uncertainty as long as σdrop is comparably large. For aleatoric uncertainty and small
σdrop larger |fθ − 〈fθ̃〉| are favorable. However, as our loss is radial symmetric, all directions are
equivalent and initialization and randomness determine the direction of the spread |fθ − 〈fθ̃〉| for
each individual sub-network. This symmetry leads again to a small averaged |fθ − 〈fθ̃〉|. σdrop on
the contrary describes the width of a bi-modal set of sub-networks in these cases.

A.3 DETAILED ANALYSIS OF THE TWO LOSS COMPONENTS

A deeper look into the structure of the second-moment loss is possible if we investigate its behaviour
component-wise. To clarify the results presented in Fig. 6, we recall the loss structure as

L = L1 + L2 =

M∑
i=1

[
a2i + β (|bi| − |ai|)2

]
(4)

with ai = fθ(xi)− yi and bi = fθ̃(xi)− fθ(xi). Histograms of the ai (Fig. 6, first column) enable
a detailed view on network performance. The uncertainty quality of the networks can be judged
by studying the L2 loss term more closely, namely by visualizing histograms of |bi| − |ai| (fourth
column). The second and third column zoom into L2 and show histograms of the bi and scatter plots
of (bi,ai), respectively. Only test datasets are visualized and as we applied 90 : 10 train-test splits,
this explains the low resolution of some histograms in the first column. All quantities involving
bi require the sampling of sub-networks. We draw 200 sub-networks. This sampling procedure
explains the higher plot resolutions in columns two to four.

Qualitatively, we observe that both the ai’s and bi’s are centered around zero which hints at suc-
cessful optimization of regression performance and of uncertainty quality. Details on how the op-
timization is technically realistic, can be gained from the scatter plots. They show three qualitative
shapes: a ‘cross’ (first row), a ‘line’ (second row) and a ‘blob’ (third and fourth row). The ‘cross’
occurs for toy-hf and reflects the bi-modal sub-network structure we found in Fig. 1. For an in-detail
discussion of the uni- and bi-modality of the second-moment loss landscape see A.1. A ‘line’ shape
reflects that all sub-networks occupy the same minimum given a bi-modal case. Following appendix
A.1, a ‘blob’ indicates a uni-modal case that might be evoked by large standard deviations σdrop.

B EXTENSION TO THE EMPIRICAL STUDY

Accompanying to the evaluation sketched in the body of the paper, section 4, we provide more details
on the setup, used benchmarks and measures in the following sub-section. Further information on
the toy dataset experiments can be found in section B.2. The same holds for the UCI experiments
in section B.3, which we extend by the measures skipped in the main text, and include a description
on the used label splits. A close look at the predicted UCI uncertainties (per method) is given via
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Figure 5: The second-moment loss induces uncertainties σtotal = σdrop + |fθ − 〈fθ̃〉|. The relative
contribution of both components (”fraction dropout std”, ”fraction spread”) is shown for three ex-
emplary datasets (top: toy-noise, middle: superconduct, bottom: protein) and i.i.d. (train: blue, test:
orange) as well as non-i.i.d. data splits (test-label: red, test-pca: yellow).

scatter plots in section B.4. Details on the SML version of the SqueezedDet are found in the last
sub-section.

B.1 EXPERIMENTAL SETUP

The experimental setup used for the toy data and UCI experiments is presented in three parts: the
benchmark approaches we compare with, the evaluation measures we apply to quantify uncertainty,
and a description of the neural networks and training procedures we employ.

Benchmark approaches We compare dropout networks trained with the SML to archetypes of
uncertainty modelling, namely approximate Bayesian techniques, parametric uncertainty, and en-
sembling approaches. From the first group, we pick MC dropout (abbreviated as MC) and its variant
last-layer MC dropout (MC-LL). While these dropout approaches integrate uncertainty estimation
into the very structure of the network, parametric approaches model the variance directly as the out-
put of the neural network (Nix & Weigend, 1994). Such networks typically output mean and vari-
ance of a Gaussian distribution (µ, σ) and are trained by likelihood maximization. This approach
is denoted as PU for parametric uncertainty. Ensembles of PU-networks (Lakshminarayanan et al.,
2017), referred to as deep ensembles, pose a widely used state-of-the-art method for uncertainty
estimation (Snoek et al., 2019). (Kendall & Gal, 2017) consider drawing multiple dropout samples
from a parametric uncertainty model and aggregating multiple predictions for µ and σ. We denote
this approach PU-MC. Moreover, we consider ensembles of non-parametric standard networks. We
refer to the latter ones as DEs while we call those using PU PU-DEs. All considered types of net-
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Figure 6: Visualisation of the components (columns) of the second-moment loss for selected test
datasets (rows). The prediction residual fθ(xi) − yi (first column), model spread fθ̃(xi) − fθ(xi)
(second column), a scatter plot of both quantities (third column) and |fθ̃(xi)−fθ(xi)|−|fθ(xi)−yi|
(fourth column) are shown. The chosen datasets from top to bottom are: toy-hf, wine-red, power,
california.

works provide estimates (µi, σi) where σi is obtained either analytically (PU), by sampling (MC,
MC-LL, SML) or as an ensemble aggregate (DE, PU-DE).

Evaluation measures In all experiments we evaluate both regression performance and uncer-
tainty quality. Regression performance is quantified by the root-mean-square error (RMSE),√

(1/N
∑
i(µi − yi)2 (Bishop, 2006). Another established metric in the uncertainty community

is the (Gaussian) negative log-likelihood (NLL), 1/N
∑
i

(
log σi + (µi − yi)2/(2σ2

i ) + c
)
, a hy-

brid between performance and uncertainty measure (Gneiting & Raftery, 2007), see appendix D.2
for a discussion.6 The expected calibration error (ECE, Kuleshov et al. (2018)) in contrast is not bi-
ased towards well-performing models and in that sense a pure uncertainty measure. It reads ECE =∑B
j=1 |p̃j−1/B| for B equally spaced bins in quantile space and p̃j = |{ri|qj ≤ q̃(ri) < qj+1}|/N

the empirical frequency of data points falling into such a bin. The normalized prediction residuals ri
are defined as ri = (µi − yi)/σi. Further, q̃ is the cdf of the standard normalN (0, 1) and [qj , qj+1)
are equally spaced intervals on [0, 1], i.e. qj = (j − 1)/B. Additionally, we propose to consider the
Wasserstein distance of normalized prediction residuals (WS). The Wasserstein distance (Villani,
2008), also known as earth mover’s distance (Rubner et al., 1998), is a transport-based measure de-
noted by (dWS) between two probability densities, with Wasserstein GANs (Arjovsky et al., 2017) as
its most prominent application in ML. For ideally calibrated uncertainties, we expect yi ∼ N (µi, σi)
and therefore ri ∼ N (0, 1). Thus we use dWS({ri}i,N (0, 1)) to measure deviations from this ideal
behavior. As ECE, this is a pure uncertainty measure. However, it does not use binning and can

6Throughout the paper, we ignore the constant c = log
√
2π of the NLL.
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therefore resolves deviations on all scales. For example, two strongly ill-calibrated uncertainties
(r1, r2 � 1, r1 < r2) would result in (almost) identical ECE values while WS would resolve this
difference in magnitude.

Technical details All investigated neural networks have the same architecture, 2 hidden layers of
width 50, and ReLu activations (Glorot et al., 2011). For all dropout-based methods (MC, MC-LL,
SML) we set the drop rate to p = 0.1. Like MC, SML-trained networks apply Bernoulli dropout to
all hidden activations. In the case of MC-LL the dropout is only applied to the last hidden layer. For
ensemble methods (DE, DE-PU) we employ 5 networks. For PE networks, we normalize the σ value
using softplus (Glorot et al., 2011) and optimzie the NLL instead of the MSE. For the optimization
of all NNs we use the ADAM-optimizer (Kingma & Ba, 2014) with a learning rate of 0.001. For
‘california’, the learning rate is reduced to 0.0001 as training of PU and PU-DE is unstable using
the standard setup. Additionally, we apply standard normalization to the input and output features
of all datasets to enable better comparability.

Number of epochs trained and amount of cross validation differs by the training-set size. We cate-
gorize the Toy and UCI datasets as follows: small datasets {toy-hf, yacht, diabetes, boston, energy,
concrete, wine-red }, large datasets {toy-noise, abalone, power, naval, california, superconduct, pro-
tein } and very large datasets {year }. For small datasets, NNs are trained for 1, 000 epochs using
mini-batches of size 100. All results are 10-fold cross validated. For large datasets, we train for 150
epochs and apply 5-fold cross validation. We keep this large-dataset setting for the very large ‘year’
dataset but increase mini-batch size to 500.

All experiments are conducted on Core Intel(R) Xeon(R) Gold 6126 CPUs and
NVidia Tesla V100 GPUs. Conducting the described experiments with cross validation on
one CPU takes 6h for toy data, 80h for UCI regression. And 8h for object regression on the GPU.

For SML it turns out that as long as 0< β < 1, the actual value of β has only a limited influence
on the optimization result, see appendix C for details. Larger β-values can however favour uncer-
tainty optimization at an expanse of task performance. Throughout the body of the paper we use a
conservative value of β = 0.5.

B.2 TOY DATASETS: SYSTEMATIC EVALUATION

The toy-noise and toy-hf datasets are sampled from fnoise(x) ∼ N (0, exp(−0.02 x2)) for
x ∈ [−15, 15] and fhf(x) = 0.25x2−0.01x3+40 exp(−(x+1)2/ 200) sin(3x) for x ∈ [−15, 20],
respectively. Standard normalization is applied to input and output values. The aggregated measures
of the seperate uncertainty methods achieved on these datasets are given in table 3.

Table 3: Regression performance and uncertainty quality of networks with different uncertainty
mechanisms. All scores are calculated on the test set of toy-hf and toy-noise, respectively.

measure dataset MC MC-LL Ours PU PU-DE DE
RMSE (↓) toy-hf 0.69 0.69 0.69 0.71 0.70 0.66
NLL (↓) toy-hf 51.22 65.34 −0.06 −0.08 −0.08 46.31
ECE (↓) toy-hf 1.48 1.56 0.50 0.60 0.61 1.49
WS (↓) toy-hf 6.13 8.17 0.26 0.26 0.26 6.14

RMSE (↓) toy-noise 1.00 1.00 1.01 1.00 1.00 1.00
NLL (↓) toy-noise 9.9× 108 2.3× 1010 −0.23 −0.39 −0.39 7942.57
ECE (↓) toy-noise 1.76 1.75 0.19 0.10 0.09 1.65
WS (↓) toy-noise 2.6× 109 1.7× 109 0.16 0.04 0.04 72.85

B.3 UCI DATASETS: RMSES, NLLS AND SYSTEMATIC EVALUATION

This sub-section provides further details on our UCI experiments covering: an overview on the
datasets and splits used for the data-shift studies, further uncertainty measure evaluations (RMSE,
NLL, WS), and close with a discussion on the weaker SML results.
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Datasets and data splits For the UCI regression data, Table 4 provides details on dataset refer-
ences, preprocessing and basic statistics. Extrapolation and interpolation data-shifts are, technically,
introduced by applying non-i.i.d. (independent and identically distributed) data splits. Natural can-
didates for such non-i.i.d. splits are splits along the main directions of data in input and output space,
respectively. Here, we consider 1D regression tasks. Therefore, output-based splits are simply done
on a scalar label variable (see Fig. 7, right). We call such a split label-based (for a comparable
split, see, e.g., Foong et al. (2019)). In input space, the first component of a principal component
analysis (PCA) provides a natural direction (see Fig. 7, left). The actual PCA-split is then based on
projections of the data points onto this first PCA-component.7 Splitting data along such an direction
in input or output space in e.g. 10 equally large chunks, creates 2 outer data chunks and 8 inner
data chunks. Training a model on 9 of these chunks such that the remaining chunk for evaluation is
an inner chunk is called data interpolation. If the remaining test chunk is an outer chunk, it is data
extrapolation. We introduce this distinction as extrapolation is expected to be considerably more
difficult than ‘bridging’ between feature combinations that were seen during training.

Table 4: Details on UCI regression datasets. Ground truth (gt) is partially pre-processed to match
the 1D regression setup.

dataset # features # datapoints reference remarks

yacht 6 308 UCI
diabetes 7 442 sklearn
boston 13 506 sklearn
energy 8 768 UCI two gt labels: only ”cooling load” gt is used
concrete 8 1030 UCI
wine-red 11 1599 UCI
abalone 7 4176 UCI 1st feature is ignored, also called ”kin8nm”
power 4 9568 UCI
naval 16 11934 UCI two gt labels: only ”turbine” gt is used
california 8 20640 sklearn
superconduct 81 21263 UCI
protein 9 45730 UCI
year 90 515345 UCI

input space output space input space output space

NN NN

Figure 7: Scheme of two non-i.i.d. splits: a PCA-based split in input space (left) and label-based
split in output space (right). While datasets appear to be convex here, they are (most likely) not in
reality.

Regression quality First, we consider regression performance (see the first and second panel of
Fig. 8). Averaging the RMSE values over the considered 13 datasets (‘mean’ column) yields almost
identical results for all uncertainty methods. The only exceptions pose PU, PU-MC and PU-DE with

7Note that these projections are only considered for data splitting, they are not used for model training.
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larger train data RMSEs which could be due to NLL optimization favoring to adapt variance rather
than mean. However, this regularizing NLL-training comes along with a smaller generalization
gap, leading to competitive test RMSEs. Next, we investigate model performance under data shift,
visualized in the third to sixth panel of Fig. 8. Again, regression quality is comparable between all
methods. As expected, performances under data shift are worse compared to those on i.i.d. test sets.

Negative log-likelihoods For NLL, results are less balanced compared to RMSE (see Fig. 9).
PU-DE, PU-MC and the SML-trained network reach comparably small average values on the test
set, followed by MC and DE. The average NLL values of MC-LL and PU are above the upper plot
limit indicating a rather weak stability of these methods. On PCA-interpolate and PCA-extrapolate
test sets, again PU-DE, PU-MC and SML-trained networks perform best. On label-interpolate and
label-extrapolate test sets, however, SML-trained networks take the first place with a large margin.
The mean NLL values of most other approaches are above the upper plot limit. Note that median
results are not as widely spread and PU-DE and SML perform comparably well. These qualitative
differences between mean and median behavior indicate that most methods perform poorly ‘once
in a while’. A noteworthy observation as stability across a variety of data shifts and datasets can
be seen as a crucial requirement for an uncertainty method. SML-based models yield the highest
stability in that sense w.r.t. NLL.

Wasserstein distances Studying Wasserstein distances, we again observe equally strong results
for PU-DE, PU-MC and SML on train and test data (see first two columns of Fig. 10). PU in contrast
possesses a large generalization gap thus yielding weak test set performances. MC, MC-LL, and DE
behave consistently weak on train and test sets with MC-LL even falling out of plot range. Under
data shift (bottom panel of Fig. 10), the picture remains similar. PU-DE, PU-MC and SML are in the
lead and comparably strong for pca-based data shift. On label-based data shifts SML outperforms
all other methods by a significant margin. As for NLL, we find these mean values of PU-DE and
PU-MC to be significantly above the respective median values indicating again weaknesses in the
stability of parametric ensembles.

Slight overestimation of small uncertainties for SML The second-moment loss yields weak
results on ‘yacht’, ‘energy’ and ‘naval’, the three easiest datasets judging by test set RMSE, com-
pare Table 5. On these datasets neither aleatoric uncertainty nor modelling residuals play a mayor
role. In such cases, the second-moment loss seems to cause slightly overshooting uncertainty esti-
mates (compare edges of Fig. 1 for a visual clue), likely due to its sub-network ‘repulsion’. Back-
propagating not only through fθ̃ but also through the full network fθ in Lsml might mitigate this
effect. In practice, slight overestimation of small uncertainties might be acceptable. In contrast, our
method performs consistently strong on all more challenging datasets (‘california’, ‘superconduct’,
‘protein’, ‘year’). A beneficial characteristic for virtually any real-world task.

B.4 RESIDUAL-UNCERTAINTY SCATTER PLOTS

Visual inspection of uncertainties can be helpful to understand their qualitative behaviour. We scatter
model residuals µi − yi (respective x-axis in Fig. 12) against model uncertainties σi (resp. y-axis in
Fig. 12). For a hypothetical ideal uncertainty mechanism, we expect (yi−µi) ∼ N (0, σi), i.e. model
residuals following the predictive uncertainty distribution. More concretely, 68.3% of all (yi − µi)
would lie within the respective interval [−σi, σi] and 99.7% of all (yi − µi) within [−3σi, 3σi].
Fig. 11 visualizes this hypothetical ideal. Geometrically, the described Gaussian properties imply
that 99.7% of all scatter points, e.g., in Fig. 12 should lie above the blue 3σ lines and 68.3% of
them above the yellow 1σ lines. For ‘abalone’ test data (third row of Fig. 12), PU and SML
qualitatively fulfil this requirement while MC and DE tend to underestimate uncertainties. This
finding is in accordance with our systematic evaluation. For toy-noise, abalone and superconduct,
we qualitatively find PU, PU-DE and SML-trained networks to provide more realistic uncertainties
compared to MC, MC-LL and DE (see Fig. 12). The naval dataset poses an exception in this regard
as all uncertainty methods lead to comparably convincing uncertainty estimates. The small test
RMSEs of all methods on naval (see appendix 8) indicate relatively small aleatoric uncertainties
and model residuals. Epistemic uncertainty might thus be a key driving factor and coherently MC,
MC-LL and DE perform well.
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Figure 8: Root-mean-square errors (RMSEs) of different uncertainty methods under i.i.d. conditions
(first and second panel) and under various kinds of data shift (third to sixth panel, see text for
details). SML (‘ours’) is compared to 6 benchmark approaches. Each blue cross is the mean over
RMSE values from 13 UCI regression datasets. Orange line markers indicate median values. The
gray vertical bars reach from the 25% quantile (bottom horizontal line) to the 75% quantile (top
horizontal line).
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Figure 9: Negative log-likelihoods (NLLs) of different uncertainty methods under i.i.d. conditions
(first and second panel) and under various kinds of data shift (third to sixth panel, see text for details).
SML (‘ours’) is compared to 6 benchmark approaches. Each blue cross is the mean over NLL values
from 13 UCI regression datasets. Orange line markers indicate median values. The gray vertical bars
reach from the 25% quantile (bottom horizontal line) to the 75% quantile (top horizontal line).

19



Under review as a conference paper at ICLR 2021

Table 5: Regression performance and uncertainty quality of networks with different uncertainty
mechanisms. The scores are calculated on the test sets of 13 UCI datasets.

measure dataset DE MC MC-LL Ours PU-MC PU-DE PU
RMSE (↓) yacht 0.04 0.07 0.06 0.08 0.08 0.05 0.06
NLL (↓) yacht −3.55 −2.76 −2.95 −2.54 −2.88 −3.27 0.39
ECE (↓) yacht 0.66 0.91 0.8 1.09 1.06 1.0 0.96
WS (↓) yacht 0.4 0.43 0.36 0.53 0.52 0.48 1.16

RMSE (↓) diabetes 0.92 0.84 0.94 0.87 0.79 0.81 0.82
NLL (↓) diabetes 4.5 7.34 47.46 3.19 2.43 7.55 4268.61
ECE (↓) diabetes 0.91 1.1 1.48 0.9 0.91 1.03 1.27
WS (↓) diabetes 1.6 2.47 6.9 1.49 1.29 2.09 21.42

RMSE (↓) boston 0.33 0.33 0.34 0.32 0.31 0.34 0.36
NLL (↓) boston 4.47 1.89 12.41 −0.08 0.27 2.88 123.59
ECE (↓) boston 0.88 0.93 1.23 0.66 0.68 0.9 1.38
WS (↓) boston 1.53 1.4 3.29 0.62 0.72 1.43 7.93

RMSE (↓) energy 0.08 0.08 0.08 0.08 0.09 0.1 0.12
NLL (↓) energy −0.7 −2.14 −1.45 −2.03 −2.03 −2.0 4.94
ECE (↓) energy 0.53 0.49 0.52 0.63 0.69 0.51 1.02
WS (↓) energy 0.71 0.25 0.48 0.32 0.35 0.43 2.23

RMSE (↓) concrete 0.25 0.25 0.26 0.25 0.24 0.26 0.27
NLL (↓) concrete 4.67 −0.05 5.32 −0.89 −0.96 0.32 80.28
ECE (↓) concrete 0.66 0.52 0.73 0.39 0.4 0.54 0.79
WS (↓) concrete 1.43 0.63 1.78 0.24 0.22 0.74 3.4

RMSE (↓) wine-red 0.84 0.77 0.85 0.78 0.78 0.76 0.8
NLL (↓) wine-red 1.45 3.56 20.49 0.9 6.35 4.11 1968347.98
ECE (↓) wine-red 0.51 0.74 0.99 0.58 0.53 0.45 0.77
WS (↓) wine-red 0.73 1.43 3.74 0.58 0.78 0.82 86.81

RMSE (↓) abalone 0.64 0.65 0.65 0.65 0.64 0.64 0.64
NLL (↓) abalone 29.61 19.36 67.22 0.25 −0.1 −0.07 −0.02
ECE (↓) abalone 1.31 1.31 1.51 0.43 0.3 0.27 0.26
WS (↓) abalone 4.61 4.05 7.53 0.47 0.17 0.17 0.18

RMSE (↓) power 0.22 0.23 0.23 0.22 0.23 0.22 0.22
NLL (↓) power 13.17 3.32 6.48 −0.84 −1.0 −1.0 −0.98
ECE (↓) power 1.06 0.93 1.03 0.21 0.23 0.15 0.12
WS (↓) power 2.91 1.75 2.35 0.25 0.15 0.09 0.08

RMSE (↓) naval 0.04 0.13 0.11 0.08 0.2 0.18 0.18
NLL (↓) naval −2.81 −1.65 −0.71 −1.68 −1.36 −1.82 −2.28
ECE (↓) naval 0.97 0.54 0.66 0.9 0.64 1.03 0.75
WS (↓) naval 0.55 0.49 1.04 0.5 0.4 0.53 0.46

RMSE (↓) california 0.45 0.46 0.46 0.46 0.47 0.53 0.53
NLL (↓) california 37.4 5.09 21.72 −0.18 −0.46 −0.52 −0.47
ECE (↓) california 1.31 0.92 1.22 0.23 0.32 0.25 0.22
WS (↓) california 5.07 1.85 3.94 0.27 0.2 0.15 0.15

RMSE (↓) superconduct 0.29 0.31 0.3 0.3 0.34 0.32 0.34
NLL (↓) superconduct 2.43 1.67 8.44 −1.02 −1.06 −1.24 −0.56
ECE (↓) superconduct 0.54 0.61 0.78 0.2 0.26 0.21 0.17
WS (↓) superconduct 1.16 1.14 2.1 0.16 0.16 0.14 0.24

RMSE (↓) protein 0.59 0.61 0.61 0.62 0.67 0.67 0.69
NLL (↓) protein 4.38 3.7 13.14 0.07 −0.07 −0.12 0.14
ECE (↓) protein 0.68 0.8 1.0 0.25 0.31 0.3 0.2
WS (↓) protein 1.45 1.56 2.92 0.21 0.18 0.19 0.15

RMSE (↓) year 0.77 0.79 0.81 0.81 0.79 0.78 0.79
NLL (↓) year 11.63 15.42 1240419.1 0.15 0.01 −0.02 0.17
ECE (↓) year 1.0 1.26 1.42 0.25 0.28 0.26 0.25
WS (↓) year 2.49 3.45 852087.22 0.24 0.18 0.16 0.19
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Figure 10: Wasserstein distances of different uncertainty methods under i.i.d. conditions (first and
second panel) and under various kinds of data shift (third to sixth panel, see text for details). SML
(‘ours’) is compared to 6 benchmark approaches. Each blue cross is the mean over WS values from
13 UCI regression datasets. Orange line markers indicate median values. The gray vertical bars
reach from the 25% quantile (bottom horizontal line) to the 75% quantile (top horizontal line).
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Figure 11: Prediction residuals (x-axis) and predictive uncertainty (y-axis) for a hypothetical ideal
uncertainty mechanism. The Gaussian errors are matched by Gaussian uncertainty predictions at the
exact same scale. 68.3% of all uncertainty estimates (plot points) lie above the orange 1σ-lines and
99.7% of them above the blue 3σ-lines.

The hypothetical ideal residual-uncertainty scatter plot we use in Fig. 11 is generated as follows:
We draw 3000 standard deviations σi ∼ U(0, 2) and sample residuals ri from the respective normal
distributions, ri ∼ N (0, σi). The pairs (ri, σi) are visualized. By construction, uncertainty esti-
mates now ideally match residuals in a distributional sense. But even in this perfect case, Pearson
correlation between uncertainty estimates and absolute residuals is only approximately 55%.

B.5 DETAILS ON SML-SQUEEZEDET

Architecture SqueezeDet (Wu et al., 2017) takes an input image and predicts three quantities:
(i) 2D bounding boxes for detected objects (formalized as a 4D regression task), (ii) a confidence
score for each predicted bounding box and (iii) the class of each detection. Its architecture is as
follows: First, a sequence of convolutional layers extracts features from the input image. Next,
dropout with a drop rate of p = 0.5 is applied to the final feature representations. Another convolu-
tional layer, the ConvDet layer, finally estimates prediction candidates. In more detail, SqueezeDet
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Figure 12: Prediction residuals (respective x-axis) and predictive uncertainty (respective y-axis) for
different uncertainty mechanisms (columns) and datasets (rows). Each light blue dot in each plot
corresponds to one test data point. Realistic uncertainty estimates should lie mostly above the blue
3σ-lines.The datasets toy-noise, naval, abalone and superconduct are shown, from top to bottom.

predictions are based on so-called anchors, initial bounding boxes with prototypical shapes. The
ConvDet layer computes for each such anchor a confidence score, class scores and offsets to the
initial position and shape. The final prediction outputs are obtained by applying a non-maximum-
suppression (NMS) procedure to the prediction candidates. The original loss of SqueezeDet is the
sum of three terms. It reads LSqueezeDet = Lregres + Lconf + Lclass with the bounding box regres-
sion loss Lregres, a confidence-score loss Lconf and the object-classification loss Lclass. Our modifi-
cation of the learning objective is restricted to the L2 regression loss:

Lregres =
λbbox
Nobj

W∑
i=1

H∑
j=1

K∑
k=1

Iijk[(δ̃xijk − δxGijk)2 + (δ̃yijk − δyGijk)2

+ (δ̃wijk − δwGijk)2 + (δ̃hijk − δhGijk)2] (5)

with (δ̃xijk, δ̃yijk, δ̃wijk, δ̃hijk) and (δxGijk, δy
G
ijk, δw

G
ijk, δh

G
ijk) being estimate and ground truth

expressed in coordinates relative to the k-th anchor at grid point (i, j). Tilde denotes that a variable
is subject to dropout-induced randomness. See Wu et al. (2017) for descriptions of all other loss
parameters. Applying the second-moment loss component-wise to this 4D regression problem yields

Lregres,SML =
λbbox
Nobj

W∑
i=1

H∑
j=1

K∑
k=1

Iijk

[ (δxijk − δxGijk)2 + (|δ̃xijk − δxijk| − |δxijk − δxGijk)|)2

(δyijk − δyGijk)2 + (|δ̃yijk − δyijk| − |δyijk − δyGijk)|)2

(δwijk − δwGijk)2 + (|δ̃wijk − δwijk| − |δwijk − δwGijk)|)2

(δhijk − δhGijk)2 + (|δ̃hijk − δhijk| − |δhijk − δhGijk)|)2 ] (6)

with deterministic network outputs (δxijk, δyijk, δwijk, δhijk).
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Details on data split and evaluation Our evaluation is based on the KITTI dataset (Geiger et al.,
2012), which contains image sequences of driving scenes. We split the original KITTI training set
into 3682 train and 3799 test images such that all images of a given sequence are either in the train
or in test set (see Xiang et al. (2015)). Predicted bounding boxes are matched with ground truth
using a minimum-weight maximum bipartite matching. The edge weights of this bipartite graph are
given by the intersection over union (IoU) between ground truth and predicted bounding boxes.

Table 6: Regression performance and uncertainty quality of SqueezeDet-type networks on KITTI
train/test data. SML-trained SqueezeDet (ours) is compared with the default SqueezeDet that uses
one-layer dropout to estimate uncertainties.

measure SqueezeDet SML-SqueezeDet SqueezeDet SML-SqueezeDet

train test

mIoU (↑) 0.816 0.812 0.738 0.744
RMSE (↓) 6.418 6.862 18.225 17.492
NLLx (↓) 20.070 3.488 95.621 14.252
NLLy 6.064 1.453 15.376 3.709
NLLw 33.715 6.593 219.778 39.870
NLLh 22.594 4.128 64.451 13.667
ECEx (↓) 0.919 0.431 1.145 0.783
ECEy 0.955 0.520 1.140 0.775
ECEw 1.025 0.512 1.296 0.915
ECEh 1.085 0.751 1.209 0.864
WSx (↓) 2.616 0.675 5.342 1.942
WSy 2.201 0.822 3.555 1.373
WSw 2.422 0.785 5.813 1.975
WSh 2.710 1.212 4.037 1.647

C STABILITY W.R.T. HYPER-PARAMETER β

Here, we analyze the impact of the SML-parameter β on the uncertainty quality of accordingly
trained models. For β = 0.1, 0.25, 0.5, 0.75, 0.9, we observe only relatively small differences in
both ECE (see Fig. 13) and Wasserstein distance (see Fig. 14). β = 0.5 provides (by a small
margin) the best average test set performance in both scores. However, the best-performing β-value
for an individual dataset can vary.

Experiments with β � 1 (not shown here) cause non-convergent training in many cases as primarily
uncertainty quality is optimized at the expense of task performance. The opposite extreme case is
β = 0, i.e. network optimization without any dropout mechanism. Applying dropout at inference
will therefore cause uncontrolled random fluctuations around the network prediction.

D IN-DEPTH INVESTIGATION OF UNCERTAINTY MEASURES

D.1 DEPENDENCIES BETWEEN UNCERTAINTY MEASURES

All uncertainty-related measures (NLL, ECE, Wasserstein distance) relate predicted uncertainties
to actually occurring model residuals. Each of them putting emphasize on different aspects of the
considered samples: NLL is biased towards well-performing models, ECE measures deviations
within quantile ranges, Wasserstein distance resolves distances between normalized residuals. The
empirically observed dependencies between these uncertainty measures are visualized in Fig. 15.
Additionally to Wasserstein distances, we consider Kolmogorov-Smirnov (KS) distances (Stephens,
1974) on normalized residuals there. It estimates a distance between the sample of normalized
residuals and a standard Gaussian. Different from the Wasserstein distance, the KS-distance is
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Figure 13: Expected calibration errors (ECEs) for SML-trained networks with hyper-parameters
β = 0.1, 0.25, 0.5, 0.75, 0.9 under i.i.d. conditions (first and second panel) and under various kinds
of data shift (third to sixth panel, see text for details). Each blue cross is the mean over ECE values
from 13 UCI regression datasets. Orange line markers indicate median values. The gray vertical
bars reach from the 25% quantile (bottom horizontal line) to the 75% quantile (top horizontal line).
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Figure 14: Wasserstein distances for SML-trained networks with hyper-parameters β =
0.1, 0.25, 0.5, 0.75, 0.9 under i.i.d. conditions (first and second panel) and under various kinds of
data shift (third to sixth panel, see text for details). Each blue cross is the mean over WS values
from 13 UCI regression datasets. Orange line markers indicate median values. The gray vertical
bars reach from the 25% quantile (bottom horizontal line) to the 75% quantile (top horizontal line).
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not transport-based but determined by the largest distance between the empirical CDFs of the two
samples. It is therefore bounded to [0, 1] and unable to resolve differences between samples that
strongly deviate from a standard Gaussian one.

While all these scores are expectably correlated, noteworthy deviations from ideal correlation occur.
Therefore, we advocate for uncertainty evaluations based on various measures to avoid overfitting
to a specific formalization of uncertainty.

The data splits in Fig. 15 are color-coded as follows: train is green, test is blue, pca-interpolate is
green-yellow, pca-extrapolate is orange-yellow, label-interpolate is red and label-extrapolate is light
red. The mapping between uncertainty methods and plot markers reads: MC is ‘diamond’, MC-LL
is ‘thin diamond’, DE is ‘cross’, PU is ‘point’, PU-DE is ‘pentagon’ and second-moment loss is
‘square’. The data base of this visualization is toy-noise, toy-hf and 13 UCI regression datasets.
Some Wasserstein distances lie above the x-axis cut-off and are thus not visualized.

D.2 DISCUSSION OF NLL AS A MEASURE OF UNCERTAINTY

Typically, DNNs using uncertainty are often evaluated in terms of their negative log-likelihood
(NLL). This property is affected not only by the uncertainty, but also by the DNNs performance. Ad-
ditionally, it is difficult to interpret, sometimes leading to contraintuitive results, which we want to
elaborate on here. As a first example, take the likelihood of two datasets x1 = {0} and x2 = {0.5},
each consisting of a single point, with respect to a normal distribution N (0, 1). Naturally, we find
x1 to be located at the maximum of the considered normal distribution and deem it the more likely
candidate. But, if we extend these datasets to more than single points, i.e. x̃1 = {0, 0.1, 0,−0.1, 0}
and x̃2 = {0.5,−0.4, 0,−1.9,−0.7}, it becomes obvious that x̃2 is much more likely to follow the
intended Gaussian distribution. Nonetheless, NLL(x̃2) ≈ 1.4 > 0.9 ≈ NLL(x̃1), where

NLL(y) := log
√
2πσ2 +

1

N

N∑
i=1

(yi − µ)2

2σ2
. (7)

This may be seen as a direct consequence of the point-wise definition of NLL, which does not
consider the distribution of the elements in x̃i. From this observation also follows that a model with
high prediction accuracy will have a lower NLL score as a worse performing one if uncertainties are
predicted in the same way. Independent of whether those reflected the “true” uncertainty in either
case. This issue can be further substantiated on a second example. Consider two other datasets
z1, z2 drawn i.i.d. from Gaussian distributions N (0, σi) with two differing values σ1 < σ2. If we
determine the NLL of each with respect to its own distribution the offset term in equation (7) leads
to NLL(z2) = NLL(z1)+ log (σ2/σ1) with log (σ2/σ1) > 0. Although both accurately reflect their
own distributions, or uncertainties so to speak, the narrower z1 is more “likely”. This offset makes it
difficult to assess reported NLL values for systems with heteroscedastic uncertainty. While smaller
is typically “better”, it is highly data- (and prediction-) dependent which value is good in the sense
of a reasonable correlation between performance and uncertainty.
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Figure 15: Dependencies between the three uncertainty measures ECE, Wasserstein distance and
Kolmogorov-Smirnov distance. Uncertainty methods are encoded via plot markers, data splits via
color. Datasets are not encoded and cannot be distinguished (see text for more details). Each plot
point corresponds to a cross-validated trained network. The clearly visible deviations from ideal
correlations point at the potential of these uncertainty measures to complement one another.
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