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Abstract

Association, covariation and causality are three pivotal concepts in the realm of
statistics and cognitive reasoning. While in everyday discourse, these terms tend to
be used interchangeably, they actually bear distinct definitions. In probability theory,
it is widely recognized that covariation simply implies association, yet association
may not always encompass covariation. We leverage the intuitive definition and
conduct analyses of causality, contending that causality implies association but not
covariation. Moreover, it is crucial to note that neither association nor covariation
can directly establish causality.

1 Introduction

Imagine a person suggesting that your poor performance in the final exam might cause your skipping
breakfast. You would likely find his words quite baffling and may even suspect that you misheard
him or that his statement was in the wrong order. Quickly noticing your confused expression, he
presents you with the statistical data demonstrating a strong positive correlation between students’
scores on final exams and their frequency of having breakfast. You might chuckle and kindly correct
him, explaining that it is skipping breakfast that causes the poor exam results.

This scenario is so commonplace that most people tend to overlook it and not give it much consider-
ation. However, these everyday interactions contain a wealth of knowledge involving association,
covariation, and causality. You unconsciously ponder the cause-and-effect relationship in the scenario,
assuming that skipping breakfast is the cause and performing poorly in the exams is the effectly;
the reverse seems implausible. Such causal reasoning can be activated almost automatically and
irresistibly [2, 13]. Nevertheless, it is intriguing to demonstrate that these natural assumptions might
also be incorrect. It transpires that those who do not eat breakfast are also more likely to be absent or
tardy, and it is absenteeism that is playing a significant role in their poor performance [6]. Researchers
have posited that breakfast primarily aids undernourished children in performing better [12].

The example above vividly illustrates the significance of distinguishing among the concepts of associa-
tion, covariation and causality. We can readily discern the association and covariation between having
breakfast and exam performance. Nonetheless, definitely establishing causality proves challenging
due to the presence of hidden intermediate factors. In probability theory, there are also numerous
instances that demonstrate two associated random variables having zero covariance.

This paper endeavors to elucidate the distinctions among association, covariation and causality,
emphatically asserting that they are distinctly separate concepts that should not be confused. In Sec. 2,
we provide a concise introduction to the fundamental definitions of association, covariation and
causality, clearly demonstrating that while association is a necessary condition, it is insufficient for
covariation. Sec. 3 expounds that causality implies association, but the reverse is not true. Finally, in
Sec. 4, we establish that causality cannot provide information regarding covariation, and vice versa.

We will consistently assume that the random variables discussed in this paper have finite expectation
values for the sake of convenience in our discussion.
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2 Definition

To engage more precisely in the discourse about the relationship among association, covariation and
causality, we will begin by providing the fundamental definitions of these three concepts. This will
encompass accurate probabilistic definitions of association and covariation, alongside an intuitive
definition of causality.

Definition 2.1 (Association). We say two random variables A and B are associated if they are not
independent, or

FA,B(x, y) ̸= FA(x)FB(y), ∃x, y ∈ R, (1)

where FA,B(x, y) is the joint cumulative distribution function (CDF) of two random variables (A,B),
and FA(x), FB(y) denote the marginal CDFs of A and B, respectively. We also say that there
exhibits an association between A and B. Specifically, two events A and B are associated if (Assume
Pr(A) > 0, Pr(B) > 0)

Pr(AB) ̸= Pr(A) Pr(B) ⇐⇒ Pr(A|B) ̸= Pr(A), Pr(B|A) ̸= Pr(B). (2)

Definition 2.2 (Covariation). We say two random variables A and B covariate if their covariance
is not zero:

Cov(A,B) = E[(A− E(A))(B − E(B))] ̸= 0. (3)

It is obvious that two variables covariate if and only if their Pearson correlation efficient is not zero:

ρ(A,B) =
Cov(A,B)√
D(A)D(B)

̸= 0. (4)

Given that the Pearson correlation efficient is a commonly employed tool for assessing the correlation
between two random variables, it can be stated that the covariation of two random variables is
equivalent to their correlation.

From these two direct probabilistic definitions of association and covariation, we can readily demon-
strate the following theorem:

Theorem 2.1. Two covariated random variables are also associated, and conversely, two associated
variables do not necessarily covariate.

We provide the proof of Theorem 2.1 in Appendix A.1. This theorem illustrates that association
and covariation, which are often used interchangeably in discourse, are actually distinct concepts.
Covariation contains more information about the association of two random variables. This theorem
also emphasizes the importance of separately discussing the relationships between causality and
association, as well as between causality and covariation.

Definition 2.3 (Causality). Causality, also called causation, or cause and effect, is influence by
which one event, process, state, or object (a cause) contributes to the production of another event,
process, state, or object (an effect) [8].

This is an intuitive definition of causality. While there exist models like the Rubin causal model [5]
and Pearl’s probabilistic graphical model (i.e., causal Bayesian networks (CBNs)) [3] to describe and
infer causality, given the complexity of these models and the focus of this paper, we will utilize the
intuitive definition provided above for our analysis.

3 Causality and Association

3.1 Causality Implies Association

Intuitively, this proposition holds true because for two independent random variables, A and B, one
variable cannot have any impact on the othe. This violates the intuitive definition of causality and
indicates that A and B do not exhibit causality. We aim to elucidate this point in a more mathematical
manner. For the sake of simplicity in the proof, we will consider only two events, A and B. If A and
B are not associated, i.e., they are independent, the following proposition holds true based on Eq. (2):

Pr(A|B) = Pr(A) ∧ Pr(B|A) = Pr(B). (5)
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Eq. (5) demonstrates that when we consider adding a condition B, the probability of event A occurring
will remain unaffected. Similarly, adding A as a condition will not change the probability of event B
occurring. However, if A and B are causally related, the definition of causality implies that A should
contribute to the production of B, or vice versa. This contradicts the implication of Eq. (5), leading
to the conclusion that there is no causality between A and B. Therefore, the absence of association
implies the absence of causality, and its contrapositive, which is what we aim to prove, holds true.

3.2 Association Does Not Imply Causality

This proposition is also inherently evident because the concept of association is extraordinarily broad,
and we cannot definitively ascertain whether the association between two variables implies causality.
More specifically, at least part of the observed association between two variables may be attributed to
reverse causality or to the confounding effect of a third variable [1].

Reverse causality is an informal fallacy of questionable cause where cause and effect are reversed
[10]. For instance, it is common sense that the sunrise causes the rooster to crow. If we mistakenly
assume that the crowing of the rooster is the cause and the sunrise is the effect, we commit the error
of reverse causality. More generally, when C is the cause of E, it is usually false that E is the cause
of C. Association is always bidirectional and has symmetry, while causality is often unidirectional
and does not have symmetry.

The confounding effect of a third variable is also a common occurrence in mistaken causal reasoning.
When both X and Y are caused by a factor Z, despite the strong association between X and Y , we
still cannot infer a direct causal link between them. For instance, consider a study conducted at the
University of Pennsylvania Medical Center in 1999 [4]. This study suggested that young children who
sleep with the light on are much more likely to develop myopia in later life, implying that sleeping
with the light on causes myopia. However, a subsequent study at Ohio State University did not find
evidence that infants sleeping with the light on directly caused the development of myopia. Instead,
it discovered that myopic parents were more likely to leave a light on in their children’s bedroom
[7, 11]. The common underlying cause for both conditions is parental myopia, underscoring the
necessity for caution when inferring causality between sleeping with the light on and myopia.

4 Causality and Covariation

4.1 Covariation Does Not Imply Causality

The analysis of this proposition is similar to Sec. 3.2. This is because two associated variables are
also correlated, or covariate, in most cases, since in Sec. 2 we have already proven that correlation
is equivalent to covariation. In econometrics, we often use the following linear model to perform
multiple linear regression and obtain derive meaningful conclusions:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + u. (6)

If one of the slope coefficient given by the ordinary least squares method, say β̂1 (assuming it is
positive), is economically large and statistically significant (this can be verified by a t test; here we
omit the details), we can observe a positive covariance between y and x1. This conclusion holds
true only if the explanatory variables do not provide any information about the mean of the error
term u, or if the zero conditional mean assumption E(u|x1, · · · , xk) = 0 is valid. If there are other
unobserved factors other than x1, · · · , xk that have correlations with both explanatory variables and
the explained variable, the causality between x1 and y cannot be explained through this model, in
spite of the positive covariance of y and x1.

4.2 Causality Does Not Imply Covariation

It might seem counterintuitive that causality does not imply covariation, indicating that covariation and
causality are two completely distinct concepts. To elucidate this proposition, we should employ the
probabilistic definition of covariation. Let us assume a standard normal random variable X ∼ N (0, 1),
and consider another random variable Y = X2. It is evident that X and Y exhibit a strong causality,
because X entirely determines Y . However, according to the definition of covariation and the fact
that the probability density function (PDF) of a normal distribution is an odd function, we have:

Cov(X,Y ) = Cov(X,X2) = E(X3)− E(X)E(X2) = 0− 0 = 0, (7)
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which demonstrates that X and Y exhibit no covariation. Additional examples can be found in Fig. 1.
In the absence of other influencing factors, one can assert that every pair of random variables in the
examples displays causality as well as strong association. However, the fact that all of them exhibit
zero covariance indicates that they are not correlated, or equivalently, have no covariation. That is
due to the fact that covariance primarily reflects linear associations between two variables, and there
are numerous instances where two variables with non-linear associations lack a linear association.

Figure 1: Several examples that two associated variables have a zero covariance. Image borrowed from [9].

5 Conclusion

To clearly distinguish the concepts of association, covariation and causality is highly significant
in the fields of statistics, econometrics, cognitive reasoning, and also in our daily life. A plethora
of reasoning errors have resulted from the confusion of association and covariation with causality,
leading to incorrect conclusions about causality relationships. We endeavor to elucidate the explicit
relationships among these three concepts through a more rigorous approach, demonstrating that (1)
covariation and causality implies association, (2) association and causality do not imply covariation,
and (3) association and covariation do not imply causality. Association is the most general concept,
covariation is a special form of linear association between two variables, and causality is an abstract
concept involving cause and effect. By understanding these concepts correctly, one can make more
rational judgments in his life and draw more convincing conclusions from a wide range of social
phenomena or experimental results.
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A Appendix

A.1 Proof of Theorem 2.1

On one hand, we prove that two covariated random variables A and B are also associated. Suppose
A and B are not associated or, equivalently, independent, we have

FA,B(x, y) = FA(x)FB(y), ∀x, y ∈ R.

Due to the fact that A and B are independent, we also have the following equation, which will
practically be used in our proof:

Pr(A > x, B > y) = Pr(A > x) Pr(B > y), ∀x, y ∈ R.

We firstly assume that A and B are non-negative. Therefore, we have

E(A) =

∫ +∞

0

Pr(A > x) dx, E(B) =

∫ +∞

0

Pr(B > y) dy.

It is worth noting that this definition for expectation value is always true as long as E(|A|) < +∞
and E(|B|) < +∞, even when A or B is neither discrete nor continuous. This is because the function
GA(x) = Pr(A > x) = 1 − FA(x) is monotonically decreasing, hence is always integrable (this
proposition can be proved through the definition of Riemann integral; here we omit its detailed proof).

Multiplying these two equations gives us

E(A)E(B) =

∫ +∞

0

Pr(A > x) dx

∫ +∞

0

Pr(B > y) dy

=

∫ +∞

0

∫ +∞

0

Pr(A > x) Pr(B > y) dxdy

=

∫ +∞

0

∫ +∞

0

Pr(A > x,B > y) dxdy = E(AB),

where the last equality holds true only for non-negative random variables AB.

Now we prove the most general case. Let X+ := max{X, 0}, X− := max{−X, 0} for any random
variable X . According to the definition of expectation, we have E(X) = E(X+)− E(X−). Now it
can be easily proved that

(AB)+ = A+B+ +A−B−, (AB)− = A+B− +A−B+.

Combined with the conclusion we obtain in the non-negative case, we finally have

E(A)E(B) = [E(A+)− E(A−)][E(B+)− E(B−)]

= E(A+B+)− E(A−B+)− E(A+B−) + E(A−B−)

= E[(AB)+]− E[(AB)−] = E(AB),

which implies that Cov(A,B) = E(AB)− E(A)E(B) = 0 and concludes the proof.

On the other hand, we give a counterexample to prove that two associated random variables A and B
may have no covariation. In fact, this counterexample has been already given in Sec. 4.2, because
the condition Y = X2 also suggests that X and Y have a strong association, but the zero covariance
between X and Y shows that they have no covariation.
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