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Abstract

Graph representation learning often relies on manually engineered, task-specific
inductive biases, which limit model flexibility and generalization across diverse
tasks. While diffusion models have shown promising ability in capturing arbitrary
distributions, they frequently lack a deep integration of graph structure. To address
this, we propose the LapDiff, a novel diffusion-based framework that learns adap-
tive priors to dynamically align its inductive bias with the intrinsic characteristics of
graph-structured data and their tasks. The novelty of LapDiff is its use of Laplacian
smoothing as a structure-aware noise mechanism in the forward process, comple-
mented by topological perturbations. This design enables the denoising network to
effectively capture the underlying data-generating factors tied to a graph’s unique
structure and features. Specifically, the reverse denoising process implicitly learns
which structural patterns are informative for a given graph, allowing the model
to adapt its representations without fixed architectural assumptions. By capturing
priors from a task and data, LapDiff mitigates the limitations of static biases and
enhances task-agnostic generalization. Extensive experiments on large-scale OGB
benchmarks demonstrate that LapDiff is universally effective for both link predic-
tion and node classification, achieving state-of-the-art performance and offering a
new perspective into graph representation learning.

1 Introduction

Large-scale network graphs are now foundational data structures across science and industry, from
biological systems [1] and drug discovery [2] to recommender systems [3] and fraud detection [4].
The central challenge in this field is learning effective representations that capture the complex,
non-Euclidean relationships inherent in such data. Graph Neural Networks (GNNs) have emerged as
the dominant paradigm, achieving remarkable success by leveraging strong inductive biases.

However, this reliance on inductive biases is a double-edged sword. The vast majority of GNNs are
built on a fixed assumption, such as homophily, the tendency of connected nodes to be similar. While
effective in some scenarios, this rigid prior leads to significant performance degradation on graphs
with more complex topologies or across different downstream tasks. To compensate, a fragmented
landscape of specialized models has emerged, each with manually engineered biases tailored to
specific tasks, such as subgraph-based features for link prediction (e.g., SEAL [5]) or generalized
graph heuristics (e.g., Neo-GNNs [6]).

This approach merely trades one fixed assumption for another, inherently limiting generalization and
requiring separate models for different tasks, which is impractical for real-world deployment [7].
The lack of a single, dominant architecture on comprehensive benchmarks like the Open Graph
Benchmark (OGB) [8] highlights this fundamental limitation. For instance, while GCN [9] achieves
high accuracy on the OGB-PPA node classification task, its performance plummets in OGB-Collab
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link prediction, where heuristic-based methods like SEAL [5] excel. This disparity underscores that
fixed, manually-specified priors are a bottleneck for creating truly universal graph representation
learning methods.

This predicament raises a fundamental question: Can we learn powerful graph representations
without manually-designed fixed inductive bias? We argue for a paradigm shift from static, hand-
crafted biases to adaptive ones that emerge as data-driven priors, conditioned directly on the given
task and intrinsic properties of the given graph.

To motivate our approach, we first draw intuition from the No-Free-Lunch (NFL) theorem [10].
The NFL theorem suggests that no single learner is universally optimal across all tasks and data
distributions. The practical limitations of fixed-bias GNNs are consistent with this observation and
often arise from a misalignment between manually-specified biases and a given objective or dataset.
We thus use NFL theorem as intuition to align inductive bias with the problem family. Based on
PAC-Bayes [11, 12], we formalize graph adaptive prior. PAC-Bayes theory provides a formal basis
for using adaptive priors by directly connecting them to generalization of a model. A standard
PAC-Bayes generalization bounds for a posterior over a hypothesis class and a prior. Let πϕ be a
graph prior that depends only on unlabeled information of an input graph ϕ(G), and let ρ be an
arbitrary posterior. With probability at least 1− δ over a sample of size m, the inequality holds for
priors Q as:

Eθ∼ρ[R] ≤ Eθ∼ρ[R̂] +

√
KL(ρ∥πϕ) + ln(2

√
m/δ)

2(m− 1)
. (1)

We instantiate πϕ as a prior with precision τ(L(G)+ ϵI), which encodes Laplacian smoothing. Then,
KL(ρ∥πϕ) turns into a Dirichlet-energy penalty. This aligns with our Laplacian-MSE surrogate
(Sec. 3.2), a second-order upper bound of the edge-wise Bernoulli KL shown in Appendix A, hence
lowering both empirical error and the complexity term.

This bound gives the crucial insight that generalization error depends on an empirical error and on the
Kullback-Leibler divergence KL(ρ||πϕ). To minimize KL(ρ||πϕ), a prior πϕ would be constructed
from an input graph without labels and be depend on a given task so that a prior πϕ reflects the
structure of a graph and the objective of interest. By doing so, a prior πϕ is better aligned with the
posterior induced by a dataset.

This theoretical principle provides a foundation for our goal: to learn graph representation with an
adaptive prior. We propose LapDiff, a novel diffusion-based framework that realizes parameterizing
an adaptive prior πϕ(z|G, T ) not as a static assumption, but as the learned outcome through diffusion
models with a parameter prior, i.e., πϕ(θ|G, T ). Its core innovation is the use of Laplacian smoothing
as a novel structure-aware noise mechanism, a principled way to align this prior with the intrinsic
geometry of graph data. Our contributions are summarized as follows:

• We propose a generative framework LapDiff that learns an adaptive, graph-conditioned
prior, πϕ(z|G), to capture implicit structural and feature-level patterns without handcrafted
biases.

• We introduce the novel use of Laplacian smoothing as a structure-aware noise mechanism
within a diffusion model, providing a new perspective on encoding graph geometry into
generative processes.

• We empirically demonstrate that LapDiff achieves state-of-the-art performance on diverse
benchmarks for link prediction and node classification, validating the effectiveness of our
adaptive, structure-aware learning approach.

2 Related work

Graph Representation Learning. GNNs like GCN [13] and GAT [14] have achieved strong
performance in node classification by exploiting local aggregation schemes. However, these often
encode fixed assumptions (e.g., homophily), limiting generalization to diverse graph types. While
GRAND [15] models feature diffusion as a continuous process, structural signals remain underutilized
in most node-centric models. In contrast, SEAL [5], Neo-GNNs [6], and NBFNet [16] introduce
inductive biases tailored for link prediction via subgraph extraction or path-based heuristics. However,
these methods are narrowly focused on specific tasks.

2



Figure 1: Graphical Model of LapDiff. LapDiff leverages Laplacian smoothing as the noise source of the
forward process, inducing signal diffusion that reflects important aspects of graph structure.

DDPMs on Graph domain. DDPMs have recently been extended to graphs. Prior generative
approaches [17–19] modeled node-edge distributions or joint graph likelihoods. Molecular graph
generation works (e.g., [20, 21]) employed categorical and discrete formulations, while [22] proposed
scalable structure perturbations. DDM citeyang2023directional introduced diffusion models for graph
representation learning with anisotropic node feature noise, yet ignored graph structures. Recently,
SGDiff [23] proposed a subgraph-based diffusion model tailored for link prediction, incorporating
structural context into diffusion.

Graph Inverse Problems. Furthermore, our concept of an adaptive prior learned via denoising
shares motivation with methods that learn explicit regularization. While these approaches typically
learn a task-specific regularization term (e.g., a graph filter), LapDiff learns an entire generative
process that models the data distribution conditioned on a graph. This allows the prior to be implicitly
learned and adapted through the denoising objective itself, rather than being defined by a fixed
parametric form. [24] proposed learning regularization for graph inverse problems, where a trainable
graph regularizer is optimized jointly with a data-fidelity term. While both approaches involve graph
structure and optimization, our work differs fundamentally: (1) We focus on representation learning
rather than inverse problems (denoising, inpainting); (2) Our Laplacian smoothing acts as a fixed
structural prior in the forward process, whereas [24] learns the regularizer itself; (3) We integrate
topological diffusion (edge removal) alongside feature diffusion. Nevertheless, both works share
the insight that structure-aware priors can improve over hand-designed alternatives, and future work
could explore combining learnable Laplacian operators with our diffusion framework.

3 Method

Our model, LapDiff, implicitly learns the adaptive graph prior pθ(z | G) posited in our theoretical
motivation via a denoising diffusion process. LapDiff consists of two complementary processes: a
forward process that incrementally injects structure-aware noise into the input graph G0 = (A0, X0),
and a reverse process that learns to denoise the corrupted graph to reconstruct an informative latent
representation. This section details both processes and the resulting objective function.

3.1 LapDiff Generative Process

Our generative process consists of two complementary forward processes applied to the input graph
G0 = (A0, X0): first, a deterministic feature diffusion based on Laplacian smoothing, and secondly, a
stochastic structural diffusion via edge perturbation. This corrupts feature information and topological
information differently. A unified denoising network fθ (detailed in Sec 3.2) is then trained to denoise
both processes simultaneously, forcing it to learn the complex intervene between graph structure and
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node features. We define two Markov chains for feature and structural diffusion, q(X1:T |X0) and
q(A1:T |A0), respectively.

3.1.1 Feature Diffusion via Laplacian Smoothing

To corrupt node features while retaining structural information, we define the forward process noise
source using the graph Laplacian. Specifically, we use iterative Laplacian smoothing with the
symmetric normalized Laplacian Lsym = D−1/2LD−1/2 , which acts as a low-pass filter on node
features, causing them to dissipate and converge towards an over-smoothed state. The feature matrix
Xt at timestep t is obtained as:

Xt = (I− αLsym)Xt−1 = (I− αLsym)
tX0, (2)

where L is the graph Laplacian of the original graph G0, D is its degree matrix, and α is a scaling
factor. For simplicity, we set α = 1. This process defines a deterministic Markov chain q(X1:T |X0) =∏T

t=1 q(Xt|Xt−1) where the node feature information is progressively smoothed, also known as
low-pass filtered, according to the original graph structure.

Theoretical Grounding of Laplacian Smoothing. Our choice of Laplacian smoothing as a noise
source is theoretically grounded in spectral graph theory. Given the eigendecomposition of the
symmetric Laplacian Lsym = UΛU⊤, the feature diffusion in Eq. (2) can be expressed in the
spectral domain as:

Xt = U(I− αΛ)tU⊤X0. (3)
The term (I− αΛ)t acts as a low-pass filter, attenuating high-frequency components of the feature
signal (associated with large eigenvalues λi) more rapidly than low-frequency components (small λi).
This selective attenuation preserves global structural patterns for longer, forcing the reverse process
to learn representations that are tied to the graph’s macro-structure, unlike isotropic Gaussian noise
which degrades all signal components uniformly. In the spectral domain, the smoothed coefficients
become

x̂′ = [(1− αλ1)x̂1, (1− αλ2)x̂2, . . . , (1− αλN )x̂N ] , (4)
which indicates that components associated with larger λi are reduced more than those with smaller
λi.

3.1.2 Structural Diffusion via Edge Perturbation

Concurrently of the feature diffusion process, we diffuse the graph topology using stochastic edge
removal to ensure stochasticity in diffusion-based models. This process follows a stochastic Markov
chain q(A1:T |A0). At each step t, we sample a subgraph structure by randomly dropping edges from
the previous state At−1 with a removal probability 1− p. This process gradually sparsifies the graph,
destroying its topological information. The per-edge transition is defined as:

At[i, j] ∼ Bernoulli
(
pAt−1[i, j]

)
, (5)

i.e., an existing edge is retained with probability p (non-edges remain absent). This defines the
structural diffusion process q(A1:T |A0) =

∏T
t=1 q(At|At−1).

3.2 Reverse Process and Objective Function

The reverse process is parameterized by a denoising network fθ(Xt, At, t), which predicts the state
at t− 1. This network is implemented as a K-layer Graph Neural Network (GNN) encoder followed
by two separate 3-layer MLP decoders. The GNN encoder takes both the smoothed features Xt and
the perturbed adjacency matrix At as input, generating node representations Ht = GNN(Xt, At).
These representations capture the fused information from the corrupted structure and features. Ht is
then fed into two decoders: A feature decoder f (X)

θ (Ht, t) to predict Xt−1 and a structural decoder
f
(L)
θ (Ht, t) to predict the removed Laplacian components (L0 − Lt−1).

Feature Denoising Objective. The feature denoising term aims to predict the features at the
previous step, Xt−1, which can be simplified to a mean squared error loss:

Lfeat(t) =
∥∥f (X)

θ (Xt, At, t)−Xt−1

∥∥2
F
. (6)
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Structural Denoising Objective. Directly optimizing the KL divergence for discrete edges (i.e.,
Lstruct in Eq. 294) is unstable. Instead, we optimize a stable, continuous surrogate objective.As
theoretically derived in Appendix A, the per-edge Bernoulli KL divergence is upper-bounded by the
squared error of the corresponding expected Laplacian matrices. This provides a well-motivated and
stable optimization target. Therefore, we define the structural denoising loss Lstruct as the MSE in
the Laplacian space. Moreover, the Laplacian captures degree-coupled structural information more
smoothly than binary adjacency matrices, leading to more stable gradients during training.

Lstruct(t) ≈
∥∥f (L)

θ (Xt, At, t)− (L0 − Lt−1)
∥∥2
F
. (7)

Here, the network predicts the change in the Laplacian, which corresponds to the structure that was
removed between step 0 and t− 1.

Final Loss. Combining the denoising terms for t ∈ [2, T ] and the explicit reconstruction losses for
t = 1 (using MSE for features and binary cross-entropy for the adjacency matrix), the final training
loss for LapDiff is:

LLapDiff :=

T∑
t=2

βt

∥∥f (X)
θ (Xt, At, t)−Xt−1

∥∥2
F

+ γ

T∑
t=2

∥∥f (L)
θ (Xt, At, t)− (L0 − Lt−1)

∥∥2
F

+ β0

∥∥f (X)
θ (X1, A1, 1)−X0

∥∥2
F

+ λLBCE
(
f
(A)
θ (X1, A1, 1), A0

) (8)

where β0, γ, βt, λ are weighting hyperparameters. The total loss is L = LLapDiff + Ltask. The
learned representations z from the denoising process capture the adaptive prior that is informative to
solve a given downstream task. For link prediction, we apply MLPs to pairs of node representations,
i.e., ŷij = MLP(z⊤i zj). By learning to denoise graph-structured data through the diffusion-based
framework, our LapDiff implicitly learns which structural patterns are highly informative to solve a
task, making these representations effective across diverse tasks without task-specific handcrafted
biases or architectures.

4 Experiments

Our goal is to demonstrate that LapDiff’s adaptive prior mechanism leads to universally strong perfor-
mance across diverse graph learning tasks. We then analyze the contribution of its core components.
We evaluate LapDiff on seven benchmark datasets including Open Graph Benchmark (OGB), cover-
ing two diverse network graph learning tasks: link prediction and node classification. For evaluation,
we follow the standard OGB protocols, using Hits@K and MRR for link prediction, and accuracy for
node classification. For node classification, we adopt a challenging few-shot setting with a fixed num-
ber of labeled nodes k ∈ {1, 5, 10} per class to test representation power under extreme label scarcity.
We compare LapDiff against a comprehensive set of baselines, including heuristic methods, classic
GNNs (GCN, GAT, GraphSAGE), and recent specialized architectures (SEAL, Neo-GNNs, C&S,
GraphMAE2). Experimental details are provided in the Appendix. An anonymized implementation
is available at https://anonymous.4open.science/r/NPGMLworkshop2025CDF2

4.1 Performance on Downstream tasks

Across all link prediction and node classification benchmarks, LapDiff consistently outperforms task-
specific baselines, indicating it captures both structural and feature-level priors without hand-crafted
biases. This robustness across diverse tasks and datasets confirms its ability to learn broadly general-
izable graph representations, emphasizing LapDiff’s utility for diverse graph-learning applications.

Link prediction. Table 1 reports the results of OGB link prediction benchmarks. Our LapDiff
generally shows significantly improved performance than other baselines on OGB-Collab and OGB-
DDI datasets and second-best performance on OGB-PPA and OGB-CItation2 with low discrepancy
to the best models. This indicates our LapDiff is capable of capturing latent graph priors that
are crucial in the context of link prediction tasks and data. Additionally, LapDiff demonstrates
robust performance across various datasets. LapDiff has the ability to handle both underlying prior
distribution and internal biases in graph structures and node features. For instance, LapDiff achieves
the best performance on OGB-DDI, whereas SEAL, which is designed to generalize higher-order
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Table 1: Link prediction performances on Open Graph Benchmark (OGB) datasets. OOM denotes
’out of memory’. Bold underline indicates the best performance and bold indicates the second best
performance.

Model OGB-PPA OGB-Collab OGB-DDI OGB-Citation2

Neighborhoood Heuristics
Common Neighbors 27.65± 0.00 50.06± 0.00 17.73± 0.00 76.20± 0.0

Adamic Adar 32.45± 0.00 53.00± 0.00 18.61± 0.00 76.12± 0.0
Resource Allocation 49.33± 0.00 52.89± 0.00 6.23± 0.00 76.20± 0.0

Shallow Methods Matrix Factorization 23.78± 1.82 34.87± 0.23 13.29± 2.32 50.48± 3.09
MLP 0.99± 0.15 16.05± 0.48 N/A 25.13± 0.28

GRL Methods

GCN 15.37± 1.25 44.57± 0.64 40.87± 6.08 82.57± 0.26
GAT OOM 41.73± 1.01 32.57± 3.48 OOM

SAGE 12.51± 2.02 47.86± 0.64 47.06± 5.21 80.18± 0.15
JKNet 11.73± 1.98 47.52± 0.73 57.95± 7.69 OOM
SEAL 47.18± 3.60 54.27± 0.46 29.86± 4.37 86.72± 0.31

Neo-GNN 47.53± 0.63 53.95± 0.52 60.02± 3.86 85.96± 0.94
DDM 17.93± 1.91 49.56± 1.79 47.73± 3.10 83.51± 0.20

LapDiff(ours) 48.32± 0.68 54.33± 0.35 60.56± 2.32 86.70± 0.27

Table 2: Node classification performance on OGB-Arxiv, OGB-Products, and PubMed dataset. OOM
denotes ’out of memory’. Bold indicates the best performance.

Model OGB-Arxiv OGB-Products PubMed
Fixed k nodes k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

GCN 31.69± 2.74 52.97± 0.94 58.39± 0.50 38.93± 2.09 62.69± 1.27 66.23± 0.91 45.87± 2.44 60.56± 1.44 69.50± 0.68
GAT 25.60± 2.95 50.87± 1.78 57.23± 0.75 35.81± 2.42 60.72± 1.93 64.80± 1.21 43.57± 2.71 58.38± 2.06 68.40± 1.49

APPNP 29.36± 2.19 52.47± 1.26 56.42± 0.83 36.35± 2.20 63.01± 2.10 66.85± 0.84 43.04± 1.72 56.94± 1.90 69.99± 0.73
GCNII 30.94± 2.30 51.94± 1.18 57.65± 0.94 33.64± 2.32 61.43± 2.36 64.90± 1.39 43.29± 2.53 56.18± 1.84 70.60± 0.93
C&S 30.63± 1.88 51.73± 1.30 56.57± 1.43 40.47± 1.97 62.18± 1.57 67.53± 1.40 44.91± 1.24 57.44± 1.36 68.78± 1.07

CCA-SSG 29.21± 3.01 51.67± 2.31 57.40± 0.89 39.95± 2.67 63.10± 2.13 67.62± 1.56 47.56± 3.15 60.44± 2.60 69.24± 0.68
GraphMAE2 33.83± 3.23 54.67± 2.32 60.16± 0.75 41.65± 2.01 63.69± 2.30 68.08± 1.62 50.76± 5.10 64.29± 0.11 70.51± 0.11

DDM 36.08± 0.93 55.69± 1.41 60.71± 0.31 45.57± 1.28 64.90± 1.03 69.62± 0.15 50.95± 2.42 65.13± 0.10 70.12± 0.56
LapDiff(ours) 39.04± 1.52 57.83± 0.83 61.23± 0.37 49.10± 1.75 67.47± 1.03 70.69± 0.61 53.82± 1.46 66.93± 0.88 72.77± 0.62

structural heuristics shows relatively poor performance. This result illustrates that existing GNNs
often show degradation under conditions that are distinct from their intrinsic objectives. Thus, it
highlights that our model effectively learn latent representations with hidden, complex aspects that
are captured by latent priors in a graph naturally regarding certain objectives.

Node classification. We conduct experiments on semi-supervised node classification benchmark
datasets to validate the effectiveness of LapDiff on learning node embeddings. We constrained the
training index by the fixed k nodes per label. The number k is set to 1, 5, and 10. Table 2 shows the
performance of a semi-supervised node classification task that is extremely limited to label scarcity.
LapDiff outperforms other baselines on all datasets and settings. According to the results, LapDiff
effectively captures the latent distribution of nodes, even under very constrained conditions.

4.2 Analysis on Components

We empirically validate the efficacy of each component in LapDiff through ablation experiments
in Table 3. First, we demonstrate the capability of LapDiff to capture universal and comprehensive
representation by training without downstream task loss. It is remarkable that it still shows a relatively
high performance than LapDiff without feature process or structure process. Also, it is interesting that
it still outperforms conventional GNNs including GCN, GAT, SAGE, and JKNet. This result implies
that LapDiff is capable of learning critical latent representations within a graph that are significant by
aligning hidden graph priors.

Then, we evaluate LapDiff without the feature diffusion process and structural diffusion process based
on the average performance on link prediction datasets. LapDiff without feature diffusion process
and LapDiff without structural diffusion process both show degraded performance on OGB-Collab
and OGB-PPA.

4.3 Analysis on Noise Source

Table 4 presents an analysis of the efficacy of different noise sources to capture underlying latent
priors dynamically aligning to the internal structures of task and dataset. The noise sources compared
to Laplacian smoothing are random Gaussian noise from DDPM [25] and Anisotropic Gaussian
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Table 3: Ablation study analyzing the efficacy of
each component of LapDiff.

Dataset OGB-Collab OGB-PPA

LapDiff 54.33± 0.37 48.87± 0.64
LapDiff (w/o downstream loss) 51.78± 0.40 44.92± 1.52
LapDiff (w/o feature process) 45.13± 2.33 39.77± 1.13
LapDiff (w/o structure process) 45.47± 3.02 26.42± 2.30

Table 4: Analysis on the efficacy of noise source.
As other baselines only consider node features,
the structure process in LapDiff is excluded from
evaluation.

Dataset OGB-Collab OGB-Arxiv (k = 5)
Metric Hits@50 Accuracy

LapDiff (Laplacian smoothing) 52.30± 0.97 57.02± 0.79
DDPM (Random noise) 47.43± 1.58 53.38± 1.02
DDM (Anisotropic noise) 49.56± 1.79 55.69± 1.41

Figure 2: Visualization of graph reconstruction on PubMed at every even number time step. To improve the
visibility of the figure, we sampled the subgraph of PubMed with large connectivity.

noise in DDM [26]. The effectiveness of each noise source is evaluated for link prediction and
semi-supervised node classification tasks on OGB-Collab and OGB-Arxiv datasets, respectively. On
both datasets, Laplacian smoothing outperforms the other two noise sources. It achieves a score
of 52.30 on the OGB-Collab dataset and 57.02 on the OGB-Arxiv dataset. Compared to random
Gaussian noise and anisotropic Gaussian noise, Laplacian smoothing shows a clear advantage. For
instance, it exceeds random Gaussian Noise by nearly 5 percentage points and exceeds anisotropic
Gaussian noise by over 3 percentage points on OGB-Collab dataset. These results strongly support
our central hypothesis: the Laplacian smoothing, by selectively preserving low-frequency structural
signals (as analyzed in Sec 3.1.1), provides a far more informative gradient for the denoising network
than isotropic noise, which destroys all signal components uniformly. These results indicate that
utilizing Laplacian smoothing as a noise source is not only effective but also consistent, offering
a significant improvement over other random noise. It provides strong empirical evidence of the
efficacy of Laplacian smoothing as a noise source in a diffusion model for graph representation
learning tasks, specifically for large graph data.

4.4 Underlying Distribution of Graph

The goal of LapDiff is to learn universal and generalizable representations that are aligned with the
underlying distribution of large graph data. To validate the capability to learn priors of network graphs
and implicitly aligned with inherent priors, Fig 2 provides the visualization of the reconstruction
of a graph on PubMed dataset at each even number of states. As shown in Fig 2, the trajectory of
reconstruction is directed toward the input state, eventually, showing a similar structure at t = 2
compared to the input graph t = 0.

5 Conclusion

We introduced LapDiff, a framework that instantiates an adaptive inductive bias. We operationalize
this by training a denoising network to invert two complementary processes: a deterministic feature
smoothing via the graph Laplacian and a stochastic structural perturbation. LAPDIFF learns a graph-
specific prior instead of relying on hand-crafted assumptions. Across diverse benchmarks, it delivers
strong performance and provides evidence toward more universal graph learners. LapDiff shows
the largest improvements on datasets where fixed biases fail. On simpler tasks like small citation
networks, the performance gain is smaller because even fixed-bias GNNs work well. LapDiff requires
more computation than standard GNNs due to the iterative denoising process (see Appendix D.1 for
complexity analysis). For extremely large graphs, the computation may become a bottleneck, thus,
future work could explore mini-batch Laplacian approximations or localized smoothing operators.
Also, future work includes directed Laplacians, schedule learning, standardized diagnostics, exploring
richer structure-aware noise processes and theoretically analyzing the properties of the learned graph
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priors. Our work encourages further research on adaptive inductive bias universal representation in
graph machine learning.
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A Derivation of Loss function of LapDiff

This section provides a derivation of the variational lower bound (ELBO) and the loss function of our
proposed model, LapDiff.

A.1 Derivation of Evidence Lower Bound (ELBO)

Let G0 represent a given observed graph data consisting of X and A, denoting node feature matrix
and adjacency matrix, respectively. Taking the log-likelihood log p(G0) = log p(X0, A0), we obtain

log pθ(X0, A0) = log

∫
pθ(X0:T , A0:T ) dX1:T dA1:T

≥
∫
q(X1:T , A1:T |X0, A0) log

pθ(X0:T , A0:T )

q(X1:T , A1:T |X0, A0)
dG1:T

(by variational posterior and Jensen’s inequality)

= Eq(X1:T ,A1:T |X0,A0)

[
log

pθ(X0:T , A0:T )

q(X1:T , A1:T |X0, A0)

]
(9)

For simplifying the notation, dG1:T = dX1:T dA1:T and Eq = Eq(X1:T ,A1:T |X0,A0). The variational
lower bound (ELBO) is obtained as follows:

ELBO:=Eq

[
log

pθ(X0:T , A0:T )

q(X1:T , A1:T |X0, A0)

]
(10)

= Eq

log
pθ(XT , AT)

T∏
t=1

pθ(Xt−1|Xt, At)·pθ(At−1|Xt, At)

T∏
t=1

q(Xt|Xt−1)·q(At|At−1)

 (11)

= Eq

[
log pθ(XT,AT )

+

T∑
t=1

log
pθ(Xt−1|Xt, At)·pθ(At−1|Xt, At)

q(Xt|Xt−1)·q(At|At−1)

]
(12)
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Then, we could separate t = 1 and t ≥ 2 because t = 1 indicates the reconstruction to the given
data G0 = (X0, A0). Next, we flip latent variables in the variational posterior q. We reparametrize
q(Xt|Xt−1), q(At|At−1) to q(Xt−1|Xt, X0), q(At−1|At, A0), respectively. Specifically, Markov
chain properties formalize q(Xt|Xt−1) = q(Xt−1|Xt, X0)

q(Xt|X0)
q(Xt−1|X0)

and this holds in A as well.
The second term can be rewritten as

T∑
t=2

log
pθ(Xt−1|Xt, At)·pθ(At−1|Xt, At)

q(Xt−1|Xt, X0)·q(At−1|At, A0)

+

T∑
t=2

log
q(Xt−1|X0)·q(At−1|A0)

q(Xt|X0)·q(At|A0)
(13)

=

T∑
t=2

[
log

pθ(Xt−1|Xt, At)·pθ(At−1|Xt, At)

q(Xt−1|Xt, X0)·q(At−1|At, A0)

+ log
q(X1|X0)

�����q(X2|X0)
·�����q(X2|X0)

�����q(X3|X0)
. . .(

(((((q(XT−2|X0)

((((((q(XT−1|X0)
·((((((q(XT−1|X0)

q(XT |X0)

+ log
q(A1|A0)

�����q(A2|A0)
·�����q(A2|A0)

�����q(A3|A0)
. . .(

(((((q(AT−2|A0)

((((((q(AT−1|A0)
·((((((q(AT−1|A0)

q(AT |A0)

]
. (14)

Then, the ELBO is derived as follows:

ELBO = Eq

[
log pθ(XT , AT )

+

T∑
t=2

log
pθ(Xt−1|Xt, At) · pθ(At−1|Xt, At)

q(Xt−1|Xt, X0) · q(At−1|At, A0)

+ log �����q(X1|X0) ·�����q(A1|A0)

q(XT |X0) · q(AT |A0)
+log

pθ(X0|X1, A1) · pθ(A0|X1, A1)

�����q(X1|X0) ·�����q(A1|A0)

]
(15)

= Eq

 constant

log
pθ(XT , AT )

q(XT |X0) · q(AT |A0)

+

T∑
t=2

log
pθ(Xt−1|Xt, At) · pθ(At−1|Xt, At)

q(Xt−1|Xt, X0) · q(At−1|At, A0)

+ log pθ(X0|X1, A1) · pθ(A0|X1, A1)

]
(16)

The first term is not trainable. Since the degree of noise injection in the forward process is fixed and
not optimized during training, it can be treated as a constant. The second term is equivalent to the
definition of KL divergence, thus the final form of the ELBO of the model is

ELBO = Eq

[
log pθ(X0|X1, A1) + log pθ(A0|X1, A1)

−
∑
t≥2

KL [q(Xt−1|Xt, X0)∥pθ(Xt−1|Xt, At)]

−
∑
t≥2

KL [q(At−1|At, A0)∥pθ(At−1|Xt, At)]
] (17)

A.2 Variational Posterior

In our proposed model, the feature-level and structural diffusion processes are designed to be Markov
chains, meaning the noisy data at each timestep t depends only on the state at t− 1. In the context of
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the forward diffusion processes implies:

q(Xt|X0, X1, . . . , Xt−1, A0) = q(Xt|Xt−1,
Fixed

��A0 ) (18)
q(At|A0, A1, . . . , At−1) = q(At|At−1), (19)

where the noise source, Laplacian smoothing, is fixed with A0. By the definition of Markov chains,
we can remove A0, which serves the role of a fixed noise schedule. Also, recall that we defined noise
in the feature-level diffusion process as

q(Xt|Xt−1) : = (I −D−1L)tX0 = (I −D−1L)Xt−1

q(X1:T |X0) =

T∏
t=1

q(Xt|X0) =

T∏
t=1

q(Xt|Xt−1). (20)

Start from the joint conditional distribution of all Xt and At, given X0, A0:

q(X1:T ,A1:T |X0, A0)

=q(X1, X2, . . . , XT , A1, A2, . . . , AT |X0, A0).
(21)

By the chain rule, Eq (21) equals

q(X1|X0)q(A1|A0) · q(X2|X0, X1)q(A2|A0, A1)

. . . q(XT |X0, . . . , XT−1)q(AT |A0, . . . , AT−1).
(22)

By applying the Markov chain property that each Xt, At only depends on Xt−1, At−1:

q(X1:T , A1:T |X0, A0) =

T∏
t=1

q(Xt|Xt−1) · q(At|At−1) (23)

A.3 Approximation to Laplacian Difference Prediction

For one undirected edges (i, j), let the one-edge KL be

pij = q
(
At−1,ij = 1 | At, A0

)
, p̂ij = pθ

(
At−1,ij = 1 | Gt

)
. (24)

The Bernoulli Kullback–Leibler term that appears in the ELBO can be rewritten as

DKL

(
pij ∥ p̂ij

)
= pij log

pij
p̂ij

+ (1− pij) log
1− pij
1− p̂ij

. (25)

Fix the target probability pij ∈ (0, 1) and leverage Taylor expansion, ε := p̂ij − pij . Because the
first derivative vanishes at ε = 0 and the second derivative equals 1

pij(1−pij)
,

DKL

(
pij ∥ pij + ε

)
=

ε2

2 pij(1− pij)
+O(ε3) (26)

whenever |ε| < min{pij , 1− pij}. Thus to second order the KL is proportional to the squared error(
pij − p̂ij

)2
.

For a random adjacency matrix A with edge–existence probabilities q the expected combinatorial
Laplacian is

L̄(q) = diag
(∑

k

q1k, . . .
)
− q. (27)

For off-diagonal entries (i ̸= j): L̄(q)ij = − qij . Therefore, we can obtain

pij − p̂ij = −( L̄(p)ij − L̄(p̂)ij ). (28)

Then all edges can be summed over:∑
i<j

DKL

(
pij ∥ p̂ij

) (2)
=

1

2

∑
i<j

(
L̄(p)ij − L̄(p̂)ij

)2
pij(1− pij)

+O
(
∥L̄(p)− L̄(p̂)∥3F

)
.

(29)
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Assume every posterior edge probability is clipped away from 0, 1: pij ∈ [ε, 1− ε] for some fixed
0 < ε < 1

2 . Then

pij(1− pij) ≥ ε(1− ε)

=⇒ DKL(pij ∥ p̂ij) ≤ cε
(
L̄(p)ij − L̄(p̂)ij

)2
,

(30)

with cε =
1

2ε(1−ε) . Using the Frobenius norm of a symmetric matrix and (non-overlapping) edges:

Ledge_KL :=
∑
i<j

DKL(pij ∥ p̂ij) ≤ cε
∥∥L̄(p)− L̄(p̂)

∥∥2
F (31)

Hence, minimizing the Laplacian MSE upper–bounds the exact edge-wise KL.

At training time we see a single Laplacian Lt−1 = D(At−1) − At−1 drawn from the posterior
q(At−1 | At, A0). Its expectation is L̄(p) and its entry-wise variance is O(βt), the forward step size.
For small βt we can drop that noise and use

L̄(p) ≈ L0 − Lt−1,

because the forward diffusion from At−1 to At removes each edge with probability βt, so the
expected difference to the clean graph is L0 − Lt−1.

Step 6: Define the practical surrogate loss
Let fθ(Xt, At) be the GNN output that tries to recover (L0 − Lt−1). Combining (5) and (6):

LLap := λ
∥∥fθ(Xt, At)− (L0 − Lt−1)

∥∥2
2
, λ ≥ cε.

Because it is an upper bound of the true KL term in the ELBO, driving LLap to zero also drives
the Bernoulli KL towards zero. Empirically the continuous, degree-coupled signal contained in the
Laplacian makes gradients less noisy and optimisation easier than edge-wise cross-entropy.

Therefore the Laplacian-MSE loss you observe to work well is mathematically a second-order
surrogate—and an upper bound—for the exact ELBO term that compares adjacency posteriors.
Minimising it is guaranteed to minimise, up to a bounded factor, the information-theoretic quantity
we truly care about.

A.4 Training of LapDiff with denoising network

The training procedure of LapDiff is described as Algorithm 1.

Algorithm 1 Training LapDiff
Input: Large graph G=(X,A)

1: for k = 1 to T do
2: Xk−1 ← (I −D−1L)k−1X
3: Xk ← (I −D−1L)kX
4: Ak ∼ B(Ak−1; pk−1)
5: θk−1 ← θk − η∇θ[Lfeat(fθk(Xk, Ak), Xk−1) + Lstruct(fθk(Xk, Ak), Ak−1)]
6: end for
7: θ ← η∇θLtask(fθ0(X,A), Ytask)

B Hyperparameter Sensitivity Analysis

We analyze LapDiff to demonstrate how hyperparameters affect the performance of LapDiff. We
conduct experiments with 4 hyperparameters in LapDiff loss function, LLapDiff. βt, β1, γ and λ is
weighting hyperparameters for Lfeat, Lfeat-recon, LLap, and Lrecon, respectively. We measure Hits@50
by changing one hyperparameter while the rest of the hyperparameters are fixed to the best value.
The result (Figure. 3) demonstrates that LapDiff is fairly robust to hyperparameters that weight the
components of LapDiff loss LLapDiff. Accordingly, hyperparameters affect the performance of LapDiff
slightly. Consequently, we can conclude that the performances of LapDiff are fairly consistent under
various hyperparameter sets.
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Figure 3: Visualization of hyperparameter sensitivity analysis on OGB-Collab.

C Experimental Setting Details

Datasets. To validate our models, we utilize Open Graph Benchmark (OGB) dataset for link
prediction tasks and node classification tasks [8]. We use four OGB link property datasets for
link prediction tasks: OGB-PPA, OGB-Collab, OGB-DDI, and OGB-Citation2. OGB-PPA is an
undirected and unweighted graph representing protein association. Nodes are proteins from different
specifies and edges mean biological associations. Each node feature is a one-hot vector indicating
the species to which the protein belongs. OGB-Collab is an undirected graph, which represents a
collaboration network where edges denote collaborations between authors. OGB-DDI is an undirected,
unweighted graph that contains drug-drug interactions, with edges indicating interactions such as
combined effects. Note that this dataset lacks node features. OGB-Citation2 is a citation network
graph with direction. Each node in the graph corresponds to a paper, and a directed edge indicates
that one paper cites another. Both OGB-Citation2 and OGB-Collab include node features obtained
from embedding models. For node classification tasks, we use three benchmark datasets: OGB-Arxiv,
OGB-Products, and PubMed.

Evaluation. According to the evaluation protocol of OGB, we evaluate our model with Hits@K
metric and Mean reciprocal rank (MRR) in link prediction. Hits@K is based on ranking positive
test edges against randomly sampled negative edges. The ranking performance is measured by the
ratio of positive test edges ranked at or above the K-th position. In OGB-PPA, the K-th position is
set to 100, while for OGB-Collab and OGB-DDI, it is set to 50 and 20, respectively. The evaluation
metric for OGB-Citation2 is MRR. It calculates the reciprocal rank of the true edges within the pool
of negative candidates for each source node and then averages these values across all source nodes.
To further demonstrate the ability to learn compendious underlying structures in node classification,
we constrain a fixed k-nodes setting by vastly reducing the number of nodes per label in train sets.
Under this setting, accuracy measures the performance on OGB-Arxiv, OGB-Products, and PubMed.

Baselines. For baselines on link prediction, we include prevalent GNN-based models: GCN [13],
GAT [14], GraphSAGE [27], JKNet [28], Variational Graph Autoencoder [29], SEAL [5], Neo-GNNs
[6], and DDM. Note that SEAL extract enclosing subgraph to utilize in link prediction. Additionally,
three link prediction heuristics [30–32], Matrix factorization [33], and Multi-layer perceptron [34]
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are included in baselines. Baseline models for semi-supervised node classification include GCN,
GAT, APPNP [35], GCNII [36], and Correct&Smooth (C&S) [37]. We also compare LapDiff with
self-supervised graph learning methods, CCA-SSG [38], and generative method GraphMAE2 [39].

Implementation Details. We implemented link prediction heuristics, such as Common Neigh-
bor(CN), Adamic Adar(AA), and Resource Allocation(RA), based on the paper [30–32]. For GCN,
GraphSAGE, GAT, JKNet, APPNP, GCNII, and MLP we used the implementation in PyTorch Geo-
metric [40], and for SEAL and C&S, we used the implementation from the official repository. We
trained LapDiff with a 2-layer LapDiff encoder with latent Laplacian parameters and 3-layer MLP de-
coder for OGB-Collab, OGB-DDI, OGB-PPA, and OGB-Citation2. For OGB-Arxiv, OGB-Products,
and PubMed, we used 3-layer LapDiff encoder and 3-layer MLP decoder. For the link prediction task,
we shared the last layer of the decoder as a predictor, and for the node classification task, we utilized
1 layer MLP as a classifier. Also, we set the diffusion state to 10 for OGB-Collab, OGB-DDI, and
OGB-PPA, and 3 for OGB-Citation2 due to the dataset’s memory issue. For a fair comparison, we
reported performances of all baselines and LapDiff as the mean and the standard deviation obtained
from 10 independent runs with fixed random seed 0, . . . , 9. To simulate a real-world scenario, we did
not use validation edges as input in OGB-Collab. The experiments are conducted on A100(40GB)
and A40(48GB).

D Computational Complexity

Notation

• N = |V | : number of nodes ; E = |E| : number of edges.

• d : input feature dimension ; h : hidden dimension of the denoiser fθ.

• T : number of diffusion steps (T≪N in practice).

Diffusion Process Each Laplacian-smoothing step multiplies Xt−1 by (I −D−1L). For a sparse
adjacency (E=O(N) in large graphs), this costs

O
(
E d

)
per step =⇒ O

(
T E d

)
overall. (32)

Sampling edges (edge removal) is O(E) per step; overall O(T E). No matrix materialization beyond
the original sparse A is required. Total (forward).

O
(
T E (d+ 1)

)
≈ O(T E d)

Reverse (Denoising) Process The denoiser fθ is a 2-layer MLP encoder + 3-layer MLP decoder.
Given sparse adjacency, each call costs O(E h+N h2). Invoked once per diffusion step, the reverse
chain costs

O
(
T (E h+N h2)

)
.

D.1 Overall Time Complexity

Combining forward and reverse,

O
(
T
[
E (d+ h) +N h2

])
With typical settings (h≈d, E≫N , T ≤10), the leading term is T E d, comparable to a single pass
of a conventional L-layer GNN when L≈T .

D.2 Memory Complexity

• Parameters. Two MLPs of width h: O(h2), independent of T .

• Activations. We store Xt and (sparse) At for the current step only, so in-memory activations
scale as:

O
(
N d+ E

)
+O(N h) = O

(
N(d+ h) + E

)
.
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• Comparison to L-layer GNN. A standard L-layer message-passing GNN stores L intermediate
node embeddings, yielding O(LN h) memory. LapDiff keeps a single embedding per step and
can recompute forward activations (checkpointing), requiring at most O(N h)—often smaller
than a deep GNN when L>T .

Scalability. With T chosen ≤ 10, LapDiff’s runtime is on par with—or lower than—deep GNNs that
rely on L≥10 layers. The memory footprint remains modest due to sparse storage and step-wise
recomputation.

E License of the assets

Our source code is based on PyTorch which was released under Berkeley Software Distribution (BSD)
License. We implement GNN-based baselines using PyTorch Geometric, a deep learning framework
licensed under MIT. Additionally, we implement SEAL 1 and GraphMAE 2 from the official GitHub
repository under MIT License. Both BSD license and MIT license can be used or redistributed under
stipulated conditions. Moreover, we conduct experiments on four benchmark datasets from Open
Graph Benchmark (OGB). OGB is released under MIT License. We visualize significant results by
using Matplotlib where the license is based on Python Software Foundation (PSF) license.

F Broader Impact

LapDiff aims to capture latent factors for graph representation learning. It provides a strong foundation
for future models that aim to understand the rich information of relational data in graphs. Our model
would not only be capable of discerning the latent structures within graph data but also adept at
applying this knowledge across a broad spectrum of applications. With its Laplacian smoothing noise
which is structure-aware, LapDiff contributes to the ongoing discourse on data privacy. By generating
representations that respect the underlying structure of data without compromising individual privacy,
LapDiff aligns with the ethical use of data in AI. Also, our model’s versatility suggests broad
applicability beyond traditional domains, offering potential breakthroughs in any field that benefits
from understanding complex networks, including neuroscience, epidemiology, and environmental
studies. However, LapDiff needs to be used carefully for graph representation learning tasks such as
link prediction or node classification in social networks where privacy and anonymity are important.

1https://github.com/facebookresearch/SEAL_OGB
2https://github.com/THUDM/GraphMAE2
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly state the development of the LapDiff
with Laplacian-based diffusion, and the claims match the theoretical derivations and experi-
ments reported (see Section 1 and 2)
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are mentioned regarding scalability and assumptions in the diffu-
sion process. (See Section 5)
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The derivations of the ELBO and loss function are presented in detail in the
Appendix. Assumptions about Markov properties and Laplacian smoothing are clearly
stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental settings, datasets (OGB), and baselines are described in the main
text and Appendix. Hyperparameters and complexity analysis are also provided in Appendix.
We provide codes as Supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper states that implementations are based on PyTorch and PyTorch
Geometric with clear licenses (Appendix), but the code is released only to reviewers at
submission time.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training procedures, loss components, and hyperparameter sensitivity analyses
are described in Appendix. Optimizer details are also outlined in Algorithm 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are provided with mean and standard deviation under 10 fixed runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational and memory complexity analyses, GPU are detailed in Ap-
pendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The datasets (OGB) and libraries used are all properly licensed. No ethical
violations are apparent in the methodology.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix, we discussed privacy implications and broad applicability. Nega-
tive societal impacts such as misuse are only briefly mentioned, but at least acknowledged.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The model is not released as a pretrained asset with high misuse risk. Only
standard datasets and code bases are used.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Appendix E provides details about BSD/MIT/PSF licenses of all used assets
and repositories.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or assets are introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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