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Abstract001

Large Vision-Language Models (LVLMs)002
achieve remarkable performance in multimodal003
tasks but suffer from high computational costs004
due to the large number of visual tokens. Exist-005
ing pruning methods either apply after visual006
tokens enter the LLM or perform pre-pruning007
based solely on visual attention. Both fail008
to balance efficiency and semantic alignment,009
as post-pruning incurs redundant computation,010
while visual-only pre-pruning overlooks mul-011
timodal relevance. To address this limitation,012
we propose Dual-Cue Pruning (DCP), a novel013
cross-modal pruning framework that jointly014
considers textual semantics and visual self-015
attention. DCP consists of a text-aware com-016
putation module, which employs a gradient-017
weighted attention mechanism to enhance text-018
visual alignment, and an image-aware compu-019
tation module, which utilizes deep-layer self-020
attention distributions to retain essential struc-021
tural information. By integrating both cues,022
DCP adaptively selects the most informative023
visual tokens, achieving efficient inference ac-024
celeration while maintaining strong task perfor-025
mance. Experimental results show that DCP026
can retain only 25% of the visual tokens, with027
a minimal performance degradation of 0.063%028
on LLaVA-1.5-13B, demonstrating its effective-029
ness in balancing efficiency and accuracy.030

1 Introduction031

In recent years, Large Vision Language Models032

(LVLMs) (Li et al., 2023a; Zhu et al., 2023; Team033

et al., 2023; Wang et al., 2024) have exhibited re-034

markable capabilities in diverse multimodal scenar-035

ios, propelling advancements in intricate tasks such036

as image and language comprehension. These mod-037

els typically involve a substantial number of visual038

tokens, ranging from hundreds to thousands (Cai039

et al., 2024). The large quantity of visual tokens040

significantly amplifies the training and inference041

costs of LVLMs (Chen et al., 2024a).042

Previous methods aimed at reducing the compu- 043

tational overhead caused by visual tokens can be 044

broadly classified according to the pruning stage 045

within the vision-to-language pipeline. The first 046

category applies pruning after the visual embed- 047

dings have been passed into the LLM. These meth- 048

ods identify important visual tokens by analyzing 049

attention weights from LLM text tokens to visual 050

tokens during inference (Chen et al., 2024a; Xing 051

et al., 2024; Ye et al., 2024). However, post-input 052

pruning does not reduce the number of tokens fed 053

into the LLM, resulting in limited computational 054

savings during the prefilling stage. The second 055

category performs pruning before the visual to- 056

kens are input into the LLM (Bolya et al., 2023; 057

Shang et al., 2024; Yang et al., 2024; Li et al., 058

2024b; Jiang et al., 2024, 2025). For example, 059

TOME (Bolya et al., 2023) accelerates ViTs by 060

merging similar image features via feature-space 061

clustering. PruMerge (Shang et al., 2024) and Vi- 062

sionZip (Yang et al., 2024) leverage image atten- 063

tion to select core tokens and merge redundant to- 064

kens to mitigate information loss. G-Prune (Jiang 065

et al., 2025) constructs a similarity graph among 066

visual tokens to identify key tokens. However, 067

these pre-input pruning methods focus solely on 068

visual-centric features and lack the textual guidance 069

needed to preserve text-relevant visual content. 070

This limitation becomes evident when analyz- 071

ing the proportion of visual and textual tokens 072

across several multimodal datasets, as shown in 073

Figure 1. The diagram reveals that visual tokens 074

overwhelmingly dominate most datasets, with pro- 075

portions reaching as high as 96% (GQA (Hudson 076

and Manning, 2019)) and 97% (TextVQA (Singh 077

et al., 2019)), leaving relatively few tokens for tex- 078

tual information. This imbalance emphasizes the 079

need for pruning strategies that not only reduce 080

the number of visual tokens but also ensure that 081

text-relevant visual information is preserved. 082

To address these limitations, we propose the 083
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Figure 1: The proportion of visual tokens and textual
tokens in seven different datasets.

Dual-Cue Pruning (DCP) method, which en-084

hances pruning efficiency in LVLMs while ensur-085

ing that essential semantic and structural informa-086

tion is preserved. Our method consists of two key087

modules: the text-aware computation module and088

the image-aware computation module, followed089

by a balanced pruning strategy. The text-aware090

module guides token selection by emphasizing the091

relevance of visual tokens to the input text, using a092

gradient-weighted attention mechanism to capture093

text-visual interactions. The image-aware module094

focuses on preserving the structural relationships095

among visual tokens, leveraging deep-layer self-096

attention distributions to maintain the integrity of097

visual details. Finally, the pruning strategy com-098

bines both text-aware and image-aware scores to099

select the most informative tokens, ensuring effi-100

cient pruning without sacrificing the model’s per-101

formance. Our contributions can be summarized as102

follows:103

• We introduce a training-free cross-modal prun-104

ing framework for LVLMs, which prunes vi-105

sual tokens before inputting them into the106

LLM.107

• We design an efficient token selection strat-108

egy by incorporating text-aware score and109

image-aware score, ensuring robust perfor-110

mance preservation.111

• We establish a comprehensive evaluation,112

demonstrating that DCP achieves 2.26x113

speedup in Time to First Token (TTFT) on114

LLaVA-1.5-13B with an average performance115

degradation of only 0.063%.116

2 Related Work117

Large Vision-Language Models (LVLMs). The118

advancement of Large Language Models (LLMs)119

(Achiam et al., 2023; Touvron et al., 2023) has120

spurred progress in Large Vision-Language Mod-121

els (LVLMs) (Yin et al., 2023), extending LLMs’122

reasoning and understanding to the visual domain123

by converting visual data into token sequences. A 124

cross-modal projector facilitates this integration by 125

bridging the visual encoder and LLMs (Bai et al., 126

2023; Liu et al., 2024a) which is achieved through 127

a lightweight Q-Former (Li et al., 2023a) or simpler 128

projection networks like linear layers (Zhu et al., 129

2023) or MLPs (Liu et al., 2024b). 130

Despite their effectiveness, existing LVLMs face 131

challenges caused by poor visual token representa- 132

tions (Tong et al., 2024) and visual hallucinations 133

(Huang et al., 2024). Recent work has focused 134

on enhancing visual perception by increasing the 135

resolution of input images. For instance, LLaVA- 136

NeXT (Liu et al., 2024c) and InternVL 1.5 (Chen 137

et al., 2024b) introduce Anyres practice, process- 138

ing multiple sub-images and the original image’s 139

thumbnail independently and then concatenating to 140

project before being input into LLMs, leading to 141

significant improvements in performance for tasks 142

requiring text recognition or reducing hallucinated 143

outputs However, while enhancing the understand- 144

ing of high-resolution images, this approach also 145

introduces a greater number of visual tokens. 146

Token Reduction in LVLMs. Visual tokens in 147

LVLMs often outnumber text tokens and exhibit 148

high spatial redundancy, limiting inference effi- 149

ciency due to autoregressive generation and token 150

redundancy. To address token redundancy, existing 151

methods fall into training-based compression and 152

training-free pruning. Training-based approaches, 153

such as Q-Former (Li et al., 2023a), Resampler (Bai 154

et al., 2023) and Abstractor (Cha et al., 2024) select 155

relevant tokens using learnable queries or convo- 156

lutional aggregation. LLaVA-Mini (Zhang et al., 157

2025) introduces modality pre-fusion, thereby fa- 158

cilitating the extreme compression of visual tokens. 159

These methods are effective but suffer from limited 160

generalizability, as they require extensive retraining 161

for each LLM or dataset. 162

In contrast, training-free methods focus on reduc- 163

ing tokens by merging similar tokens (Bolya et al., 164

2023; Jiang et al., 2025) or selecting important to- 165

kens based on attention scores. FastV (Chen et al., 166

2024a) prunes low-attention tokens in the LLM 167

backbone, while some others, such as PruMerge 168

(Shang et al., 2024) and VisionZip (Yang et al., 169

2024) prune tokens with low attention extracted 170

from the CLIP encoder and merge tokens via k- 171

nearest neighbor clustering. G-Prune (Jiang et al., 172

2025) proposes a graph-based method that treats 173

tokens as nodes to identify key tokens. However, 174

these approaches often focus on internal visual to- 175
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ken attention and overlook text-image correlations,176

resulting in suboptimal selection. Rather than re-177

lying solely on internal image information, PDrop178

(Xing et al., 2024) drops part of the image tokens179

based on the attention between all the image tokens180

and the last token of the instruction. Recent work181

(Wen et al., 2025) shows that the attention between182

text and visual tokens in LLMs may not always re-183

flect the actual relevance, limiting the effectiveness184

of text-guided approaches. Unlike previous work185

that prunes tokens based on the similarity between186

textual and image token features (Chen et al., 2025),187

our approach achieves modality alignment in the188

visual encoder through attention mechanisms and189

gradient-based information, enabling more adap-190

tive and informative pruning.191

3 Method192

To enhance the pruning process for LVLMs, we pro-193

pose Dual-Cue Pruning (DCP), which incorporates194

text-aware and image-aware mechanisms to retain195

semantically significant visual tokens, as illustrated196

in Figure 2. Based on the analysis and observations197

presented in Sec. 3.1, our DCP method achieves sig-198

nificant computational savings while maintaining199

model performance. A detailed technical descrip-200

tion of the method is provided in Sec. 3.2.201

3.1 Preliminary and Analysis202

Image text correlation. Contrastive Language-203

Image Pretraining (CLIP) (Radford et al., 2021) is204

a cross-modal model trained on large-scale image-205

text pairs. It consists of a Vision Encoder and a Text206

Encoder, both Transformer-based, which project207

images and text into a shared embedding space208

through contrastive learning. Given an image Iv209

and text It, CLIP encodes them into feature embed-210

dings fv = V (Iv) and ft = T (It), and aligns them211

via cosine similarity:212

S =
fv · ft
∥fv∥ ∥ft∥

. (1)213

While CLIP effectively captures global image-text214

alignment, understanding the contribution of indi-215

vidual visual tokens to the final similarity score is216

critical for interpretability and pruning strategies.217

To address this, gradient-based visualization tech-218

niques such as Grad-CAM (Selvaraju et al., 2017)219

are widely used for feature attribution analysis. Fol-220

lowing this principle, we compute the gradient of221

the similarity score with respect to the vision en-222

coder’s attention matrix:223

∇A(i) =
∂S

∂A(i)
, (2) 224

where∇A(i) represents the sensitivity of the atten- 225

tion matrix at the i-th layer to the similarity score. 226

To highlight image-text correlations, we compute 227

the element-wise product: 228

M(i) = ∇A(i) ⊙A(i), (3) 229

where positive values indicate visual regions that 230

strongly align with the text description, while neg- 231

ative values correspond to tokens that contribute 232

less to the cross-modal representation. 233

By leveraging this mechanism, we derive text- 234

aware saliency scores for visual tokens, facilitat- 235

ing the identification of features that exhibit strong 236

semantic alignment with the input text. This sys- 237

tematic quantification of multimodal interactions 238

provides a foundation for text-guided visual token 239

pruning. 240

Imbalance Attention in Vision Encoder. Inspired 241

by He et al. (2023), we quantify and visualize the at- 242

tention maps from selected layers (Layer 1 to 23) in 243

the CLIP model, as shown in Figure 3. We observe 244

that while the shallow layers exhibit relatively bal- 245

anced attention distribution, the deep layers present 246

a phenomenon known as mode collapse, where 247

over 80% of the attention is concentrated on less 248

than 25% of the tokens. This imbalance in attention 249

suggests that only a few visual tokens with high 250

attention scores contain critical visual information. 251

Based on the phenomenon of Imbalance Attention 252

in Vision Encoders, we propose an image-aware 253

saliency score that quantifies visual token impor- 254

tance through multi-pooling feature representations 255

derived from deep attention maps. 256

3.2 Dual-Cue Pruning 257

To improve pruning efficiency while preserving 258

essential semantic and structural information, we 259

propose Dual-Cue Pruning (DCP), which consists 260

of two key components: text-aware computation 261

module and image-aware computation module, fol- 262

lowed by a balanced pruning strategy. Text-aware 263

computation module aims to enhance cross-modal 264

alignment by extracting core textual information 265

and guiding token selection based on text-visual 266

interactions. First, a lightweight NLP model is 267

used to extract key problem-related words from 268

the input text by removing system prompts, re- 269

sponse instructions, and options. Then, a gradient- 270
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Figure 3: The attention map of CLIP in different layers.

weighted attention mechanism is introduced to em-271

phasize visual tokens that strongly respond to tex-272

tual content, ensuring effective cross-modal guid-273

ance. Image-aware computation module focuses274

on preserving structural information by leveraging275

deep-layer self-attention distributions. The self-276

attention matrix from a selected deep layer is ex-277

tracted, excluding the influence of the CLS token,278

and used to compute the mean attention score for279

visual tokens. This captures inherent structural280

relationships, complementing the text-aware mod-281

ule to prevent the removal of critical visual details.282

Finally, the pruning strategy balances textual rele-283

vance and structural importance by ranking visual284

tokens based on both text-aware and image-aware285

scores. A token budget is allocated by selecting the286

most informative tokens from each ranking, ensur-287

ing a refined subset that maintains both semantic288

fidelity and computational efficiency.289

3.2.1 Text-aware Computation Module290

Existing pruning methods for LVLMs lack suffi-291

cient modeling of textual information, which may292

result in the inadvertent removal of visual tokens 293

closely related to textual content during the prun- 294

ing process. To address this issue, we introduce a 295

gradient-weighted attention mechanism to enhance 296

cross-modal interaction. 297

We first apply regular expressions to remove sys- 298

tem prompts, response instructions, and answer 299

options, retaining only the core problem descrip- 300

tion. Next, we perform syntactic parsing using 301

spaCy (en_core_web_sm), a lightweight 12 MB 302

NLP model (Explosion, 2023), to obtain part-of- 303

speech tags and dependency structures. Based 304

on these results, we extract noun phrases and dis- 305

card non-semantic stopwords, yielding up to N 306

problem-related keywords. This results in a com- 307

pact yet semantically informative textual represen- 308

tation, aligned with CLIP’s 77-token input con- 309

straint. More details can be found in appendix. 310

Then we compute the cosine similarity between 311

the image embedding and text embedding. Since 312

this similarity function is differentiable, we can 313

trace its gradient to capture the response of visual 314

tokens to textual information. For selected layers 315

of the visual encoder (e.g., the last two layers), we 316

compute the gradient of the attention matrix A(i) 317

with respect to the scoring function S, denoted 318

as ∇A(i). We then define the gradient-enhanced 319

attention mapping: 320

TRM(i) = ReLU
(
A(i) ⊙∇A(i)

)
, (4) 321

where element-wise multiplication highlights the 322

visual tokens that contribute significantly to the 323

final decision. 324

To incorporate multi-layer information, we adopt 325
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a cumulative update strategy via batch matrix mul-326

tiplication:327

R← R+ bmm
(
TRM(i), R

)
, (5)328

where R is initialized as an identity matrix. The329

final text-aware importance score rtext is obtained330

by normalizing R. Ablation studies indicate that331

fusing information from the last two layers leads to332

better preservation of text-related visual details.333

3.2.2 Image-Aware Computation Module334

To achieve more precise pruning while preserving335

core visual information, we design an image-aware336

computation module. As discussed in Sec. 3.1,337

this module leverages the imbalance of attention338

distributions in deeper layers by first obtaining the339

multi-head attention (MHA) output from the vision340

encoder. We compute the mean attention across341

all heads and subsequently perform an additional342

mean operation along the token dimension to derive343

the importance of each token:344

ratt =
1

N

N∑
j=1

(
1

H

H∑
h=1

AL
h,j

)
, (6)345

where H is the number of attention heads, N de-346

notes the number of non-CLS tokens, and AL
h,j347

represents the attention score of the j-th token in348

the L-th layer for the h-th head. Through ablation349

studies, we find that extracting the attention matrix350

from the 18th layer best captures the structural rela-351

tionships and relative importance of visual tokens,352

effectively compensating for potentially missing353

visual information in text-guided pruning.354

3.2.3 Dual-Cue Balanced Pruning Strategy355

Given an input text-image pair, DCP first extracts356

keywords from the text and computes text-visual357

relevance scores. Simultaneously, it leverages deep-358

layer self-attention distributions to estimate visual359

token importance. After obtaining the text rele-360

vance score rtext and the self-attention score ratt,361

a balanced pruning strategy is adopted to retain362

the most informative tokens. For a predetermined363

token budget K, the procedure is as follows: 1)364

Independently sort the visual tokens based on rtext365

and ratt. 2) Select the top K
2 tokens from the rtext366

ranking. 3) From the remaining tokens, select the367

top K
2 tokens according to ratt. 4) Merge the se-368

lected token indices and reorder them based on369

their original sequence to preserve the input order370

for downstream processing. This dual-cue pruning371

Algorithm 1 Dual-Cue Pruning (DCP)
Require: Input text T , input image I , token budget K
Ensure: Selected visual tokens VK
1: Text-Aware Computation
2: Extract keywords from T using NLP model
3: Compute text-visual similarity:

S = cos(Embed(I),Embed(T ))
4: Compute gradient-weighted attention:

TRM(i) = ReLU(A(i) ⊙∇A(i))
5: Fuse multi-layer attention:

R← R+ bmm(TRM(i), R)
6: Compute text-importance score:

rtext = Normalize(R)
7: Image-Aware Computation
8: Extract deep-layer self-attention matrix AL

9: Remove CLS token influence
10: Compute mean attention score:

ratt =
1
N

∑N
j=1

(
1
H

∑H
h=1 A

L
h,j

)
11: Dual-Cue Balanced Pruning Strategy
12: Rank visual tokens based on rtext and ratt
13: Select top K

2
tokens from rtext ranking

14: Select remaining K
2

tokens from ratt ranking
15: Merge and reorder selected tokens to preserve input order
16: return VK

strategy effectively combines textual guidance with 372

inherent visual structure, ensuring robust and effi- 373

cient inference acceleration. The overall procedure 374

is summarized in Algorithm 1. 375

4 Experiments 376

4.1 Experimental Setup 377

Datasets. We utilize 7 widely used multimodal 378

datasets to evaluate the performance, including 379

POPE (Li et al., 2023b), MMMU (Yue et al., 2024), 380

ScienceQA (SQA) (Lu et al., 2022), Ai2D (Kem- 381

bhavi et al., 2016), GQA (Hudson and Manning, 382

2019), TextVQA (VQAT) (Singh et al., 2019) and 383

OCRBench (OCR) (Liu et al., 2023). More details 384

of datasets can be found in appendix. 385

Implementation Details. All experiments are 386

conducted on the LMMS-Eval platform (Zhang 387

et al., 2024), a unified and reproducible bench- 388

mark covering 50+ multimodal datasets and 10+ 389

LVLMs. We evaluate on five representative mod- 390

els: LLaVA-1.5-7B, LLaVA-1.5-13B (Liu et al., 391

2024b), LLaVA-NeXT-7B, LLaVA-NeXT-13B (Liu 392

et al., 2024c) and OneVision-Qwen2-7B (Li et al., 393

2024a). Our DCP framework supports variable 394

visual token retention ratios, with experiments con- 395

ducted under multiple settings (e.g., 25%, 50%, 396

75%) to evaluate scalability and robustness. In- 397

ference efficiency is measured using Time to First 398

Token (TTFT) and Time Per Output Token (TPOT). 399

We compare against two categories of training- 400
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free pruning baselines, categorized by pruning401

stage: post-input pruning (FastV, PDrop) and pre-402

input pruning (TOME, PruMerge, G-Prune). All403

methods are configured according to official or404

widely adopted settings. Specifically, FastV prunes405

at layer 3; PDrop uses layers 8/16/24 with retention406

ratios p1 = [0.75, 0.375, 0.1875], p2 = [0.5, 0.25,407

0.125], and p3 = [0.25, 0.125, 0.0625]; other base-408

lines use their default settings. All evaluations are409

re-run under the same platform to ensure consis-410

tency.411

4.2 Main Results412

Comparison with state-of-the-art methods. Ta-413

ble 1 presents the accuracy and inference efficiency414

of various pruning methods on LLaVA-1.5–7B415

across three different token retention ratios. Our416

DCP consistently outperforms prior methods across417

multiple evaluation datasets. At the 75% retention418

ratio, DCP achieves the highest average accuracy419

of 55.26%, outperforming the second best FastV by420

0.03%, even higher than the original model without421

pruning. Notably, DCP achieves the highest effi-422

ciency, with speedup ratios of 1.20× (TTFT) and423

1.29× (TPOT) over the original model. Similarly,424

our DCP ranks first in overall average accuracy425

with 54.91% and achieves the best performance in426

four subsets at the 50% pruning level, while retain-427

ing strong efficiency with a speedup of 1.52x and428

1.29x, respectively. Even under the most aggres-429

sive 25% pruning ratio, DCP leads with an average430

score of 54.51%, surpassing the second best FastV431

and TOME by 1.87%. These results align with432

our motivation. Unlike post-input pruning methods433

that rely on cross-modal attention but do not reduce434

LLM input size, and pre-input methods that prune435

early but ignore text relevance, DCP combines both436

strengths—performing early token reduction while437

leveraging textual and visual signals. This leads to438

more relevant token selection and a better trade-off439

between accuracy and efficiency.440

DCP on different LVLMs. To evaluate the441

generalizability of our method, we apply DCP442

across various LVLMs, including LLaVA-1.5-13B,443

LLaVA-NeXT-7B, LLaVA-NeXT-13B, as reported in444

Figure 4 and Table 2. Figure 4 shows that as to-445

ken retention increases, model accuracy generally446

improves. However, different datasets stabilize at447

varying retention ratios. For instance, SQA, Ai2D,448

and POPE maintain good accuracy even with low449

retention, while OCRBench requires higher reten-450

tion to achieve significant accuracy. Interestingly,451
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Figure 4: Performance metrics across visual to-
ken retention ratios for the LLaVA-NeXT-7B and
LLaVA-NeXT-13B models on five datasets.

Ai2D and SQA remain robust even at extreme prun- 452

ing levels, suggesting that key information is con- 453

centrated in a small number of tokens, making them 454

less sensitive to pruning. 455

As shown in Table 2, DCP can effectively prune 456

a significant number of redundant tokens without 457

sacrificing much accuracy, enabling efficient in- 458

ference. For instance, at 25% token retention, 459

the LLaVA-NeXT-13B model maintains an accu- 460

racy of 67.94%, while the LLaVA-1.5-13B and 461

LLaVA-NeXT-7B models achieve similar improve- 462

ments across datasets, demonstrating that DCP’s 463

pruning approach is effective across different archi- 464

tectures. The inference speedup is also notable, 465

with LLaVA-NeXT-13B achieving up to a 2.52x 466

speedup, further proving the scalability and con- 467

sistency of DCP across different model configura- 468

tions. 469

4.3 Ablation Studies 470

Results on SigLIP as encoder. DCP is not only 471

applicable to models utilizing CLIP as the encoder 472

but also demonstrates strong performance when im- 473

plemented with SigLIP as the encoder. In the com- 474

putation of DCP, we continue to leverage the accu- 475

mulated gradient information from the last two lay- 476

ers along with attention weight information to en- 477

hance the extraction of critical features. Experimen- 478

tal results on Table 3 indicate that the OneVision- 479

Qwen2-7B model, which employs SigLIP as the 480

encoder and Qwen2 as the LLM, achieves consis- 481

tently strong performance across multiple datasets. 482

Notably, even when the visual input is reduced to 483

25%, the model maintains robust performance, par- 484

ticularly on POPE and TextVQA, where the impact 485

of data reduction is minimal. 486

Effectiveness of dual-cue importance indicators. 487

DCP is composed of two key importance indica- 488
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Ratio Method
Accuracy Performance Inference Efficiency

Ai2D GQA MMMU SQA POPE VQAT OCR Avg. TTFT TPOT
(ms Sp) (ms/tok. Sp)

100 Vanilla 55.50 61.97 35.30 69.51 86.98 46.00 31.20 55.21 74 - 27.71 -

75

TOME( ICLR’23) 54.31 59.36 35.78 68.87 86.98 41.47 29.20 53.71 91 0.81x 32.41 0.86x
PruMerge(2024.03) 53.21 60.41 36.33 68.47 85.60 40.66 29.60 53.47 91 0.81x 26.56 1.02x

Fastv(ECCV’24) 55.34 61.61 36.11 69.51 86.69 46.08 31.30 55.23 69 1.07x 27.40 1.01x
G-Prune(AAAI’25) 54.70 58.63 34.89 68.22 86.32 40.96 29.30 53.29 66 1.12x 25.18 1.10x
PDrop(CVPR’25) 55.38 61.64 36.78 69.11 86.87 45.65 30.90 55.19 184 0.40x 25.91 1.07x

DCP 55.86 61.65 36.67 68.82 86.86 45.89 31.10 55.26 62 1.20x 21.45 1.29x

50

TOME( ICLR’23) 54.33 59.61 36.11 68.71 87.23 40.33 28.20 53.50 89 0.83x 26.82 1.03x
PruMerge(2024.03) 54.24 56.82 36.56 69.36 79.63 39.45 27.80 51.98 86 0.44x 26.33 1.05x

Fastv(ECCV’24) 55.08 60.33 35.89 68.67 85.20 45.51 30.60 54.47 59 1.26x 27.16 1.02x
G-Prune(AAAI’25) 54.95 57.29 36.00 69.36 83.78 40.89 29.30 53.08 52 1.42x 25.30 1.10x
PDrop(CVPR’25) 54.53 60.16 36.78 69.31 86.18 45.24 29.80 54.57 154 0.48x 24.02 1.15x

DCP 54.83 60.85 35.89 68.52 87.26 45.61 31.40 54.91 49 1.52x 21.41 1.29x

25

TOME( ICLR’23) 54.08 58.67 36.33 68.12 87.24 38.04 26.00 52.64 79 0.94x 22.93 1.21x
PruMerge(2024.03) 53.85 53.48 36.00 69.56 75.40 38.14 26.70 50.45 74 1.00x 21.73 1.28x

Fastv(ECCV’24) 53.95 57.47 35.44 68.86 81.21 42.56 29.00 52.64 51 1.44x 27.28 1.02x
G-Prune(AAAI’25) 54.40 54.04 35.22 69.71 79.38 40.85 28.20 51.69 44 1.68x 25.58 1.08x
PDrop(CVPR’25) 53.30 57.13 35.11 69.36 82.40 44.23 22.70 52.03 135 0.55x 22.11 1.25x

DCP 54.40 58.92 36.56 68.72 87.14 44.82 31.00 54.51 38 1.97x 20.89 1.33x

Table 1: Accuracy and inference efficiency of different methods using LLaVA-1.5-7B. Inference efficiency is
measured on the POPE dataset. Bold indicates the best, underlined the second-best result. Avg. is the average value,
ms denotes milliseconds, Sp represents the speedup ratio and ms/tok. indicates milliseconds per token.

Model Ratio
Accuracy Performance Inference Efficiency

Ai2D GQA MMMU SQA POPE VQAT OCR Avg. TTFT TPOT
(ms Sp) (ms/tok. Sp)

LLaVA-
1.5-13B

100 59.49 63.25 34.80 72.88 87.09 48.73 33.70 57.13 138 - 33.41 -
75 58.65 61.11 36.11 72.98 87.91 48.24 33.30 56.90 110 1.25x 32.56 1.03x
50 57.67 60.94 35.89 74.07 87.82 47.95 33.60 56.85 88 1.57x 32.04 1.04x
25 57.29 59.43 37.33 73.43 87.18 47.03 33.80 56.50 61 2.26x 31.5 1.06x

LLaVA-
NeXT-7B

100 66.58 64.24 35.10 70.15 87.61 64.90 52.20 62.97 88 - 23.70 -
75 65.06 64.44 37.11 70.00 87.80 63.39 49.30 62.44 81 1.09x 23.55 1.01x
50 65.16 64.06 37.44 68.82 88.00 62.34 48.30 62.02 60 1.47x 23.05 1.03x
25 64.38 62.70 37.11 67.97 87.57 60.38 45.30 60.77 50 1.78x 21.97 1.08x

LLaVA-
NeXT-13B

100 70.30 65.37 35.90 73.57 87.56 67.10 55.10 64.99 198 - 38.30 -
75 70.01 65.30 37.56 73.23 87.92 65.30 49.90 64.17 153 1.29x 36.06 1.06x
50 69.43 65.05 37.11 74.17 87.98 63.34 49.60 63.81 116 1.70x 33.35 1.15x
25 67.94 64.14 36.22 73.08 87.89 62.78 47.10 62.74 79 2.52x 30.94 1.24x

Table 2: Accuracy performance and inference efficiency under different LVLMs. Inference efficiency is measured
on the POPE dataset. Results better compared to no pruning are bold. Avg. is the average value, ms denotes
milliseconds, Sp represents the speedup ratio and ms/tok. indicates milliseconds per token.

tors: text-aware and image-aware significant score.489

Specifically, DCP uses the penultimate two lay-490

ers for text-related accumulation and selects Layer491

18 as the image-aware attention matrix. The ran-492

dom baseline represents a setting where tokens are493

pruned randomly. In this experiment, we retain494

25% of the tokens and evaluate performance on495

LLaVA-1.5-7B. The results on Table 4 demonstrate496

that removing either text-aware or image-aware497

components leads to a noticeable performance drop498

compared to the full DCP method. Specifically, the499

absence of text-aware features results in a decrease 500

in average performance from 63.63% to 63.04%, 501

while removing image-aware features lowers the 502

score to 63.13%. This highlights the complemen- 503

tary nature of both components. Additionally, the 504

random pruning baseline performs significantly 505

worse, resulting in a particularly poor performance 506

on TextVQA (30.89%), indicating that visual token 507

pruning guided by cross-modal dual-cue is crucial 508

for maintaining high performance and key informa- 509

tion of image. 510
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Model Ratio Ai2D GQA POPE VQAT

OneVision-
Qwen2-7B

100% 81.35 62.22 89.13 76.03
75% 80.70 62.47 89.36 76.01
50% 79.89 62.38 89.73 75.98
25% 79.44 60.87 89.11 75.99

Table 3: DCP on OneVision-Qwen2-7B models, whose
encoder is SigLIP.

Method VQAT GQA POPE AVG

random 30.89 58.39 84.14 57.81
w/o text-aware 44.44 58.44 86.24 63.04

w/o image-aware 44.27 58.34 86.79 63.13
DCP 44.82 58.92 87.14 63.63

Table 4: Ablation study on LLaVA-1.5-7B with 25%
token retention. The table compares different ablation
settings of the proposed DCP method. "random" refers
to a baseline where tokens are pruned randomly. "w/o
text-aware" removes the text-awareness component, and
"w/o image-aware" eliminates the image-awareness
component. The "DCP" row represents our full method,
which integrates both text-aware and image-aware im-
portance indicators. The final column presenting the
average performance across all datasets.

Ablation study on text-aware component. We511

analyze the effect of selecting different layers for512

computing gradient-based importance in the text-513

aware component. Layers 6, 12, and 18 use gradi-514

ents from a single layer, whereas Layer 23 accumu-515

lates gradients from Layers 23 and 24, following516

LLaVA’s practice of using the penultimate layer517

for image feature extraction. The results on Ta-518

ble 5 show that early layers perform worse, with519

Layer 12 yielding the lowest average score of 59.51.520

Layer 6 improves slightly to 61.48, while Layer521

18 achieves 61.79. The best performance is ob-522

tained with Layer 23, reaching an average score523

of 63.13, demonstrating that integrating gradients524

from deeper layers enhances text-aware token se-525

lection.526

Ablation study on image-aware component. To527

investigate the effect of using attention maps from528

different layers in the image-aware component,529

we evaluate the performance when selecting at-530

tention maps from a single layer. The results on531

Table 6 show that Layer 6 performs the worst, with532

an average score of 57.23%, indicating that early-533

layer attention does not effectively capture mean-534

ingful image features. Performance improves sig-535

Layer VQAT GQA POPE AVG

6 38.76 59.16 86.52 61.48
12 34.67 58.28 85.57 59.51
18 41.44 58.19 85.74 61.79
23 44.27 58.34 86.79 63.13

Table 5: Ablation study on text-aware component using
gradients from different layers. Layers 6, 12, and 18 use
gradients from a single layer, while Layer 23 accumu-
lates gradients from the last two layers (23-24).

Layer VQAT GQA POPE AVG

6 30.67 56.65 84.37 57.23
12 44.16 58.58 86.51 63.08
18 44.44 58.44 86.24 63.04
23 44.23 57.94 85.07 62.41
24 39.29 57.91 82.99 60.06

Table 6: Ablation study on the image-aware component
using attention maps from different layers.

nificantly when using Layer 12 (63.08%) and Layer 536

18 (63.04), suggesting that mid-to-deep layers con- 537

tain more informative spatial relationships. How- 538

ever, Layer 23 (62.41%) and Layer 24 (60.06%) 539

show performance degradation, especially in POPE 540

and TextVQA, implying that attention from the fi- 541

nal layers may be less reliable for capturing fine- 542

grained image token importance. These findings 543

suggest that selecting attention maps from mid-to- 544

deep layers is more beneficial for enhancing the 545

image-aware component. 546

5 Conclusion 547

In this paper, we propose Dual-Cue Pruning (DCP), 548

a novel pruning framework that enhances the effi- 549

ciency of Large Vision-Language Models (LVLMs) 550

by jointly leveraging textual and visual cues. Un- 551

like existing methods that focus solely on visual 552

features, DCP integrates a text-aware computation 553

module, which enhances cross-modal alignment 554

using a gradient-weighted attention mechanism, 555

and an image-aware computation module, which 556

extracts deep-layer self-attention distributions to 557

retain structural visual information. By balancing 558

these two cues, DCP effectively prunes visual to- 559

kens while maintaining model fidelity. Extensive 560

experiments demonstrate that DCP achieves sub- 561

stantial speedup while preserving model accuracy, 562

outperforming existing pruning approaches. 563
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Limitations564

Despite its effectiveness, DCP has several limita-565

tions. First, it relies on a pre-trained NLP model566

for keyword extraction, which may introduce in-567

accuracies when handling complex or ambiguous568

prompts. Second, while DCP demonstrates strong569

performance across standard multimodal bench-570

marks, the degree of efficiency gain may vary with571

different model architectures and prompt styles. Fu-572

ture work could investigate adaptive pruning strate-573

gies tailored to specific vision-language tasks or574

dynamic prompt characteristics to further improve575

robustness and generalization.576
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A Datasets791

We utilize 7 widely used multimodal datasets to792

evaluate the performance of our method, covering793

diverse vision-language reasoning scenarios:794

• POPE (Li et al., 2023b): Designed to assess795

object hallucination in multimodal models. It796

evaluates whether the model can accurately797

determine the existence of objects mentioned798

in the text within the image.799

• MMMU (Yue et al., 2024): A comprehensive800

benchmark spanning multiple university-level801

subjects (e.g., biology, physics, math), requir-802

ing high-level reasoning across image and text803

modalities.804

• ScienceQA (Lu et al., 2022): Focused on805

scientific question answering, this dataset in-806

cludes diagrams, textual descriptions, and807

multiple-choice questions across various sci-808

ence topics.809

• Ai2D (Kembhavi et al., 2016): Targets the810

interpretation of complex scientific and edu-811

cational diagrams. It tests a model’s ability to812

perform diagram-based reasoning and ques-813

tion answering.814

• GQA (Hudson and Manning, 2019): A large-815

scale visual question answering benchmark816

emphasizing compositional reasoning and spa-817

tial relationships grounded in real-world im-818

ages.819

• TextVQA (Singh et al., 2019): Involves ques-820

tions related to text present in images. It eval-821

uates the model’s capability to localize, read,822

and reason about textual content embedded in823

complex visual scenes.824

• OCRBench (Liu et al., 2023): Focuses on op-825

tical character recognition in natural images,826

measuring the model’s ability to extract and827

understand text from images with varied lay-828

out, quality, and language content.829

These datasets jointly test diverse capabilities830

of LVLMs, including object grounding, scientific831

reasoning, diagram interpretation, text recognition,832

and cross-modal understanding. All evaluations are833

conducted using standardized metrics and protocols834

provided by LMMS-Eval (Zhang et al., 2024).835

B Vision-Language Inference Pipeline 836

and Latency Analysis 837

B.1 Large Vision-Language Models (LVLMs) 838

LVLMs are aimed at generating textual responses 839

based on input images and instructions (Yin et al., 840

2023). A typical LVLM consists of three key mod- 841

ules: a vision encoder, an advanced LLM, and a 842

projector, which serves as a bridge for modality 843

alignment. First, the vision encoder transforms 844

the input image into visual embeddings Ev, often 845

utilizing the ViT architecture (Dosovitskiy et al., 846

2020). Next, the projector converts these visual 847

embeddings into visual tokens Tv by mapping 848

them into the text space, making them understand- 849

able to the LLM. Given the generated visual tokens 850

Tv and instructions’ textual tokens Tt, the LLM 851

then produces the L-length output response Y in 852

an auto-regressive manner based on the following 853

probability distribution: 854

P (Y|Tt,Tv) =

L∏
i=1

P (Yi|Tt,Tv,Y<i). (7) 855

As shown in the formula, the inference efficiency 856

and memory requirements of LVLMs heavily de- 857

pend on the length of the input tokens that the LLM 858

needs process, which consist of both textual and 859

visual tokens. In fact, due to the auto-regressive 860

nature of LLM decoding, the computational com- 861

plexity of the LLM is proportional to the square of 862

the input token length. This indicates that reduc- 863

ing the input tokens is crucial for improving the 864

inference efficiency of LVLMs. 865

B.2 LLM Inference Pipeline 866

The inference process of the LLM consists of two 867

computationally distinct stages: 868

B.2.1 Prefill Stage 869

The prefill stage processes the entire input se- 870

quence X in one forward pass through the trans- 871

former layers. At each layer l, self-attention is 872

applied to the entire sequence: 873

Z(l) = MHSA(l)(X(l−1)) +X(l−1) 874

The multi-head self-attention involves comput- 875

ing attention weights: 876

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

)
V 877

1



where Q,K,V ∈ R(Nt+Nv)×dk are projected878

query, key, and value matrices.879

The overall complexity is:880

O
(
(Nt +Nv)

2 · d
)

881

This quadratic scaling means that large Nv (as is882

common in LVLMs) leads to significant latency883

during this stage.884

B.2.2 Decoding Stage885

Once the KV caches are built during prefill, de-886

coding proceeds token by token. At step i, the887

model generates the i-th output token ŷi given the888

previous tokens and the cached states:889

ŷi = fllm(ŷ<i, cache)890

Each decoding step only attends to the newly891

generated token and previously cached keys and892

values, with attention complexity:893

O(Nctx · d)894

where Nctx is the context length (fixed during infer-895

ence). This stage is relatively lightweight compared896

to prefill.897

B.3 Latency Metrics898

To quantify the latency performance of pruning899

methods, we use two common metrics:900

• Time to First Token (TTFT): Measures the901

wall-clock time from input submission to the902

generation of the first output token. It corre-903

sponds to the entire prefill stage:904

TTFT ≈ Latencyprefill ∝ (Nt +Nv)
2905

• Time Per Output Token (TPOT): Measures906

the average latency of decoding each token907

after the first:908

TPOT =
Total Decoding Time

Number of Output Tokens
∝ Nctx·d909

B.4 Efficiency Implication of Pruning910

Post-input pruning (e.g., FastV, PDrop) operates911

after visual tokens are passed into the LLM. These912

methods may reduce computation during decoding,913

but have minimal impact on TTFT since the prefill914

complexity remains unchanged.915

Pre-input pruning aims to reduce inference la-916

tency by removing visual tokens before they are917

passed into the LLM, thereby directly decreasing 918

Nv and the computational cost of the prefill stage. 919

Existing pre-input methods such as TOME (Bolya 920

et al., 2023), PruMerge (Shang et al., 2024), and 921

G-Prune (Jiang et al., 2025) typically rely on visual- 922

only heuristics—e.g., token similarity, attention 923

within the image encoder, or clustering—without 924

considering the accompanying text prompt. As a 925

result, these approaches may discard visually re- 926

dundant tokens that are actually semantically im- 927

portant in the current context, leading to suboptimal 928

performance on language-grounded tasks. 929

Unlike post-input pruning methods that rely on 930

cross-modal attention but do not reduce LLM in- 931

put size, and pre-input methods that prune early 932

but ignore text relevance, DCP combines both 933

strengths—performing early token reduction while 934

leveraging textual and visual signals. This leads to 935

more relevant token selection and a better trade-off 936

between accuracy and efficiency. 937

Theoretical vs. Actual Speedup. Although 938

pruning methods aim to reduce inference latency by 939

discarding tokens, there exists a clear gap between 940

theoretical token reduction and actual speedup in 941

practice. This discrepancy is often due to substan- 942

tial computational overhead introduced by post- 943

processing (e.g., masked attention, index tracking) 944

or inefficient integration with transformer architec- 945

tures. As shown in Table 1, these methods may 946

reduce the number of tokens but introduce non- 947

trivial computation, leading to no actual speedup 948

or even performance degradation, such as TOME 949

and PruMerge. In contrast, DCP achieves a TPOT 950

speedup of 1.33×, the highest among all compared 951

methods at 25% ratio, with a total latency of 20.89 952

ms/tok. This highlights DCP’s capability to achieve 953

true computational reduction rather than superficial 954

token sparsity, thanks to its pre-pruning strategy 955

with minimal additional overhead. This advantage 956

generalizes across architectures. As shown in Ta- 957

ble 2, DCP achieves consistent real-world speedups 958

on all tested LVLMs. In summary, DCP not only 959

delivers superior accuracy under aggressive com- 960

pression but also achieves practical inference accel- 961

eration. It addresses the limitations of prior meth- 962

ods by minimizing redundant computations and 963

aligning token pruning with the actual execution 964

flow, thereby bridging the gap between theoretical 965

and realized gains. 966
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C Implementation Details967

C.1 Hardware Setup968

All experiments are conducted on a single NVIDIA969

A100 GPU with 40GB memory. Our approach970

is lightweight and inference-efficient: it also971

runs smoothly on consumer-grade GPUs such as972

NVIDIA RTX 4090 (24GB). No distributed infer-973

ence or model parallelism is required.974

C.2 Text Preprocessing with spaCy975

To extract problem-relevant keywords from com-976

plex input prompts, we perform multi-stage text977

preprocessing prior to CLIP encoding. This helps978

generate a compact and semantically rich represen-979

tation that fits within CLIP’s 77-token constraint.980

The steps are as follows:981

1. Prompt Filtering: We apply regular expres-982

sions to remove non-semantic content such as983

system prompts (e.g., "Use the data..."),984

response instructions (e.g., "Answer the985

question..."), and multiple-choice answer986

options (e.g., "A. ..." to "D. ...").987

2. Syntactic Parsing: We use the spaCy English988

parser (en_core_web_sm) (Explosion, 2023),989

a lightweight 12MB NLP model, to perform990

part-of-speech tagging and dependency pars-991

ing.992

3. Keyword Extraction: From the parsed text,993

we identify noun phrases (doc.noun_chunks)994

and filter out common stopwords using995

spaCy’s built-in stopword list. For each chunk,996

we retain meaningful tokens and reconstruct997

lowercased key phrases:998

keywords = { " ".join(999

w.lower() for w in chunk1000

if w not in STOP_WORDS) }1001

Up to N = 10 high-confidence keywords are1002

retained to form a concise query aligned with1003

the visual content.1004

4. Output Formatting: The extracted phrases1005

are concatenated using commas to produce a1006

compact query string:1007

"girl, car, cat..."1008

This compressed representation captures the1009

semantic core of the question while ensuring1010

compatibility with the CLIP text encoder’s 1011

length limit. 1012
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