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Abstract

Large Vision-Language Models (LVLMs)
achieve remarkable performance in multimodal
tasks but suffer from high computational costs
due to the large number of visual tokens. Exist-
ing pruning methods either apply after visual
tokens enter the LLM or perform pre-pruning
based solely on visual attention. Both fail
to balance efficiency and semantic alignment,
as post-pruning incurs redundant computation,
while visual-only pre-pruning overlooks mul-
timodal relevance. To address this limitation,
we propose Dual-Cue Pruning (DCP), a novel
cross-modal pruning framework that jointly
considers textual semantics and visual self-
attention. DCP consists of a text-aware com-
putation module, which employs a gradient-
weighted attention mechanism to enhance text-
visual alignment, and an image-aware compu-
tation module, which utilizes deep-layer self-
attention distributions to retain essential struc-
tural information. By integrating both cues,
DCP adaptively selects the most informative
visual tokens, achieving efficient inference ac-
celeration while maintaining strong task perfor-
mance. Experimental results show that DCP
can retain only 25% of the visual tokens, with
a minimal performance degradation of 0.063%
on LLaVA-1.5-13B, demonstrating its effective-
ness in balancing efficiency and accuracy.

1 Introduction

In recent years, Large Vision Language Models
(LVLMs) (Li et al., 2023a; Zhu et al., 2023; Team
et al., 2023; Wang et al., 2024) have exhibited re-
markable capabilities in diverse multimodal scenar-
ios, propelling advancements in intricate tasks such
as image and language comprehension. These mod-
els typically involve a substantial number of visual
tokens, ranging from hundreds to thousands (Cai
et al., 2024). The large quantity of visual tokens
significantly amplifies the training and inference
costs of LVLMs (Chen et al., 2024a).

Previous methods aimed at reducing the compu-
tational overhead caused by visual tokens can be
broadly classified according to the pruning stage
within the vision-to-language pipeline. The first
category applies pruning after the visual embed-
dings have been passed into the LLM. These meth-
ods identify important visual tokens by analyzing
attention weights from LLM text tokens to visual
tokens during inference (Chen et al., 2024a; Xing
et al., 2024; Ye et al., 2024). However, post-input
pruning does not reduce the number of tokens fed
into the LLM, resulting in limited computational
savings during the prefilling stage. The second
category performs pruning before the visual to-
kens are input into the LLM (Bolya et al., 2023;
Shang et al., 2024; Yang et al., 2024; Li et al,,
2024b; Jiang et al., 2024, 2025). For example,
TOME (Bolya et al., 2023) accelerates ViTs by
merging similar image features via feature-space
clustering. PruMerge (Shang et al., 2024) and Vi-
sionZip (Yang et al., 2024) leverage image atten-
tion to select core tokens and merge redundant to-
kens to mitigate information loss. G-Prune (Jiang
et al., 2025) constructs a similarity graph among
visual tokens to identify key tokens. However,
these pre-input pruning methods focus solely on
visual-centric features and lack the textual guidance
needed to preserve text-relevant visual content.

This limitation becomes evident when analyz-
ing the proportion of visual and textual tokens
across several multimodal datasets, as shown in
Figure 1. The diagram reveals that visual tokens
overwhelmingly dominate most datasets, with pro-
portions reaching as high as 96% (GQA (Hudson
and Manning, 2019)) and 97% (TextVQA (Singh
et al., 2019)), leaving relatively few tokens for tex-
tual information. This imbalance emphasizes the
need for pruning strategies that not only reduce
the number of visual tokens but also ensure that
text-relevant visual information is preserved.

To address these limitations, we propose the
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Figure 1: The proportion of visual tokens and textual
tokens in seven different datasets.

Dual-Cue Pruning (DCP) method, which en-
hances pruning efficiency in LVLMs while ensur-
ing that essential semantic and structural informa-
tion is preserved. Our method consists of two key
modules: the text-aware computation module and
the image-aware computation module, followed
by a balanced pruning strategy. The text-aware
module guides token selection by emphasizing the
relevance of visual tokens to the input text, using a
gradient-weighted attention mechanism to capture
text-visual interactions. The image-aware module
focuses on preserving the structural relationships
among visual tokens, leveraging deep-layer self-
attention distributions to maintain the integrity of
visual details. Finally, the pruning strategy com-
bines both text-aware and image-aware scores to
select the most informative tokens, ensuring effi-
cient pruning without sacrificing the model’s per-
formance. Our contributions can be summarized as
follows:

* We introduce a training-free cross-modal prun-
ing framework for LVLMs, which prunes vi-
sual tokens before inputting them into the
LLM.

* We design an efficient token selection strat-
egy by incorporating text-aware score and
image-aware score, ensuring robust perfor-
mance preservation.

* We establish a comprehensive evaluation,
demonstrating that DCP achieves 2.26x
speedup in Time to First Token (TTFT) on
LLaVA-1.5-13B with an average performance
degradation of only 0.063%.

2 Related Work

Large Vision-Language Models (LVLMs). The
advancement of Large Language Models (LLMs)
(Achiam et al., 2023; Touvron et al., 2023) has
spurred progress in Large Vision-Language Mod-
els (LVLMs) (Yin et al., 2023), extending LLMs’
reasoning and understanding to the visual domain

by converting visual data into token sequences. A
cross-modal projector facilitates this integration by
bridging the visual encoder and LLMs (Bai et al.,
2023; Liu et al., 2024a) which is achieved through
a lightweight Q-Former (Li et al., 2023a) or simpler
projection networks like linear layers (Zhu et al.,
2023) or MLPs (Liu et al., 2024b).

Despite their effectiveness, existing LVLMs face
challenges caused by poor visual token representa-
tions (Tong et al., 2024) and visual hallucinations
(Huang et al., 2024). Recent work has focused
on enhancing visual perception by increasing the
resolution of input images. For instance, LLaVA-
NeXT (Liu et al., 2024c¢) and InternVL 1.5 (Chen
et al., 2024b) introduce Anyres practice, process-
ing multiple sub-images and the original image’s
thumbnail independently and then concatenating to
project before being input into LLMs, leading to
significant improvements in performance for tasks
requiring text recognition or reducing hallucinated
outputs However, while enhancing the understand-
ing of high-resolution images, this approach also
introduces a greater number of visual tokens.
Token Reduction in LVLMs. Visual tokens in
LVLMs often outnumber text tokens and exhibit
high spatial redundancy, limiting inference effi-
ciency due to autoregressive generation and token
redundancy. To address token redundancy, existing
methods fall into training-based compression and
training-free pruning. Training-based approaches,
such as Q-Former (Li et al., 2023a), Resampler (Bai
et al., 2023) and Abstractor (Cha et al., 2024) select
relevant tokens using learnable queries or convo-
lutional aggregation. LLaVA-Mini (Zhang et al.,
2025) introduces modality pre-fusion, thereby fa-
cilitating the extreme compression of visual tokens.
These methods are effective but suffer from limited
generalizability, as they require extensive retraining
for each LLM or dataset.

In contrast, training-free methods focus on reduc-
ing tokens by merging similar tokens (Bolya et al.,
2023; Jiang et al., 2025) or selecting important to-
kens based on attention scores. FastV (Chen et al.,
2024a) prunes low-attention tokens in the LLM
backbone, while some others, such as PruMerge
(Shang et al., 2024) and VisionZip (Yang et al.,
2024) prune tokens with low attention extracted
from the CLIP encoder and merge tokens via k-
nearest neighbor clustering. G-Prune (Jiang et al.,
2025) proposes a graph-based method that treats
tokens as nodes to identify key tokens. However,
these approaches often focus on internal visual to-



ken attention and overlook text-image correlations,
resulting in suboptimal selection. Rather than re-
lying solely on internal image information, PDrop
(Xing et al., 2024) drops part of the image tokens
based on the attention between all the image tokens
and the last token of the instruction. Recent work
(Wen et al., 2025) shows that the attention between
text and visual tokens in LLMs may not always re-
flect the actual relevance, limiting the effectiveness
of text-guided approaches. Unlike previous work
that prunes tokens based on the similarity between
textual and image token features (Chen et al., 2025),
our approach achieves modality alignment in the
visual encoder through attention mechanisms and
gradient-based information, enabling more adap-
tive and informative pruning.

3 Method

To enhance the pruning process for LVLMs, we pro-
pose Dual-Cue Pruning (DCP), which incorporates
text-aware and image-aware mechanisms to retain
semantically significant visual tokens, as illustrated
in Figure 2. Based on the analysis and observations
presented in Sec. 3.1, our DCP method achieves sig-
nificant computational savings while maintaining
model performance. A detailed technical descrip-
tion of the method is provided in Sec. 3.2.

3.1 Preliminary and Analysis

Image text correlation. Contrastive Language-
Image Pretraining (CLIP) (Radford et al., 2021) is
a cross-modal model trained on large-scale image-
text pairs. It consists of a Vision Encoder and a Text
Encoder, both Transformer-based, which project
images and text into a shared embedding space
through contrastive learning. Given an image I,
and text I;, CLIP encodes them into feature embed-
dings f, = V(I,) and f; = T'(I;), and aligns them
via cosine similarity:

S — fv'ft (1)

Lol el
While CLIP effectively captures global image-text

alignment, understanding the contribution of indi-
vidual visual tokens to the final similarity score is
critical for interpretability and pruning strategies.
To address this, gradient-based visualization tech-
niques such as Grad-CAM (Selvaraju et al., 2017)
are widely used for feature attribution analysis. Fol-
lowing this principle, we compute the gradient of
the similarity score with respect to the vision en-
coder’s attention matrix:
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where VA () represents the sensitivity of the atten-
tion matrix at the ¢-th layer to the similarity score.
To highlight image-text correlations, we compute
the element-wise product:

M® = VA® 5 AD), 3)

where positive values indicate visual regions that
strongly align with the text description, while neg-
ative values correspond to tokens that contribute
less to the cross-modal representation.

By leveraging this mechanism, we derive text-

aware saliency scores for visual tokens, facilitat-
ing the identification of features that exhibit strong
semantic alignment with the input text. This sys-
tematic quantification of multimodal interactions
provides a foundation for text-guided visual token
pruning.
Imbalance Attention in Vision Encoder. Inspired
by He et al. (2023), we quantify and visualize the at-
tention maps from selected layers (Layer 1 to 23) in
the CLIP model, as shown in Figure 3. We observe
that while the shallow layers exhibit relatively bal-
anced attention distribution, the deep layers present
a phenomenon known as mode collapse, where
over 80% of the attention is concentrated on less
than 25% of the tokens. This imbalance in attention
suggests that only a few visual tokens with high
attention scores contain critical visual information.
Based on the phenomenon of Imbalance Attention
in Vision Encoders, we propose an image-aware
saliency score that quantifies visual token impor-
tance through multi-pooling feature representations
derived from deep attention maps.

3.2 Dual-Cue Pruning

To improve pruning efficiency while preserving
essential semantic and structural information, we
propose Dual-Cue Pruning (DCP), which consists
of two key components: fext-aware computation
module and image-aware computation module, fol-
lowed by a balanced pruning strategy. Text-aware
computation module aims to enhance cross-modal
alignment by extracting core textual information
and guiding token selection based on text-visual
interactions. First, a lightweight NLP model is
used to extract key problem-related words from
the input text by removing system prompts, re-
sponse instructions, and options. Then, a gradient-
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Figure 2: The framework of Dual-Cue Pruning for LVLMs. (a) The text-aware module extracts keywords and
computes token relevance using gradient-weighted attention. (b) The image-aware module captures structural
relationships via deep-layer self-attention. (c) Both scores are combined to rank and prune visual tokens before

feeding into the LLM.
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Figure 3: The attention map of CLIP in different layers.

weighted attention mechanism is introduced to em-
phasize visual tokens that strongly respond to tex-
tual content, ensuring effective cross-modal guid-
ance. Image-aware computation module focuses
on preserving structural information by leveraging
deep-layer self-attention distributions. The self-
attention matrix from a selected deep layer is ex-
tracted, excluding the influence of the CLS token,
and used to compute the mean attention score for
visual tokens. This captures inherent structural
relationships, complementing the text-aware mod-
ule to prevent the removal of critical visual details.
Finally, the pruning strategy balances textual rele-
vance and structural importance by ranking visual
tokens based on both text-aware and image-aware
scores. A token budget is allocated by selecting the
most informative tokens from each ranking, ensur-
ing a refined subset that maintains both semantic
fidelity and computational efficiency.

3.2.1 Text-aware Computation Module

Existing pruning methods for LVLMs lack suffi-
cient modeling of textual information, which may

result in the inadvertent removal of visual tokens
closely related to textual content during the prun-
ing process. To address this issue, we introduce a
gradient-weighted attention mechanism to enhance
cross-modal interaction.

We first apply regular expressions to remove sys-
tem prompts, response instructions, and answer
options, retaining only the core problem descrip-
tion. Next, we perform syntactic parsing using
spaCy (en_core_web_sm), a lightweight 12 MB
NLP model (Explosion, 2023), to obtain part-of-
speech tags and dependency structures. Based
on these results, we extract noun phrases and dis-
card non-semantic stopwords, yielding up to N
problem-related keywords. This results in a com-
pact yet semantically informative textual represen-
tation, aligned with CLIP’s 77-token input con-
straint. More details can be found in appendix.

Then we compute the cosine similarity between
the image embedding and text embedding. Since
this similarity function is differentiable, we can
trace its gradient to capture the response of visual
tokens to textual information. For selected layers
of the visual encoder (e.g., the last two layers), we
compute the gradient of the attention matrix A®)
with respect to the scoring function .S, denoted
as VA®. We then define the gradient-enhanced
attention mapping:

TRM® = ReLU(AY 0 VAW), (4

where element-wise multiplication highlights the
visual tokens that contribute significantly to the
final decision.

To incorporate multi-layer information, we adopt



a cumulative update strategy via batch matrix mul-
tiplication:

R + R+ bmm(TRM, R), (5)

where R is initialized as an identity matrix. The
final text-aware importance score 7y is obtained
by normalizing K. Ablation studies indicate that
fusing information from the last two layers leads to
better preservation of text-related visual details.

3.2.2 Image-Aware Computation Module

To achieve more precise pruning while preserving
core visual information, we design an image-aware
computation module. As discussed in Sec. 3.1,
this module leverages the imbalance of attention
distributions in deeper layers by first obtaining the
multi-head attention (MHA) output from the vision
encoder. We compute the mean attention across
all heads and subsequently perform an additional
mean operation along the token dimension to derive
the importance of each token:

1on (1.,
Tatt = N Z q ZA’%J' ) (6)
j=1 h=1
where H is the number of attention heads, N de-

notes the number of non-CLS tokens, and AL
represents the attention score of the j-th token i 1n
the L-th layer for the h-th head. Through ablation
studies, we find that extracting the attention matrix
from the 18th layer best captures the structural rela-
tionships and relative importance of visual tokens,
effectively compensating for potentially missing
visual information in text-guided pruning.

3.2.3 Dual-Cue Balanced Pruning Strategy

Given an input text-image pair, DCP first extracts
keywords from the text and computes text-visual
relevance scores. Simultaneously, it leverages deep-
layer self-attention distributions to estimate visual
token importance. After obtaining the text rele-
vance score 7ext and the self-attention score 74,
a balanced pruning strategy is adopted to retain
the most informative tokens. For a predetermined
token budget K, the procedure is as follows: 1)
Independently sort the visual tokens based on 7x;
and ry. 2) Select the top % tokens from the 7eyx¢
ranking. 3) From the remaining tokens, select the
top % tokens according to ru. 4) Merge the se-
lected token indices and reorder them based on
their original sequence to preserve the input order
for downstream processing. This dual-cue pruning

Algorithm 1 Dual-Cue Pruning (DCP)

Require: Input text 7', input image I, token budget K
Ensure: Selected visual tokens Vi
1: Text-Aware Computation
2: Extract keywords from 7" using NLP model
3: Compute text-visual similarity:
S = cos(Embed(I), Embed(T"))
4: Compute gradient-weighted attention:
TRM® = ReLU(A® © VA®)
5: Fuse multi-layer attention:
R < R +bmm(TRM¥, R)
6: Compute text-importance score:
Text = Normalize(R)
: Image-Aware Computation
. Extract deep-layer self-attention matrix A~
: Remove CLS token influence
: Compute mean attention score:

Taw = % Z;V:I (% hH:1 Aﬁ,j)
11: Dual-Cue Balanced Pruning Strategy
12: Rank Vlsual tokens based on riex and 7y
13: Select top 5 tokens from 7x ranking
14: Select remaining % K tokens from 7y ranking
15: Merge and reorder selected tokens to preserve input order
16: return Vi

_
S 0=

strategy effectively combines textual guidance with
inherent visual structure, ensuring robust and effi-
cient inference acceleration. The overall procedure
is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets. We utilize 7 widely used multimodal
datasets to evaluate the performance, including
POPE (Li et al., 2023b), MMMU (Yue et al., 2024),
ScienceQA (SQA) (Lu et al., 2022), Ai2D (Kem-
bhavi et al., 2016), GQA (Hudson and Manning,
2019), TextVQA (VQAT) (Singh et al., 2019) and
OCRBench (OCR) (Liu et al., 2023). More details
of datasets can be found in appendix.
Implementation Details. All experiments are
conducted on the LMMS-Eval platform (Zhang
et al., 2024), a unified and reproducible bench-
mark covering 50+ multimodal datasets and 10+
LVLMs. We evaluate on five representative mod-
els: LLaVA-1.5-7B, LLaVA-1.5-13B (Liu et al.,
2024b), LLaVA-NeXT-7B, LLaVA-NeXT-13B (Liu
et al., 2024c¢) and OneVision-Qwen2-7B (Li et al.,
2024a). Our DCP framework supports variable
visual token retention ratios, with experiments con-
ducted under multiple settings (e.g., 25%, 50%,
75%) to evaluate scalability and robustness. In-
ference efficiency is measured using Time to First
Token (TTFT) and Time Per Output Token (TPOT).
We compare against two categories of training-



free pruning baselines, categorized by pruning
stage: post-input pruning (FastV, PDrop) and pre-
input pruning (TOME, PruMerge, G-Prune). All
methods are configured according to official or
widely adopted settings. Specifically, FastV prunes
at layer 3; PDrop uses layers 8/16/24 with retention
ratios p; = [0.75, 0.375, 0.1875], p2 = [0.5, 0.25,
0.125], and p3 = [0.25, 0.125, 0.0625]; other base-
lines use their default settings. All evaluations are
re-run under the same platform to ensure consis-
tency.

4.2 Main Results

Comparison with state-of-the-art methods. Ta-
ble 1 presents the accuracy and inference efficiency
of various pruning methods on LLaVA-1.5-7B
across three different token retention ratios. Our
DCP consistently outperforms prior methods across
multiple evaluation datasets. At the 75% retention
ratio, DCP achieves the highest average accuracy
of 55.26%, outperforming the second best FastV by
0.03%, even higher than the original model without
pruning. Notably, DCP achieves the highest effi-
ciency, with speedup ratios of 1.20x (TTFT) and
1.29x (TPOT) over the original model. Similarly,
our DCP ranks first in overall average accuracy
with 54.91% and achieves the best performance in
four subsets at the 50% pruning level, while retain-
ing strong efficiency with a speedup of 1.52x and
1.29x, respectively. Even under the most aggres-
sive 25% pruning ratio, DCP leads with an average
score of 54.51%, surpassing the second best FastV
and TOME by 1.87%. These results align with
our motivation. Unlike post-input pruning methods
that rely on cross-modal attention but do not reduce
LLM input size, and pre-input methods that prune
early but ignore text relevance, DCP combines both
strengths—performing early token reduction while
leveraging textual and visual signals. This leads to
more relevant token selection and a better trade-off
between accuracy and efficiency.

DCP on different LVLMs. To evaluate the
generalizability of our method, we apply DCP
across various LVLMs, including LLaVA-1.5-13B,
LLaVA-NeXT-7B, LLaVA-NeXT-13B, as reported in
Figure 4 and Table 2. Figure 4 shows that as to-
ken retention increases, model accuracy generally
improves. However, different datasets stabilize at
varying retention ratios. For instance, SQA, Ai2D,
and POPE maintain good accuracy even with low
retention, while OCRBench requires higher reten-
tion to achieve significant accuracy. Interestingly,
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Figure 4: Performance metrics across visual to-
ken retention ratios for the LLaVA-NeXT-7B and
LLaVA-NeXT-13B models on five datasets.

Ai2D and SQA remain robust even at extreme prun-
ing levels, suggesting that key information is con-
centrated in a small number of tokens, making them
less sensitive to pruning.

As shown in Table 2, DCP can effectively prune
a significant number of redundant tokens without
sacrificing much accuracy, enabling efficient in-
ference. For instance, at 25% token retention,
the LLaVA-NeXT-13B model maintains an accu-
racy of 67.94%, while the LLaVA-1.5-13B and
LLaVA-NeXT-7B models achieve similar improve-
ments across datasets, demonstrating that DCP’s
pruning approach is effective across different archi-
tectures. The inference speedup is also notable,
with LLaVA-NeXT-13B achieving up to a 2.52x
speedup, further proving the scalability and con-
sistency of DCP across different model configura-
tions.

4.3 Ablation Studies

Results on SigLIP as encoder. DCP is not only
applicable to models utilizing CLIP as the encoder
but also demonstrates strong performance when im-
plemented with SigLIP as the encoder. In the com-
putation of DCP, we continue to leverage the accu-
mulated gradient information from the last two lay-
ers along with attention weight information to en-
hance the extraction of critical features. Experimen-
tal results on Table 3 indicate that the OneVision-
Qwen2-7B model, which employs SigLIP as the
encoder and Qwen?2 as the LLM, achieves consis-
tently strong performance across multiple datasets.
Notably, even when the visual input is reduced to
25%, the model maintains robust performance, par-
ticularly on POPE and TextVQA, where the impact
of data reduction is minimal.

Effectiveness of dual-cue importance indicators.
DCP is composed of two key importance indica-



Accuracy Performance Inference Efficiency
Ratio Method . T TTFT TPOT

Ai2D GQA MMMU SQA POPE VQA' OCR Avg. (ms S,) (msitok. S,)

100 Vanilla |55.50 61.97 3530 69.51 86.98 46.00 31.20 55.21| 74 - 27.71 -
TOME(ICLR’23) |54.31 59.36 35.78 68.87 86.98 41.47 29.20 53.71| 91 0.81x 3241 0.86x
PruMerge(2024.03) [ 53.21 60.41 3633 68.47 85.60 40.66 29.60 53.47| 91 0.81x 26.56 1.02x
Fastv(ECCV’24) |55.34 61.61 36.11 69.51 86.69 46.08 31.30 55.23| 69 1.07x 2740 1.01x
75  G-Prune(AAAI’25) | 5470 58.63 34.89 6822 86.32 40.96 29.30 53.29| 66 1.12x 25.18 1.10x
PDrop(CVPR’25) |55.38 61.64 36.78 69.11 86.87 45.65 3090 55.19|184 0.40x 2591 1.07x
DCP 5586 61.65 36.67 68.82 86.86 45.89 31.10 55.26| 62 1.20x 2145 1.29x
TOME(ICLR’23) |54.33 59.61 36.11 68.71 87.23 40.33 28.20 53.50| 89 0.83x 26.82 1.03x
PruMerge(2024.03) | 54.24 56.82 36.56 69.36 79.63 39.45 27.80 51.98| 86 0.44x 26.33 1.05x
Fastv(ECCV’24) |55.08 60.33 35.80 68.67 8520 4551 30.60 54.47| 59 1.26x 27.16 1.02x
50 G-Prune(AAAT’25) |54.95 57.29 36.00 69.36 83.78 40.89 29.30 53.08| 52 1.42x 2530 1.10x
PDrop(CVPR’25) |54.53 60.16 36.78 69.31 86.18 4524 29.80 54.57|154 0.48x 24.02 1.15x
DCP 54.83 60.85 3589 6852 87.26 45.61 31.40 54.91| 49 1.52x 2141 1.29%
TOME(ICLR’23) |54.08 58.67 36.33 68.12 87.24 38.04 26.00 52.64| 79 094x 2293 1.21Ix
PruMerge(2024.03) | 53.85 53.48 36.00 69.56 7540 38.14 26.70 50.45| 74 1.00x 21.73 1.28x
Fastv(ECCV’24) |53.95 5747 3544 68.86 81.21 4256 29.00 52.64| 51 1.44x 27.28 1.02x
25  G-Prune(AAAI’25) | 54.40 54.04 3522 69.71 79.38 40.85 2820 51.69| 44 1.68x 25.58 1.08x
PDrop(CVPR’25) |53.30 57.13 35.11 69.36 8240 4423 2270 52.03|135 0.55x 22.11 1.25x
DCP 54.40 58.92 36.56 68.72 87.14 44.82 31.00 54.51| 38 1.97x 20.89 1.33x

Table 1: Accuracy and inference efficiency of different methods using LLaVA-1.5-7B.

Inference efficiency is

measured on the POPE dataset. Bold indicates the best, underlined the second-best result. Avg. is the average value,
ms denotes milliseconds, S), represents the speedup ratio and ms/fok. indicates milliseconds per token.

Accuracy Performance Inference Efficiency
Model  Ratio | ,. T TTFT TPOT
Ai2D GQA MMMU SQA POPE VQA" OCR Avg. | 5 (mstok.  S,)
100 |59.49 6325 34.80 72.88 87.09 4873 3370 57.13 | 138 - 33.41 -
LLaVA- 75 | 58.65 61.11 3611 7298 8791 4824 3330 5690|110 1.25x 32.56 1.03x
1.5-13B 50 |[57.67 6094 35.89 74.07 87.82 4795 3360 56.85| 88 1.57x 32.04 1.04x
25 | 5729 5943 3733 7343 87.18 47.03 3380 56.50| 61 2.26x 31.5 1.06x
100 | 66.58 64.24 3510 70.15 87.61 6490 5220 6297 | 88 - 23.70 -
LLaVA- 75 | 65.06 6444 37.11 70.00 87.80 6339 4930 6244 | 81 1.09x 2355 1.01x
NeXT-7B 50 |65.16 64.06 37.44 68.82 88.00 6234 4830 62.02| 60 147x 23.05 1.03x
25 | 6438 6270 3711 6797 87.57 6038 4530 60.77 | 50 1.78x 21.97 1.08x
100 | 70.30 6537 3590 73.57 87.56 67.10 55.10 64.99 | 198 - 38.30 -
LLaVA- 75 7001 6530 37.56 73.23 87.92 6530 4990 64.17 [ 153 1.29x 36.06 1.06x
NeXT-13B 50 |69.43 65.05 3711 7417 8798 6334 49.60 63.81 | 116 1.70x 33.35 1.15x
25 | 6794 64.14 3622 73.08 87.89 62.78 47.10 62.74| 79 2.52x 3094 1.24x

Table 2: Accuracy performance and inference efficiency under different LVLMs. Inference efficiency is measured
on the POPE dataset. Results better compared to no pruning are bold. Avg. is the average value, ms denotes
milliseconds, .S, represents the speedup ratio and ms/fok. indicates milliseconds per token.

tors: text-aware and image-aware significant score.
Specifically, DCP uses the penultimate two lay-
ers for text-related accumulation and selects Layer
18 as the image-aware attention matrix. The ran-
dom baseline represents a setting where tokens are
pruned randomly. In this experiment, we retain
25% of the tokens and evaluate performance on
LLaVA-1.5-7B. The results on Table 4 demonstrate
that removing either text-aware or image-aware
components leads to a noticeable performance drop
compared to the full DCP method. Specifically, the

absence of text-aware features results in a decrease
in average performance from 63.63% to 63.04%,
while removing image-aware features lowers the
score to 63.13%. This highlights the complemen-
tary nature of both components. Additionally, the
random pruning baseline performs significantly
worse, resulting in a particularly poor performance
on TextVQA (30.89%), indicating that visual token
pruning guided by cross-modal dual-cue is crucial
for maintaining high performance and key informa-
tion of image.



Model Ratio Ai2D GQA POPE VQAT

100% 81.35 62.22 89.13 76.03
OneVision- 75% 80.70 62.47 89.36 76.01
Qwen2-7B 50% 79.89 62.38 89.73 75.98

25% 79.44 60.87 89.11 75.99

Table 3: DCP on OneVision-Qwen2-7B models, whose
encoder is SigLIP.

Method VQAT GQA POPE AVG
random 30.89 58.39 84.14 57.81
w/o text-aware 44.44 58.44 86.24 63.04
w/o image-aware 44.27 58.34 86.79 63.13
DCP 44.82 58.92 87.14 63.63

Table 4: Ablation study on LLaVA-1.5-7B with 25%
token retention. The table compares different ablation
settings of the proposed DCP method. "random" refers
to a baseline where tokens are pruned randomly. "w/o
text-aware" removes the text-awareness component, and
"w/o image-aware" eliminates the image-awareness
component. The "DCP" row represents our full method,
which integrates both text-aware and image-aware im-
portance indicators. The final column presenting the
average performance across all datasets.

Ablation study on text-aware component. We
analyze the effect of selecting different layers for
computing gradient-based importance in the text-
aware component. Layers 6, 12, and 18 use gradi-
ents from a single layer, whereas Layer 23 accumu-
lates gradients from Layers 23 and 24, following
LLaVA’s practice of using the penultimate layer
for image feature extraction. The results on Ta-
ble 5 show that early layers perform worse, with
Layer 12 yielding the lowest average score of 59.51.
Layer 6 improves slightly to 61.48, while Layer
18 achieves 61.79. The best performance is ob-
tained with Layer 23, reaching an average score
of 63.13, demonstrating that integrating gradients
from deeper layers enhances text-aware token se-
lection.

Ablation study on image-aware component. To
investigate the effect of using attention maps from
different layers in the image-aware component,
we evaluate the performance when selecting at-
tention maps from a single layer. The results on
Table 6 show that Layer 6 performs the worst, with
an average score of 57.23%, indicating that early-
layer attention does not effectively capture mean-
ingful image features. Performance improves sig-

Layer VQA'T GQA POPE AVG
6 38.76 59.16 86.52 61.48
12 34.67 5828 8557 59.51
18 4144 58.19 8574 61.79
23 4427 5834 86.79 63.13

Table 5: Ablation study on text-aware component using
gradients from different layers. Layers 6, 12, and 18 use
gradients from a single layer, while Layer 23 accumu-
lates gradients from the last two layers (23-24).

Layer VQAT GQA POPE AVG
6 30.67 56.65 8437 57.23
12 4416 5858 86.51 63.08
18 4444 5844 86.24 63.04
23 4423 5794 8507 6241
24 3929 5791 8299 60.06

Table 6: Ablation study on the image-aware component
using attention maps from different layers.

nificantly when using Layer 12 (63.08%) and Layer
18 (63.04), suggesting that mid-to-deep layers con-
tain more informative spatial relationships. How-
ever, Layer 23 (62.41%) and Layer 24 (60.06%)
show performance degradation, especially in POPE
and TextVQA, implying that attention from the fi-
nal layers may be less reliable for capturing fine-
grained image token importance. These findings
suggest that selecting attention maps from mid-to-
deep layers is more beneficial for enhancing the
image-aware component.

5 Conclusion

In this paper, we propose Dual-Cue Pruning (DCP),
a novel pruning framework that enhances the effi-
ciency of Large Vision-Language Models (LVLMs)
by jointly leveraging textual and visual cues. Un-
like existing methods that focus solely on visual
features, DCP integrates a text-aware computation
module, which enhances cross-modal alignment
using a gradient-weighted attention mechanism,
and an image-aware computation module, which
extracts deep-layer self-attention distributions to
retain structural visual information. By balancing
these two cues, DCP effectively prunes visual to-
kens while maintaining model fidelity. Extensive
experiments demonstrate that DCP achieves sub-
stantial speedup while preserving model accuracy,
outperforming existing pruning approaches.



Limitations

Despite its effectiveness, DCP has several limita-
tions. First, it relies on a pre-trained NLP model
for keyword extraction, which may introduce in-
accuracies when handling complex or ambiguous
prompts. Second, while DCP demonstrates strong
performance across standard multimodal bench-
marks, the degree of efficiency gain may vary with
different model architectures and prompt styles. Fu-
ture work could investigate adaptive pruning strate-
gies tailored to specific vision-language tasks or
dynamic prompt characteristics to further improve
robustness and generalization.
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A Datasets

We utilize 7 widely used multimodal datasets to
evaluate the performance of our method, covering
diverse vision-language reasoning scenarios:

* POPE (Li et al., 2023b): Designed to assess
object hallucination in multimodal models. It
evaluates whether the model can accurately
determine the existence of objects mentioned
in the text within the image.

e MMMU (Yue et al., 2024): A comprehensive
benchmark spanning multiple university-level
subjects (e.g., biology, physics, math), requir-
ing high-level reasoning across image and text
modalities.

¢ ScienceQA (Lu et al., 2022): Focused on
scientific question answering, this dataset in-
cludes diagrams, textual descriptions, and
multiple-choice questions across various sci-
ence topics.

¢ Ai2D (Kembhavi et al., 2016): Targets the
interpretation of complex scientific and edu-
cational diagrams. It tests a model’s ability to
perform diagram-based reasoning and ques-
tion answering.

* GQA (Hudson and Manning, 2019): A large-
scale visual question answering benchmark
emphasizing compositional reasoning and spa-
tial relationships grounded in real-world im-
ages.

* TextVQA (Singh et al., 2019): Involves ques-
tions related to text present in images. It eval-
uates the model’s capability to localize, read,
and reason about textual content embedded in
complex visual scenes.

* OCRBench (Liu et al., 2023): Focuses on op-
tical character recognition in natural images,
measuring the model’s ability to extract and
understand text from images with varied lay-
out, quality, and language content.

These datasets jointly test diverse capabilities
of LVLMs, including object grounding, scientific
reasoning, diagram interpretation, text recognition,
and cross-modal understanding. All evaluations are
conducted using standardized metrics and protocols
provided by LMMS-Eval (Zhang et al., 2024).

B Vision-Language Inference Pipeline
and Latency Analysis

B.1 Large Vision-Language Models (LVLMs)

LVLMs are aimed at generating textual responses
based on input images and instructions (Yin et al.,
2023). A typical LVLM consists of three key mod-
ules: a vision encoder, an advanced LLM, and a
projector, which serves as a bridge for modality
alignment. First, the vision encoder transforms
the input image into visual embeddings E,,, often
utilizing the ViT architecture (Dosovitskiy et al.,
2020). Next, the projector converts these visual
embeddings into visual tokens T, by mapping
them into the text space, making them understand-
able to the LLM. Given the generated visual tokens
T and instructions’ textual tokens T, the LLM
then produces the L-length output response Y in
an auto-regressive manner based on the following
probability distribution:

L
P(Y|Ty, Ty) = [[ P(Yi|Te, Ty, Yoi). (D)
=1

As shown in the formula, the inference efficiency
and memory requirements of LVLMs heavily de-
pend on the length of the input tokens that the LLM
needs process, which consist of both textual and
visual tokens. In fact, due to the auto-regressive
nature of LLM decoding, the computational com-
plexity of the LLM is proportional to the square of
the input token length. This indicates that reduc-
ing the input tokens is crucial for improving the
inference efficiency of LVLMs.

B.2 LLM Inference Pipeline

The inference process of the LLM consists of two
computationally distinct stages:

B.2.1 Prefill Stage

The prefill stage processes the entire input se-
quence X in one forward pass through the trans-
former layers. At each layer [, self-attention is
applied to the entire sequence:

70 — MHSA(Z)(XU—D) +x-1

The multi-head self-attention involves comput-
ing attention weights:

. QK'
Attention(Q, K, V) = softmax A\
Vg,



where Q,K,V ¢ RWitNo)xdr are projected
query, key, and value matrices.
The overall complexity is:

O ((N; + Ny)? - d)

This quadratic scaling means that large NV, (as is
common in LVLMs) leads to significant latency
during this stage.

B.2.2 Decoding Stage

Once the KV caches are built during prefill, de-
coding proceeds token by token. At step ¢, the
model generates the i-th output token g; given the
previous tokens and the cached states:

Qi = fllm(@<i, Cache)

Each decoding step only attends to the newly
generated token and previously cached keys and
values, with attention complexity:

O(Nex - d)

where N  is the context length (fixed during infer-
ence). This stage is relatively lightweight compared
to prefill.

B.3 Latency Metrics

To quantify the latency performance of pruning
methods, we use two common metrics:

¢ Time to First Token (TTFT): Measures the
wall-clock time from input submission to the
generation of the first output token. It corre-
sponds to the entire prefill stage:

TTFT ~ Latency ey o< (V¢ + N,)?

* Time Per Output Token (TPOT): Measures
the average latency of decoding each token
after the first:

TPOT — Total Decoding Time

Ne-d
Number of Output Tokens o Mo

B.4 Efficiency Implication of Pruning

Post-input pruning (e.g., FastV, PDrop) operates
after visual tokens are passed into the LLM. These
methods may reduce computation during decoding,
but have minimal impact on TTFT since the prefill
complexity remains unchanged.

Pre-input pruning aims to reduce inference la-
tency by removing visual tokens before they are

passed into the LLM, thereby directly decreasing
N, and the computational cost of the prefill stage.
Existing pre-input methods such as TOME (Bolya
et al., 2023), PruMerge (Shang et al., 2024), and
G-Prune (Jiang et al., 2025) typically rely on visual-
only heuristics—e.g., token similarity, attention
within the image encoder, or clustering—without
considering the accompanying text prompt. As a
result, these approaches may discard visually re-
dundant tokens that are actually semantically im-
portant in the current context, leading to suboptimal
performance on language-grounded tasks.

Unlike post-input pruning methods that rely on
cross-modal attention but do not reduce LLM in-
put size, and pre-input methods that prune early
but ignore text relevance, DCP combines both
strengths—performing early token reduction while
leveraging textual and visual signals. This leads to
more relevant token selection and a better trade-off
between accuracy and efficiency.

Theoretical vs. Actual Speedup. Although
pruning methods aim to reduce inference latency by
discarding tokens, there exists a clear gap between
theoretical token reduction and actual speedup in
practice. This discrepancy is often due to substan-
tial computational overhead introduced by post-
processing (e.g., masked attention, index tracking)
or inefficient integration with transformer architec-
tures. As shown in Table 1, these methods may
reduce the number of tokens but introduce non-
trivial computation, leading to no actual speedup
or even performance degradation, such as TOME
and PruMerge. In contrast, DCP achieves a TPOT
speedup of 1.33x, the highest among all compared
methods at 25% ratio, with a total latency of 20.89
ms/tok. This highlights DCP’s capability to achieve
true computational reduction rather than superficial
token sparsity, thanks to its pre-pruning strategy
with minimal additional overhead. This advantage
generalizes across architectures. As shown in Ta-
ble 2, DCP achieves consistent real-world speedups
on all tested LVLMs. In summary, DCP not only
delivers superior accuracy under aggressive com-
pression but also achieves practical inference accel-
eration. It addresses the limitations of prior meth-
ods by minimizing redundant computations and
aligning token pruning with the actual execution
flow, thereby bridging the gap between theoretical
and realized gains.



C Implementation Details

C.1 Hardware Setup

All experiments are conducted on a single NVIDIA
A100 GPU with 40GB memory. Our approach
is lightweight and inference-efficient: it also
runs smoothly on consumer-grade GPUs such as
NVIDIA RTX 4090 (24GB). No distributed infer-
ence or model parallelism is required.

C.2 Text Preprocessing with spaCy

To extract problem-relevant keywords from com-

plex input prompts, we perform multi-stage text

preprocessing prior to CLIP encoding. This helps

generate a compact and semantically rich represen-

tation that fits within CLIP’s 77-token constraint.
The steps are as follows:

1. Prompt Filtering: We apply regular expres-
sions to remove non-semantic content such as
system prompts (e.g., "Use the data..."),
response instructions (e.g., "Answer the
question..."), and multiple-choice answer
options (e.g., "A. ..."to"D. ...").

2. Syntactic Parsing: We use the spaCy English
parser (en_core_web_sm) (Explosion, 2023),
a lightweight 12MB NLP model, to perform
part-of-speech tagging and dependency pars-

ing.

3. Keyword Extraction: From the parsed text,
we identify noun phrases (doc. noun_chunks)
and filter out common stopwords using
spaCy’s built-in stopword list. For each chunk,
we retain meaningful tokens and reconstruct
lowercased key phrases:

keywords = { " ".join(

w.lower() for w in chunk
if w not in STOP_WORDS) }

Up to N = 10 high-confidence keywords are
retained to form a concise query aligned with
the visual content.

4. Output Formatting: The extracted phrases
are concatenated using commas to produce a
compact query string:

n

"girl, car, cat...

This compressed representation captures the
semantic core of the question while ensuring

compatibility with the CLIP text encoder’s
length limit.
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