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Abstract

We investigate the representation collapse phenomenon in Joint Embedding
Predictive Architectures (JEPA). We study a setting where a JEPA encoder
is integrated into a reinforcement learning (RL) pipeline as part of a policy
network. Our theoretical analysis demonstrates that under such a setup, a
partially collapsed encoder cannot be a global optimum when trained jointly
with an RL objective. This suggests that the RL objective can act as an
effective mechanism to prevent encoder collapse. We hypothesize that, rather
than being a failure mode, representation collapse may indicate an inherent
tendency toward simplicity in the learned representation space. While the
simplicity of the resulting representations needs more experimental study,
our work provides theoretical support for this possibility and motivates
future investigation.

1 Introduction

PLDM (Planning with Latent Dynamics Model) (Sobal et al., 2025), or DINO-WM (Zhou
et al., 2025), is a way to generate actions from a dynamics model, also known as a world
model. It adopts a Joint Embedding Predictive Architecture (JEPA), as shown by the square
in Fig.1. During training, there is an observation st of the environment at every time step
t. The observation is usually an image of the environment. The encoder Eϕ turns it into
the encoding vector zt. The dynamics model Wψ takes the encoding vector and an action
at and predicts the resulting vector ẑt+1. The loss is a measure of the difference between
ẑt+1 and zt+1 obtained by encoding the observation st+1 after actually performing at in the
environment. During test time, we provide the initial observation as st, and the desired goal
observation as st+1. They are encoded by Eϕ, which gives zt and zt+1. We do a search in
the action space of Wψ (e.g. using gradient descent) to find the action that, once performed
on zt, will lead to a vector that is closest to zt+1.

A problem with JEPA is that if we do not fix the encoder during the training time, the
encoder will degenerate, that is, it will encode every observation to the same vector, which
will successfully minimize the loss to 0, but makes the world model useless. This is also
known as representation collapse. One way to fix this is to add regularization terms that
encourage the increase in variance of the encoding vectors in a batch (Bardes et al., 2022).
Another way is to add an additional projection layer to the encoder at t+ 1, and to set the
rest of its parameters to the exponential moving average of the encoder at t (Grill et al.,
2020). A comprehensive list of current methods to prevent representation collapse in the
JEPA architecture is given in Section 2.2 of (Drozdov et al., 2024).

We consider JEPA in an RL framework, as shown in Fig.1; then a solution of representation
collapse appears naturally: the RL training objective can work as a regularizer to prevent
encoding collapse. This work provides theoretical support. We first prove that, under
reasonable assumptions, a fully collapsed encoder is not a global optimum. Then we
generalize the proof to show that a partially collapsed encoder also cannot be a global
optimum.

We hypothesize that the model will learn a simple representation space of the environment.
The RL objective will extract the features necessary to achieve high reward, and the encoder’s
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Figure 1: The square represents JEPA. A policy network and a value network are put on
top of JEPA to train the model in an RL environment, similar to (Kenneweg et al., 2025).

tendency to be degenerate will keep the feature space minimal. Our future work will examine
the simplicity of the representation space.

2 Related Work

Kenneweg et al. (2025) examine the feasibility of combining the JEPA architecture with
RL. They conducted an experiment in the Cart Pole environment, showing empirically that
receiving information about the gradient of the RL loss is better than applying external
regularization. Our contribution is complementary. We focus on why RL gradients prevent
representation collapse in principle, without relying on any additional regularization. We
supply a proof showing that a collapsed encoder cannot be globally optimal once a policy
loss is present. We show that the mechanism is task-agnostic as long as the RL environment
satisfies our assumptions.

3 Method

Suppose we have an RL environment where the model will need to perform multiple actions
until the end of an episode. We will add a policy and value network on top of the JEPA
architecture. The policy πθ(at | Eϕ(st)) will predict actions based on the encoding vectors
produced by the JEPA architecture. The value network V (Eϕ(st)) will also be based on the
encoding vectors. We will collect the trajectory until the end of the episode t = T . Note
that we don’t use the world model to search for the action.

During training time, we can use some policy gradient method, like A2C, plus a loss term
for JEPA to train πθ, Wψ, and Eϕ together. The model will perform N rollouts as described
above to get {τi}i=1...N , where τ = (s0, a0, s1, a1, ..., sT , aT ). A reward will be assigned to
each of them. For policy gradient, we will maximize:

J (θ, ϕ, ψ) = E{τi}i=1...N

[
T−1∑
t=0

log πθ(at | Eϕ(st)) ·At

− λ

T−1∑
t=0

∥Wψ(Eϕ(st), at)− Eϕ(st+1)∥2
]

(1)

where the first term is the standard policy gradient objective, the second term is the loss for
the JEPA architecture, At is the advantage in policy gradient, and λ is a hyperparameter
controlling the weight of the two training objectives. The whole objective is differentiable,
so we may train it end-to-end. Especially, the gradient of the policy gradient objective will
flow back to the encoder.
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This framework can be considered as a normal policy gradient, where the encoder is just the
first few layers of the policy and the value network. The difference is that an extra JEPA
loss is applied to these layers to help them capture the dynamics of the environment.

3.1 Intuition about Preventing Collapse

For simplicity, let us suppose that the necessary information about the environment is fully
observable given the observation at one time step, so now the policy and value only depend
on the current time step. Suppose Eϕ is already degenerate, so it encodes two different
observations sa and sb to the same vector zd, then the policy will predict the same probability
distribution over actions P (at) = πθ(at|zd). But the optimal action distributions for sa and
sb are likely to differ. Since the RL objective is to update the policy and the encoder to match
these optimal distributions, the encoder can be updated to encode sa and sb to different
encoding vectors, so that the policy can predict two different probability distributions to
approach the two optimal distributions at the same time.

4 Fully Collapsed Encoder

Proposition 1 (Fully collapsed encoder is sub-optimal). Let

J (θ, ϕ, ψ) = JPG(θ, ϕ)︸ ︷︷ ︸
− expected return

+ JJEPA(ϕ, ψ)︸ ︷︷ ︸
world-model loss

be the loss to be minimized. Assume

1. Collapsed-policy Improvability. For every state-independent policy πc there
exist a state s∆ and an action a∆ with Qπc(s∆, a∆) > V πc(s∆) i.e. any constant
action distribution is non-greedy somewhere.

2. Lipschitz continuous world model. For every action, ∥Wψ(z1, a)−Wψ(z2, a)∥ ≤
L∥z1 − z2∥ ∀z1, z2.

Then a fully collapsed encoder Eϕ(s) ≡ zd cannot minimize J globally.

4.1 Set-up and notation

• Encoder Eϕ : S→Rd.
• Policy head is a single linear layer: ℓθ(z) =Wz + b, πθ(a |z) = softmaxa(ℓθ(z)).
• Under the collapsed encoder each state shares latent zd and therefore the same

action distribution πc(a) := πθ(a |zd).

4.2 A one-dimensional “private channel” for state s∆

Introducing the encoder uncollapse. We want to show that lower loss exists when the
encoder is uncollapsed. Set

Eϕ′(s) =

{
zd + εu s = s∆,

zd otherwise,
0 < ε≪ 1.

Only the encoding vector of state s∆ moves by distance ε to the direction of u, which is a
special direction that keeps the old logits intact.

1. The constraints on u.

Wu = 0 and u⊤zd = 0.

2. Why such a u exists. Let

N := kerW = {v ∈ Rd |Wv = 0}, H := z⊥d = {v ∈ Rd | v⊤zd = 0}.
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• N is a vector sub-space with dimN = d− rank(W ).

• H is a hyper-plane, hence dimH = d− 1.

By the dimension formula for intersections of sub-spaces,

dim(N ∩H) ≥ dimN +dimH−d = (d−rankW )+(d−1)−d = d−rankW −1.

Therefore the intersection N ∩H is non-trivial (contains a non-zero vector) whenever

d− rank(W ) ≥ 2.

rank(W ) is at most the number of the actions |A|, but the dimension of the encoding
space d≫ |A|, so the above condition is likely to hold.

Designing a weight tweak that targets only s∆. We add a correction to the policy
weight matrix

δW := k ea∆u
⊤, k > 0 (free parameter)

where ea∆ is the one-hot row vector whose a∆-th entry is 1.

1. All unchanged states (z = zd).

(W + δW )zd =Wzd + k ea∆u
⊤zd

=Wzd + k ea∆ (u⊤zd)︸ ︷︷ ︸
=0

=Wzd = ℓθ(zd).

Hence the logits of every state that still maps to zd remain exactly what they were
before the tweak.

2. The moved state (z = zd + εu).

(W + δW )(zd + εu) =Wzd + εWu + k ea∆u
⊤zd + k εea∆u

⊤u

=Wzd + ε Wu︸︷︷︸
=0

+k ea∆ (u⊤zd)︸ ︷︷ ︸
=0

+kεea∆ (u⊤u)︸ ︷︷ ︸
=1

= ℓθ(zd) + kε ea∆ .

Thus only the logit of action a∆ in state s∆ gains an increment

∆ℓ = k ε.

4.3 How one extra logit lowers the policy loss

We compute the first–order change in the policy loss.

Soft-max Jacobian. For logits ℓ and probabilities π = softmax(ℓ),

∂πi
∂ℓj

= πi
(
δij − πj

)
.

First-order probability shifts. Let pi := πc(i) be the original probabilities, and set the
logit increment on a∆ to ∆ℓ := kε Then

δπa∆ = pa∆(1− pa∆)∆ℓ =: η δπj ̸=a∆ = −pj pa∆ ∆ℓ = − pj
1− pa∆

η. (2)
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Change in the state value of s∆. Write Qi := Qπc(s∆, i) and V πc(s∆) =
∑
i piQi. Then

δV (s∆) =
∑
i

δπiQi

= ηQa∆ − η

1− pa∆

∑
j ̸=a∆

pjQj

= ηQa∆ − η

1− pa∆

[
V πc − pa∆Qa∆

]
=

η

1− pa∆

[
Qa∆ − V πc

]
=

η

1− pa∆
Aπc(s∆, a∆).

Contribution to the global policy objective. Because the loss we minimize is JPG =
−Es[V π(s)], an increase in V reduces the loss. Only s∆ contributes to first order, so

∆
(
JPG

)
= −dπ(s∆) δV (s∆)

= −dπ(s∆)
η

1− pa∆
Aπc(s∆, a∆) +O(ε2).

Insert η = pa∆(1− pa∆) kε (from 2) to obtain the linear improvement

∆JPG = −k1 k ε+O(ε2) , k1 := dπ(s∆) pa∆ A
πc(s∆, a∆) > 0. (3)

Here the minus sign reflects that JPG decreases (linear in kε), while the prefactor k1 is
strictly positive because the advantage is positive by assumption 1.

4.4 How the JEPA loss changes

Let e be the prediction error of the world model before the encoder is uncollapsed, and e′ be
the prediction error of the world model after the encoder is uncollapsed on the affected state
s∆.

e :=
∥∥Wψ(zd, a)− zd

∥∥, e′ :=
∥∥Wψ(z∆, a)− zd

∥∥.
e′t = ∥Wψ(z∆, a)− zd∥

= ∥Wψ(z∆, a)−Wψ(zd, a) +Wψ(zd, a)− zd∥
≤ ∥Wψ(z∆, a)−Wψ(zd, a)∥+ et

≤ Lε+ et.

Assumption 2 gives the last inequality. Squaring and expanding:

e′ 2 ≤ L2ε2 + 2Lε e+ e 2 =⇒ e′ 2 − e 2 ≤ L2ε2 + 2Lε e. (4)

Let Emax := max e (finite during training) and let m be the number of time steps whose
state equals s∆ (necessarily m ≤ H, the horizon). Summing (4) over those steps gives the
JEPA loss increment:

∆JJEPA ≤ C ε+ C ′ε2, C := 2mLEmax, C
′ := mL2. (5)
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4.5 Choosing k so the policy win beats the JEPA cost.

Combine 5 with 3:
∆J = (−k1k + C) ε+ C ′ε2 +O(ε2).

Select k >
2C

k1
and then choose ε so small that the quadratic remainder is negligible. With

this choice ∆J < 0. ■

5 Partially Collapsed Encoder

Theorem 1 considers full representation collapse, where the encoder maps every state to a
single latent vector zd. That result remains too weak for practice: an encoder may collapse
only a subset of states. To complete the picture, we show that even this partial collapse
cannot be globally optimal.

5.1 Modifications to Previous Proof

We need one additional assumption to show that a partially collapsed encoder is not optimal.
We will make modifications to how the weight tweak is designed. The rest of the proof
remain the same.
Proposition 2 (Two-state collapse is sub-optimal). Let J = JPG + JJEPA be the total loss.
Suppose

1. Non-greedy action. For the two collapsed states, here exists an action a∆ with
Aπc(sa, a∆) > 0.

2. Lipschitz world model. For all a ∈ A, ∥Wψ(z1, a) − Wψ(z2, a)∥ ≤ L∥z1 −
z2∥ ∀z1, z2 ∈ Rd.

3. Two-dimensional latent slack. The encoder outputs do not exhaust latent space:

dimS ≤ d−A− 2.

Then any encoder that maps sa and sb to the same code zd cannot be a global minimizer
of J .

5.2 Set-up

Assume the encoder collapses two distinct states sa ̸= sb into the same encoding vector:

Eϕ(sa) = Eϕ(sb) = zd,

while the embeddings of all other states may or may not equal zd.

Set the uncollapsed encoder

Eϕ′(s) =

{
zd + εu s = sa,

Eϕ(s) otherwise,
0 < ε≪ 1.

Let

P :=
[
zd, z(s1), z(s2), . . .

]
∈ Rd×K

collect all the encoding vectors except Eϕ(sa). Here z(si) = Eϕ(si) for each remaining state
si. Define S := span(P ) and N := S⊥. By Assumption 3, N is non-trivial.
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5.3 Designing a weight tweak that isolates only sa

Pick a direction u. Consider the sub-space

U := kerW ∩ z⊥d .

Because W is a single linear layer with rank(W ) ≤ |A|, its kernel has dimension dimkerW ≥
d− |A|. Intersecting with the hyper-plane z⊥d reduces dimension by at most one, giving

dimU ≥ d− |A| − 1.

Assumption 3 meanwhile bounds the span: dimS ≤ d− |A| − 2. Hence

dimU > dimS =⇒ U \ S is not trivial.

We may therefore choose a unit vector

u ∈ U \ S, i.e. Wu = 0, u⊤zd = 0, u /∈ S.

Property u /∈ S is crucial later: it guarantees that we can find a companion vector w ∈ N
with w⊤u ̸= 0.

Find a compensator v. Because dimN ≥ 2 + |A|, pick w ∈ N such that w⊤u ≠ 0 and
set

v := −u+ w.

Then
(u⊤ + v⊤)P = w⊤P = 0, 1 + v⊤u = w⊤u ̸= 0.

Rank-1 correction. Define

δW := k ea∆
(
u⊤ + v⊤

)
, k > 0 free parameter

5.4 Effect on logits

For all other states s ̸= sa, which are encoded to Eϕ(s) = z, we have:

(W + δW )z =Wz + k ea∆(u
⊤ + v⊤)z =Wz,

because every such z is a column of P .

For the moved state sa, its new embedding is zd + εu with 0 < ε≪ 1:

(W + δW )(zd + εu) =Wzd + εWu+ k ea∆(u
⊤ + v⊤)zd + kεea∆(u

⊤ + v⊤)u

=Wzd + kεea∆
(
1 + v⊤u

)
,

using Wu = 0 and (u⊤ + v⊤)zd = 0. Because 1 + v⊤u = w⊤u ≠ 0, the logit of action a∆
increases by

∆ℓ = kεw⊤u ̸= 0 .

5.5 Finishing the proof

1. Policy-gradient gain. Only sa changes to first order, so ∆JPG = −k′1kε + O(ε2)
with k′1 = dπ(sa) pa∆ A

πc(sa, a∆)w
⊤u > 0 by Assumption 1.

2. JEPA cost bound. The world-model error grows at most Cε+C ′ε2 (only steps with
st = sa are affected), exactly as in the full-collapse proof.

3. Choose parameters. Pick k > 2C/k′1 and sufficiently small ε; then ∆J = (−k′1k +
C)ε+O(ε2) < 0.

Hence the encoder that merges {sa, sb} is not globally optimal, completing the proof of
Proposition 2. ■

7



6 Conclusion

We have found new parameters for the policy head that strictly minimize the loss, so a
partially collapsed encoder cannot be globally optimal. Since such parameters exist when the
policy head is just a single linear layer, we can expect that they also exist for more complex
policy network architectures.

Our assumptions are realistic. Assumption 1 requires that the two collapsed states sa and sb
need to be handled differently by the policy, that is, they are two meaningfully different states
in the RL task. Assumption 2 should be satisfied in practice, since most neural networks
are Lipschitz continuous. Assumption 3 should be satisfied in most cases, since a latent
space is usually high-dimensional, and encoding vectors usually do not span the entire space.
Therefore, our analysis supports the feasibility of preventing representation collapse with RL
objective.
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