© © N O O A W N =

Laplacian-Guided Denoising Graph Diffusion for
Graph Learning with an Adaptive Prior

Anonymous Author(s)
Affiliation
Address

email

Abstract

Graph representation learning often relies on manually engineered, task-specific
inductive biases, which limit model flexibility and generalization across diverse
tasks. While diffusion models have shown promising ability in capturing arbitrary
distributions, they frequently lack a deep integration of graph structure. To ad-
dress this, we propose the LapDiff, a novel diffusion-based framework that learns
adaptive priors to dynamically align its inductive bias with the intrinsic characteris-
tics of graph-structured data and their tasks. The novelty of LapDiff is its use of
Laplacian smoothing as a structure-aware noise mechanism in the forward process,
complemented by topological perturbations. This design enables the denoising
network to effectively capture the underlying data-generating factors tied to a
graph’s unique structure and features. By capturing priors from a task and data,
LapDiff mitigates the limitations of static biases and enhances task-agnostic gen-
eralization. Extensive experiments on large-scale OGB benchmarks demonstrate
that LapDiff is universally effective for both link prediction and node classification,
achieving state-of-the-art performance and offering a new perspective into graph
representation learning.

1 Introduction

Large-scale network graphs are now foundational data structures across science and industry, from
biological systems [[1]] and drug discovery [2]] to recommender systems [3] and fraud detection [4].
The central challenge in this field is learning effective representations that capture the complex,
non-Euclidean relationships inherent in such data. Graph Neural Networks (GNNs) have emerged as
the dominant paradigm, achieving remarkable success by leveraging strong inductive biases.

However, this reliance on inductive biases is a double-edged sword. The vast majority of GNNs are
built on a fixed assumption, such as homophily—the tendency of connected nodes to be similar. While
effective in some scenarios, this rigid prior leads to significant performance degradation on graphs
with more complex topologies or across different downstream tasks. To compensate, a fragmented
landscape of specialized models has emerged, each with manually engineered biases tailored to
specific tasks, such as subgraph-based features for link prediction (e.g., SEAL [3]) or generalized
graph heuristics (e.g., Neo-GNNs [6]).

This approach merely trades one fixed assumption for another, inherently limiting generalization and
requiring separate models for different tasks, which is impractical for real-world deployment [7]].
The lack of a single, dominant architecture on comprehensive benchmarks like the Open Graph
Benchmark (OGB) [8] highlights this fundamental limitation. For instance, while GCN [9]] achieves
high accuracy on the OGB-PPA node classification task, its performance plummets in OGB-Collab
link prediction, where heuristic-based methods like SEAL [5]] excel. This disparity underscores that

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37

38
39
40
41

42
43
44
45
46
47
48
49

50
51
52

53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68

69

70
71

72
73
74

75
76
77

78

79
80
81
82
83
84
85

fixed, manually-specified priors are a bottleneck for creating truly universal graph representation
learning methods.

This predicament raises a fundamental question: Can we learn powerful graph representations
without manually-designed fixed inductive bias? We argue for a paradigm shift from static, hand-
crafted biases to adaptive ones that emerge as data-driven priors, conditioned directly on the given
task and intrinsic properties of the given graph.

To establish a formal basis for this approach, we first draw intuition from the No-Free-Lunch (NFL)
theorem [[10], which suggests that no single algorithm is universally optimal across all tasks and
data. This implies that a model’s effectiveness is tied to the alignment between its internal prior
and the specific data distribution. To extend beyond the intuition behind the NFL theorem, we use
the PAC-Bayes framework. This theory provides a rigorous foundation for using adaptive priors by
connecting them to a model’s generalization ability. A standard PAC-Bayes generalization bound for
a posterior distribution P over a hypothesis class (e.g., model parameters ¢) and a prior distribution
@ is given by:

B Riruc 0] < BpplResy(0) + 1/ SN /0 1)

where, with probability at least 1 — & over the draw of a training set of size m, the inequality holds for
all priors). Here, Ry,e(0) is a generalization error and Ry, (#) is the training error for a given
parameter set 6.

The crucial insight from this bound is that the generalization error is controlled by two terms:
the training error and a complexity term involving the Kullback-Leibler divergence between the
posterior P and the prior (). To guarantee that a low training error translates to a low generalization
error, the KL(P||@) term must be minimized. Since the posterior P is learned from the data, a
fixed, data-independent prior () may be far from P, resulting in a large KL divergence and a loose
bound. However, the PAC-Bayes framework allows for the use of an adaptive prior Q(G) [11L [12].
By choosing a prior that adapts to a downstream task 7 and an input graph G, we can select a
Q(T,G) that is already close to the expected posterior P, thereby minimizing the KL divergence and
tightening the generalization bound. This provides a principle for learning an adaptive prior in graph
representation learning methods.

This theoretical perspective provides a principled foundation for our goal: to learn graph representa-
tion with an adaptive prior Py(z | T, G). We propose LapDiff, a novel diffusion-based framework
that realizes this objective. LapDiff learns this adaptive prior by parameterizing latent representations
as the outcome of a denoising process grounded in the graph’s intrinsic geometry. Its core innovation
is the use of **Laplacian smoothing as a structure-aware noise mechanism**, a principled way to
infuse structural information into the diffusion process.

Our contributions are summarized as follows:

* We propose a generative framework that learns an adaptive, graph-conditioned prior,
po(z|G), to capture implicit structural and feature-level patterns without handcrafted biases.

¢ We introduce the novel use of Laplacian smoothing as a structure-aware noise mechanism
within a diffusion model, providing a new perspective on encoding graph geometry into
generative processes.

* We empirically demonstrate that LapDiff achieves state-of-the-art performance on diverse
benchmarks for link prediction and node classification, validating the effectiveness of our
adaptive, structure-aware learning approach.

2 Related work

Graph Representation Learning. GNNs like GCN [13] and GAT [14] have achieved strong
performance in node classification by exploiting local aggregation schemes. However, these often
encode fixed assumptions (e.g., homophily), limiting generalization to diverse graph types. While
GRAND [[15]] models feature diffusion as a continuous process, structural signals remain underutilized
in most node-centric models. In contrast, SEAL [5]], Neo-GNNs [6]], and NBFNet [[16] introduce
inductive biases tailored for link prediction via subgraph extraction or path-based heuristics. However,
these methods are narrowly focused on specific tasks.

86
87
88
89
90
91
92

93

94
95
96
97
98
99

100

101
102
103
104
105

107
108
109
110
111
112
113
114
115
116

17
118
119
120
121

122

123
124

125
126
127
128

129
130

131
132

DDPMs on Graph domain. DDPMs have recently been extended to graphs. Prior generative
approaches [[17H19]] modeled node-edge distributions or joint graph likelihoods. Molecular graph
generation works (e.g., [20}[21]) employed categorical and discrete formulations, while [22] proposed
scalable structure perturbations. DDM citeyang2023directional introduced diffusion models for graph
representation learning with anisotropic node feature noise, yet ignored graph structures. Recently,
SGDiff [23]] proposed a subgraph-based diffusion model tailored for link prediction, incorporating
structural context into diffusion.

3 Method

Our model, LapDiff, implicitly learns the adaptive graph prior py(z | G) posited in our theoretical
motivation via a denoising diffusion process. LapDiff consists of two complementary processes: a for-
ward process that incrementally injects structure-aware noise into the input graph Gy = (4o, Xo),
and a reverse process that learns to denoise the corrupted graph to reconstruct an informative
latent representation. This section details both processes and the resulting objective function.

Forward/Diffusion Process

q(GelGe-1)
XX = (- D L)

AKX = (- DY X
(AdAes) = Bl A,

3.1 LapDiff Generative Process

The forward process defines a Markov o\
chain {G;}_, that gradually trans-
forms the initial graph data Gy into over- f
smoothed and noisy graph data at step

T. Unlike standard diffusion models, %

our forward process is designed to be X = i
structure-aware, corrupting both node % =iz zz - i
features and graph topology in a manner o :
that adaptively respects the prior under-

lying in graph data. The reverse process, Flgure. 1: Graphigal Modell of LapDiff. LapDiff leverages the
Laplacian smoothing as noise source of the forward process,
inducing signal diffusion reflecting the important aspect of a
graph structure. This assures noise in graph signals in the feature
space.

parameterized by a neural network fy,
learns to reverse this corruption step-
by-step, effectively learning the data-
generating distribution. We define two
Markov chains for feature and structural
diffusion, ¢(X;.7|Xo) and g(A;.7|Ao), respectively.

Feature Diffusion via Laplacian Smoothing. To corrupt node features while retaining structural
information, we define the forward process noise source using the graph Laplacian. Specifically, we
use iterative Laplacian smoothing, which acts as a low-pass filter on node features, causing them
to dissipate and converge towards an over-smoothed state. The feature matrix X; at timestep t is
obtained as:

X;=(I-aD'L)X;_; = (I-aD L)' X,,)
where L is the graph Laplacian, D is the degree matrix, and « is a scaling factor. For simplicity, we

set o« = 1. This process defines a Markov chain ¢(X1.7|Xo) = HZ;I q(X¢| X¢—1) where the state at
any step ¢t can be computed in closed form from X.

Structural Diffusion via Edge Perturbation. To diffuse the graph topology, we employ stochastic
edge removal. At each step ¢, we sample a subgraph structure by randomly dropping edges from the
previous state A;_; with a removal probability 1 — p. This process gradually sparsifies the graph,
destroying its topological information. The per-edge transition is defined as:

A¢[i, j] ~ Bernoulli(A;—_1[i, j], p) 3)

This defines the structural diffusion process ¢(Aj.7|Ap) = Hthl q(A¢|A¢—1), which ensures that
structural information diffuses over time.

Theoretical Grounding of Laplacian Smoothing. Our choice of Laplacian smoothing as a noise
source is theoretically grounded in spectral graph theory. Given the eigendecomposition of the

133

134
135
136
137
138

139
140

141
142

143
144
145
146
147

148

149

151
152
153
154

155
156

157
158
159

160
161

162

163
164

166
167
168
169
170
171
172
173

Laplacian L = UAU, the feature diffusion in Eq. (@) can be expressed in the spectral domain as:
X, =U(I-aA)'UTX,. “)
The term (I — aA)? acts as a low-pass filter, attenuating high-frequency components of the feature
signal (associated with large eigenvalues \;) more rapidly than low-frequency components (small ;).
This selective, non-uniform information destruction preserves global structural patterns for longer,

forcing the reverse process to learn representations that are deeply tied to the graph’s macro-structure,
unlike isotropic Gaussian noise which degrades all signal components uniformly.

In other words, Laplacian smoothing increases the entropy of the graph signal selectively across the
spectral spectrum. In the spectral domain, the smoothed signal becomes:

@' =[(1—aX)ir, (1—ad)ig, ..., (1 —ay)Zn]. 5
which indicates high-frequency components associated with larger \; of x are reduced more than
low-frequency components.

This selective reduction effectively smooths out rapid variations in the signal while preserving the
slow variations, which correspond to the underlying structure of the graph. This ensures a stronger
entropy increase of high-frequency components, leading to non-uniform entropy increase. A high-
frequency variation is suppressed, while low-frequency structure is preserved. This behavior enables
LapDiff enables to adaptively capture priors effectively.

3.2 Reverse Process and Objective Function

Feature Denoising Objective. The feature denoising term aims to predict the features at the
previous step, X;_1, which can be simplified to a mean squared error loss:

Leen(t) = | F5 (X0, Ay t) — Xy 4|2 (6)

Structural Denoising Objective. Directly optimizing the KL divergence for discrete edges is
challenging. Instead, following a second-order Taylor expansion of the per-edge Bernoulli KL
divergence, we can approximate the objective with a mean squared error in the Laplacian space. This
provides a more stable, continuous optimization target:

L
Lane(t) 2 1f5" (X0, A1,) = (Lo = Lo-)3- ™
Here, the network predicts the change in the Laplacian, which corresponds to the structure that was
removed between step 0 and ¢ — 1.

Final Loss. Combining the denoising terms for ¢ € [2, 7] and the explicit reconstruction losses for
t = 1 (using MSE for features and binary cross-entropy for the adjacency matrix), the final training
loss for LapDiff is:

T T
Liappitt = Pt Z 175 (X2, Ar) — Xeall3 + VZ 1757 (X0, Ar) — (Lo — Lo—1)|3 ®
=2 =2

+ Boll £ (X1, Ay) = Xoll2 4+ Ace(FSM (X1, A1), Ao) + Luask,

where 8o, , B¢, A are weighting hyperparameters. The total loss is £ = Ly appitr + Liask, Where Lk
is a downstream task-specific loss. Derivation of the objective functions is in the Appendix.

4 Experiments

Our goal is to demonstrate that LapDiff’s adaptive prior mechanism leads to universally strong perfor-
mance across diverse graph learning tasks. We then analyze the contribution of its core components.
We evaluate LapDiff on seven benchmark datasets including Open Graph Benchmark (OGB), cover-
ing two diverse network graph learning tasks: link prediction and node classification. For evaluation,
we follow the standard OGB protocols, using Hits@K and MRR for link prediction, and accuracy for
node classification. For node classification, we adopt a challenging few-shot setting with a fixed num-
ber of labeled nodes k € {1,5, 10} per class to test representation power under extreme label scarcity.
We compare LapDiff against a comprehensive set of baselines, including heuristic methods, classic
GNNs (GCN, GAT, GraphSAGE), and recent specialized architectures (SEAL, Neo-GNNs, C&S,
GraphMAE?2). Experimental details are provided in the Appendix. An anonymized implementation
is available at https://anonymous.4open.science/r/NPGMLworkshop2025CDF2

https://anonymous.4open.science/r/NPGMLworkshop2025CDF2

174

175
176
177
178

179
180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196

197

198
199
200

Table 1: Link prediction performances on Open Graph Benchmark (OGB) datasets. OOM denotes
“out of memory’. Bold underline indicates the best performance and bold indicates the second best
performance.

| Model | OGB-PPA | OGB-Collab | OGB-DDI | OGB-Citation2
) o Common Neighbors | 27.65+0.00 | 50.06 £0.00 | 17.73 £ 0.00 76.20 £ 0.0
Neighborhoood Heuristics Adamic Adar 32.45+0.00 | 53.00 £0.00 | 18.61 +0.00 | 76.12+0.0
Resource Allocation | 49.33 +0.00 | 52.89 +=0.00 | 6.23 +0.00 76.20 = 0.0
Matrix Factorization | 23.78 £ 1.82 | 34.87 £0.23 | 13.29 +2.32 50.48 £+ 3.09
Shallow Methods MLP 0.99+0.15 | 16,05+ 0.48 N/A 25.13 + 0.28
GCN 15.37 £ 1.25 | 44.57 £ 0.64 | 40.87 =6.08 | 82.57 +0.26
GAT OOM 41.73+1.01 | 32.57 +3.48 OOM
SAGE 12.51£2.02 | 47.86 £ 0.64 | 47.06 =£5.21 | 80.18 +0.15
GRL Methods JKNet 11.73+1.98 | 47.52+0.73 | 57.95 & 7.69 OOM
SEAL 47.18 £3.60 | 54.27 £ 0.46 | 29.86 +4.37 | 86.72 +0.31
Neo-GNN 47.53+0.63 | 53.95+0.52 | 60.02 +3.86 | 85.96 + 0.94
DDM 17.93+£1.91 | 49.56 +1.79 | 47.73+£3.10 | 83.51 +0.20
LapDiff(ours) 48.32 +0.68 | 54.33 +0.35 | 60.56 +2.32 | 86.70 & 0.27

Table 2: Node classification performance on OGB-Arxiv, OGB-Products, and PubMed dataset. OOM
denotes *out of memory’. Bold indicates the best performance.

Model | OGB-Arxiv | OGB-Products | PubMed

Fixed knodes | k=1 k=5 k=10 | k=1 ;=5 k=10 | k=1 k=5 k=10
GCN 31.69£2.74 52.97+0.94 58.39+£0.50 | 38.93+2.09 62.69+1.27 66.23+0.91 | 45.87 £2.44 60.56 = 1.44 69.50 £ 0.68
GAT 25.60 £2.95 50.87+1.78 57.23+0.75 | 35.81 £2.42 60.72+1.93 64.80+1.21 | 43.57£2.71 5838 £2.06 68.4041.49
APPNP 29.36 £2.19 52.47+1.26 56.42+0.83 | 36.35+2.20 63.01 £2.10 66.85+0.84 | 43.04 £1.72 56.94 £1.90 69.994+0.73
GCNII 30.94£2.30 51.94+1.18 57.65+£0.94 | 33.64 £2.32 61.43+£2.36 64.90+1.39 | 43.29+£2.53 56.18+1.84 70.60 £0.93
C&S 30.63 £1.88 51.734+1.30 56.57+1.43 | 40.47£1.97 62.18 £1.57 67.53+1.40 | 44.91 £1.24 57.44+£1.36 68.78 +1.07
CCA-SSG 29.21 £3.01 51.67+2.31 57.40+£0.89 | 39.95+2.67 63.10+£2.13 67.62+1.56 | 47.56 £3.15 60.44 £2.60 69.24 4 0.68
GrthMAEZ 33.83£3.23 54.674+2.32 60.16+0.75 | 41.65 £2.01 63.69+2.30 68.08+1.62 | 50.76 £5.10 64.29+0.11 70.5140.11
DM 36.08+£0.93 55.69+1.41 60.71+£0.31 | 45.57 £ 1.28 64.90 £ 1.03 69.62 +£0.15 | 50.95+£2.42 65.13+£0.10 70.12+0.56
LapDiff(ours) | 39.04 +1.52 57.83+£0.83 61.234+0.37 | 49.10+£1.75 67.47+1.03 70.69+0.61 | 53.82+1.46 66.93+0.88 72.77 £0.62

4.1 Performance on Downstream tasks

Across all link prediction and node classification benchmarks, LapDiff consistently outperforms task-
specific baselines, indicating it captures both structural and feature-level priors without hand-crafted
biases. This robustness across diverse tasks and datasets confirms its ability to learn broadly general-
izable graph representations, emphasizing LapDiff’s utility for diverse graph-learning applications.

Link prediction. Table[I|reports the results of OGB link prediction benchmarks. Our LapDiff
generally shows significantly improved performance than other baselines on OGB-Collab and OGB-
DDI datasets and second-best performance on OGB-PPA and OGB-Cltation2 with low discrepancy
to the best models. This indicates our LapDiff is capable of capturing latent graph priors that
are crucial in the context of link prediction tasks and data. Additionally, LapDiff demonstrates
robust performance across various datasets. LapDiff has the ability to handle both underlying prior
distribution and internal biases in graph structures and node features. For instance, LapDiff achieves
the best performance on OGB-DDI, whereas SEAL, which is designed to generalize higher-order
structural heuristics shows relatively poor performance. This result illustrates that existing GNNs
often show degradation under conditions that are distinct from their intrinsic objectives. Thus, it
highlights that our model effectively learn latent representations with hidden, complex aspects that
are captured by latent priors in a graph naturally regarding certain objectives.

Node classification. We conduct experiments on semi-supervised node classification benchmark
datasets to validate the effectiveness of LapDiff on learning node embeddings. We constrained the
training index by the fixed k nodes per label. The number k is set to 1, 5, and 10. Table 2] shows the
performance of a semi-supervised node classification task that is extremely limited to label scarcity.
LapDiff outperforms other baselines on all datasets and settings. According to the results, LapDiff
effectively captures the latent distribution of nodes, even under very constrained conditions.

4.2 Analysis on Components

We empirically validate the efficacy of each component in LapDiff through ablation experiments
in Table[3] First, we demonstrate the capability of LapDiff to capture universal and comprehensive
representation by training without downstream task loss. It is remarkable that it still shows a relatively

201
202
203
204

205
206
207
208

209

210
211
212
213
214
215
216
217
218
219
220
221
222
223

224

225
226
227
228
229
230
231
232

234

235
236
237
238

240
241

Table 4: Analysis on the efficacy of noise
source. As other baselines only consider node
features, the structure process in LapDiff is
excluded from evaluation.

Table 3: Ablation study analyzing the efficacy
of each component of LapDiff.

Dataset OGB-Collab OGB-PPA

Dataset OGB-Collab OGB-Arxiv (k = 5)
LapDitff 54.33 £0.37 48.87 £+ 0.64 Metric Hits@50 Accuracy
LapDiff (w/o downstream loss) 51.78 £ 0.40 44.92 4 1.52 LapDiff (Laplacian smoothing) ~ 52.30 £ 0.97 57.02 +0.79
LapDiff (w/o feature process) 45.134+2.33 39.77+1.13 DDPM (Random noise) 4743+ 1.58 53.38 + 1.02
LapDiff (w/o structure process) 45.47 +3.02 26.42 4 2.30 DDM (Anisotropic noise) 49.56 + 1.79 55.69 + 1.41

high performance than LapDiff without feature process or structure process. Also, it is interesting that
it still outperforms conventional GNNs including GCN, GAT, SAGE, and JKNet. This result implies
that LapDiff is capable of learning critical latent representations within a graph that are significant by
aligning hidden graph priors.

Then, we evaluate LapDiff without the feature diffusion process and structural diffusion process based
on the average performance on link prediction datasets. LapDiff without feature diffusion process
and LapDiff without structural diffusion process both show degraded performance on OGB-Collab
and OGB-PPA.

4.3 Analysis on Noise Source

Table[]presents an analysis of the efficacy of different noise sources to capture underlying latent priors
dynamically aligning to the internal structures of task and dataset. The noise sources compared to
Laplacian smoothing are random Gaussian noise from DDPM [24]] and Anisotropic Gaussian noise in
DDM [235]]. The effectiveness of each noise source is evaluated for link prediction and semi-supervised
node classification tasks on OGB-Collab and OGB-Arxiv datasets, respectively. On both datasets,
Laplacian smoothing outperforms the other two noise sources. It achieves a score of 52.30 on the
OGB-Collab dataset and 57.02 on the OGB-Arxiv dataset. Compared to random Gaussian noise and
anisotropic Gaussian noise, Laplacian smoothing shows a clear advantage. For instance, it exceeds
random Gaussian Noise by nearly 5 percentage points and exceeds anisotropic Gaussian noise by over
3 percentage points on OGB-Collab dataset. These results indicate that utilizing Laplacian smoothing
as a noise source is not only effective but also consistent, offering a significant improvement over other
random noise. It provides strong empirical evidence of the efficacy of Laplacian smoothing as a noise
source in a diffusion model for graph representation learning tasks, specifically for large graph data.

i : g
4.4 Underlying Distribution of Graph g L o

The goal of LapDiff is to learn universal and

generalizable representations that are aligned Figure 2: Visualization of graph reconstruction on
with the underlying distribution of large graph PubMed at every even number time step. To improve
data. To validate the capability to learn priors the v151b111§y of the figure, we sampled the subgraph of
of network graphs and implicitly aligned with PubMed with large connectivity.

inherent priors, Fig[2| provides the visualization

of the reconstruction of a graph on PubMed dataset at each even number of states. As shown in Fig
[2] the trajectory of reconstruction is directed toward the input state, eventually, showing a similar
structure at t = 2 compared to the input graph ¢ = 0.

5 Conclusion

We introduced LAPDIFF, a diffusion-based framework for graph representation learning that in-
stantiates adaptive inductive bias via Laplacian smoothing and stochastic structural perturbations.
LAPDIFF learns a graph-specific prior instead of relying on hand-crafted assumptions. Across diverse
benchmarks, it delivers strong performance and provides evidence toward more universal graph
learners. Future work includes exploring richer structure-aware noise processes and theoretically
analyzing the properties of the learned graph priors (e.g., does py(z|G)). Our work encourage further
research on adaptive inductive bias universal representation in graph machine learning.

242

243
244

245
246

247
248

249
250

251
252

253
254
255
256

257
258
259

260
261
262

264

265
266

267

269
270
271

272
273
274

275
276
277

278
279
280
281

282
283
284

285
286

References

[1] Vladimir Gligorijevic and et al. Structure-based protein function prediction using graph
convolutional networks. Nature Communications, 12(1):3168, 2021.

[2] Javier Jiménez-Luna, Francesca Grisoni, and Gisbert Schneider. Drug discovery with graph
neural networks: A survey. Molecular Informatics, 2021.

[3] Xiangnan He and et al. Lightgen: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference, 2020.

[4] Yingtong Dou and et al. Enhancing graph neural network-based fraud detection with sequential
and time information. In Proceedings of the 26th ACM SIGKDD Conference (KDD), 2020.

[5] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances
in Neural Information Processing Systems, pages 5165-5175, 2018.

[6] Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J. Kim. Neo-GNNs:
Neighborhood overlap-aware graph neural networks for link prediction. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=Ic9vRN3VpZ.

[7] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. In International Conference on Learning
Representations (ICLR), 2020.

[8] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[9] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[10] David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural
Computation, 8(7):1341-1390, 1996.

[11] Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical
learning. arXiv preprint arXiv:0712.0248, 2007.

[12] Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data, 2017. URL
https://arxiv.org/abs/1703.11008.

[13] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

[14] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations,
2018.

[15] Benjamin Paul Chamberlain, James Rowbottom, Maria Goronova, Stefan Webb, Emanuele
Rossi, and Michael M Bronstein. Grand: Graph neural diffusion. Proceedings of the 38th
International Conference on Machine Learning, (ICML) 2021, 18-24 July 2021, Virtual Event,
2021.

[16] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34, 2021.

[17] Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-
based semi-supervised learning. Advances in neural information processing systems, 32, 2019.

https://openreview.net/forum?id=Ic9vRN3VpZ
https://arxiv.org/abs/1703.11008
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

287
288
289

290
291
292

293
294
295

296
297
298

299
300

301
302
303

304
305
306

307
308

309
310
311

312
313
314
315

316
317

318
319
320
321

322
323

324

326
327

328

329
330
331

333
334

[18] Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings. Advances in Neural Information
Processing Systems, 33:18648-18660, 2020.

[19] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs
via the system of stochastic differential equations. In International Conference on Machine
Learning, pages 10362—-10383. PMLR, 2022.

[20] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

[21] Kilian Konstantin Haefeli, Karolis Martinkus, Nathana¢l Perraudin, and Roger Wattenhofer.
Diffusion models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

[22] Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph
generation via discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023.

[23] Hang Li, Wei Jin, Geri Skenderi, Harry Shomer, Wenzhuo Tang, Wenqi Fan, and Jiliang Tang.
Sub-graph based diffusion model for link prediction, 2024. URL https://arxiv.org/abs/
2409.08487.

[24] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256-2265. PMLR, 2015.

[25] Run Yang, Yuling Yang, Fan Zhou, and Qiang Sun. Directional diffusion models for graph
representation learning, 2023.

[26] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS 17, 2017.

[27] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
Proceedings of the 35th International Conference on Machine Learning, volume 80, pages
5453-5462. PMLR, 10-15 Jul 2018.

[28] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[29] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the Twelfth International Conference on Information and Knowledge Man-
agement, CIKM ’03, page 556-559. Association for Computing Machinery, 2003. doi:
10.1145/956863.956972.

[30] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):
211-230, 2003.

[31] Tao Zhou, Linyuan Lii, and Yi-Cheng Zhang. Predicting missing links via local information.
The European Physical Journal B, 71:623-630, 2009.

[32] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30-37, 2009.

[33] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

[34] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

[35] Zhewei Wei Ming Chen, Bolin Ding Zengfeng Huang, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

https://arxiv.org/abs/2409.08487
https://arxiv.org/abs/2409.08487
https://arxiv.org/abs/2409.08487

335
336
337

338

339

340

341

342

343

344

346

347
348

349

350
351

[36] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining
label propagation and simple models out-performs graph neural networks. arXiv preprint

arXiv:2010.13993, 2020.

[37] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and S Yu Philip. From canonical correlation
analysis to self-supervised graph neural networks. In Thirty-Fifth Conference on Neural

Information Processing Systems, 2021.

[38] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, and Jie Tang Evgeny Kharlamov.
Graphmae?2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the

ACM Web Conference 2023 (WWW’23), 2023.

[39] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.

arXiv preprint arXiv:1903.02428, 2019.

A Derivation of Loss function of LapDiff

This section provides a derivation of the variational lower bound (ELBO) and the loss function of our

proposed model, LapDiff.

A.1 Derivation of Evidence Lower Bound (ELBO)

Let G represent a given observed graph data consisting of X and A, denoting node feature matrix
and adjacency matrix, respectively. Taking the log-likelihood log p(Gy) = log p(Xo, Ap), we obtain

log pe(Xo, Ao) = log/pe(XO:T, Ao.r) dX1.7dArT

po(Xo.r, Ao.r)

Z/q(Xlva Al:T‘X07 AO) Iqu

dGl:T

(X171, Arr| Xo, Ao))

(by variational posterior and Jensen’s inequality)

po(Xo.T,

A():T)

2(X.7, 417 Xo, Ao) {og q(X1.17, A1.7| X0, Ao)

|

352 For simplifying the notation, dG1.7 = dX1.7dAy.7 and Eg = Eg(x,., ;.7 X0,4,)- The variational

353

354
355
356

357

lower bound (ELBO) is obtained as follows:

po(Xo:7, Ao.r)]
ELBO:=E, |lo 10
{ ® 4(X1r, Avr| Xo, Ao) (10
T
po(Xr, AD) [[po(Xe11X, Ae)-po(Ar—1| Xy, Ar)
= E,|log — (1)
HQ(Xt|Xt71)'q(At|At71)
t=1
=K, |log pe(X1,AT)
+ZT310 Po(Xeoa| X1, A) po(Ai1| X, A1) 1)

t=1

q(X | X—1)-q(Ae| A1)

Then, we could separate t = 1 and ¢ > 2 because ¢ = 1 indicates the reconstruction to the given
data Go = (Xo, Ag). Next, we flip latent variables in the variational posterior g. We reparametrize
q(Xe| Xt-1), q(A¢|Ar—1) to ¢(Xe—1| X+, Xo), q(Ai—1]As, Ag), respectively. Specifically, Markov

chain properties formalize q(X¢|X;—1) = q(X¢—1]X¢, Xo) 7

q(X+| Xo)

(Xt—1]Xo)

and this holds in A as well.

358 The second term can be rewritten as

Zl Po(Xi—1]X¢, Ap)-po(Ar—1]| Xy, Ar)
(Xi—1]X+, X0)-q(As—1]|As, Ag)

(13)

q(Xi—1|X0)-q(Ai—1]Ao)
*Zl 4(X, [X0) 4(A,| Ao)

N [0 P10, A0 po(A X, Ar)

‘Z[I 2(Xs 1 1X0, Xo)-a(Ar 1| Ar, Ao)

9(X1|Xo0) gUGHXG) a(Xe=ofXG) a(Xe=TiX7)
RIS AE e ST o o S eee < S ot O

q(A1]Ao) g(AnAAG) g(Ap=siAo) g(Ar=TtA7) (14)
MM "g(Ar—tA5) q(Ar|Ao) |’

359 Then, the ELBO is derived as follows:

+ log

ELBO =E, llogpg(XT, Ar)

Jrzl Po(Xi—1|Xe, Ar) - po(Ai—1| Xy, Ay)
q(Xe—1| X+, Xo) - q(As—1|As, Ag)

M g,(Aflﬂ/TH o 0 X%'mw‘h) (15)
q(X7|Xo) - ¢(Ar|Ao) : 0

constant
po (X1, Ar)
q(X7|Xo) - q(Ar|Ao)

+ log

=E, |log

d Pe(thﬂXuAt) ’pG(Atfl‘XtaAt)

+ > lo
tz:; & 4K X0, Xo) - (A1 [Ar, A)

+1log pe(Xo| X1, A1) - pe(Ao| X1, A1) (16)

se0 The first term is not trainable. Since the degree of noise injection in the forward process is fixed and
361 not optimized during training, it can be treated as a constant. The second term is equivalent to the
se2 definition of KL divergence, thus the final form of the ELBO of the model is

ELBO = E, [log po(Xo| X1, 41) + log po (49| X1, A1)

— > KL[g(Xi1| X, Xo)|[po (Xi1] X1, A1) (17)
t>2
- Z KL [g(A¢-1|A¢, Ao)llpe(As—1] X, At)]}
t>2

363 A.2 Variational Posterior

se4 In our proposed model, the feature-level and structural diffusion processes are designed to be Markov
365 chains, meaning the noisy data at each timestep ¢ depends only on the state at ¢ — 1. In the context of
se6 the forward diffusion processes implies:

Fixed
q(Xt|X07X13"-7Xt717AO) :(J(Xt|Xt717%) (18)
Q<At|A07A1>---7At71) = Q(At|At71)7 (19)

10

367
368
369

370

371

372

373

374

375

376
377

378

379

380
381

383

384
385

where the noise source, Laplacian smoothing, is fixed with Ay. By the definition of Markov chains,
we can remove Ag, which serves the role of a fixed noise schedule. Also, recall that we defined noise
in the feature-level diffusion process as

(XX 1) = (I —D'L)Y'Xg=(I-D'L)X,
T
9(X1.7|Xo) = Hq X;|Xo) = H (Xe| X 1) (20)

Start from the joint conditional distribution of all X; and Ay, given Xy, Ag:
Q(Xl:TaAl:T|XO; AO)

2D
=q(X1, Xa,..., X7, A1, As, ..., A7[X0, Ao).
By the chain rule, Eq (Z1) equals
4(X1]X0)q(A1]Ao) - ¢(X2|Xo, X1)q(Az2[Ao, A1) 22)
q(X7|Xo, .., X7_1)q(Ar|Ags - .., AT 1),
By applying the Markov chain property that each X, A; only depends on X; 1, A;_1:
T
(X1, Aver| Xo, Ao) = [[a(XelXi-1) - q(Ae] A1) (23)
t=1
A.3 Approximation to Laplacian Difference Prediction
For one undirected edges (i, 7), let the one-edge KL be
pij = q(Ai—1,i5 = 1| Ay, Ao), Dij = po(Ar—r.i5 = 1| Gy). (24)
The Bernoulli Kullback—Leibler term that appears in the ELBO can be rewritten as
. L —pi
D1, (pis | Pis) = pij + (1 —pij) log7 p,?- (25)
ij

Fix the rarget probability p;; € (0,1) and leverage Taylor expansion, € := p;; — p;;. Because the

first derivative vanishes at € = 0 and the second derivative equals m,
i i

&2
2pii(1 = pij)
whenever |¢| < min{p;;,1 — p;;}. Thus to second order the KL is proportional to the squared error
(pij — ﬁij)Q-

For a random adjacency matrix A with edge—existence probabilities ¢ the expected combinatorial
Laplacian is

Dy 1 (pij || pij +¢) = +0(e?) (26)

q) = diag(z Qs) = 4. 27)
For off-diagonal entries (i # j): L(g)ij = — ¢i;- Therefore, we can obtain
pij — iy = —(L(p)ij — L(D)ij)- (28)

Then all edges can be summed over:

@ 1 (L(p)ij; — L(D)s5)
D ? ? D)
; i (pij || i) 2; pij (1 = piz) 29

+O(IL(p) = L(B) I 7)-
Assume every posterior edge probability is clipped away from 0, 1: p;; € [¢,1 — €] for some fixed
0<e< % Then

2

pij(1—pij) > (1 —¢)

_ (30)
= D r(pij || Pij) < ce (L(p)ij — L(ﬁ)ij)27

11

386

387

388
389
390

391
392

393
394

395
396
397

398
399
400
401

402

403

404

405

407
408
409
410
411
412

413

414
415

with c. = ﬁ Using the Frobenius norm of a symmetric matrix and (non-overlapping) edges:

2

Leage k.= Y Dicr(pij | pij) < ¢z || L(p) — L) 31)

1<j

Hence, minimizing the Laplacian MSE upper—bounds the exact edge-wise KL.

At training time we see a single Laplacian L1 = D(A;_1) — A;—1 drawn from the posterior
q(Ai—1 | At, Aog). Its expectation is L(p) and its entry-wise variance is O(5;), the forward step size.
For small 3; we can drop that noise and use

L(p) ~ Lo— Ly,

because the forward diffusion from A;_; to A; removes each edge with probability (3;, so the
expected difference to the clean graphis Lo — L;_;.

Step 6: Define the practical surrogate loss
Let fo(X¢, A¢) be the GNN output that tries to recover (Lo — L;—1). Combining (5) and (6):

Ligp = A fo(Xe, Ar) = (Lo — Li—1) |3, A 2> ce.

Because it is an upper bound of the true KL term in the ELBO, driving Ly, to zero also drives
the Bernoulli KL towards zero. Empirically the continuous, degree-coupled signal contained in the
Laplacian makes gradients less noisy and optimisation easier than edge-wise cross-entropy.

Therefore the Laplacian-MSE loss you observe to work well is mathematically a second-order
surrogate—and an upper bound—for the exact ELBO term that compares adjacency posteriors.
Minimising it is guaranteed to minimise, up to a bounded factor, the information-theoretic quantity
we truly care about.

A.4 Training of LapDiff with denoising network

The training procedure of LapDiff is described as Algorithm [T}

Algorithm 1 Training LapDiff
Input: Large graph G=(X,A)
1: for k =1to T do
Xp 1 (I—-D'L)F1X
X+ (I-D7'L)*X
Ay ~ B(Ag—1;pK-1)
Or—1 < O — Vo[Lrear(fo, (X, Ar)s Xk—1) + Lsruet (fo,, (Xk, Ar), Ap—1)]
6: end for

7: 9 <~ nv9£task(f90 (X7 A)7 YIask)

B Hyperparameter Sensitivity Analysis

We analyze LapDiff to demonstrate how hyperparameters affect the performance of LapDiff. We
conduct experiments with 4 hyperparameters in LapDiff loss function, Ly qppir. 5, 31,7 and A is
weighting hyperparameters for Leea, Lteat-recons L1ap> aNd Liecon, respectively. We measure Hits @50
by changing one hyperparameter while the rest of the hyperparameters are fixed to the best value.
The result (Figure. [3) demonstrates that LapDiff is fairly robust to hyperparameters that weight the
components of LapDiff loss Ly 4ppitr. Accordingly, hyperparameters affect the performance of LapDiff
slightly. Consequently, we can conclude that the performances of LapDiff are fairly consistent under
various hyperparameter sets.

C Experimental Setting Details

Datasets. To validate our models, we utilize Open Graph Benchmark (OGB) dataset for link
prediction tasks and node classification tasks [8]. We use four OGB link property datasets for

12

416
417
418
419
420
421
422
423
424
425
426

427
428
429
430
431
432

434
435
436

437
438
439
440
441
442
443

Hyperparameter Senstivity Analysis

(a) # of Timestep (b) Reconstruction hyperparameter

55 55

54.__—./_. 54

o o
['e) w0
® 53 ® 53
2 2
I T
52 52
S5 10 B 20 25 3 b3 1e-2 A 1e-1 1.0
55 (c) Laplacian hyperparameter 55 (d) Feature hyperparameter
—&— G
*— S
54 54 o
2 g * /ﬁ\
% 53 S) 53 ~%
T k=
52 52
1 51
e-3 9e-2 9e-1 1 1e-3 1e-2 1e-1 1

Figure 3: Visualization of hyperparameter sensitivity analysis on OGB-Collab.

link prediction tasks: OGB-PPA, OGB-Collab, OGB-DDI, and OGB-Citation2. OGB-PPA is an
undirected and unweighted graph representing protein association. Nodes are proteins from different
specifies and edges mean biological associations. Each node feature is a one-hot vector indicating
the species to which the protein belongs. OGB-Collab is an undirected graph, which represents a
collaboration network where edges denote collaborations between authors. OGB-DDI is an undirected,
unweighted graph that contains drug-drug interactions, with edges indicating interactions such as
combined effects. Note that this dataset lacks node features. OGB-Citation?2 is a citation network
graph with direction. Each node in the graph corresponds to a paper, and a directed edge indicates
that one paper cites another. Both OGB-Citation2 and OGB-Collab include node features obtained
from embedding models. For node classification tasks, we use three benchmark datasets: OGB-Arxiv,
OGB-Products, and PubMed.

Evaluation. According to the evaluation protocol of OGB, we evaluate our model with Hits @K
metric and Mean reciprocal rank (MRR) in link prediction. Hits@XK is based on ranking positive
test edges against randomly sampled negative edges. The ranking performance is measured by the
ratio of positive test edges ranked at or above the K-th position. In OGB-PPA, the K-th position is
set to 100, while for OGB-Collab and OGB-DD], it is set to 50 and 20, respectively. The evaluation
metric for OGB-Citation2 is MRR. It calculates the reciprocal rank of the true edges within the pool
of negative candidates for each source node and then averages these values across all source nodes.
To further demonstrate the ability to learn compendious underlying structures in node classification,
we constrain a fixed k-nodes setting by vastly reducing the number of nodes per label in train sets.
Under this setting, accuracy measures the performance on OGB-Arxiv, OGB-Products, and PubMed.

Baselines. For baselines on link prediction, we include prevalent GNN-based models: GCN [13],
GAT [14], GraphSAGE [26], JKNet [27]], Variational Graph Autoencoder [28]], SEAL [5]], Neo-GNNs
[6]], and DDM. Note that SEAL extract enclosing subgraph to utilize in link prediction. Additionally,
three link prediction heuristics [29H31]], Matrix factorization [32], and Multi-layer perceptron [33]]
are included in baselines. Baseline models for semi-supervised node classification include GCN,
GAT, APPNP [34]], GCNII [35], and Correct&Smooth (C&S) [36]. We also compare LapDiff with
self-supervised graph learning methods, CCA-SSG [37], and generative method GraphMAE?2 [3§]].

13

444
445
446
447
448
449

451
452
453
454
455

457

458

460

461

462

464

465

467
468
469

470

471

472
473

474

475

476
477

478
479
480
481

4
483
484

ol
N

Implementation Details. We implemented link prediction heuristics, such as Common Neigh-
bor(CN), Adamic Adar(AA), and Resource Allocation(RA), based on the paper [29-31]. For GCN,
GraphSAGE, GAT, JKNet, APPNP, GCNII, and MLP we used the implementation in PyTorch Geo-
metric [39], and for SEAL and C&S, we used the implementation from the official repository. We
trained LapDiff with a 2-layer LapDiff encoder with latent Laplacian parameters and 3-layer MLP de-
coder for OGB-Collab, OGB-DDI, OGB-PPA, and OGB-Citation2. For OGB-Arxiv, OGB-Products,
and PubMed, we used 3-layer LapDiff encoder and 3-layer MLP decoder. For the link prediction task,
we shared the last layer of the decoder as a predictor, and for the node classification task, we utilized
1 layer MLP as a classifier. Also, we set the diffusion state to 10 for OGB-Collab, OGB-DDI, and
OGB-PPA, and 3 for OGB-Citation2 due to the dataset’s memory issue. For a fair comparison, we
reported performances of all baselines and LapDiff as the mean and the standard deviation obtained
from 10 independent runs with fixed random seed 0, . . ., 9. To simulate a real-world scenario, we did
not use validation edges as input in OGB-Collab. The experiments are conducted on A100(40GB)
and A40(48GB).

D Computational Complexity
Notation

* N = |V/|: number of nodes ; E = |€| : number of edges.
* d: input feature dimension; A : hidden dimension of the denoiser fj.

e T : number of diffusion steps (T'<< N in practice).

Diffusion Process Each Laplacian-smoothing step multiplies X; 1 by (I — D~'L). For a sparse
adjacency (E=0O(N) in large graphs), this costs

O(Ed) perstep = O(T Ed) overall. (32)

Sampling edges (edge removal) is O(E) per step; overall O(T' E). No matrix materialization beyond
the original sparse A is required. Total (forward).

OTE(d+1)) =~ OTEdJ)
Reverse (Denoising) Process The denoiser fy is a 2-layer MLP encoder + 3-layer MLP decoder.
Given sparse adjacency, each call costs O(E h + N h?). Invoked once per diffusion step, the reverse

chain costs
O(T (Eh+ N h?)).

D.1 Overall Time Complexity

Combining forward and reverse,
O(T [E(d+h)+Nn)

With typical settings (h~d, E>> N, T <10), the leading term is 7' E' d, comparable to a single pass
of a conventional L-layer GNN when L~T.

D.2 Memory Complexity

* Parameters. Two MLPs of width h: O(h?), independent of 7.

¢ Activations. We store X; and (sparse) A; for the current step only, so in-memory activations
scale as:
ONd+E)+O(Nh) = ON(d+h)+E).
¢ Comparison to L-layer GNN. A standard L-layer message-passing GNN stores L intermediate
node embeddings, yielding O(L N h) memory. LapDiff keeps a single embedding per step and
can recompute forward activations (checkpointing), requiring at most O(N h)—often smaller
than a deep GNN when L >T'.

Scalability. With T" chosen < 10, LapDiff’s runtime is on par with—or lower than—deep GNNs that
rely on L > 10 layers. The memory footprint remains modest due to sparse storage and step-wise
recomputation.

14

485

486
487
488
489
490
491
492

493

494
495

497
498
499
500
501
502
503
504

E License of the assets

Our source code is based on PyTorch which was released under Berkeley Software Distribution (BSD)
License. We implement GNN-based baselines using PyTorch Geometric, a deep learning framework
licensed under MIT. Additionally, we implement SEAL |'|and GraphMAEfrom the official GitHub
repository under MIT License. Both BSD license and MIT license can be used or redistributed under
stipulated conditions. Moreover, we conduct experiments on four benchmark datasets from Open
Graph Benchmark (OGB). OGB is released under MIT License. We visualize significant results by
using Matplotlib where the license is based on Python Software Foundation (PSF) license.

F Broader Impact

LapDiff aims to capture latent factors for graph representation learning. It provides a strong foundation
for future models that aim to understand the rich information of relational data in graphs. Our model
would not only be capable of discerning the latent structures within graph data but also adept at
applying this knowledge across a broad spectrum of applications. With its Laplacian smoothing noise
which is structure-aware, LapDiff contributes to the ongoing discourse on data privacy. By generating
representations that respect the underlying structure of data without compromising individual privacy,
LapDiff aligns with the ethical use of data in Al. Also, our model’s versatility suggests broad
applicability beyond traditional domains, offering potential breakthroughs in any field that benefits
from understanding complex networks, including neuroscience, epidemiology, and environmental
studies. However, LapDiff needs to be used carefully for graph representation learning tasks such as
link prediction or node classification in social networks where privacy and anonymity are important.

"https://github. com/facebookresearch/SEAL_0GB
https://github.com/THUDM/GraphMAE2

15

https://github.com/facebookresearch/SEAL_OGB
https://github.com/THUDM/GraphMAE2

505

506

507
508

509

510
511
512

513

514
515
516
517
518
519
520
521
522

523

524

526
527

528

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

555

556
557

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction explicitly state the development of the LapDiff

with Laplacian-based diffusion, and the claims match the theoretical derivations and experi-
ments reported (see Section 1 and 2)

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are mentioned regarding scalability and assumptions in the diffu-
sion process. (See Section 5)

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

558

559
560
561

562

563
564
565
566
567
568
569
570
571
572

573

574
575
576

577

579
580

581

582
583
584
585
586
587
588
589
590

592
593
594
595
596
597
598
599
600
601

603
604
605
606
607
608
609
610
611
612

Answer: [Yes]

Justification: The derivations of the ELBO and loss function are presented in detail in the
Appendix. Assumptions about Markov properties and Laplacian smoothing are clearly
stated.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental settings, datasets (OGB), and baselines are described in the main
text and Appendix. Hyperparameters and complexity analysis are also provided in Appendix.
We provide codes as Supplementary.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

17

613

614
615
616

617

618
619
620

621

622

623
624

626
627
628

629
630
631

632
633

634
635
636

637
638

639
640

641

642
643
644

645

646
647

648

649

650
651

652
653

654

655

657

658

659

660

662
663

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper states that implementations are based on PyTorch and PyTorch
Geometric with clear licenses (Appendix), but the code is released only to reviewers at
submission time.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training procedures, loss components, and hyperparameter sensitivity analyses
are described in Appendix. Optimizer details are also outlined in Algorithm 1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The results are provided with mean and standard deviation under 10 fixed runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

664
665
666

667
668

669

670
671

672
673
674

675
676
677

678
679
680

681
682
683

684

685
686

687

688

689
690

691
692

693
694
695

696

697
698

699

700
701

702

703

704
705

706
707

708

709
710

711

712
713

714

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational and memory complexity analyses, GPU are detailed in Ap-
pendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The datasets (OGB) and libraries used are all properly licensed. No ethical
violations are apparent in the methodology.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix, we discussed privacy implications and broad applicability. Nega-
tive societal impacts such as misuse are only briefly mentioned, but at least acknowledged.

Guidelines:

19

https://neurips.cc/public/EthicsGuidelines

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

737

738

740

741

742
743

744

759

760
761

762

763
764

765
766

767

11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The model is not released as a pretrained asset with high misuse risk. Only
standard datasets and code bases are used.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Appendix E provides details about BSD/MIT/PSF licenses of all used assets
and repositories.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

20

768
769

770
771
772
773

774
775

776
777
778

779
780

781

782

783

784

786
787

788
789

790
791

792

793
794

796

797

798

799

800

801
802
803

804
805
806

807
808

809
810
811
812

813

814

815

816
817

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new datasets or assets are introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The research does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

21

paperswithcode.com/datasets

818 * Depending on the country in which research is conducted, IRB approval (or equivalent)

819 may be required for any human subjects research. If you obtained IRB approval, you
820 should clearly state this in the paper.

821 * We recognize that the procedures for this may vary significantly between institutions
822 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
823 guidelines for their institution.

824 * For initial submissions, do not include any information that would break anonymity (if
825 applicable), such as the institution conducting the review.

826 16. Declaration of LLLM usage

827 Question: Does the paper describe the usage of LLMs if it is an important, original, or
828 non-standard component of the core methods in this research? Note that if the LLM is used
829 only for writing, editing, or formatting purposes and does not impact the core methodology,
830 scientific rigorousness, or originality of the research, declaration is not required.

831 Answer: [NA]

832 Justification: LLMs were not used as part of the methodology.

833 Guidelines:

834 * The answer NA means that the core method development in this research does not
835 involve LLMs as any important, original, or non-standard components.

836 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
837 for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Method
	LapDiff Generative Process
	Reverse Process and Objective Function

	Experiments
	Performance on Downstream tasks
	Analysis on Components
	Analysis on Noise Source
	Underlying Distribution of Graph

	Conclusion
	Derivation of Loss function of LapDiff
	Derivation of Evidence Lower Bound (ELBO)
	Variational Posterior
	Approximation to Laplacian Difference Prediction
	Training of LapDiff with denoising network

	Hyperparameter Sensitivity Analysis
	Experimental Setting Details
	Computational Complexity
	Overall Time Complexity
	Memory Complexity

	License of the assets
	Broader Impact

