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ABSTRACT

Energy-based learning is a powerful learning paradigm that encapsulates various
discriminative and generative approaches. An energy-based model (EBM) is typi-
cally formed of inner-model(s) that learn a combination of the different features to
generate an energy mapping for each input configuration. In this paper, we focus
on the diversity of the produced feature set. We extend the probably approximately
correct (PAC) theory of EBMs and analyze the effect of redundancy reduction on
the performance of EBMs. We derive generalization bounds for various learning
contexts, i.e., regression, classification, and implicit regression, with different en-
ergy functions and we show that indeed reducing redundancy of the feature set
can consistently decrease the gap between the true and empirical expectation of
the energy and boosts the performance of the model.

1 INTRODUCTION

The energy-based learning paradigm was first proposed by Zhu & Mumford (1998); LeCun et al.
(2006) as an alternative to probabilistic graphical models (Koller & Friedman, 2009). As their name
suggests, energy-based models (EBMs) map each input ‘configuration’ to a single scalar, called the
‘energy’. In the learning phase, the parameters of the model are optimized by associating the desired
configurations with small energy values and the undesired ones with higher energy values (Kumar
et al., 2019; Song & Ermon, 2019; Yang et al., 2016). In the inference phase, given an incomplete
input configuration, the energy surface is explored to find the remaining variables which yield the
lowest energy. EBMs encapsulate solutions to several supervised approaches (LeCun et al., 2006;
Fang & Liu, 2016) and unsupervised learning problems (Deng et al., 2020; Bakhtin et al., 2021;
Zhao et al., 2020; Xu et al., 2022) and provide a common theoretical framework for many learning
models, including traditional discriminative (Zhai et al., 2016; Li et al., 2020) and generative (Zhu
& Mumford, 1998; Xie et al., 2017b; Zhao et al., 2017; Che et al., 2020; Khalifa et al., 2021)
approaches.

Formally, let us denote the energy function by E(h,x,y), where h = GW (x) represents the model
with parameters W to be optimized during training and x,y are sets of variables. Figure 1 illustrates
how classification, regression, and implicit regression can be expressed as EBMs. In Figure 1 (a), a
regression scenario is presented. The input x, e.g., an image, is transformed using an inner model
GW (x) and its distance, to the second input y is computed yielding the energy function. A valid
energy function in this case can be the L1 or the L2 distance. In the binary classification case
(Figure 1 (b)), the energy can be defined as E(h,x,y) = −yGW (x) . In the implicit regression
case (Figure 1 (c)), we have two inner models and the energy can be defined as the L2 distance
between their outputs E(h,x,y) = 1

2 ||G
(1)
W (x)−G

(2)
W (y)||22. In the inference phase, given an input

x, the label y∗ can be obtained by solving the following optimization problem:

y∗ = argmin
y

E(h,x,y). (1)

An EBM typically relies on an inner model, i.e., GW (x), to generate the desired energy landscape
(LeCun et al., 2006). Depending on the problem at hand, this function can be constructed as a linear
projection, a kernel method, or a neural network and its parameters are optimized in a data-driven
manner in the training phase. Formally, GW (x) can be written as

GW (x) =

D∑
i

wiϕi(x), (2)
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Figure 1: An illustration of energy-based models used to solve (a) a regression problem (b) a binary
classification problem (c) an implicit regression problem.

where {ϕ1(·), · · · , ϕD(·)} is the feature set, which can be hand-crafted, separately trained from
unlabeled data (Zhang & LeCun, 2017), or modeled by a neural network and optimized in the
training phase of the EBM model (Xie et al., 2016; Yu et al., 2020; Xie et al., 2021). In the rest
of the paper, we assume that the inner models GW defined in the energy-based learning system
(Figure 1) are obtained as a weighted sum of different features as expressed in equation 2.

In (Zhang, 2013), it was shown that simply minimizing the empirical energy over the training data
does not theoretically guarantee the minimization of the expected value of the true energy. Thus,
developing and motivating novel regularization techniques is required (Zhang & LeCun, 2017).
We argue that the quality of the feature set {ϕ1(·), · · · , ϕD(·)} plays a critical role in the overall
performance of the global model. In this work, we extend the theoretical analysis of (Zhang, 2013)
and focus on the ‘diversity’ of this set and its effect on the generalization ability of the EBM models.
Intuitively, it is clear that a less correlated set of intermediate representations is richer and thus able
to capture more complex patterns in the input. Thus, it is important to avoid redundant features for
achieving a better performance. However, a theoretical analysis is missing. We start by quantifying
the diversity of a set of feature functions. To this end, we introduce ϑ− τ -diversity:
Definition 1 ((ϑ− τ )-diversity). A set of feature functions, {ϕ1(·), · · · , ϕD(·)} is called ϑ-diverse,
if there exists a constant ϑ ∈ R, such that for every input x we have

1

2

D∑
i ̸=j

(ϕi(x)− ϕj(x))
2 ≥ ϑ2 (3)

with a high probability τ .

Intuitively, if two feature maps ϕi(·) and ϕj(·) are non-redundant, they have different outputs for
the same input with a high probability. However, if, for example, the features are extracted using a
neural network with a ReLU activation function, there is a high probability that some of the features
associated with the input will be zero. Thus, defining a lower bound for the pair-wise diversity
directly is impractical. Therefore, we quantify diversity as the lower-bound over the sum of the
pair-wise distances of the feature maps as expressed in equation 3 and ϑ measures the diversity of a
set.

In machine learning context, diversity has been explored in ensemble learning (Li et al., 2012; Yu
et al., 2011; Li et al., 2017), sampling (Derezinski et al., 2019; Bıyık et al., 2019), ranking (Wu
et al., 2019; Qin & Zhu, 2013), pruning (Singh et al., 2020; Lee et al., 2020), and neural networks
(Xie et al., 2015; Shen et al., 2021). In Xie et al. (2015; 2017a), it was shown theoretically and
experimentally that avoiding redundancy over the weights of a neural network using the mutual
angles as a diversity measure improves the generalization ability of the model. In this work, we
explore a new line of research, where diversity is defined over the feature maps directly, using the
(ϑ− τ )-diversity, in the context of energy-based learning. In (Zhao et al., 2017), a similar idea was
empirically explored. A “repelling regularizer” was proposed to force non-redundant or orthogonal
feature representations. Moreover, the idea of learning while avoiding redundancy has been used
recently in the context of semi-supervised learning (Zbontar et al., 2021; Bardes et al., 2021). Re-
ducing redundancy by minimizing the cross-correlation of features learned using a Siamese network
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(Zbontar et al., 2021) was empirically shown to improve the generalization ability, yet a theoretical
analysis to prove this has so far been lacking.

In this paper, we close the gap between empirical experience and theory. We theoretically study the
generalization ability of EBMs in different learning contexts, i.e., regression, classification, implicit
regression, and we derive new generalization bounds using the (ϑ−τ )-diversity providing theoretical
guarantees that avoiding redundancy indeed improves the generalization ability of the model. The
contributions of this paper can be summarized as follows:

• We explore a new line of research, where diversity is defined over the features representing
the input data and not over the model’s parameters. To this end, we introduce (ϑ − τ )-
diversity as a quantification of the diversity of a given feature set.

• We extend the theoretical analysis (Zhang, 2013) and study the effect of avoiding redun-
dancy of a feature set on the generalization of EBMs (Lemmas 3 to 7 and Theorem 1 to
5).

• We derive bounds for the expectation of the true energy in different learning contexts, i.e.,
regression, classification, and implicit regression, using different energy functions. Our
analysis consistently shows that avoiding redundancy by increasing the diversity of the
feature set can boost the performance of an EBM.

2 PAC-LEARNING OF EBMS WITH (ϑ− τ )-DIVERSITY

In this section, we derive a qualitative justification for (ϑ−τ )-diversity using probably approximately
correct (PAC) learning (Valiant, 1984; Mohri et al., 2018; Li et al., 2019). The PAC-based theory
for standard EBMs has been established in (Zhang, 2013). First, we start by defining Rademacher
complexity:

Definition 2. (Bartlett & Mendelson, 2002; Mohri et al., 2018) For a given dataset with m samples
S = {xi, yi}mi=1 from a distribution D and for a model space F : X → R with a single dimensional
output, the Empirical Rademacher complexity R̂m(F) of the set F is defined as follows:

R̂m(F) = Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
, (4)

where the Rademacher variables σ = {σ1, · · · , σm} are independent uniform random variables in
{−1, 1}.

The Rademacher complexity Rm(F) is defined as the expectation of the Empirical Rademacher
complexity over training set, i.e., Rm(F) = ES∼Dm [R̂m(F)]. Based on this quantity, (Bartlett
& Mendelson, 2002), several learning guarantees for EBMs have been shown (Zhang, 2013). We
recall the following two lemmas related to the estimation error and the Rademacher complexity. In
Lemma 2, we present the principal PAC-learning bound for energy functions with finite outputs.

Lemma 1. (Wolf, 2018) For F ∈ RX , assume that g : R −→ R is a Lg-Lipschitz continuous function
and A = {g ◦ f : f ∈ F}. We have

Rm(A) ≤ LgRm(F). (5)

Lemma 2. (Zhang, 2013) For a well-defined energy function E(h,x,y) over hypothesis class H,
input set X and output set Y (LeCun et al., 2006), the following holds for all h in H with a proba-
bility of at least 1− δ

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 2Rm(E)

+M

√
log(2/δ)

2m
, (6)

where E is the energy function class defined as E = {E(h,x,y)|h ∈ H}, Rm(E) is its Rademacher
complexity, and M is the upper bound of E .
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Lemma 2 provides a generalization bound for EBMs with well-defined (non-negative) and bounded
energy. The expected energy is bounded using the sum of three terms: The first term is the empirical
expectation of energy over the training data, the second term depends on the Rademacher complexity
of the energy class, and the third term involves the number of the training data m and the upper-
bound of the energy function M . This shows that merely minimizing the empirical expectation of
energy, i.e., the first term, may not yield a good approximation of the true expectation. In (Zhang
& LeCun, 2017), it has been shown that regularization using unlabeled data reduces the second and
third terms leading to better generalization. In this work, we express these two terms using the (ϑ−
τ )-diversity and show that employing a diversity strategy may also decrease the gap between the true
and empirical expectation of the energy. In Section 2.1, we consider the special case of regression
and derive two bounds for two energy functions based on L1 and L2 distances. In Section 2.2, we
derive a bound for the binary classification task using as energy function E(h,x,y) = −yGW (x)
(LeCun et al., 2006). In Section 2.3, we consider the case of implicit regression, which encapsulates
different learning problems such as metric learning, generative models, and denoising (LeCun et al.,
2006). For this case, we use the L2 distance between the inner models as the energy function. In the
rest of the paper, we denote the generalization gap, E(x,y)∼D[E(h,x,y)]− 1

m

∑
(x,y)∈S E(h,x,y)

by ∆D,SE. All the proofs are presented in the supplementary material.

2.1 REGRESSION TASK

Regression can be formulated as an energy-based learning problem (Figure 1 (a)) using the inner
model h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x). We assume that the feature set is posi-

tive and well-defined over the input domain X , i.e., ∀x ∈ X : ||Φ(x)||2 ≤ A, the hypothesis
class can be defined as follows: H = {h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x) | Φ ∈

F , ∀x : ||Φ(x)||2 ≤ A}, the output set Y ⊂ R is bounded, i.e., y < B, and the feature set
{ϕ1(·), · · · , ϕD(·)} is ϑ-diverse with a probability τ . The two valid energy functions which can be
used for regression are E2(h,x,y) =

1
2 ||GW (x)−y||22 and E1(h,x,y) = ||GW (x)−y||1 (LeCun

et al., 2006). We study these two cases separately and we show theoretically that for both energy
functions avoiding redundancy improves generalization of the EBM model.

ENERGY FUNCTION: E2

In this subsection, we present our theoretical analysis on the effect of diversity on the generalization
ability of an EBM defined with the energy function E2(h,x,y) =

1
2 ||GW (x) − y||22. We start by

the following two Lemmas 3 and 4.
Lemma 3. With a probability of at least τ , we have

sup
x,W

|h(x)| ≤ ||w||∞
√
(DA2 − ϑ2). (7)

Lemma 4. With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ 1

2
(||w||∞

√
(DA2 − ϑ2) +B)2. (8)

Proof. We have supx,y,h |h(x)− y| ≤ supx,y,h(|h(x)|+ |y|) = (||w||∞
√
DA2 − ϑ2 +B). Thus

supx,y,h|E(h, x, y)| ≤ 1
2 (||w||∞

√
DA2 − ϑ2 +B)2.

Lemmas 3 and 4 bound the supremum of the output of the inner model and the energy function as a
function of ϑ, respectively. As it can been seen, both terms are decreasing with respect to diversity.
Next, we bound the Rademacher complexity of the energy class, i.e., Rm(E).
Lemma 5. With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞(||w||∞
√

(DA2 − ϑ2) +B)Rm(F). (9)

Lemma 5 expresses the bound of the Rademacher complexity of the energy class using the diversity
constant and the Rademacher complexity of the features. Having expressed the different terms of
Lemma 2 using diversity, we now present our main result for an energy-basel model trained defined
using E2. The main result is presented in Theorem 1.
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Theorem 1. For the energy function E(h,x,y) = 1
2 ||GW (x) − y||22, over the input set X ∈ RN ,

hypothesis class H = {h(x) = GW (x) =
∑D

i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x : ||Φ(x)||2 ≤
A}, and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is ϑ-diverse with a probability τ ,
with a probability of at least (1− δ)τ , the following holds for all h in H:

∆D,SE ≤ 4D||w||∞(||w||∞
√

DA2 − ϑ2 +B)Rm(F)

+
1

2
(||w||∞

√
DA2 − ϑ2 +B)2

√
log(2/δ)

2m
, (10)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

Theorem 1 express the special case of Lemma 2 using the (ϑ − τ )-diversity of the feature set
{ϕ1(·), · · · , ϕD(·)}. As it can been seen, the bound of the generalization error is inversely pro-
portional to ϑ2. This theoretically shows that reducing redundancy, i.e., increasing ϑ, reduces the
gap between the true and the empirical energies and improves the generalization performance of the
EBMs.

ENERGY FUNCTION: E1

In this subsection, we consider the second case of regression using the energy function
E1(h,x,y) = ||GW (x) − y||1. Similar to the previous case, we start by deriving bounds for
the energy function and the Rademacher complexity of the class using diversity in Lemmas 6 and 7.
Lemma 6. With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ (||w||∞
√
DA2 − ϑ2 +B). (11)

Lemma 7. With a probability of at least τ , we have
Rm(E) ≤ 2D||w||∞Rm(F). (12)

Next, we derive the main result of the generalization of the EBMs defined using the energy function
E1. The main finding is presented in Theorem 2.
Theorem 2. For the energy function E(h,x,y) = ||GW (x) − y||1, over the input set X ∈ RN ,
hypothesis class H = {h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤

A}, and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is ϑ-diverse with a probability τ ,
then with a probability of at least (1− δ)τ , the following holds for all h in H:

∆D,SE ≤ 4D||w||∞Rm(F) + (||w||∞
√
DA2 − ϑ2 +B)

√
log(2/δ)

2m
, (13)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

Similar to Theorem 1, in Theorem 2, we consistently find that the bound of the true expectation
of the energy is a decreasing function with respect to ϑ. This proves that for the regression task
reducing redundancy can improve the generalization performance of the energy-based model.

2.2 BINARY CLASSIFIER

Here, we consider the problem of binary classification, as illustrated in Figure 1 (b). Using the
same assumption as in regression for the inner model, i.e., h(x) = GW (x) =

∑D
i=1 wiϕi(x) =

wTΦ(x), energy function of E(h,x,y) = −yGW (x) (LeCun et al., 2006), and the (ϑ−τ )-diversity
of the feature set, we express Lemma 2 for this specific configuration in Theorem 3.
Theorem 3. For the energy function E(h,x,y) = −yGW (x), over the input set X ∈ RN , hypoth-
esis class H = {h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x : ||Φ(x)||2 ≤ A},

and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is ϑ-diverse with a probability τ , then
with a probability of at least (1− δ)τ , the following holds for all h in H:

∆D,SE ≤ 4D||w||∞Rm(F) + ||w||∞
√
DA2 − ϑ2

√
log(2/δ)

2m
. (14)

Similar to the regression task, we note that the upper-bound of the true expectation is a decreasing
function with respect to the diversity term. Thus, a less redundant feature set, i.e., higher ϑ, has a
lower upper-bound for the true energy.
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2.3 IMPLICIT REGRESSION

In this section, we consider the problem of implicit regression. This is a general formulation of
a different set of problems such as metric learning, where the goal is to learn a distance function
between two domains, image denoising, object detection as illustrated in (LeCun et al., 2006), or
semi-supervised learning (Zbontar et al., 2021). This form of EBM (Figure 1 (c)) has two inner
models, G1

W (·) and G2
W (·), which can be equal or different according to the problem at hand.

Here, we consider the general case, where the two models correspond to two different combinations
of different features, i.e., G(1)

W (x) =
∑D(1)

i=1 w
(1)
i ϕ

(1)
i (x) and G

(2)
W (y) =

∑D(2)

i=1 w
(2)
i ϕ

(2)
i (y). Thus,

we have a different (ϑ− τ )-diversity term for each set. The final result is presented in Theorem 4.

Theorem 4. For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x)−G

(2)
W (y)||22, over the input set X ∈

RN , hypothesis class H = {h(1)(x) = G
(1)
W (x) =

∑D(1)

i=1 w
(1)
i ϕ

(1)
i (x) = w(1)TΦ(1)(x), h(2)(x) =

G
(2)
W (y) =

∑D(2)

i=1 w
(2)
i ϕ

(2)
i (y) = w(2)TΦ(2)(y) | Φ(1) ∈ F1, Φ

(2) ∈ F2, ∀x : ||Φ(1)(x)||2 ≤
A(1), ∀y : ||Φ(2)(y)||2 ≤ A(2)}, and output set Y ⊂ RN , if the feature set {ϕ(1)

1 (·), · · · , ϕ(1)

D(1)(·)}
is ϑ(1)-diverse with a probability τ1 and the feature set {ϕ(2)

1 (·), · · · , ϕ(2)

D(2)(·)} is ϑ(2)-diverse with
a probability τ2, then with a probability of at least (1− δ)τ1τ2, the following holds for all h in H:

∆D,SE ≤ 8(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
+(J1 + J2)

√
log(2/δ)

2m
, (15)

where J1 = ||w(1)||2∞
(
D(1)A(1)2 − ϑ(1)2

)
and J2 = ||w(2)||2∞

(
D(2)A(2)2 − ϑ(2)2

)
.

The upper-bound of the energy model depends on the diversity variable of both feature sets. More-
over, we note that the bound for the implicit regression decreases proportionally to ϑ2, as opposed
to the classification case for example, where the bound is proportional to ϑ. Thus, we can conclude
that reducing redundancy improves the generalization of EBM in the implicit regression context.

2.4 GENERAL DISCUSSION

We note that the theory developed in our paper (Theorems 1 to 4) is agnostic to the loss function
(LeCun et al., 2006) or the optimization strategy used (Kumar et al., 2019; Song & Ermon, 2019;
Yu et al., 2020; Xu et al., 2022). We show that reducing the redundancy of the features consistently
decreases the upper-bound of the true expectation of the energy and, thus, can boost the generaliza-
tion performance of the energy-based model. It also should be noted that A, i.e., the upper bound
of the features and ϑ are connected. But our findings can be interpreted as follows: given two mod-
els with the same value of A (maximum L2norm of the features), the model with higher diversity
ϑ has a lower generalization bound and is likely to generalize better. We note that our analysis is
independent of how the features are obtained, e.g., handcrafted or optimized. In fact, in the recent
state-of-the-art EBMs (Khalifa et al., 2021; Bakhtin et al., 2021; Yu et al., 2020), the features are
typically parameterized using a deep learning model and optimized during training. Our contribu-
tion is twofold. First, we provide theoretical guarantees that reducing redundancy in the feature
space can indeed improve the generalization of the EBM. This can pave the way toward providing
theoretical guarantees for WORKS ON SELF-SUPERVISED LEARNING using redundancy reduc-
tion Zbontar et al. (2021); Bardes et al. (2021); Zhao et al. (2017). Second, our theory can be used to
motivate novel redundancy reduction strategies, for example, in the form of regularization, to avoid
learning redundant features. Such strategies can improve the performance of the model and improve
generalization.

3 SIMPLE REGULARIZATION ALGORITHM

In general, theoretical generalization bounds can be too loose to be direct practical implications
(Zhang et al., 2017; Neyshabur et al., 2017). However, they typically suggest a regularizer to pro-
mote some desired aspects of the hypothesis class (Xie et al., 2015; Li et al., 2019; Kawaguchi et al.,
2017). Accordingly, inspired by the theoretical analysis in Section 2, we propose a straightforward
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Figure 2: From left to right: (a): 2-D swiss roll ground truth distribution, (b) Distribution learned
using a standard EBM model, (b) Distribution learned with augmented loss using our regularizer.
Relative to the ground truth, the Jensen-Shannon distance of the standard EBM distribution and ours
are 0.27426 and 0.2733, respectively.

strategy to avoid learning redundant features by regularizing the model during the training using a
term inversely proportional to ϑ− τ -diversity of the features. Given an EBM model with a learnable
feature set {ϕ1(·), · · · , ϕD(·)} and a training set S, we propose to augment the original training loss
L as follows:

Laug = L− β
∑
x∈S

D∑
i̸=j

(ϕi(x)− ϕj(x))
2, (16)

where β is a hyper-parameter controlling the contribution of the second term in the total loss. The
additional term penalizes the similarities between the distinct features ensuring learning a diverse
and non-redundant mapping of the data. As a result, this can improve the general performance of
our model.

3.1 TOY EXAMPLE

We test our regularization strategy first using a toy data. We use an EBM model to learn the distri-
bution of a 2-D Swiss roll illustrated in Figure 2 (a). For the EBM, we use a fully connected neu-
ral network composed of two intermediate layers with 1000 units and ReLu activations. We train
the models using Stochastic Gradient Langevin Dynamics (SGLD) sampling and the contrastive
divergence-like algorithm proposed in (Du & Mordatch, 2019). The total objective of the standard
EBM is expressed as follows:

L =
1

N

∑
n

(
α
(
E(x+

n )
2 + E(x−

n )
2) + E(x+

n )− E(x−
n )

)
, (17)

where x+
n denote positive samples and x−

n negative samples. We augment this loss using equa-
tion 16, i.e., the features are the latent representations obtained at the last intermediate layer.

The distribution learned using both the standard and the proposed approach are illustrated using the
kernel density estimation (Terrell & Scott, 1992) in Figure 2. As it can be seen, avoiding redundancy
boosts the performance of the EBM model. Indeed, by comparing the two learned distributions, the
EBM trained with our approach led to a better approximation of the ground-truth distribution and
was able to better capture the tail of the distribution as opposed to the original EBM.

3.2 IMAGE GENERATION EXAMPLE

Recently, there has been a high interest in using EBMs to solve image/text generation tasks Du &
Mordatch (2019); Du et al. (2021); Khalifa et al. (2021); Deng et al. (2020). In this subsection,
we validate the proposed regularizer on the simple example of MNIST digits image generation,
as in (Du & Mordatch, 2019). For the EBM model, we use a simple CNN model composed of
four convolutional layers followed by a linear layer. The training protocol is the same as in (UvA;
Du & Mordatch, 2019), i.e., using Langevin dynamics Markov chain Monte Carlo (MCMC) and a
sampling buffer to accelerate training. The full details are available in the supplementary material.
In this example, the features, i.e., the latent representation obtained at the last intermediate layer,
are learned in an end-to-end way. We evaluate the performance of our approach by augmenting the
contrastive divergence loss using equation 16 to penalize the feature redundancy.
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Figure 3: Qualitative results of our approach (β = 1e−13) : Few intermediate samples of the MCMC
sampling (Langevin Dynamics).

Approach FID NLL loss

EBM 0.01085± 0.00037 0.71124± 0.01901
ours (β = 1e−11) 0.01071± 0.00040 0.71089± 0.01106
ours (β = 1e−12) 0.01040± 0.00034 0.71052 ± 0.01118
ours (β = 1e−13) 0.00985 ± 0.00058 0.71076± 0.01105

Table 1: Table of FID scores and negative log-likelihood (NLL) loss of different approaches for
generations of MNIST images. Each experiment was performed three times with different random
seeds, the results are reported as the mean/SEM over these runs.

We quantitatively evaluate image quality of EBMs with ‘Fréchet Inception Distance’ (FID) score
(Heusel et al., 2017) and the negative log-likelihood (NLL) loss in Table 1 for different values of β.
We note that we obtain consistently better FID and NLL scores by penalizing the similarity of the
learned features. The best performance is achieved by β = 1e−13, which yields more than 10%, in
terms of FID, improvement compared to the original EBM model. To gain insights into the visual
performance of our approach, we plot a few intermediate samples of the MCMC sampling (Langevin
Dynamics). The results obtained by the EBM with β = 1e−13 are presented in Figure 3. Initiating
from random noise, MCMC obtains reasonable figures after only 64 steps. The digits get clearer
and more realistic over the iterations. More results are presented in the supplementary material.

3.3 CONTINUAL LEARNING EXAMPLE

In this subsection, we validate the proposed regularizer on the Continual Learning (CL) problem.
CL tackles the problem of catastrophic forgetting in deep learning models (Parisi et al., 2019; Li
& Hoiem, 2017; Shibata et al., 2021). Its main goal is to solve several tasks sequentially without
forgetting knowledge learned from the past. So, a continual learner is expected to learn a new task,
crucially, without forgetting previous tasks. Recently, an EBM-based CL approach was proposed
in (Li et al., 2020) and led to superior results compared to standard approaches. We use the same
models and the same experimental protocol used in (Li et al., 2020). However, here we focus only on
the class-incremental learning task using CIFAR10 and CIFAR100. We evaluate the performance of
our proposed regularizer using both the boundary-aware and boundary-agnostic settings. As defined
in (Li et al., 2020), the boundary-aware refers to the situation where the sequence of the tasks has
explicit separation between them which is known to the model. The boundary agnostic case refers
to the situation where the data distributions gradually changes without a notion of task boundaries.

8
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Boundary-aware Boundary-agnostic

Method CIFAR10 CIFAR100 CIFAR10 CIFAR100

EBM 39.15± 0.86 29.02± 0.24 48.40± 0.80 34.78± 0.26
ours (β = 1e−11) 39.61± 0.81 29.15± 0.27 49.63± 0.90 34.86± 0.30
ours (β = 1e−12) 40.64 ± 0.79 29.38 ± 0.21 50.25 ± 0.63 35.20 ± 0.23
ours (β = 1e−13) 40.15± 0.87 29.28± 0.28 50.20± 0.94 35.03± 0.21

Table 2: Evaluation of class-incremental learning on both the boundary-aware and boundary-
agnostic setting on CIFAR10 and CIFAR100 datasets. Each experiment was performed ten times
with different random seeds, the results are reported as the mean/SEM over these runs.

Figure 4: Average test classification accuracy vs number of observed tasks on CIFAR10 using the
boundary-aware (left) and boundary-agnostic (right) setting. The results are averaged over ten ran-
dom seeds.

Similar to Section 3.2, we consider as ’features’ the representation obtained by the last intermediate
layer. The proposed regularizer is applied on top of this representation. In Table 2, we report
the performance of the EBM trained using the original loss and using the loss augmented with
our additional term for different values of β. As shown in Table 2, penalizing feature similarity and
promoting the diversity of the feature set boosts the performance of the EBM model and consistently
leads to a superior accuracy for both datasets. In Figure 4, we display the accumulated classification
accuracy, averaged over tasks, on the test set. Along the five tasks, our approach maintains higher
classification accuracy than the standard EBM for both the boundary-aware and boundary-agnostic
settings.

4 CONCLUSION

Energy-based learning is a powerful learning paradigm that encapsulates various discriminative and
generative systems. An EBM is typically formed of one (or many) inner models which learn a com-
bination of different features to generate an energy mapping for each input configuration. In this
paper, we introduced a feature diversity concept, i.e., (ϑ − τ )-diversity, and we used it to extend
the PAC theory of EBMs. We derived different generalization bounds for various learning contexts,
i.e., regression, classification, and implicit regression, with different energy functions and we con-
sistently found that reducing the redundancy of the feature set can improve the generalization error
of energy-based approaches. We also note that our theory is independent of the loss function or the
training strategy used to optimize the parameters of the EBM. This provides theoretical guarantees
on learning via feature redundancy reduction. Our preliminary experimental results confirm that this
is indeed a promising research direction and can motivate developing other approaches to promoting
the diversity of the feature set. Future direction include more extensive experimental evaluation of
different feature redundancy reduction approaches.
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APPENDIX

A PROOF OF LEMMA 3

Lemma With a probability of at least τ , we have

sup
x,W

|h(x)| ≤ ||w||∞
√

(DA2 − ϑ2), (18)

where A = supx ||ϕ(x)||2.

Proof.

h2(x) =

(
D∑
i=1

wiϕi(x)

)2

≤

(
D∑
i=1

||w||∞ϕi(x)

)2

= ||w||2∞

(
D∑
i=1

ϕi(x)

)2

= ||w||2∞

(∑
i,j

ϕi(x)ϕj(x)

)
= ||w||2∞

∑
i

ϕi(x)
2 +

∑
i ̸=j

ϕi(x)ϕj(x)

 (19)

We have ||Φ(x)||2 ≤ A. For the first term in equation 19, we have
∑

m ϕm(x)2 ≤ A2. By using
the identity ϕm(x)ϕn(x) =

1
2

(
ϕm(x)2 + ϕn(x)

2 − (ϕm(x)− ϕn(x))
2
)
, the second term can be

rewritten as∑
m ̸=n

ϕm(x)ϕn(x) =
1

2

∑
m̸=n

(
ϕm(x)2 + ϕn(x)

2 −
(
ϕm(x)− ϕn(x)

)2)
. (20)
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In addition, we have with a probability τ , 1
2

∑
m ̸=n(ϕm(x)− ϕn(x))

2 ≥ ϑ2. Thus, we have with a
probability at least τ :∑

m̸=n

ϕm(x)ϕn(x) ≤
1

2
(2(D − 1)A2 − 2ϑ2) = (D − 1)A2 − ϑ2. (21)

By putting everything back to equation 19, we have with a probability τ ,

G2
W (x) ≤ ||w||2∞

(
A2 + (D − 1)A2 − ϑ2

)
= ||w||2∞(DA2 − ϑ2). (22)

Thus, with a probability τ ,

sup
x,W

|h(x)| ≤
√

sup
x,W

G2
W (x) ≤ ||w||∞

√
DA2 − ϑ2. (23)

B PROOF OF LEMMA 4

Lemma With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ 1

2
(||w||∞

√
(DA2 − ϑ2) +B)2. (24)

Proof. We have supx,y,h |h(x)− y| ≤ supx,y,h(|h(x)|+ |y|) = (||w||∞
√
DA2 − ϑ2 +B). Thus

supx,y,h|E(h,x,y)| ≤ 1
2 (||w||∞

√
DA2 − ϑ2 +B)2.

C PROOF OF LEMMA 5

Lemma With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞(||w||∞
√
(DA2 − ϑ2) +B)Rm(F) (25)

Proof. Using the decomposition property of the Rademacher complexity (if ϕ is a L-Lipschitz
function, then Rm(ϕ(A)) ≤ LRm(A)) and given that 1

2 ||. − y||2 is K-Lipschitz with a con-
stant K = supx,y,h||h(x) − y|| ≤ (||w||∞

√
DA2 − ϑ2 + B), we have Rm(E) ≤ KRm(H) =

(||w||∞
√
DA2 − ϑ2 + B)Rm(H), where H = {GW (x) =

∑D
i=1 wiϕi(x) }. We also know

that ||w||1 ≤ D||w||∞. Next, similar to the proof of Theorem 2.10 in (Wolf, 2018), we note
that

∑D
i=1 wiϕi(x) ∈ (D||w||∞)conv(F + −(F)) := G, where conv denotes the convex hull

and F is the set of ϕ functions. Thus, Rm(H) ≤ Rm(G) = D||w||∞Rm(conv(F + (−F)) =
D||w||∞Rm(F + (−F)) = 2D||w||∞Rm(F).

D PROOF OF THEOREM 1

Theorem For the energy function E(h,x,y) = 1
2 ||GW (x) − y||22, over the input set X ∈ RN ,

hypothesis class H = {h(x) = GW (x) =
∑D

i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x : ||Φ(x)||2 ≤
A}, and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is ϑ-diverse with a probability τ ,
with a probability of at least (1− δ)τ , the following holds for all h in H:

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞(||w||∞
√
DA2 − ϑ2 +B)Rm(F)

+
1

2
(||w||∞

√
DA2 − ϑ2 +B)2

√
log(2/δ)

2m
, (26)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

Proof. We replace the variables in Lemma 1 using Lemma 4 and Lemma 5.
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E PROOF OF LEMMA 6

Lemma With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ (||w||∞
√
DA2 − ϑ2 +B). (27)

Proof. We have supx,y,h |h(x)− y| ≤ supx,y,h(|h(x)|+ |y|) = (||w||∞
√
DA2 − ϑ2 +B).

F PROOF OF LEMMA 7

Lemma With a probability of at least τ , we have
Rm(E) ≤ 2D||w||∞Rm(F) (28)

Proof. |.| is 1-Lipschitz, Thus Rm(E) ≤ Rm(H).

G PROOF OF THEOREM 2

Theorem For the energy function E(h,x,y) = ||GW (x) − y||1, over the input set X ∈ RN ,
hypothesis class H = {h(x) = GW (x) =

∑D
i=1 wiϕi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤

A}, and output set Y ⊂ R, if the feature set {ϕ1(·), · · · , ϕD(·)} is ϑ-diverse with a probability τ ,
then with a probability of at least (1− δ)τ , the following holds for all h in H:

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞Rm(F)

+ (||w||∞
√
DA2 − ϑ2 +B)

√
log(2/δ)

2m
, (29)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

Proof. We replace the variables in Lemma 1 using Lemma 6 and Lemma 7.

H PROOF OF THEOREM 3

Lemma 8. With a probability of at least τ , we have

sup
x,y,h

|E(h,x,y)| ≤ ||w||∞
√

DA2 − ϑ2. (30)

Proof. We have sup−yGW (x) ≤ sup |GW (x)| ≤ ||w||∞
√
DA2 − ϑ2.

Lemma 9. With a probability of at least τ , we have
Rm(E) ≤ 2D||w||∞Rm(F) (31)

Proof. We note that for y ∈ {−1, 1}, σ and −yσ follow the same distribution. Thus, we have
Rm(E) = Rm(H). Next, we note that Rm(H) ≤ 2D||w||∞Rm(F).

Theorem 3 For a well-defined energy function E(h,x,y) (LeCun et al., 2006), over hypothesis
class H, input set X and output set Y , if it has upper-bound M, then with a probability of at least
1− δ, the following holds for all h in H

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞Rm(F)

+ ||w||∞
√
DA2 − ϑ2

√
log(2/δ)

2m
, (32)

Proof. We replace the variables in Lemma 1 using Lemma 8 and Lemma 9.
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I PROOF OF THEOREM 4

Lemma 10. With a probability of at least τ1τ2, we have

sup
x,y,h

|E(h,x,y)| ≤
(
J1 + J2

)
(33)

Proof. We have ||G(1)
W (x) − G

(2)
W (y)||22 ≤ 2(||G(1)

W (x)||22 + ||G(2)
W (y)||22). Similar to Theorem

1, we have sup ||G(1)
W (x)||22 ≤ ||w(1)||2∞

(
D(1)A(1)2 − ϑ(1)2

)
= J1 and sup ||G(2)

W (y)||22 ≤

||w(2)||2∞
(
D(2)A(2)2 − ϑ(2)2

)
= J2. We also have E(h,x,y) = 1

2 ||G
(1)
W (x)−G

(2)
W (y)||22.

Lemma 11. With a probability of at least τ1τ2, we have

Rm(E) ≤ 4(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
(34)

Proof. Let f be the square function, i.e., f(x) = 1
2x

2 and E0 = {G(1)
W (x) − G

(2)
W (y) | x ∈

X , y ∈ Y}. We have E = f(E0 + (−E0)). f is Lipschitz over the input space, with a
constant L bounded by supx,W G

(1)
W (x) + supy,W G

(2)
W (y) ≤

√
J1 +

√
J2. Thus, we have

Rm(E) ≤ (
√
J1 +

√
J2)Rm(E0 + (−E0)) ≤ 2(

√
J1 +

√
J2)Rm(E0). Next, we note that

Rm(E0) = Rm(H1 + (−H2)) = Rm(H1) + Rm(H2). Using same as technique as in Lemma
4, we have Rm(H1) ≤ 2D(1)||w(1)||∞Rm(F1) and Rm(H2) ≤ 2D(2)||w(2)||∞Rm(F2).

Theorem 4 For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x) − G

(2)
W (y)||22, over the input set

X ∈ RN , hypothesis class H = {G(1)
W (x) =

∑D(1)

i=1 w
(1)
i ϕ

(1)
i (x) = w(1)TΦ(1)(x), G

(2)
W (y) =∑D(2)

i=1 w
(2)
i ϕ

(2)
i (y) = w(2)TΦ(2)(y) | Φ(1) ∈ F1, Φ

(2) ∈ F2, ∀x ||Φ(1)(x)||2 ≤
A(1), ∀y ||Φ(2)(y)||2 ≤ A(2)}, and output set Y ⊂ RN , if the feature set {ϕ(1)

1 (·), · · · , ϕ(1)

D(1)(·)} is

ϑ(1)-diverse with a probability τ1 and the feature set {ϕ(2)
1 (·), · · · , ϕ(2)

D(2)(·)} is ϑ(2)-diverse with a
probability τ2, then with a probability of at least (1− δ)τ1τ2, the following holds for all h in H

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y)

+ 8(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
+
(
J1 + J2

)√ log(2/δ)

2m
, (35)

where J1 = ||w(1)||2∞
(
D(1)A(1)2 − ϑ(1)2

)
and J2 = ||w(2)||2∞

(
D(2)A(2)2 − ϑ(2)2

)
.

Proof. We replace the variables in Lemma 1 using Lemma 10 and Lemma 11.

J IMAGE GENERATION EXAMPLE SETTINGS AND ADDITIONAL RESULTS

For the EBM model, we used a simple CNN model composed of four convolutional layers followed
by a linear layer. The full CNN model is presented in Table 3. The training protocol is the same
as in (UvA; Du & Mordatch, 2019), i.e., using Langevin dynamics MCMC and a sampling buffer
to accelerate training. All models were trained for 60 epochs using Adam optimizer with learning
rate lr = 1e − 4 and a batch size of 128. In addition to the results presented in the paper, Figure
5 presents additional qualitative results. For the first two examples (top ones), the model is able to
converge to a realistic image within reasonable amount of iterations. For the last two examples (in
the bottom), we present failure cases of our approach. For these two tests, the generated image still
improves over iterations. However, the model failed to converge to a clear realistic MNIST image
after 256 steps.
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Layer Output shape

Input [1,28,28]
Cov (16 5× 5) [16,16,16]
Swish activation [16,16,16]
Cov (32 3× 3) [32,8,8]
Swish activation [32,8,8]
Cov (64 3× 3) [64,4,4]
Swish activation [64,4,4]
Cov (64 3× 3) [64,2,2]
Swish activation [64,2,2]
Flatten [256]
Linear [64]
Swish activation* [64]
Linear [1]

Table 3: Simple CNN model used in the example. * refers to the features’ layer.

Figure 5: Qualitative results of EBM augmented with our regularizer with β == 1e−13: Few
intermediate samples of the MCMC sampling (Langevin Dynamics).
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