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Abstract

Graph representation learning often relies on manually engineered, task-specific1

inductive biases, which limit model flexibility and generalization across diverse2

tasks. While diffusion models have shown promising ability in capturing arbitrary3

distributions, they frequently lack a deep integration of graph structure. To ad-4

dress this, we propose the LapDiff, a novel diffusion-based framework that learns5

adaptive priors to dynamically align its inductive bias with the intrinsic characteris-6

tics of graph-structured data and their tasks. The novelty of LapDiff is its use of7

Laplacian smoothing as a structure-aware noise mechanism in the forward process,8

complemented by topological perturbations. This design enables the denoising9

network to effectively capture the underlying data-generating factors tied to a10

graph’s unique structure and features. By capturing priors from a task and data,11

LapDiff mitigates the limitations of static biases and enhances task-agnostic gen-12

eralization. Extensive experiments on large-scale OGB benchmarks demonstrate13

that LapDiff is universally effective for both link prediction and node classification,14

achieving state-of-the-art performance and offering a new perspective into graph15

representation learning.16

1 Introduction17

Large-scale network graphs are now foundational data structures across science and industry, from18

biological systems [1] and drug discovery [2] to recommender systems [3] and fraud detection [4].19

The central challenge in this field is learning effective representations that capture the complex,20

non-Euclidean relationships inherent in such data. Graph Neural Networks (GNNs) have emerged as21

the dominant paradigm, achieving remarkable success by leveraging strong inductive biases.22

However, this reliance on inductive biases is a double-edged sword. The vast majority of GNNs are23

built on a fixed assumption, such as homophily—the tendency of connected nodes to be similar. While24

effective in some scenarios, this rigid prior leads to significant performance degradation on graphs25

with more complex topologies or across different downstream tasks. To compensate, a fragmented26

landscape of specialized models has emerged, each with manually engineered biases tailored to27

specific tasks, such as subgraph-based features for link prediction (e.g., SEAL [5]) or generalized28

graph heuristics (e.g., Neo-GNNs [6]).29

This approach merely trades one fixed assumption for another, inherently limiting generalization and30

requiring separate models for different tasks, which is impractical for real-world deployment [7].31

The lack of a single, dominant architecture on comprehensive benchmarks like the Open Graph32

Benchmark (OGB) [8] highlights this fundamental limitation. For instance, while GCN [9] achieves33

high accuracy on the OGB-PPA node classification task, its performance plummets in OGB-Collab34

link prediction, where heuristic-based methods like SEAL [5] excel. This disparity underscores that35
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fixed, manually-specified priors are a bottleneck for creating truly universal graph representation36

learning methods.37

This predicament raises a fundamental question: Can we learn powerful graph representations38

without manually-designed fixed inductive bias? We argue for a paradigm shift from static, hand-39

crafted biases to adaptive ones that emerge as data-driven priors, conditioned directly on the given40

task and intrinsic properties of the given graph.41

To establish a formal basis for this approach, we first draw intuition from the No-Free-Lunch (NFL)42

theorem [10], which suggests that no single algorithm is universally optimal across all tasks and43

data. This implies that a model’s effectiveness is tied to the alignment between its internal prior44

and the specific data distribution. To extend beyond the intuition behind the NFL theorem, we use45

the PAC-Bayes framework. This theory provides a rigorous foundation for using adaptive priors by46

connecting them to a model’s generalization ability. A standard PAC-Bayes generalization bound for47

a posterior distribution P over a hypothesis class (e.g., model parameters θ) and a prior distribution48

Q is given by:49

Eθ∼P [Rtrue(θ)] ≤ Eθ∼P [Remp(θ)] +

√
KL(P ||Q) + ln(m/δ)

2m
(1)

where, with probability at least 1− δ over the draw of a training set of size m, the inequality holds for50

all priors Q. Here,Rtrue(θ) is a generalization error andRemp(θ) is the training error for a given51

parameter set θ.52

The crucial insight from this bound is that the generalization error is controlled by two terms:53

the training error and a complexity term involving the Kullback-Leibler divergence between the54

posterior P and the prior Q. To guarantee that a low training error translates to a low generalization55

error, the KL(P ||Q) term must be minimized. Since the posterior P is learned from the data, a56

fixed, data-independent prior Q may be far from P , resulting in a large KL divergence and a loose57

bound. However, the PAC-Bayes framework allows for the use of an adaptive prior Q(G) [11, 12].58

By choosing a prior that adapts to a downstream task T and an input graph G, we can select a59

Q(T ,G) that is already close to the expected posterior P , thereby minimizing the KL divergence and60

tightening the generalization bound. This provides a principle for learning an adaptive prior in graph61

representation learning methods.62

This theoretical perspective provides a principled foundation for our goal: to learn graph representa-63

tion with an adaptive prior Pθ(z | T ,G). We propose LapDiff, a novel diffusion-based framework64

that realizes this objective. LapDiff learns this adaptive prior by parameterizing latent representations65

as the outcome of a denoising process grounded in the graph’s intrinsic geometry. Its core innovation66

is the use of **Laplacian smoothing as a structure-aware noise mechanism**, a principled way to67

infuse structural information into the diffusion process.68

Our contributions are summarized as follows:69

• We propose a generative framework that learns an adaptive, graph-conditioned prior,70

pθ(z|G), to capture implicit structural and feature-level patterns without handcrafted biases.71

• We introduce the novel use of Laplacian smoothing as a structure-aware noise mechanism72

within a diffusion model, providing a new perspective on encoding graph geometry into73

generative processes.74

• We empirically demonstrate that LapDiff achieves state-of-the-art performance on diverse75

benchmarks for link prediction and node classification, validating the effectiveness of our76

adaptive, structure-aware learning approach.77

2 Related work78

Graph Representation Learning. GNNs like GCN [13] and GAT [14] have achieved strong79

performance in node classification by exploiting local aggregation schemes. However, these often80

encode fixed assumptions (e.g., homophily), limiting generalization to diverse graph types. While81

GRAND [15] models feature diffusion as a continuous process, structural signals remain underutilized82

in most node-centric models. In contrast, SEAL [5], Neo-GNNs [6], and NBFNet [16] introduce83

inductive biases tailored for link prediction via subgraph extraction or path-based heuristics. However,84

these methods are narrowly focused on specific tasks.85
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DDPMs on Graph domain. DDPMs have recently been extended to graphs. Prior generative86

approaches [17–19] modeled node-edge distributions or joint graph likelihoods. Molecular graph87

generation works (e.g., [20, 21]) employed categorical and discrete formulations, while [22] proposed88

scalable structure perturbations. DDM citeyang2023directional introduced diffusion models for graph89

representation learning with anisotropic node feature noise, yet ignored graph structures. Recently,90

SGDiff [23] proposed a subgraph-based diffusion model tailored for link prediction, incorporating91

structural context into diffusion.92

3 Method93

Our model, LapDiff, implicitly learns the adaptive graph prior pθ(z | G) posited in our theoretical94

motivation via a denoising diffusion process. LapDiff consists of two complementary processes: a for-95

ward process that incrementally injects structure-aware noise into the input graph G0 = (A0, X0),96

and a reverse process that learns to denoise the corrupted graph to reconstruct an informative97

latent representation. This section details both processes and the resulting objective function.98

Figure 1: Graphical Model of LapDiff. LapDiff leverages the
Laplacian smoothing as noise source of the forward process,
inducing signal diffusion reflecting the important aspect of a
graph structure. This assures noise in graph signals in the feature
space.

99

3.1 LapDiff Generative Process100

The forward process defines a Markov101

chain {Gt}Tt=1 that gradually trans-102

forms the initial graph data G0 into over-103

smoothed and noisy graph data at step104

T . Unlike standard diffusion models,105

our forward process is designed to be106

structure-aware, corrupting both node107

features and graph topology in a manner108

that adaptively respects the prior under-109

lying in graph data. The reverse process,110

parameterized by a neural network fθ,111

learns to reverse this corruption step-112

by-step, effectively learning the data-113

generating distribution. We define two114

Markov chains for feature and structural115

diffusion, q(X1:T |X0) and q(A1:T |A0), respectively.116

Feature Diffusion via Laplacian Smoothing. To corrupt node features while retaining structural117

information, we define the forward process noise source using the graph Laplacian. Specifically, we118

use iterative Laplacian smoothing, which acts as a low-pass filter on node features, causing them119

to dissipate and converge towards an over-smoothed state. The feature matrix Xt at timestep t is120

obtained as:121

Xt = (I− αD−1L)Xt−1 = (I− αD−1L)tX0, (2)

where L is the graph Laplacian, D is the degree matrix, and α is a scaling factor. For simplicity, we122

set α = 1. This process defines a Markov chain q(X1:T |X0) =
∏T

t=1 q(Xt|Xt−1) where the state at123

any step t can be computed in closed form from X0.124

Structural Diffusion via Edge Perturbation. To diffuse the graph topology, we employ stochastic125

edge removal. At each step t, we sample a subgraph structure by randomly dropping edges from the126

previous state At−1 with a removal probability 1− p. This process gradually sparsifies the graph,127

destroying its topological information. The per-edge transition is defined as:128

At[i, j] ∼ Bernoulli(At−1[i, j], p) (3)

This defines the structural diffusion process q(A1:T |A0) =
∏T

t=1 q(At|At−1), which ensures that129

structural information diffuses over time.130

Theoretical Grounding of Laplacian Smoothing. Our choice of Laplacian smoothing as a noise131

source is theoretically grounded in spectral graph theory. Given the eigendecomposition of the132
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Laplacian L = UΛU⊤, the feature diffusion in Eq. (2) can be expressed in the spectral domain as:133

Xt = U(I− αΛ)tU⊤X0. (4)
The term (I− αΛ)t acts as a low-pass filter, attenuating high-frequency components of the feature134

signal (associated with large eigenvalues λi) more rapidly than low-frequency components (small λi).135

This selective, non-uniform information destruction preserves global structural patterns for longer,136

forcing the reverse process to learn representations that are deeply tied to the graph’s macro-structure,137

unlike isotropic Gaussian noise which degrades all signal components uniformly.138

In other words, Laplacian smoothing increases the entropy of the graph signal selectively across the139

spectral spectrum. In the spectral domain, the smoothed signal becomes:140

x̂′ = [(1− αλ1)x̂1, (1− αλ2)x̂2, . . . , (1− αλN )x̂N ] . (5)
which indicates high-frequency components associated with larger λi of x are reduced more than141

low-frequency components.142

This selective reduction effectively smooths out rapid variations in the signal while preserving the143

slow variations, which correspond to the underlying structure of the graph. This ensures a stronger144

entropy increase of high-frequency components, leading to non-uniform entropy increase. A high-145

frequency variation is suppressed, while low-frequency structure is preserved. This behavior enables146

LapDiff enables to adaptively capture priors effectively.147

3.2 Reverse Process and Objective Function148

Feature Denoising Objective. The feature denoising term aims to predict the features at the149

previous step, Xt−1, which can be simplified to a mean squared error loss:150

Lfeat(t) = ∥f (X)
θ (Xt, At, t)−Xt−1∥22. (6)

Structural Denoising Objective. Directly optimizing the KL divergence for discrete edges is151

challenging. Instead, following a second-order Taylor expansion of the per-edge Bernoulli KL152

divergence, we can approximate the objective with a mean squared error in the Laplacian space. This153

provides a more stable, continuous optimization target:154

Lstruct(t) ≈ ∥f (L)
θ (Xt, At, t)− (L0 − Lt−1)∥22. (7)

Here, the network predicts the change in the Laplacian, which corresponds to the structure that was155

removed between step 0 and t− 1.156

Final Loss. Combining the denoising terms for t ∈ [2, T ] and the explicit reconstruction losses for157

t = 1 (using MSE for features and binary cross-entropy for the adjacency matrix), the final training158

loss for LapDiff is:159

LLapDiff := βt

T∑
t=2

∥f (X)
θ (Xt, At)−Xt−1∥22 + γ

T∑
t=2

∥f (L)
θ (Xt, At)− (L0 − Lt−1)∥22

+ β0∥f (X)
θ (X1, A1)−X0∥22 + λLBCE(f

(A)
θ (X1, A1), A0) + Ltask,

(8)

where β0, γ, βt, λ are weighting hyperparameters. The total loss is L = LLapDiff + Ltask, where Ltask160

is a downstream task-specific loss. Derivation of the objective functions is in the Appendix.161

4 Experiments162

Our goal is to demonstrate that LapDiff’s adaptive prior mechanism leads to universally strong perfor-163

mance across diverse graph learning tasks. We then analyze the contribution of its core components.164

We evaluate LapDiff on seven benchmark datasets including Open Graph Benchmark (OGB), cover-165

ing two diverse network graph learning tasks: link prediction and node classification. For evaluation,166

we follow the standard OGB protocols, using Hits@K and MRR for link prediction, and accuracy for167

node classification. For node classification, we adopt a challenging few-shot setting with a fixed num-168

ber of labeled nodes k ∈ {1, 5, 10} per class to test representation power under extreme label scarcity.169

We compare LapDiff against a comprehensive set of baselines, including heuristic methods, classic170

GNNs (GCN, GAT, GraphSAGE), and recent specialized architectures (SEAL, Neo-GNNs, C&S,171

GraphMAE2). Experimental details are provided in the Appendix. An anonymized implementation172

is available at https://anonymous.4open.science/r/NPGMLworkshop2025CDF2173
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Table 1: Link prediction performances on Open Graph Benchmark (OGB) datasets. OOM denotes
’out of memory’. Bold underline indicates the best performance and bold indicates the second best
performance.

Model OGB-PPA OGB-Collab OGB-DDI OGB-Citation2

Neighborhoood Heuristics
Common Neighbors 27.65± 0.00 50.06± 0.00 17.73± 0.00 76.20± 0.0

Adamic Adar 32.45± 0.00 53.00± 0.00 18.61± 0.00 76.12± 0.0
Resource Allocation 49.33± 0.00 52.89± 0.00 6.23± 0.00 76.20± 0.0

Shallow Methods Matrix Factorization 23.78± 1.82 34.87± 0.23 13.29± 2.32 50.48± 3.09
MLP 0.99± 0.15 16.05± 0.48 N/A 25.13± 0.28

GRL Methods

GCN 15.37± 1.25 44.57± 0.64 40.87± 6.08 82.57± 0.26
GAT OOM 41.73± 1.01 32.57± 3.48 OOM

SAGE 12.51± 2.02 47.86± 0.64 47.06± 5.21 80.18± 0.15
JKNet 11.73± 1.98 47.52± 0.73 57.95± 7.69 OOM
SEAL 47.18± 3.60 54.27± 0.46 29.86± 4.37 86.72± 0.31

Neo-GNN 47.53± 0.63 53.95± 0.52 60.02± 3.86 85.96± 0.94
DDM 17.93± 1.91 49.56± 1.79 47.73± 3.10 83.51± 0.20

LapDiff(ours) 48.32± 0.68 54.33± 0.35 60.56± 2.32 86.70± 0.27

Table 2: Node classification performance on OGB-Arxiv, OGB-Products, and PubMed dataset. OOM
denotes ’out of memory’. Bold indicates the best performance.

Model OGB-Arxiv OGB-Products PubMed
Fixed k nodes k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

GCN 31.69± 2.74 52.97± 0.94 58.39± 0.50 38.93± 2.09 62.69± 1.27 66.23± 0.91 45.87± 2.44 60.56± 1.44 69.50± 0.68
GAT 25.60± 2.95 50.87± 1.78 57.23± 0.75 35.81± 2.42 60.72± 1.93 64.80± 1.21 43.57± 2.71 58.38± 2.06 68.40± 1.49

APPNP 29.36± 2.19 52.47± 1.26 56.42± 0.83 36.35± 2.20 63.01± 2.10 66.85± 0.84 43.04± 1.72 56.94± 1.90 69.99± 0.73
GCNII 30.94± 2.30 51.94± 1.18 57.65± 0.94 33.64± 2.32 61.43± 2.36 64.90± 1.39 43.29± 2.53 56.18± 1.84 70.60± 0.93
C&S 30.63± 1.88 51.73± 1.30 56.57± 1.43 40.47± 1.97 62.18± 1.57 67.53± 1.40 44.91± 1.24 57.44± 1.36 68.78± 1.07

CCA-SSG 29.21± 3.01 51.67± 2.31 57.40± 0.89 39.95± 2.67 63.10± 2.13 67.62± 1.56 47.56± 3.15 60.44± 2.60 69.24± 0.68
GraphMAE2 33.83± 3.23 54.67± 2.32 60.16± 0.75 41.65± 2.01 63.69± 2.30 68.08± 1.62 50.76± 5.10 64.29± 0.11 70.51± 0.11

DDM 36.08± 0.93 55.69± 1.41 60.71± 0.31 45.57± 1.28 64.90± 1.03 69.62± 0.15 50.95± 2.42 65.13± 0.10 70.12± 0.56
LapDiff(ours) 39.04± 1.52 57.83± 0.83 61.23± 0.37 49.10± 1.75 67.47± 1.03 70.69± 0.61 53.82± 1.46 66.93± 0.88 72.77± 0.62

4.1 Performance on Downstream tasks174

Across all link prediction and node classification benchmarks, LapDiff consistently outperforms task-175

specific baselines, indicating it captures both structural and feature-level priors without hand-crafted176

biases. This robustness across diverse tasks and datasets confirms its ability to learn broadly general-177

izable graph representations, emphasizing LapDiff’s utility for diverse graph-learning applications.178

Link prediction. Table 1 reports the results of OGB link prediction benchmarks. Our LapDiff179

generally shows significantly improved performance than other baselines on OGB-Collab and OGB-180

DDI datasets and second-best performance on OGB-PPA and OGB-CItation2 with low discrepancy181

to the best models. This indicates our LapDiff is capable of capturing latent graph priors that182

are crucial in the context of link prediction tasks and data. Additionally, LapDiff demonstrates183

robust performance across various datasets. LapDiff has the ability to handle both underlying prior184

distribution and internal biases in graph structures and node features. For instance, LapDiff achieves185

the best performance on OGB-DDI, whereas SEAL, which is designed to generalize higher-order186

structural heuristics shows relatively poor performance. This result illustrates that existing GNNs187

often show degradation under conditions that are distinct from their intrinsic objectives. Thus, it188

highlights that our model effectively learn latent representations with hidden, complex aspects that189

are captured by latent priors in a graph naturally regarding certain objectives.190

Node classification. We conduct experiments on semi-supervised node classification benchmark191

datasets to validate the effectiveness of LapDiff on learning node embeddings. We constrained the192

training index by the fixed k nodes per label. The number k is set to 1, 5, and 10. Table 2 shows the193

performance of a semi-supervised node classification task that is extremely limited to label scarcity.194

LapDiff outperforms other baselines on all datasets and settings. According to the results, LapDiff195

effectively captures the latent distribution of nodes, even under very constrained conditions.196

4.2 Analysis on Components197

We empirically validate the efficacy of each component in LapDiff through ablation experiments198

in Table 3. First, we demonstrate the capability of LapDiff to capture universal and comprehensive199

representation by training without downstream task loss. It is remarkable that it still shows a relatively200
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Table 3: Ablation study analyzing the efficacy
of each component of LapDiff.

Dataset OGB-Collab OGB-PPA

LapDiff 54.33± 0.37 48.87± 0.64
LapDiff (w/o downstream loss) 51.78± 0.40 44.92± 1.52
LapDiff (w/o feature process) 45.13± 2.33 39.77± 1.13
LapDiff (w/o structure process) 45.47± 3.02 26.42± 2.30

Table 4: Analysis on the efficacy of noise
source. As other baselines only consider node
features, the structure process in LapDiff is
excluded from evaluation.

Dataset OGB-Collab OGB-Arxiv (k = 5)
Metric Hits@50 Accuracy

LapDiff (Laplacian smoothing) 52.30± 0.97 57.02± 0.79
DDPM (Random noise) 47.43± 1.58 53.38± 1.02
DDM (Anisotropic noise) 49.56± 1.79 55.69± 1.41

high performance than LapDiff without feature process or structure process. Also, it is interesting that201

it still outperforms conventional GNNs including GCN, GAT, SAGE, and JKNet. This result implies202

that LapDiff is capable of learning critical latent representations within a graph that are significant by203

aligning hidden graph priors.204

Then, we evaluate LapDiff without the feature diffusion process and structural diffusion process based205

on the average performance on link prediction datasets. LapDiff without feature diffusion process206

and LapDiff without structural diffusion process both show degraded performance on OGB-Collab207

and OGB-PPA.208

4.3 Analysis on Noise Source209

Table 4 presents an analysis of the efficacy of different noise sources to capture underlying latent priors210

dynamically aligning to the internal structures of task and dataset. The noise sources compared to211

Laplacian smoothing are random Gaussian noise from DDPM [24] and Anisotropic Gaussian noise in212

DDM [25]. The effectiveness of each noise source is evaluated for link prediction and semi-supervised213

node classification tasks on OGB-Collab and OGB-Arxiv datasets, respectively. On both datasets,214

Laplacian smoothing outperforms the other two noise sources. It achieves a score of 52.30 on the215

OGB-Collab dataset and 57.02 on the OGB-Arxiv dataset. Compared to random Gaussian noise and216

anisotropic Gaussian noise, Laplacian smoothing shows a clear advantage. For instance, it exceeds217

random Gaussian Noise by nearly 5 percentage points and exceeds anisotropic Gaussian noise by over218

3 percentage points on OGB-Collab dataset. These results indicate that utilizing Laplacian smoothing219

as a noise source is not only effective but also consistent, offering a significant improvement over other220

random noise. It provides strong empirical evidence of the efficacy of Laplacian smoothing as a noise221

source in a diffusion model for graph representation learning tasks, specifically for large graph data.222

Figure 2: Visualization of graph reconstruction on
PubMed at every even number time step. To improve
the visibility of the figure, we sampled the subgraph of
PubMed with large connectivity.

223

4.4 Underlying Distribution of Graph224

The goal of LapDiff is to learn universal and225

generalizable representations that are aligned226

with the underlying distribution of large graph227

data. To validate the capability to learn priors228

of network graphs and implicitly aligned with229

inherent priors, Fig 2 provides the visualization230

of the reconstruction of a graph on PubMed dataset at each even number of states. As shown in Fig231

2, the trajectory of reconstruction is directed toward the input state, eventually, showing a similar232

structure at t = 2 compared to the input graph t = 0.233

5 Conclusion234

We introduced LAPDIFF, a diffusion-based framework for graph representation learning that in-235

stantiates adaptive inductive bias via Laplacian smoothing and stochastic structural perturbations.236

LAPDIFF learns a graph-specific prior instead of relying on hand-crafted assumptions. Across diverse237

benchmarks, it delivers strong performance and provides evidence toward more universal graph238

learners. Future work includes exploring richer structure-aware noise processes and theoretically239

analyzing the properties of the learned graph priors (e.g., does pθ(z|G)). Our work encourage further240

research on adaptive inductive bias universal representation in graph machine learning.241
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A Derivation of Loss function of LapDiff346

This section provides a derivation of the variational lower bound (ELBO) and the loss function of our347

proposed model, LapDiff.348

A.1 Derivation of Evidence Lower Bound (ELBO)349

Let G0 represent a given observed graph data consisting of X and A, denoting node feature matrix350

and adjacency matrix, respectively. Taking the log-likelihood log p(G0) = log p(X0, A0), we obtain351

log pθ(X0, A0) = log

∫
pθ(X0:T , A0:T ) dX1:T dA1:T

≥
∫
q(X1:T , A1:T |X0, A0) log

pθ(X0:T , A0:T )

q(X1:T , A1:T |X0, A0)
dG1:T

(by variational posterior and Jensen’s inequality)

= Eq(X1:T ,A1:T |X0,A0)

[
log

pθ(X0:T , A0:T )

q(X1:T , A1:T |X0, A0)

]
(9)

For simplifying the notation, dG1:T = dX1:T dA1:T and Eq = Eq(X1:T ,A1:T |X0,A0). The variational352

lower bound (ELBO) is obtained as follows:353

ELBO:=Eq

[
log

pθ(X0:T , A0:T )

q(X1:T , A1:T |X0, A0)

]
(10)

= Eq

log
pθ(XT , AT)

T∏
t=1

pθ(Xt−1|Xt, At)·pθ(At−1|Xt, At)

T∏
t=1

q(Xt|Xt−1)·q(At|At−1)

 (11)

= Eq

[
log pθ(XT,AT )

+

T∑
t=1

log
pθ(Xt−1|Xt, At)·pθ(At−1|Xt, At)

q(Xt|Xt−1)·q(At|At−1)

]
(12)

Then, we could separate t = 1 and t ≥ 2 because t = 1 indicates the reconstruction to the given354

data G0 = (X0, A0). Next, we flip latent variables in the variational posterior q. We reparametrize355

q(Xt|Xt−1), q(At|At−1) to q(Xt−1|Xt, X0), q(At−1|At, A0), respectively. Specifically, Markov356

chain properties formalize q(Xt|Xt−1) = q(Xt−1|Xt, X0)
q(Xt|X0)

q(Xt−1|X0)
and this holds in A as well.357
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The second term can be rewritten as358

T∑
t=2

log
pθ(Xt−1|Xt, At)·pθ(At−1|Xt, At)

q(Xt−1|Xt, X0)·q(At−1|At, A0)

+

T∑
t=2

log
q(Xt−1|X0)·q(At−1|A0)

q(Xt|X0)·q(At|A0)
(13)

=

T∑
t=2

[
log

pθ(Xt−1|Xt, At)·pθ(At−1|Xt, At)

q(Xt−1|Xt, X0)·q(At−1|At, A0)

+ log
q(X1|X0)

�����q(X2|X0)
·�����q(X2|X0)

�����q(X3|X0)
. . .(

(((((q(XT−2|X0)

((((((q(XT−1|X0)
·((((((q(XT−1|X0)

q(XT |X0)

+ log
q(A1|A0)

�����q(A2|A0)
·�����q(A2|A0)

�����q(A3|A0)
. . .(

(((((q(AT−2|A0)

((((((q(AT−1|A0)
·((((((q(AT−1|A0)

q(AT |A0)

]
. (14)

Then, the ELBO is derived as follows:359

ELBO = Eq

[
log pθ(XT , AT )

+

T∑
t=2

log
pθ(Xt−1|Xt, At) · pθ(At−1|Xt, At)

q(Xt−1|Xt, X0) · q(At−1|At, A0)

+ log �����q(X1|X0) ·�����q(A1|A0)

q(XT |X0) · q(AT |A0)
+log

pθ(X0|X1, A1) · pθ(A0|X1, A1)

�����q(X1|X0) ·�����q(A1|A0)

]
(15)

= Eq

 constant

log
pθ(XT , AT )

q(XT |X0) · q(AT |A0)

+

T∑
t=2

log
pθ(Xt−1|Xt, At) · pθ(At−1|Xt, At)

q(Xt−1|Xt, X0) · q(At−1|At, A0)

+ log pθ(X0|X1, A1) · pθ(A0|X1, A1)

]
(16)

The first term is not trainable. Since the degree of noise injection in the forward process is fixed and360

not optimized during training, it can be treated as a constant. The second term is equivalent to the361

definition of KL divergence, thus the final form of the ELBO of the model is362

ELBO = Eq

[
log pθ(X0|X1, A1) + log pθ(A0|X1, A1)

−
∑
t≥2

KL [q(Xt−1|Xt, X0)∥pθ(Xt−1|Xt, At)]

−
∑
t≥2

KL [q(At−1|At, A0)∥pθ(At−1|Xt, At)]
] (17)

A.2 Variational Posterior363

In our proposed model, the feature-level and structural diffusion processes are designed to be Markov364

chains, meaning the noisy data at each timestep t depends only on the state at t− 1. In the context of365

the forward diffusion processes implies:366

q(Xt|X0, X1, . . . , Xt−1, A0) = q(Xt|Xt−1,
Fixed

��A0 ) (18)
q(At|A0, A1, . . . , At−1) = q(At|At−1), (19)
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where the noise source, Laplacian smoothing, is fixed with A0. By the definition of Markov chains,367

we can remove A0, which serves the role of a fixed noise schedule. Also, recall that we defined noise368

in the feature-level diffusion process as369

q(Xt|Xt−1) : = (I −D−1L)tX0 = (I −D−1L)Xt−1

q(X1:T |X0) =

T∏
t=1

q(Xt|X0) =

T∏
t=1

q(Xt|Xt−1). (20)

Start from the joint conditional distribution of all Xt and At, given X0, A0:370

q(X1:T ,A1:T |X0, A0)

=q(X1, X2, . . . , XT , A1, A2, . . . , AT |X0, A0).
(21)

By the chain rule, Eq (21) equals371

q(X1|X0)q(A1|A0) · q(X2|X0, X1)q(A2|A0, A1)

. . . q(XT |X0, . . . , XT−1)q(AT |A0, . . . , AT−1).
(22)

By applying the Markov chain property that each Xt, At only depends on Xt−1, At−1:372

q(X1:T , A1:T |X0, A0) =

T∏
t=1

q(Xt|Xt−1) · q(At|At−1) (23)

A.3 Approximation to Laplacian Difference Prediction373

For one undirected edges (i, j), let the one-edge KL be374

pij = q
(
At−1,ij = 1 | At, A0

)
, p̂ij = pθ

(
At−1,ij = 1 | Gt

)
. (24)

The Bernoulli Kullback–Leibler term that appears in the ELBO can be rewritten as375

DKL

(
pij ∥ p̂ij

)
= pij log

pij
p̂ij

+ (1− pij) log
1− pij
1− p̂ij

. (25)

Fix the target probability pij ∈ (0, 1) and leverage Taylor expansion, ε := p̂ij − pij . Because the376

first derivative vanishes at ε = 0 and the second derivative equals 1
pij(1−pij)

,377

DKL

(
pij ∥ pij + ε

)
=

ε2

2 pij(1− pij)
+O(ε3) (26)

whenever |ε| < min{pij , 1− pij}. Thus to second order the KL is proportional to the squared error378 (
pij − p̂ij

)2
.379

For a random adjacency matrix A with edge–existence probabilities q the expected combinatorial380

Laplacian is381

L̄(q) = diag
(∑

k

q1k, . . .
)
− q. (27)

For off-diagonal entries (i ̸= j): L̄(q)ij = − qij . Therefore, we can obtain382

pij − p̂ij = −( L̄(p)ij − L̄(p̂)ij ). (28)

Then all edges can be summed over:383 ∑
i<j

DKL

(
pij ∥ p̂ij

) (2)
=

1

2

∑
i<j

(
L̄(p)ij − L̄(p̂)ij

)2
pij(1− pij)

+O
(
∥L̄(p)− L̄(p̂)∥3F

)
.

(29)

Assume every posterior edge probability is clipped away from 0, 1: pij ∈ [ε, 1− ε] for some fixed384

0 < ε < 1
2 . Then385

pij(1− pij) ≥ ε(1− ε)

=⇒ DKL(pij ∥ p̂ij) ≤ cε
(
L̄(p)ij − L̄(p̂)ij

)2
,

(30)
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with cε =
1

2ε(1−ε) . Using the Frobenius norm of a symmetric matrix and (non-overlapping) edges:386

Ledge_KL :=
∑
i<j

DKL(pij ∥ p̂ij) ≤ cε
∥∥L̄(p)− L̄(p̂)

∥∥2
F (31)

Hence, minimizing the Laplacian MSE upper–bounds the exact edge-wise KL.387

At training time we see a single Laplacian Lt−1 = D(At−1) − At−1 drawn from the posterior388

q(At−1 | At, A0). Its expectation is L̄(p) and its entry-wise variance is O(βt), the forward step size.389

For small βt we can drop that noise and use390

L̄(p) ≈ L0 − Lt−1,

because the forward diffusion from At−1 to At removes each edge with probability βt, so the391

expected difference to the clean graph is L0 − Lt−1.392

Step 6: Define the practical surrogate loss393

Let fθ(Xt, At) be the GNN output that tries to recover (L0 − Lt−1). Combining (5) and (6):394

LLap := λ
∥∥fθ(Xt, At)− (L0 − Lt−1)

∥∥2
2
, λ ≥ cε.

Because it is an upper bound of the true KL term in the ELBO, driving LLap to zero also drives395

the Bernoulli KL towards zero. Empirically the continuous, degree-coupled signal contained in the396

Laplacian makes gradients less noisy and optimisation easier than edge-wise cross-entropy.397

Therefore the Laplacian-MSE loss you observe to work well is mathematically a second-order398

surrogate—and an upper bound—for the exact ELBO term that compares adjacency posteriors.399

Minimising it is guaranteed to minimise, up to a bounded factor, the information-theoretic quantity400

we truly care about.401

A.4 Training of LapDiff with denoising network402

The training procedure of LapDiff is described as Algorithm 1.

Algorithm 1 Training LapDiff
Input: Large graph G=(X,A)

1: for k = 1 to T do
2: Xk−1 ← (I −D−1L)k−1X
3: Xk ← (I −D−1L)kX
4: Ak ∼ B(Ak−1; pk−1)
5: θk−1 ← θk − η∇θ[Lfeat(fθk(Xk, Ak), Xk−1) + Lstruct(fθk(Xk, Ak), Ak−1)]
6: end for
7: θ ← η∇θLtask(fθ0(X,A), Ytask)

403

B Hyperparameter Sensitivity Analysis404

We analyze LapDiff to demonstrate how hyperparameters affect the performance of LapDiff. We405

conduct experiments with 4 hyperparameters in LapDiff loss function, LLapDiff. βt, β1, γ and λ is406

weighting hyperparameters for Lfeat, Lfeat-recon, LLap, and Lrecon, respectively. We measure Hits@50407

by changing one hyperparameter while the rest of the hyperparameters are fixed to the best value.408

The result (Figure. 3) demonstrates that LapDiff is fairly robust to hyperparameters that weight the409

components of LapDiff loss LLapDiff. Accordingly, hyperparameters affect the performance of LapDiff410

slightly. Consequently, we can conclude that the performances of LapDiff are fairly consistent under411

various hyperparameter sets.412

C Experimental Setting Details413

Datasets. To validate our models, we utilize Open Graph Benchmark (OGB) dataset for link414

prediction tasks and node classification tasks [8]. We use four OGB link property datasets for415
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Figure 3: Visualization of hyperparameter sensitivity analysis on OGB-Collab.

link prediction tasks: OGB-PPA, OGB-Collab, OGB-DDI, and OGB-Citation2. OGB-PPA is an416

undirected and unweighted graph representing protein association. Nodes are proteins from different417

specifies and edges mean biological associations. Each node feature is a one-hot vector indicating418

the species to which the protein belongs. OGB-Collab is an undirected graph, which represents a419

collaboration network where edges denote collaborations between authors. OGB-DDI is an undirected,420

unweighted graph that contains drug-drug interactions, with edges indicating interactions such as421

combined effects. Note that this dataset lacks node features. OGB-Citation2 is a citation network422

graph with direction. Each node in the graph corresponds to a paper, and a directed edge indicates423

that one paper cites another. Both OGB-Citation2 and OGB-Collab include node features obtained424

from embedding models. For node classification tasks, we use three benchmark datasets: OGB-Arxiv,425

OGB-Products, and PubMed.426

Evaluation. According to the evaluation protocol of OGB, we evaluate our model with Hits@K427

metric and Mean reciprocal rank (MRR) in link prediction. Hits@K is based on ranking positive428

test edges against randomly sampled negative edges. The ranking performance is measured by the429

ratio of positive test edges ranked at or above the K-th position. In OGB-PPA, the K-th position is430

set to 100, while for OGB-Collab and OGB-DDI, it is set to 50 and 20, respectively. The evaluation431

metric for OGB-Citation2 is MRR. It calculates the reciprocal rank of the true edges within the pool432

of negative candidates for each source node and then averages these values across all source nodes.433

To further demonstrate the ability to learn compendious underlying structures in node classification,434

we constrain a fixed k-nodes setting by vastly reducing the number of nodes per label in train sets.435

Under this setting, accuracy measures the performance on OGB-Arxiv, OGB-Products, and PubMed.436

Baselines. For baselines on link prediction, we include prevalent GNN-based models: GCN [13],437

GAT [14], GraphSAGE [26], JKNet [27], Variational Graph Autoencoder [28], SEAL [5], Neo-GNNs438

[6], and DDM. Note that SEAL extract enclosing subgraph to utilize in link prediction. Additionally,439

three link prediction heuristics [29–31], Matrix factorization [32], and Multi-layer perceptron [33]440

are included in baselines. Baseline models for semi-supervised node classification include GCN,441

GAT, APPNP [34], GCNII [35], and Correct&Smooth (C&S) [36]. We also compare LapDiff with442

self-supervised graph learning methods, CCA-SSG [37], and generative method GraphMAE2 [38].443
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Implementation Details. We implemented link prediction heuristics, such as Common Neigh-444

bor(CN), Adamic Adar(AA), and Resource Allocation(RA), based on the paper [29–31]. For GCN,445

GraphSAGE, GAT, JKNet, APPNP, GCNII, and MLP we used the implementation in PyTorch Geo-446

metric [39], and for SEAL and C&S, we used the implementation from the official repository. We447

trained LapDiff with a 2-layer LapDiff encoder with latent Laplacian parameters and 3-layer MLP de-448

coder for OGB-Collab, OGB-DDI, OGB-PPA, and OGB-Citation2. For OGB-Arxiv, OGB-Products,449

and PubMed, we used 3-layer LapDiff encoder and 3-layer MLP decoder. For the link prediction task,450

we shared the last layer of the decoder as a predictor, and for the node classification task, we utilized451

1 layer MLP as a classifier. Also, we set the diffusion state to 10 for OGB-Collab, OGB-DDI, and452

OGB-PPA, and 3 for OGB-Citation2 due to the dataset’s memory issue. For a fair comparison, we453

reported performances of all baselines and LapDiff as the mean and the standard deviation obtained454

from 10 independent runs with fixed random seed 0, . . . , 9. To simulate a real-world scenario, we did455

not use validation edges as input in OGB-Collab. The experiments are conducted on A100(40GB)456

and A40(48GB).457

D Computational Complexity458

Notation459

• N = |V | : number of nodes ; E = |E| : number of edges.460

• d : input feature dimension ; h : hidden dimension of the denoiser fθ.461

• T : number of diffusion steps (T≪N in practice).462

Diffusion Process Each Laplacian-smoothing step multiplies Xt−1 by (I −D−1L). For a sparse463

adjacency (E=O(N) in large graphs), this costs464

O
(
E d

)
per step =⇒ O

(
T E d

)
overall. (32)

Sampling edges (edge removal) is O(E) per step; overall O(T E). No matrix materialization beyond465

the original sparse A is required. Total (forward).466

O
(
T E (d+ 1)

)
≈ O(T E d)

Reverse (Denoising) Process The denoiser fθ is a 2-layer MLP encoder + 3-layer MLP decoder.467

Given sparse adjacency, each call costs O(E h+N h2). Invoked once per diffusion step, the reverse468

chain costs469

O
(
T (E h+N h2)

)
.

D.1 Overall Time Complexity470

Combining forward and reverse,471

O
(
T
[
E (d+ h) +N h2

])
With typical settings (h≈d, E≫N , T ≤10), the leading term is T E d, comparable to a single pass472

of a conventional L-layer GNN when L≈T .473

D.2 Memory Complexity474

• Parameters. Two MLPs of width h: O(h2), independent of T .475

• Activations. We store Xt and (sparse) At for the current step only, so in-memory activations476

scale as:477

O
(
N d+ E

)
+O(N h) = O

(
N(d+ h) + E

)
.

• Comparison to L-layer GNN. A standard L-layer message-passing GNN stores L intermediate478

node embeddings, yielding O(LN h) memory. LapDiff keeps a single embedding per step and479

can recompute forward activations (checkpointing), requiring at most O(N h)—often smaller480

than a deep GNN when L>T .481

Scalability. With T chosen ≤ 10, LapDiff’s runtime is on par with—or lower than—deep GNNs that482

rely on L≥10 layers. The memory footprint remains modest due to sparse storage and step-wise483

recomputation.484
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E License of the assets485

Our source code is based on PyTorch which was released under Berkeley Software Distribution (BSD)486

License. We implement GNN-based baselines using PyTorch Geometric, a deep learning framework487

licensed under MIT. Additionally, we implement SEAL 1 and GraphMAE 2 from the official GitHub488

repository under MIT License. Both BSD license and MIT license can be used or redistributed under489

stipulated conditions. Moreover, we conduct experiments on four benchmark datasets from Open490

Graph Benchmark (OGB). OGB is released under MIT License. We visualize significant results by491

using Matplotlib where the license is based on Python Software Foundation (PSF) license.492

F Broader Impact493

LapDiff aims to capture latent factors for graph representation learning. It provides a strong foundation494

for future models that aim to understand the rich information of relational data in graphs. Our model495

would not only be capable of discerning the latent structures within graph data but also adept at496

applying this knowledge across a broad spectrum of applications. With its Laplacian smoothing noise497

which is structure-aware, LapDiff contributes to the ongoing discourse on data privacy. By generating498

representations that respect the underlying structure of data without compromising individual privacy,499

LapDiff aligns with the ethical use of data in AI. Also, our model’s versatility suggests broad500

applicability beyond traditional domains, offering potential breakthroughs in any field that benefits501

from understanding complex networks, including neuroscience, epidemiology, and environmental502

studies. However, LapDiff needs to be used carefully for graph representation learning tasks such as503

link prediction or node classification in social networks where privacy and anonymity are important.504

1https://github.com/facebookresearch/SEAL_OGB
2https://github.com/THUDM/GraphMAE2
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NeurIPS Paper Checklist505

1. Claims506

Question: Do the main claims made in the abstract and introduction accurately reflect the507

paper’s contributions and scope?508

Answer: [Yes]509

Justification: The abstract and introduction explicitly state the development of the LapDiff510

with Laplacian-based diffusion, and the claims match the theoretical derivations and experi-511

ments reported (see Section 1 and 2)512

Guidelines:513

• The answer NA means that the abstract and introduction do not include the claims514

made in the paper.515

• The abstract and/or introduction should clearly state the claims made, including the516

contributions made in the paper and important assumptions and limitations. A No or517

NA answer to this question will not be perceived well by the reviewers.518

• The claims made should match theoretical and experimental results, and reflect how519

much the results can be expected to generalize to other settings.520

• It is fine to include aspirational goals as motivation as long as it is clear that these goals521

are not attained by the paper.522

2. Limitations523

Question: Does the paper discuss the limitations of the work performed by the authors?524

Answer: [Yes]525

Justification: Limitations are mentioned regarding scalability and assumptions in the diffu-526

sion process. (See Section 5)527

Guidelines:528

• The answer NA means that the paper has no limitation while the answer No means that529

the paper has limitations, but those are not discussed in the paper.530

• The authors are encouraged to create a separate "Limitations" section in their paper.531

• The paper should point out any strong assumptions and how robust the results are to532

violations of these assumptions (e.g., independence assumptions, noiseless settings,533

model well-specification, asymptotic approximations only holding locally). The authors534

should reflect on how these assumptions might be violated in practice and what the535

implications would be.536

• The authors should reflect on the scope of the claims made, e.g., if the approach was537

only tested on a few datasets or with a few runs. In general, empirical results often538

depend on implicit assumptions, which should be articulated.539

• The authors should reflect on the factors that influence the performance of the approach.540

For example, a facial recognition algorithm may perform poorly when image resolution541

is low or images are taken in low lighting. Or a speech-to-text system might not be542

used reliably to provide closed captions for online lectures because it fails to handle543

technical jargon.544

• The authors should discuss the computational efficiency of the proposed algorithms545

and how they scale with dataset size.546

• If applicable, the authors should discuss possible limitations of their approach to547

address problems of privacy and fairness.548

• While the authors might fear that complete honesty about limitations might be used by549

reviewers as grounds for rejection, a worse outcome might be that reviewers discover550

limitations that aren’t acknowledged in the paper. The authors should use their best551

judgment and recognize that individual actions in favor of transparency play an impor-552

tant role in developing norms that preserve the integrity of the community. Reviewers553

will be specifically instructed to not penalize honesty concerning limitations.554

3. Theory assumptions and proofs555

Question: For each theoretical result, does the paper provide the full set of assumptions and556

a complete (and correct) proof?557
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Answer: [Yes]558

Justification: The derivations of the ELBO and loss function are presented in detail in the559

Appendix. Assumptions about Markov properties and Laplacian smoothing are clearly560

stated.561

Guidelines:562

• The answer NA means that the paper does not include theoretical results.563

• All the theorems, formulas, and proofs in the paper should be numbered and cross-564

referenced.565

• All assumptions should be clearly stated or referenced in the statement of any theorems.566

• The proofs can either appear in the main paper or the supplemental material, but if567

they appear in the supplemental material, the authors are encouraged to provide a short568

proof sketch to provide intuition.569

• Inversely, any informal proof provided in the core of the paper should be complemented570

by formal proofs provided in appendix or supplemental material.571

• Theorems and Lemmas that the proof relies upon should be properly referenced.572

4. Experimental result reproducibility573

Question: Does the paper fully disclose all the information needed to reproduce the main ex-574

perimental results of the paper to the extent that it affects the main claims and/or conclusions575

of the paper (regardless of whether the code and data are provided or not)?576

Answer: [Yes]577

Justification: Experimental settings, datasets (OGB), and baselines are described in the main578

text and Appendix. Hyperparameters and complexity analysis are also provided in Appendix.579

We provide codes as Supplementary.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• If the paper includes experiments, a No answer to this question will not be perceived583

well by the reviewers: Making the paper reproducible is important, regardless of584

whether the code and data are provided or not.585

• If the contribution is a dataset and/or model, the authors should describe the steps taken586

to make their results reproducible or verifiable.587

• Depending on the contribution, reproducibility can be accomplished in various ways.588

For example, if the contribution is a novel architecture, describing the architecture fully589

might suffice, or if the contribution is a specific model and empirical evaluation, it may590

be necessary to either make it possible for others to replicate the model with the same591

dataset, or provide access to the model. In general. releasing code and data is often592

one good way to accomplish this, but reproducibility can also be provided via detailed593

instructions for how to replicate the results, access to a hosted model (e.g., in the case594

of a large language model), releasing of a model checkpoint, or other means that are595

appropriate to the research performed.596

• While NeurIPS does not require releasing code, the conference does require all submis-597

sions to provide some reasonable avenue for reproducibility, which may depend on the598

nature of the contribution. For example599

(a) If the contribution is primarily a new algorithm, the paper should make it clear how600

to reproduce that algorithm.601

(b) If the contribution is primarily a new model architecture, the paper should describe602

the architecture clearly and fully.603

(c) If the contribution is a new model (e.g., a large language model), then there should604

either be a way to access this model for reproducing the results or a way to reproduce605

the model (e.g., with an open-source dataset or instructions for how to construct606

the dataset).607

(d) We recognize that reproducibility may be tricky in some cases, in which case608

authors are welcome to describe the particular way they provide for reproducibility.609

In the case of closed-source models, it may be that access to the model is limited in610

some way (e.g., to registered users), but it should be possible for other researchers611

to have some path to reproducing or verifying the results.612
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5. Open access to data and code613

Question: Does the paper provide open access to the data and code, with sufficient instruc-614

tions to faithfully reproduce the main experimental results, as described in supplemental615

material?616

Answer: [Yes]617

Justification: The paper states that implementations are based on PyTorch and PyTorch618

Geometric with clear licenses (Appendix), but the code is released only to reviewers at619

submission time.620

Guidelines:621

• The answer NA means that paper does not include experiments requiring code.622

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/623

public/guides/CodeSubmissionPolicy) for more details.624

• While we encourage the release of code and data, we understand that this might not be625

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not626

including code, unless this is central to the contribution (e.g., for a new open-source627

benchmark).628

• The instructions should contain the exact command and environment needed to run to629

reproduce the results. See the NeurIPS code and data submission guidelines (https:630

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.631

• The authors should provide instructions on data access and preparation, including how632

to access the raw data, preprocessed data, intermediate data, and generated data, etc.633

• The authors should provide scripts to reproduce all experimental results for the new634

proposed method and baselines. If only a subset of experiments are reproducible, they635

should state which ones are omitted from the script and why.636

• At submission time, to preserve anonymity, the authors should release anonymized637

versions (if applicable).638

• Providing as much information as possible in supplemental material (appended to the639

paper) is recommended, but including URLs to data and code is permitted.640

6. Experimental setting/details641

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-642

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the643

results?644

Answer: [Yes]645

Justification: Training procedures, loss components, and hyperparameter sensitivity analyses646

are described in Appendix. Optimizer details are also outlined in Algorithm 1.647

Guidelines:648

• The answer NA means that the paper does not include experiments.649

• The experimental setting should be presented in the core of the paper to a level of detail650

that is necessary to appreciate the results and make sense of them.651

• The full details can be provided either with the code, in appendix, or as supplemental652

material.653

7. Experiment statistical significance654

Question: Does the paper report error bars suitably and correctly defined or other appropriate655

information about the statistical significance of the experiments?656

Answer: [Yes]657

Justification: The results are provided with mean and standard deviation under 10 fixed runs.658

Guidelines:659

• The answer NA means that the paper does not include experiments.660

• The authors should answer "Yes" if the results are accompanied by error bars, confi-661

dence intervals, or statistical significance tests, at least for the experiments that support662

the main claims of the paper.663
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• The factors of variability that the error bars are capturing should be clearly stated (for664

example, train/test split, initialization, random drawing of some parameter, or overall665

run with given experimental conditions).666

• The method for calculating the error bars should be explained (closed form formula,667

call to a library function, bootstrap, etc.)668

• The assumptions made should be given (e.g., Normally distributed errors).669

• It should be clear whether the error bar is the standard deviation or the standard error670

of the mean.671

• It is OK to report 1-sigma error bars, but one should state it. The authors should672

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis673

of Normality of errors is not verified.674

• For asymmetric distributions, the authors should be careful not to show in tables or675

figures symmetric error bars that would yield results that are out of range (e.g. negative676

error rates).677

• If error bars are reported in tables or plots, The authors should explain in the text how678

they were calculated and reference the corresponding figures or tables in the text.679

8. Experiments compute resources680

Question: For each experiment, does the paper provide sufficient information on the com-681

puter resources (type of compute workers, memory, time of execution) needed to reproduce682

the experiments?683

Answer: [Yes]684

Justification: Computational and memory complexity analyses, GPU are detailed in Ap-685

pendix.686

Guidelines:687

• The answer NA means that the paper does not include experiments.688

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,689

or cloud provider, including relevant memory and storage.690

• The paper should provide the amount of compute required for each of the individual691

experimental runs as well as estimate the total compute.692

• The paper should disclose whether the full research project required more compute693

than the experiments reported in the paper (e.g., preliminary or failed experiments that694

didn’t make it into the paper).695

9. Code of ethics696

Question: Does the research conducted in the paper conform, in every respect, with the697

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?698

Answer: [Yes]699

Justification: The datasets (OGB) and libraries used are all properly licensed. No ethical700

violations are apparent in the methodology.701

Guidelines:702

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.703

• If the authors answer No, they should explain the special circumstances that require a704

deviation from the Code of Ethics.705

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-706

eration due to laws or regulations in their jurisdiction).707

10. Broader impacts708

Question: Does the paper discuss both potential positive societal impacts and negative709

societal impacts of the work performed?710

Answer: [Yes]711

Justification: In Appendix, we discussed privacy implications and broad applicability. Nega-712

tive societal impacts such as misuse are only briefly mentioned, but at least acknowledged.713

Guidelines:714
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• The answer NA means that there is no societal impact of the work performed.715

• If the authors answer NA or No, they should explain why their work has no societal716

impact or why the paper does not address societal impact.717

• Examples of negative societal impacts include potential malicious or unintended uses718

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations719

(e.g., deployment of technologies that could make decisions that unfairly impact specific720

groups), privacy considerations, and security considerations.721

• The conference expects that many papers will be foundational research and not tied722

to particular applications, let alone deployments. However, if there is a direct path to723

any negative applications, the authors should point it out. For example, it is legitimate724

to point out that an improvement in the quality of generative models could be used to725

generate deepfakes for disinformation. On the other hand, it is not needed to point out726

that a generic algorithm for optimizing neural networks could enable people to train727

models that generate Deepfakes faster.728

• The authors should consider possible harms that could arise when the technology is729

being used as intended and functioning correctly, harms that could arise when the730

technology is being used as intended but gives incorrect results, and harms following731

from (intentional or unintentional) misuse of the technology.732

• If there are negative societal impacts, the authors could also discuss possible mitigation733

strategies (e.g., gated release of models, providing defenses in addition to attacks,734

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from735

feedback over time, improving the efficiency and accessibility of ML).736

11. Safeguards737

Question: Does the paper describe safeguards that have been put in place for responsible738

release of data or models that have a high risk for misuse (e.g., pretrained language models,739

image generators, or scraped datasets)?740

Answer: [NA]741

Justification: The model is not released as a pretrained asset with high misuse risk. Only742

standard datasets and code bases are used.743

Guidelines:744

• The answer NA means that the paper poses no such risks.745

• Released models that have a high risk for misuse or dual-use should be released with746

necessary safeguards to allow for controlled use of the model, for example by requiring747

that users adhere to usage guidelines or restrictions to access the model or implementing748

safety filters.749

• Datasets that have been scraped from the Internet could pose safety risks. The authors750

should describe how they avoided releasing unsafe images.751

• We recognize that providing effective safeguards is challenging, and many papers do752

not require this, but we encourage authors to take this into account and make a best753

faith effort.754

12. Licenses for existing assets755

Question: Are the creators or original owners of assets (e.g., code, data, models), used in756

the paper, properly credited and are the license and terms of use explicitly mentioned and757

properly respected?758

Answer: [Yes]759

Justification: Appendix E provides details about BSD/MIT/PSF licenses of all used assets760

and repositories.761

Guidelines:762

• The answer NA means that the paper does not use existing assets.763

• The authors should cite the original paper that produced the code package or dataset.764

• The authors should state which version of the asset is used and, if possible, include a765

URL.766

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.767
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• For scraped data from a particular source (e.g., website), the copyright and terms of768

service of that source should be provided.769

• If assets are released, the license, copyright information, and terms of use in the770

package should be provided. For popular datasets, paperswithcode.com/datasets771

has curated licenses for some datasets. Their licensing guide can help determine the772

license of a dataset.773

• For existing datasets that are re-packaged, both the original license and the license of774

the derived asset (if it has changed) should be provided.775

• If this information is not available online, the authors are encouraged to reach out to776

the asset’s creators.777

13. New assets778

Question: Are new assets introduced in the paper well documented and is the documentation779

provided alongside the assets?780

Answer: [NA]781

Justification: No new datasets or assets are introduced.782

Guidelines:783

• The answer NA means that the paper does not release new assets.784

• Researchers should communicate the details of the dataset/code/model as part of their785

submissions via structured templates. This includes details about training, license,786

limitations, etc.787

• The paper should discuss whether and how consent was obtained from people whose788

asset is used.789

• At submission time, remember to anonymize your assets (if applicable). You can either790

create an anonymized URL or include an anonymized zip file.791

14. Crowdsourcing and research with human subjects792

Question: For crowdsourcing experiments and research with human subjects, does the paper793

include the full text of instructions given to participants and screenshots, if applicable, as794

well as details about compensation (if any)?795

Answer: [NA]796

Justification: The paper does not involve human subjects or crowdsourcing.797

Guidelines:798

• The answer NA means that the paper does not involve crowdsourcing nor research with799

human subjects.800

• Including this information in the supplemental material is fine, but if the main contribu-801

tion of the paper involves human subjects, then as much detail as possible should be802

included in the main paper.803

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,804

or other labor should be paid at least the minimum wage in the country of the data805

collector.806

15. Institutional review board (IRB) approvals or equivalent for research with human807

subjects808

Question: Does the paper describe potential risks incurred by study participants, whether809

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)810

approvals (or an equivalent approval/review based on the requirements of your country or811

institution) were obtained?812

Answer: [NA]813

Justification: The research does not involve human subjects.814

Guidelines:815

• The answer NA means that the paper does not involve crowdsourcing nor research with816

human subjects.817
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• Depending on the country in which research is conducted, IRB approval (or equivalent)818

may be required for any human subjects research. If you obtained IRB approval, you819

should clearly state this in the paper.820

• We recognize that the procedures for this may vary significantly between institutions821

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the822

guidelines for their institution.823

• For initial submissions, do not include any information that would break anonymity (if824

applicable), such as the institution conducting the review.825

16. Declaration of LLM usage826

Question: Does the paper describe the usage of LLMs if it is an important, original, or827

non-standard component of the core methods in this research? Note that if the LLM is used828

only for writing, editing, or formatting purposes and does not impact the core methodology,829

scientific rigorousness, or originality of the research, declaration is not required.830

Answer: [NA]831

Justification: LLMs were not used as part of the methodology.832

Guidelines:833

• The answer NA means that the core method development in this research does not834

involve LLMs as any important, original, or non-standard components.835

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)836

for what should or should not be described.837
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