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Abstract

We present TRIESTE, an open-source Python package for Bayesian optimization
and active learning benefiting from the scalability and efficiency of TENSORFLOW.
Our library enables the plug-and-play of popular TENSORFLOW-based models
within sequential decision-making loops, e.g. Gaussian processes from GPFLOW or
GPFLUX, or neural networks from KERAS. This modular mindset is central to the
package and extends to our acquisition functions and the internal dynamics of the
decision-making loop, both of which can be tailored and extended by researchers
or engineers when tackling custom use cases. TRIESTE is a research-friendly and
production-ready toolkit backed by a comprehensive test suite, extensive documen-
tation, and available at https://github.com/secondmind-labs/trieste.

1 Introduction

TENSORFLOW is one of Python’s primary machine learning frameworks, offering both flexibility
and scalability through its support for auto-differentiation and GPU-based computation. Yet, TEN-
SORFLOW 2 does not have a library for Bayesian Optimization (BO) — an increasingly popular
method for black-box optimization under heavily constrained optimization budgets [see 45, for an
introduction]. This lack of support is likely due to the inherently sequential and evolving nature of
active learning loops, which makes BO implementations prone to trigger expensive retracing of the
computational graphs, as used by TENSORFLOW to accelerate numerical calculations. However, once
special care is taken to avoid unnecessary retracing, a TENSORFLOW-based BO library would allow
users not only to leverage versatile and powerful (probabilistic) TENSORFLOW modeling libraries (e.g.
KERAS, GPFLOW, GPFLUX), but also to benefit from BO-specific perks like the freedom to define
acquisition functions without specifying their gradients, easily parallelized optimization of acquisition
functions, and in-the-loop monitoring of models and convergence statistics (e.g. TENSORBOARD).

In this paper, we present TRIESTE1, a highly modular, flexible and general-purpose BO library
designed to enable users working within TENSORFLOW ecosystems to:

1Trieste was the first crewed vessel to reach the bottom of the Mariana trench — the literal global minimum.

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).
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1. deploy their own existing models to drive BO loops, and

2. build BO pipelines that harness the ease and computational efficiency provided by TENSOR-
FLOW’s automatic differentiation and support for modern compute resources like GPUs.

Our library is oriented towards real-world use and contains a wide range of advanced BO function-
alities, with a focus on modularity to allow ease of extension with custom models and acquisition
functions. Trieste’s funcionality is matched only by TORCH-based BOTORCH of [2] (see Section 4)
which, although widely regarded as the state-of-the-art BO Python library, does not support the large
number researchers and engineers with TENSORFLOW models and pipelines.

2 Related Work

Many open-source libraries have been built to support the recent increase in the use and development
of BO methodology. For example, Python users with models written in TORCH or NUMPY can
easily find compatible libraries such as BOTORCH [2], GPYOPT [1], ROBO [22], EMUKIT [33] or
DRAGONFLY [21]. Similarly, those running R, C++ or JAVA can use DICEOPTIM [41], BAYESOPT
[26] or SMAC [17]. The library GPFLOWOPT [24] was built on TENSORFLOW 1 with an intent
similar to TRIESTE, but is not actively maintained anymore and does not support the fundamentally
different TENSORFLOW 2.

3 Key features and Design

We now present the modular structure of TRIESTE which contains four key building blocks, a
choice of high-level interface (either AskTellOptimizer or BayesianOptimizer), a choice of
ProbabilisticModel, and a pairing of AcquisitionRule and AcquisitionFunction. Al-
though TRIESTE’s structure allows a high level of customization, sensible defaults are provided
throughout the library in order to give new users good starting points.

3.1 Interfaces for different levels of control over function evaluation

A key design choice of TRIESTE is its AskTellOptimizer interface, which need not have direct
access to the objective function. In many libraries, the objective must be a query-able function to be
passed into the loop and called for each BO step, an assumption that is rarely suitable when performing
BO in the real world. In contrast, an AskTellOptimizer outputs recommended query points (the
ask) and then waits for the user to return new evaluations (the tell) (see Figure 3). This interface allows
TRIESTE users to apply BO across a range of non-standard real-world settings, e.g., when evaluating
the objective function requires laboratory [19] or distributed computing resources, such that users
have only partial control over the environment [37] or batches of evaluations arrive asynchronously
[20]. For settings where it is appropriate for the objective function to be passed into the BO, e.g.,
for experiments with synthetic problems, we also provide a more standard BayesianOptimizer
interface that will run multiple BO steps.

3.2 Versatile Model Support

The models in the BO loop can be any model written in TENSORFLOW, and TRIESTE is designed
to make it easy to add a new model, through a set of general model interfaces. We provide direct
interfaces to import models from well-established TENSORFLOW modeling libraries, e.g., Gaussian
processes from GPFLOW [27] and GPFLUX [10], as well as neural networks from KERAS. TRIESTE
users have a range of popular probabilistic models from these libraries available out of the box. They
cover both regression and classification tasks and range from standard GPs [40] to alternatives like
sparse variational GPs [14], Deep GPs [43] or Deep Ensembles [25], that scale much better with
the number of function evaluations. Finally, we provide user-friendly model builders with sensible
default setups, allowing users to get more quickly to good results and facilitate usage for those with
less experience with probabilistic models. Hence, TRIESTE users can benefit from a large choice of
models with a wide range of complexity, unlocking novel applications for BO.

Importantly, TRIESTE’s BO loops allow the modeling of multiple quantities, using either multiple
separate models or a single multi-output model. This framework naturally supports common BO
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Figure 1: AskTellOptimizer

Figure 2: BayesianOptimizer

Figure 3: TRIESTE’s interfaces over N optimization steps. The AskTellOptimizer requires users to
make manual evaluations, which is useful for real-world settings, e.g. evaluating the objective function
requires laboratory or distributed computing resources. In contrast, the BayesianOptimizer queries
the black box directly, performing all N BO iterations without user interaction.

extensions like multi-objective optimization [23], multi-fidelity optimization [46], optimization with
constraints [44], and combinations thereof.

3.3 Acquisition Rules and Functions

Regardless of the interface and model choice, the recommendation of query points is controlled by
an AcquisitionRule. While the vanilla BO rule is to query the point that optimizes a particular
AcquisitionFunction, the AcquisitionRule is a useful abstraction to handle complex cases for
which a high level of flexibility is needed. For example, Trieste includes variable optimization spaces
for AcquisitionFunction [e.g., using trust regions, 9], a multi-step procedure for selecting query
points [4], and a greedy approach to build batches of query points [29].

A wide range of acquisition functions are already provided in TRIESTE to tackle most of the usual BO
cases, with many based on the gold-standard Expected Improvement [EI; 18], including variants for
batch [6, 12, 2], noisy [16], multi-objective [7] and constrained [11] optimization. We also include
implementations of recent information-theoretic approaches for multi-fidelity optimization [30], a
scalable extension of batched Thompson sampling [47], as well as popular active learning methods
for improved classification [15] or contour line estimation [35].

TRIESTE is designed to make it straightforward for a user to specify a new acquisition function or rule.
Automatic differentiation directly provides the function gradients, which are leveraged by TRIESTE’s
supported acquisition function optimizers, including an effective parallelized multi-start L-BFGS-B
optimizer. Special care is taken to allow AcquisitionFunctions to be updated without expensive
retracing of the computational graphs for each BO step.

4 Feature Benchmark

Table 1 compares TRIESTE with two other popular BO frameworks, demonstrating that it is a general-
purpose BO toolbox. TRIESTE has comparable features to the Torch-based BOTORCH and provides
substantially more functionality than the NUMPY-based EMUKIT. The other Python BO libraries
introduced in Section 2 are not included in this comparison as they either have even less functionality
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Auto-
diff GPU Ask-

tell Batch Multi-
fidelity

Multi-
objective

Const-
raints Back-end

TRIESTE ✓ ✓ ✓ ✓ ✓ ✓ ✓ TENSORFLOW
BOTORCH ✓ ✓ ✓2 ✓ ✓ ✓ ✓ TORCH
EMUKIT × × × ✓ ✓ × ✓ NUMPY

Table 1: A comparison of feature support (according to their documentation) of relevant Python BO
libraries still under active maintenance.

and are no longer maintained (GPYOPT, ROBO and GPFLOWOPT), or target only hyper-parameter
optimization (DRAGONFLY and SMAC).

5 Conclusions and Future Plans

TRIESTE is an open-source project that allows TENSORFLOW practitioners to easily use BO in
their systems. It is a highly flexible library designed with modularity in mind, easy to extend with
custom models and acquisition functions. Backed by continuous integration and comprehensive
unit tests (97% coverage), TRIESTE is a reliable and robust framework used for both real-world
deployment and research has recently been taken up by researchers to develop new BO methodology
[47, 36, 5, 13, 29, 31, 32, 37, 38, 39] whilst also being used across a range of applications including
designing heat exchangers [34] and improving adhesive bonding [19].

TRIESTE relies on features added and improved by the community and so we gladly welcome feature
requests and code contributions. We plan to continue to add new functionality orientated to supporting
the application of BO in the real world. In the near term, this will include high-dimensional objective
functions [3] and non-Euclidean search spaces [28, 42, 8].
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