
Under review as a conference paper at ICLR 2023

ENFORCING ZERO-HESSIAN IN META-LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient-Based Meta Learning (GBML) enables us to get task-specific param-
eters with few-labeled datapoints in an inner loop. However, it has not yet been
discussed how GBML can adapt to a new task within a few optimization steps with
a huge learning rate in the inner loop. We find that the gradient does not change
from the beginning to the end of the inner loop, meaning that it behaves like a
linear model. In this paper, we argue that this characteristic is an essential key
to understanding convergence in inner loops with huge learning rates. Also, we
show that gradient-based meta-learning can be interpreted as metric-based meta-
learning when we adopt our hypothesis that linearity in the inner loop is the key to
operating GBML. To empirically prove and exploit our hypothesis, we propose a
regularization-based algorithm called enforcing Linearity in the Inner Loop (LIL)
which exploits our observation and can be applied to any baselines that have the
form of GBML. LIL proves its potential by showing its boosted performance not
only on top of general baselines in various architectures but also on adverse or
Hessian-free baselines. Qualitative experiments are also conducted to explain the
performance of LIL.

1 INTRODUCTION

With the advent of deep learning revolution in the 2010s, machine learning has widened its appli-
cation to many areas and outperformed humans in some areas. Nevertheless, machines are still far
behind humans in the ability to learn by itself, in that humans can learn concepts of new data with
only a few samples, while machines cannot. Meta-Learning deals with this problem of learning to
learn. An approach to address this issue is the metric-based methods (Chen & He, 2021; Snell et al.,
2017; Bromley et al., 1993; Grill et al., 2020; Chen et al., 2020; Sung et al., 2018; Radford et al.,
2021), which aims to learn ‘good‘ kernels in order to project given data into a well-defined fea-
ture space. Another popular line of research is optimization-based methods (Finn et al., 2017; Ravi
& Larochelle, 2017; Rusu et al., 2018a), so-called Gradient-Based Meta-Learning (GBML), which
aims to achieve the goal of meta-learning by gradient descent.

As the most representative GBML methods applicable to any model trained with the gradient descent
process, model-agnostic meta-learning (MAML) (Finn et al., 2017) and its variations (Raghu et al.,
2019; Oh et al., 2020; Rusu et al., 2018b) exploit nested loops to find a good meta-initialization
point from which new tasks can be rapidly optimized. To do so, it divides the problem into two
loops: the inner loop (task-specific loop) and the outer loop (meta loop). The former tests the meta-
learning property of fast learning, and the latter moves the meta-initialization point by observing the
dynamics of the inner loop. The general training is performed by alternating the two loops. In this
paper, we focus on the gradient-based meta-learning methods.

To properly evaluate the meta-learning property in the inner loop, GBML samples a new problem
for each inner loop. Fig. 1 shows how the problem is formulated. For every inner loop, the task is
sampled from the task distribution. The classes constituting each task are randomly sampled, and the
configuration order (class order) is also random. This means that the model tackles an entirely new
task at the beginning of each inner loop. Since the task is unknown and the model has to solve the
problem within a few gradient steps (some extreme algorithms (Raghu et al., 2019; Oh et al., 2020)
solve the problem in one gradient step), the model usually exploits large learning rates to adapt
rapidly. For example, MAML (Finn et al., 2017) uses a learning rate of 0.4 for the Omnigot dataset,
and Raghu et al. (2019) exploits 0.1, which is hundreds times larger compared to the learning rate for
the outer loop, which is in the order of 1e-3. Furthermore, this learning rate is much larger compared
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Figure 1: For the i-th inner loop in meta-
learning, the task, τi, is sampled from the
task distribution: N (e.g. 3) classes constitut-
ing each task are randomly sampled with a
random configuration order, meaning that the
model does not have any information before it
retrieves an unseen task.

to modern deep learning techniques, for example, ViT (Dosovitskiy et al., 2020) exploits the learn-
ing rate in the scale of 1e-6, which means that GBML exploits millions times larger learning rate
compared to this. Although exploiting a large learning rate can move parameters quickly in SGD,
it causes instability due to the high-order terms such as Hessian (LeCun et al., 2015). This problem
gets worse at the initial training phase and some deep-learning methodologies use a heuristic that
exploits a smaller learning rate at the beginning to alleviate this problem (Dosovitskiy et al., 2020;
He et al., 2018). Thus, we expect the problem caused by high-order terms may be severe with a
large learning rate in each inner loop since GBML initially has no knowledge about the given task.
However, it seems that GBML does not suffer from those problems regarding its performance.

In this paper, we aim to answer the corresponding phenomenon by analysing the inner loop of
GBML. We observed that the gradient of a GBML model is almost constant within an inner loop.
This means the model becomes linear after the whole process of few-shot learning. Also, we explain
intuitively that this kind of phenomenon is the key property to solving the implicit risk of a large
learning rate in the inner loop. Then, we show that the corresponding result makes GBML a variant
of metric-based meta learning. Although there exist some algorithms exploiting the same observation
as ours implicitly (Nichol et al., 2018; Finn et al., 2017), to the best of our knowledge, we are the first
to explicitly quantify linearity of the inner loop and investigate the connection between the GBML
model with linearity in the inner loop and the metric-based meta learning.

Our hypothesis that GBML implicitly drives the inner loop’s loss surface linear hints a desiderata of
a GBML algorithm. Thus, if we can inject this linearity explicitly into the model, we expect that it
will converge faster and get better performance. So we propose an algorithm called Linearity in the
Inner Loop (LIL) which enforces the model to have zero Hessian in the inner loop. Our LIL exploits
two regularization losses which measure non-linearity in the inner loop.

Since LIL is a regularization method, it can be applied to any GBML baselines. We empirically
validate LIL in standard few-shot learning tasks (miniImagenet, tieredImagenet, Cars, CUB (Vinyals
et al., 2016; Ren et al., 2018; Krause et al., 2013; Welinder et al., 2010)) and also test its cross-domain
ability with not only general baselines but also adverse or Hessian-free baselines to show that LIL
can boost GBML in an algorithm- and architecture-independent manner. Finally, we show that LIL
behaves as we expected by analyzing its dynamics.

2 RELATED WORKS

Meta Learning is a methodology which aims to learn to learn by itself (Thrun & Pratt, 2012; Schmid-
huber, 1987). In the meta-learning community, two main lines of researches are actively studied: i.e.,
metric-based meta-learning (MBML) and gradient-based meta-learning (GBML).

The core concept of MBML is similar to classic machine learning algorithms such as nearest-
neighbor classifiers or support vector machines in the sense that it tries to learn ‘good’ feature
embeddings which can be easily separated by simple algorithms or shallow networks (Snell et al.,
2017; Grill et al., 2020). Thus, MBML can be interpreted as a methodology for learning a ‘kernel’
since its goal is to learn a good encoder. To achieve this property, one tries to cluster few-shot images
of the same class by making the corresponding prototype and train the encoder to make the encoded
samples cluster well around the prototype (Snell et al., 2017; Liu et al., 2020). Another line of re-
search is self-supervised learning (Grill et al., 2020; Chen et al., 2020; Chen & He, 2021; Bromley
et al., 1993), which scores state-of-the-art performance on few-shot learning nowadays. They want
an encoder to have the ability to extract general knowledge from the perspective of mutual informa-
tion. Since their goal is to learn a ‘good’ encoder, they usually attach an additional module to the
encoder to construct an appropriate decision boundary for a given task.
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GBML, or optimization-based meta-learning is a type of methodology which wants to mimic peo-
ple’s rapid learning skill. Thus, a model should learn with a small number of samples and gradient
steps. To achieve this property, Ravi & Larochelle (2017) tried to save meta-data to recurrent net-
works. Recently, MAML-based methods (Finn et al., 2017; Rajeswaran et al., 2019; Rusu et al.,
2018b; Baik et al., 2020; Bernacchia, 2021) are typically considered as a synonym of GBML con-
sisting of nested loops: outer loop (meta-loop) and inner loop (task-specific loop). They sample
few-shot classification tasks to test the meta-learning property in the inner loop and update the
meta-initialization parameters in the outer loop with SGD. To learn rapidly, they exploit a more-
than-thousand times larger learning rate in the inner loop compared to modern deep learning settings
such as ViT (Dosovitskiy et al., 2020) and CLIP (Radford et al., 2021). Although some researches
have proved their convergence property (Fallah et al., 2020; Wang et al., 2020), they set infinitesimal
size of learning rate to prove convergence. Fallah et al. (2020) set the learning rate considering the
Hessian i.e., setting the learning rate small enough so that the higher-order terms do not affect the
convergence and Wang et al. (2020) proved the convergence with the assumption that the learning
rate goes to zero. Although some lines of research have shown algorithms dealing with learning
rates (Baik et al., 2020; Bernacchia, 2021), they did not explain the success of a large learning rate.
Baik et al. (2020) used an additional model to predict a proper task-specific learning rate. Raghu
et al. (2019); Oh et al. (2020) tried to explain GBML with the dynamics of the encoder’s output fea-
tures. Although both used the same feature-level perspective, they argued in exactly different ways.
Raghu et al. (2019) argued feature reuse is an essential component while Oh et al. (2020) said that
feature adaption is crucial. Both algorithms can be considered as a variant of preconditioning meta-
learning since they freeze most layers in the inner loop, thereby frozen layers can be considered as
warp-parameters (Flennerhag et al., 2019).

In this paper, we attempt to connect between metric-based meta-learning and gradient-based meta-
learning based on the observation that GBML favors a linear loss surface. With our hypothesis, we
propose new loss terms which inject our linearity hypothesis as prior into the model. The proposed
Linearity in the Inner Loop (LIL) can be applied in an architecture- and algorithm-independent way.
Since our proposed hypothesis is valid for any algorithm that takes advantage of a large learning rate
in the inner loop, LIL has a large potential of application.

3 PRELIMINARIES: GBML

We consider the few-shot classification task of N -way K-shot, which requires learning K samples
per class to distinguish N classes in each inner loop. In few-shot GBML, we can apply gradient
descent for only a limited number of steps for fast adaptation.

Let f(x|θ) ∈ RN be the output of the classifier parameterized by θ for a given input x. In this setting,
f can be considered as the logit before the softmax operation. The model parameters θ are updated
by the loss, L(x, y|θ) = D(s(f(x|θ)), y), where x and y are the input and the corresponding label,
s(·) is the softmax operation and D(·, ·) is some distance metric.

As shown in Fig. 1, at each inner loop, we sample a task τ ∼ p(T ), an N -way classification problem
consisting of two sets of labeled data: Dτ

support (support set) and Dτ
target (target set). In the inner

loop, the goal is to find the task-specific parameter θ⋆τ which minimizes the loss L for the support
set Dτ

support given the initial parameter θ0 as follows:

Inner Loop: θ⋆τ = argmin
θ

∑
(x,y)∈Dτ

support

L(x, y|θ; θ0). (1)

Then, for the outer loop, we optimize the initialization parameters θ0 which improve the performance
of θ⋆τ on Dtarget as follows:

Outer Loop: θ⋆0 = argmin
θ0

∑
τ

∑
(x,y)∈Dτ

target

L(x, y|θ⋆τ ; θ0). (2)

Although GBML gained its success with this setting, this success is quite curious: since the N
classes constituting each task are randomly sampled and the configuration (class) order is also ran-
dom, ‘What characteristics of meta-initialization θ0 make GBML work?’ remains quite uncertain.
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Figure 2: Phase Consistency (PC) and Am-
plitude Consistency (AC) measure the lin-
earity in the whole trajectory in an inner
loop. A model behaves like a linear model
when both metrics go to ‘1’. We observed
that MAML behaves almost like a linear
model in that both PC and AC settle near
1 as (outer) iterations go on and propose to
further ‘enforce’ linearity in the inner loop
(LIL).

4 LINEARITY IS ESSENTIAL IN THE INNER LOOP

In this section, we will show that a GBML model behaves like a linear model in the inner loop as
training continues. i.e., the orientation and the magnitude of the gradient do not vary much in differ-
ent iterations in an inner loop. This means that a loss surface is almost linear along the trajectory of
the inner loop. We argue that this phenomenon explains how GBML achieves convergence although
it exploits an extremely large learning rate with only a few gradient steps. To support our hypothesis,
we intuitively show that linearity in the inner loop helps convergence. Although our hypothesis is
implicitly assumed in previous papers (Finn et al., 2017), to the best our knowledge, we are the first
to explicitly report this phenomenon.

4.1 OUR OBSERVATION: GBML FAVORS LINEAR LOSS SURFACE

To measure linearity, we have to firstly decide how linearity can be defined and which metric to use.
A model is linear in the inner loop if and only if the gradient does not change along the trajectory
in the inner loop. i.e., ∇θf(x|θk) is constant in k ∈ [0, S), where θk is the parameters at iteration
(k + 1) updated by the SGD rule and S is the number of iterations in the inner loop. If we write a
gradient in the phasor form, it means that the orientation (phase) and the magnitude of the gradient
(amplitude) are constant. Therefore, we define the following two metrics to measure linearity:

Phase Consistency is defined as

PC =

∑S−1
k=0∥θk+1 − θk∥
∥θS − θ0∥

. (3)

The metric is a comparison of the total variation of the inner loop trajectory and the linear distance
between the meta-initialization parameter θ0 and the final task-specific parameter θS . PC is always
greater than or equal to 1 and if a gradient is phase-consistent throughout the trajectory, it will be 1.

Amplitude Consistency is defined as:

AC =
1

S

S∑
k=1

∥∇θf(x|θk)∥
∥∇θf(x|θ0)∥

. (4)

The metric is to compare how the gradient norm at the inner loop differs from the gradient norm at
the meta-initialization point. If the amplitude is consistent, the corresponding value will be 1.

We can consider the model as linear if both PC and AC go to 1. The black line of Fig. 2 shows
that in the inner loop of GBML, both AC and PC approach 1, which means that the model behaves
like a linear model while solving each task τ in the inner loop. Note that we measure linearity
within an inner loop trajectory, which means the gradient does not change much from the beginning
to the end of the inner loop in GBML. This characteristic is unique and cannot be understood at
once considering that meta-initialization itself has no meaning in the beginning of an inner loop
dealing with an unseen task because it has no difference from randomly initialized parameters from
the performance perspective. But once a GBML model starts adapting, the outer loop moves the
parameters to a locally linear region and the inner loop learns the unseen task within a few steps
using a large learning rate.
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Table 1: Comparison of test accuracies (%) of the 4-conv network between the random initialization
and the linearity-enforced initialization (LIL) without task-adaptation, i.e., performance of θ0. Note
that LIL does not receive any label information from the outer loop. The numbers in parentheses are
the numbers of shots.

meta-train miniImageNet Cars

meta-test miniImageNet tieredImageNet Cars Cars CUB miniImageNet

Random-init (1) 21.36 ± 0.01 21.20 ± 0.01 21.10 ± 0.93 21.20 ± 0.93 21.62 ± 0.02 21.36 ± 0.01
LIL-init (1) 24.62 ± 0.04 23.80 ± 0.06 24.63 ± 0.04 25.84 ± 0.06 25.86 ± 0.03 26.48 ± 0.04

Random-init (5) 21.29 ± 0.09 21.72 ± 0.19 21.58 ± 0.37 21.58 ± 0.04 22.31 ± 0.06 21.28 ± 0.09
LIL-init (5) 27.32 ± 0.59 31.28 ± 1.68 29.10 ± 1.81 28.28 ± 0.79 30.34 ± 2.69 26.61 ± 1.05

4.2 BENEFIT OF LINEARITY IN THE INNER LOOP

If so, why does this kind of ‘strange’ phenomenon happens? In this paper, we hypothesize that
this phenomenon is actually a key to making GBML work. First, we explain this phenomenon by
interpreting the higher-order terms such as Hessian as noise, then we give an intuitive experimental
result that shows the benefit of linearity in the inner loop.

Hessian is ‘noise’ in SGD. Consider the loss L and the learning parameters θk for the k-th iteration.
In the gradient descent (GD) setting, L decreases if and only if∫ 1

0

∇L(θ(t)) · ∇L(θk)dt ≈
∫ 1

0

∥∇L(θk)∥22 − αt∇L(θk)TH(θk)∇L(θk)dt > 0. (5)

where α is the learning rate and H is the Hessian. Note that SGD does not take Hessian into account
and H can be viewed as a noise term. Normal deep learning fields do not suffer from this noise term
because they exploit an extremely small learning rate. However, GBML uses a large learning rate in
the inner loop, so it is very vulnerable to this noise term. Thus, in order to resolve this problem, the
Hessian along the trajectory has to be reduced. A proof of (5) is in Appendix B

Linearity helps GBML work. Table 1 gives an intuitive experimental result showing that linearity
is helpful for GBML. Here, we have compared the randomly initialized model with our linearly
initialized model. The latter is trained to make the inner loop more linear, the details of which will be
described in Sec. 5. Note that it does not receive any information about the label in the outer loop. We
can see that our meta-initialization method that enforces linearity in the inner loop (LIL) performs
significantly better than a random initialization. For a randomly initialized meta-initialization point,
there is actually no effect of learning in the inner loop since its performance is not better than a
random selection with 20% accuracy. This is exactly what was discussed above: because the effect
of the high-order terms is large at initiation, the ‘noise’ term becomes dominant, hindering the loss
from decreasing. This implies that we can improve the performance of GBML simply by enforcing
Hessian to zero, which can be obtained by enforcing linearity in the inner loop.

4.3 CONSEQUENCES OF LINEARITY IN THE INNER LOOP

Connection to Kernel SGD Suppose we are to solve the general problem with the feature mapping
φ : X → H. i.e., transform the given datapoint x to φ(x) with a feature mapping φ. Then we
can think of the linear model in H with loss l. When we apply SGD to this linear model in the
feature space, we call this ‘kernel SGD’ as it can be computed with a kernel trick if H is an RKHS
(reproducing kernel Hilbert space) (Hofmann et al., 2008) and the parameter update rule is as

θk+1 = θk − αk+1∇θk l(hθ(φ(x)); y). (6)

Note that hθ is a linear model in H parameterized by θ. Normally, θ0 is defined as 0 (Hofmann
et al., 2008). Also, with respect to the hypothesis of linearity in the inner loop discussed above, we
can treat f introduced in Sec. 3 as linear in θ in the inner loop. More specifically, there exists an
equivalent feature map φf : X → H which satisfies f(·|θ) = ⟨θ, φf (·)⟩ for every x ∈ X . Regarding
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Figure 3: Illustration of losses for LIL (Sec. 5). θ0 and θ⋆ are
the parameters initialized (meta-initialization) and optimized in
the inner loop by (7), respectively. Top: Phase Loss reduces
KL(s(f(x|θ⋆)), s(f(x|θ̂⋆))) where s is the softmax function. It
draws θ⋆ towards θ̂⋆, thus enforces linearity. Bottom: Pseudo-
Amplitude Loss reduces the total length of the trajectory in the
inner loop favoring the blue trajectory over the black.

meta-initialization parameter θ0 is not related to the given task, due to its characteristics of meta-
learning and its limited number of update steps, we can think of the inner loop as a finite sum of
kernel SGD with θ0 = 0. More details are discussed on Appendix F.

Then GBML’s learning schemes can be interpreted as 1) test current kernel’s performance by adapt-
ing to the new task with kernel SGD in the inner loop, then 2) update the parameters to get a better
kernel in the outer loop. From this perspective, we can connect gradient-based meta learning and
metric-based meta learning since they share the same goal, learning a good kernel to adapt to un-
seen tasks. Furthermore, we can more directly relate GBML to MBML by interpreting the inner loop
as constructing abstract prototype vectors, which is one of the most popular metric-based method
for few-shot learning (Snell et al., 2017). We discuss the latter perspective in Appendix D.

Our hypothesis that linearity in the inner loop is a key to the success of GBML gives a new perspec-
tive to analyze existing algorithms. For example, there exists a paradox between ANIL (Raghu et al.,
2019) and BOIL (Oh et al., 2020): the former argues feature reuse is the key to GBML while the
latter says feature adaptation is essential. Both arguments are persuasive considering their good per-
formances. With our linearity hypothesis, we can interpret their good performances originate from
linearity. Because both BOIL and ANIL restrict the number of layers which can be updated in the
inner loop, it makes the function simpler, thus enhancing linearity. More details are discussed in
Appendix A.

Connection to ‘Conventional’ Deep learning. Also, when we assume linearity in the inner loop,
we can analyze its dynamics in continuous-time domain since it meets the condition of gradient
flow, which models neural network’s learning process as an ODE x(t) = ∇xf(x, t). This is because
gradient flow is the limit case of SGD (∆θ = α∇f(x, θ)) where learning rate goes to zero. Since
this ODE enables to analyze evolution of a neural network in the continuous domain, the condition
of infinitesimal learning rate which makes gradient flow work is widely assumed in many theoretical
analyses of deep learning, such as NTK (Jacot et al., 2018) and Mean-Field theory (Chizat & Bach,
2018). However, GBML exploits a large learning rate. So we cannot approximate GBML’s setup
with gradient flow normally. However, since we can treat the model as almost linear in the inner
loop, the dynamics becomes an exact ODE of gradient flow. So we can exploit rich result of existing
theorem on deep-learning-related gradient flow.

5 ENFORCING LINEARITY IN THE INNER LOOP (LIL)

Our analysis starts from the observation that GBML results in linearity of the inner loop. From this
observation, we boldly assumed that ‘linearity is a key factor to enable GBML to learn’. However,
this is an imperfect and strong assumption in the sense that correlation does not imply causation.
Perhaps there could have been other key factors that have resulted in linearity. How do we verify
that linearity is a key factor in GBML? We need additional evidences. In this section, we are to
introduce our algorithm: Linearity in the inner loop (LIL) which is based on our observation. It
not only adds an evidence of our hypothesis but also generally enhances the performances without
requiring any architectural modifications to the current GBML model.

Our hypothesis is that linearity is essential in the inner loop and if we can enforce a GBML model to
be ‘more’ linear, it will better-adapt to new tasks i.e., converge faster showing better performances.

As we discussed in Sec. 4.1, we can obtain linearity in the loop by fixing both the phase (orientation;
v

∥v∥ ), and the amplitude (norm; ∥v∥) of the gradient in the inner loop. In this context, we propose
two regularization terms to enforce linearity. The first is the regularization term that directly restricts
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Table 2: Test accuracy % of 4-conv network on benchmark data sets. The values in parentheses are
the number of shots. The better accuracy between the baseline and LIL is bold-faced.

Domain General(Coarse-grained) Specific (Fine-grained)
Dataset miniImageNet tieredImageNet Cars Cub

MAML (1) 47.88 ± 0.55 46.93 ± 1.07 47.78 ± 0.99 57.04 ± 1.42
MAML + LIL (1) 49.07 ± 0.14 49.29 ± 0.24 49.53 ± 0.89 58.06 ± 0.72

FOMAML (1) 46.29 ± 0.94 46.96 ± 0.81 47.91 ± 0.56 57.46 ± 0.21
FOMAML + LIL (1) 46.81 ± 0.87 47.86 ± 0.81 48.45 ± 0.56 58.01 ± 1.00

ANIL (1) 48.53 ± 0.76 50.09 ± 0.27 49.49 ± 0.71 58.54 ± 3.76
ANIL + LIL (1) 49.45 ± 0.31 50.33 ± 0.28 50.62 ± 1.06 57.87 ± 0.13

BOIL (1) 50.44 ± 1.00 50.56 ± 0.54 56.30 ± 0.76 63.14 ± 0.38
BOIL + LIL (1) 49.91 ± 0.34 50.48 ± 0.43 56.51 ± 0.85 62.93 ± 0.03

MAML (5) 64.81 ± 1.63 66.12 ± 1.10 62.24 ± 2.01 72.48 ± 0.86
MAML + LIL (5) 66.34 ± 0.35 67.85 ± 0.67 69.94 ± 0.24 74.37 ± 0.49

FOMAML (5) 62.91 ± 1.85 65.56 ± 0.89 62.75 ± 1.55 71.44 ± 0.34
FOMAML + LIL (5) 65.05 ± 1.25 66.37 ± 0.27 65.69 ± 3.52 72.52 ± 0.22

ANIL (5) 63.74 ± 1.39 66.12 ± 1.11 63.03 ± 0.95 71.75 ± 0.75
ANIL + LIL (5) 66.55 ± 2.09 66.75 ± 0.72 63.74 ± 1.11 73.68 ± 0.63

BOIL (5) 66.34 ± 0.35 69.50 ± 0.57 75.54 ± 0.22 77.60 ± 0.12
BOIL + LIL (5) 67.09 ± 0.59 69.81 ± 0.17 76.39 ± 0.02 77.19 ± 0.21

our gradient’s phase fixed. And the second one behaves as a proximal term to help the dynamics,
implicitly inducing linearity. Note that both losses are applied in the outer loop after adaptation of
each inner loop.

Phase Loss What we want is to put the linearity assumption as a prior, and to implement it, the
following term is added to the loss:

KL(s(f(x|θS)), s(f(x|θ̂))) where θ̂ = θ0 − δ∇θf(x|θ0), and x ∈ Dtarget, (7)

where KL is the Kullback-Leibler distance, s(·) is the softmax function, S is the number of opti-
mization steps in the inner loop and δ is a scalar such that:

S−1∑
k=0

∥θk+1 − θk∥ = δ∥∇θf(x|θ0)∥, i.e., δ =

∑S−1
k=0∥θk+1 − θk∥
∥∇θf(x|θ0)∥

. (8)

This is due to the following assumption: if the gradient’s phase is constant, it will be sufficient to
estimate the parameter after S steps by only the gradient measured at the initialization of the inner
loop. To this end, the orientation of the first gradient is multiplied by the length of the trajectory
while going by S steps. The role of this term is illustrated at the top of Fig. 3.

Pseudo-Amplitude Loss To further enhance stability of the learning, we add the following term:

S−1∑
k=0

∥θk+1 − θk∥. (9)

There are two main reasons for including the loss. First, since this term reduces step size directly,
it can be viewed as a simple proximal term, so we can expect improvement of dynamics such as in
Rajeswaran et al. (2019). Second, it implicitly reduces the variance of gradients. i.e., Amplitude. If
you look at the bottom of Fig. 3, you can see a clear example. For the loss that reduces the distance
between the existing meta-initialization parameter and the task-specific parameter, both the black
case and the blue case show the same loss value. On the other hand, in the case of our trajectory loss
considering the entire trajectory, the loss of the blue one is lower. Therefore, it can be seen that it
implicitly reduces the variance of the gradient, i.e., enforces AC to 1. Note that although there is no
explicit requirements for amplitude, Fig. 2 shows that the amplitude condition is naturally satisfied
by adjusting the phase loss and the pseudo-amplitude loss.

5.1 CHARACTERISTICS OF LIL
Since LIL ultimately aims to linearize the learning dynamics in the inner loop, it is natural to com-
pare our algorithm with other existing linearization algorithms. Our algorithm differs from previous
studies in two main aspects. First, LIL has much more relaxed conditions compared to the existing
linearization algorithms. In SAM optimizer, which seeks to find flat minima (Foret et al., 2020), the
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Table 3: Test accuracy % of 4-conv network on cross-domain adaptation. The values in parentheses
are the number of shots. The better accuracy between the baseline and LIL is bold-faced.

adaptation General to General General to Specific Specific to General Specific to Specific
meta-train tieredImageNet miniImageNet miniImageNet miniImageNet Cars Cars CUB Cars
meta-test miniImageNet tieredImageNet Cars CUB miniImageNet tieredImageNet Cars CUB

MAML (1) 47.52 ± 1.66 51.84 ± 0.24 34.41 ± 0.47 40.91 ± 0.57 28.67 ± 1.17 30.79 ± 1.17 32.74 ± 1.12 30.95 ± 1.41
MAML + LIL (1) 50.09 ± 0.39 53.03 ± 0.14 34.54 ± 0.31 40.48 ± 0.40 28.73 ± 0.62 30.87 ± 0.38 32.98 ± 0.60 31.11 ± 0.70

FOMAML (1) 47.30 ± 0.95 49.62 ± 1.54 34.35 ± 0.30 40.86 ± 0.83 28.49 ± 0.76 31.06 ± 0.22 33.57 ± 0.84 31.52 ± 0.34
FOMAML + LIL (1) 48.81 ± 0.76 50.73 ± 1.15 34.73 ± 0.12 41.48 ± 0.37 29.47 ± 0.27 31.26 ± 0.22 33.53 ± 0.40 30.98 ± 1.19

ANIL (1) 51.04 ± 0.11 52.76 ± 0.28 34.10 ± 0.50 40.37 ± 1.23 28.26 ± 0.65 29.86 ± 0.74 32.87 ± 2.70 30.68 ± 1.86
ANIL + LIL (1) 51.19 ± 0.62 53.08 ± 0.45 34.07 ± 0.20 40.08 ± 0.40 29.73 ± 0.73 30.62 ± 1.04 32.48 ± 0.18 30.48 ± 1.20

BOIL(1) 51.50 ± 0.81 53.99 ± 0.20 36.78 ± 0.37 44.36 ± 0.38 33.94 ± 0.75 33.82 ± 0.38 35.46 ± 0.21 34.37 ± 0.37
BOIL + LIL (1) 52.05 ± 0.10 54.13 ± 0.34 36.78 ± 0.44 44.56 ± 0.77 34.40 ± 0.25 33.79 ± 0.50 35.60 ± 0.33 34.53 ± 0.23

MAML (5) 66.86 ± 1.58 67.96 ± 1.22 46.57 ± 0.53 56.32 ± 1.17 37.23 ± 1.95 41.00 ± 1.86 44.02 ± 2.29 41.84 ± 1.25
MAML + LIL (5) 69.25 ± 0.50 69.47 ± 0.35 48.86 ± 0.71 58.58 ± 1.08 43.09 ± 1.24 46.01 ± 1.41 44.26 ± 1.44 46.06 ± 2.10

FOMAML (5) 66.04 ± 0.89 66.39 ± 1.05 45.48 ± 2.78 57.03 ±0.84 37.48 ± 1.36 41.11 ± 1.93 43.32 ± 2.62 40.53 ± 3.58
FOMAML + LIL (5) 66.31 ± 0.27 67.96 ± 0.87 47.80 ± 0.30 57.10 ± 0.44 39.59 ± 0.75 43.28 ± 0.59 44.80 ± 0.22 43.50 ± 1.65

ANIL (5) 67.08 ± 0.19 67.08 ± 1.38 42.38 ± 1.57 56.60 ± 2.60 38.09 ± 1.50 41.29 ± 3.04 41.27 ± 1.41 42.00 ± 1.28
ANIL + LIL (5) 68.05 ± 2.32 67.23 ± 1.69 45.38 ± 2.49 56.31 ± 3.98 38.47 ± 1.32 41.39 ± 0.55 43.40 ± 0.52 42.52 ± 2.29

BOIL (5) 70.12 ± 0.67 70.00 ± 0.12 53.57 ± 1.46 62.15 ± 0.52 45.40 ± 0.25 45.69 ± 0.10 48.52 ± 0.19 48.45 ± 0.19
BOIL + LIL (5) 70.83 ± 0.10 69.83 ± 0.33 53.45 ± 0.20 62.03 ± 1.58 45.68 ± 0.34 45.80 ± 0.43 48.35 ± 0.77 48.35 ± 0.92

condition that the model is linear within some ϵ-Ball, B(x, ϵ), is a much stronger condition than
ours as LIL only considers linearity along the trajectory of the inner loop. Since it is a much more
relaxed condition than the existing one, the probability of the existence of the solution we want in
the function set (neural nets) is relatively greater. The second difference is that LIL considers the
whole trajectory, not the end point only. Unlike other methodologies (Foret et al., 2020; Qin et al.,
2019), our GBML framework evaluates and updates the previous loop at the end of each inner loop,
allowing us to project the entire trajectory into the functional space we want. Existing methodologies
just cannot do this because they only consider the current state.

6 EXPERIMENTS

Table 4: Test accuracy % of ResNet-12. The val-
ues in parentheses are the number of shots. The
better accuracy between the baseline and LIL is
bold-faced.

meta-train miniImageNet

meta-test miniImageNet tieredImageNet Cars
MAML (1) 50.63 ± 1.70 54.33 ± 1.02 35.41 ± 1.01

MAML + LIL (1) 52.72 ± 0.15 54.66 ± 0.58 35.75 ± 0.29
MAML (5) 71.32 ± 1.55 74.01 ± 1.69 45.75 ± 0.89

MAML + LIL (1) 72.50 ± 0.94 75.13 ± 1.35 48.21 ± 0.49

Experiment setup To show the effectiveness
of our algorithm prioritizing linearity in the in-
ner loop, we conducted experiments on vari-
ous benchmark sets for two general datasets,
miniImageNet (Vinyals et al., 2016) and tiered-
ImageNet (Ren et al., 2018), and two specific
datasets, Cars (Krause et al., 2013) and CUB
(Welinder et al., 2010) using two backbone net-
works, 4-Conv network with 64 channels from
Vinyals et al. (2016) and ResNet-12 consisting
of four blocks of which the first block starts
with 64 channels from Oreshkin et al. (2018). Following Oh et al. (2020), we trained 4-Conv net-
work for 30k iterations and ResNet-12 for 10k iterations. We experimented on 5-way 5-shot and
5-way 1-shot settings with 3 optimization steps in each inner loop and constructed one batch with 4
tasks. We reproduced all the results for 3 times and reported the mean and standard deviation.

Baseline Since our method can be applied on top of any algorithm utilizing nested loops, we applied
our losses to 4 algorithms: MAML (Finn et al., 2017) and its variations ANIL (Raghu et al., 2019)
and BOIL (Oh et al., 2020), and the Hessian-free algorithm, FOMAML (Finn et al., 2017). The
reason for choosing these models is as follows: MAML is the most general GBML algorithm which
has nested loops. So we can expect that if LIL works for MAML, it will also work for other variants
with high probability. ANIL and BOIL were selected as they have overlapping characteristics to our
loss, LIL, in that they implicitly enforce linearity because by freezing the body (encoder) and the
head (classifier) respectively in the inner loop, they can be thought to have a implicit linearity prior
since a model can optimize only limited layers in the inner loop. See Appendix A for details. Finally,
we selected FOMAML because we wanted to show LIL also works for Hessian-free algorithm. For
FOMAML, unlike other baselines, we used LIL as a pre-training scheme inspired by the result of
Table 1. This is because FOMAML is Hessian-free while LIL is not. When LIL loss is used only,
it has the possibility of collapsing into a trivial solution. So we used the self-supervised learning
scheme (SSL) (Grill et al., 2020) to obtain a good meta-initialization point. The full details are
discussed in the Appendix E.
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Table 5: Ablation of our Loss term. PC denotes Phase Loss in LIL, and AC denotes Pseudo-
Amplitude Loss in LIL. The values in parentheses are the number of shots.

Meta-train miniImageNet Cars
Meta-test miniImageNet tieredImageNet Cars Cars miniImageNet CUB

MAML (1) 47.88 ± 0.55 51.84 ± 0.24 34.19 ± 0.66 47.77 ± 0.99 28.66 ± 1.17 30.95 ± 1.41
MAML + PC (1) 47.13 ± 0.30 50.95 ± 0.65 34.55 ± 0.82 49.04 ± 1.54 28.76 ± 0.17 31.02 ± 0.16
MAML + AC (1) 48.62 ± 0.29 52.53 ± 0.47 34.34 ± 0.35 49.53 ± 0.07 28.83 ± 0.12 30.82 ± 0.49
MAML + LIL (1) 49.07 ± 0.14 53.03 ± 0.14 34.54 ± 0.31 49.53 ± 0.89 28.73 ± 0.62 31.11 ± 0.70

MAML (5) 64.81 ± 1.63 67.96 ± 1.22 46.67 ± 0.53 62.24 ± 2.01 37.23 ± 1.95 41.84 ± 1.25
MAML + PC (5) 65.48 ± 0.30 68.63 ± 0.34 48.09 ± 0.82 65.07 ± 0.85 39.37 ± 0.88 42.79 ± 0.85
MAML + AC (5) 65.98 ± 0.50 69.01 ± 0.06 46.37 ± 1.15 67.27 ± 0.92 37.66 ± 2.29 39.01 ± 2.43
MAML + LIL (5) 66.34 ± 0.35 69.47 ± 0.35 48.86 ± 0.71 69.94 ± 0.24 43.09 ± 1.23 46.06 ± 2.10

Figure 4: 5-way 5-shot meta-
validation performance as a
function of epoch. Left: valida-
tion accuracy trained on mini-
Imagenet dataset. Right: vali-
dation accuracy trained on Cars
dataset.

Hyperparameter setting We have fine-tuned the learning rate in the inner loop. Note that it per-
forms better than the original setting in Finn et al. (2017). We multiplied 0.1 for the Phase loss in
all the experiments. Pseudo-Amplitude loss was multiplied by 0.01 and 0.1 for 1-shot and 5-shot
respectively for MAML baseline, and we did not apply Pseudo-Amplitude loss for other baselines.
For reproducing ANIL and BOIL, we just restricted the parameter space to the head or the body in
the inner loop with other settings being untouched. More details can be found in Appendix C.

Performance of LIL Table 2 and 3 show the results of LIL on various baselines, and Table 4 shows
the result of LIL on other architecture. It can be seen that performance gain is larger in MAML
and FOMAML compared to ANIL and BOIL. This is because ANIL and BOIL already enforced
linearity itself by freezing layers, thereby the effect adding explicit regularization term reduced. We
can also confirm that LIL also works on different architectures. In most cases, the LIL-augmented
baseline performs better than the vanilla.

Dynamics of LIL Fig. 2 and 4 imply that linearity in the inner loop is the essential prior of GBML.
In Fig. 4, LIL shows much faster convergence compared to the baseline method (MAML). And
in Fig. 2, LIL satisfies linearity condition much faster than the baseline although both meets the
condition at the end. This leads to the interpretation that LIL guides GBML to move the parameters
faster to a well-conditioned region with adequate prior. Table 5 studies the effectiveness of each loss
term. We can verify that both terms are effective by itself.

7 CONCLUSION

In this paper, we observed that GBML works as a linear model in the inner loop. With that observa-
tion, we hypothesized that linearity is an essential prior for the success of GBML. With the linearity
hypothesis in the inner loop, we could connect gradient-based meta learning to metric-based meta
learning by showing the equivalence between SGD in the inner loop and Kernel SGD. To prove
and exploit our hypothesis, we proposed a regularization-based algorithm enforcing Linearity in the
Inner Loop (LIL) which encourages the model to behave more like a linear model in the inner loop.
To prove the potential of LIL, we applied LIL to various baseline GBML algorithms including a
Hessian-free baseline and tested performances on various datasets. Both quantitative and qualitative
analyses were conducted showing that LIL converges faster with better performance by meeting the
linearity condition faster.
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A LINEARITY OF ANIL (RAGHU ET AL., 2019) AND BOIL (OH ET AL.,
2020)

In this part, we analyze ANIL (Raghu et al., 2019) and BOIL (Oh et al., 2020) from the perspective
of linearity. As Raghu et al. (2019) discussed, GBML tends to exploit the head part most at the inner
loop. As empirically proved in Figure 14 of Oh et al. (2020), we can identify that the size of gradient
norm is predominant in head layers. From this observation, Raghu et al. (2019) proposed an Almost
No Inner Loop (ANIL) algorithm which only exploits head layers in the inner loop. Since ANIL
could get a good performance only by optimizing the head by reusing the encoder, they argued that
representation reuse is the key of GBML.

On the other hand, unlike Raghu et al. (2019), Oh et al. (2020) argued that feature adaptation is more
essential to GBML and proposed an algorithm called Body Only update in the Inner Loop (BOIL).
This algorithm only freezes head, thereby it updates only the encoder (body) in the inner loop.
This means that it freezes the decision boundary for all tasks. Since both ANIL and BOIL showed
non-negligible performance improvements over the baseline, both arguments – feature reuse vs.
feature adaptation – look persuasive despite they argue exactly in the opposite ways. However, our
perspective of linearity can incorporate both arguments.

For ANIL, we can explain its success from the perspective of parameter restriction which enforces
linearity. It reduced the number of non-linear components which lie in the activation function be-
tween layers. Hence, we can think it as enforcing linearity in the inner loop. As a result, this algo-
rithm is much more powerful at 1-step optimization. For example, ANIL scored better than MAML
in 1-step optimization in Oh et al. (2020). Also, ANIL algorithm can be thought as a variant of the
preconditioning method (Flennerhag et al., 2019) since the encoder is shared across all tasks and
only the head is adjusted task-specifically.

Also, we can explain BOIL’s success originates from the fact that it enforces linearity in ‘good’
layers. Although our argument that linearity is the key to GBML seems unconvincing, since BOIL
exploits far more non-linearity compared to ANIL, in Figure 14 of Oh et al. (2020), we can see that
gradient norm is predominant only in the penultimate layer. So their algorithm can be interpreted as a
variant of ANIL, which updates the penultimate layer only. We can empirically check this argument
from Table 16 of the same paper. We can see that they actually gain a boosted performance when
they freeze all but one layer, which has much stronger linearity since it has no non-linearity inside.

B PROOF OF (5)

Due to fundamental theorem of calculus,

L(θk+1)− L(θk) =

∫
C

∇L(θ) · dθ =

∫ 1

0

∇L(θ(t)) · v(t)dt, (10)

where C is a trajectory whose start and end points are θk and θk+1. In GD setting, because θk+1 =
θk − α∇L(θk) for some learning rate α > 0, we can think of the straight line trajectory joining θk

and θk+1. In this case, the velocity vector becomes v(t) = −α∇L(θk) and

L(θk+1)− L(θk) = −α

∫ 1

0

∇L(θ(t)) · ∇L(θk)dt (11)

where θ(0) = θk, θ(1) = θk+1 and θ(t) = (1− t)θ(0) + tθ(1).

By Taylor series expansion it becomes

∇L(θ(t)) ≈ ∇L(θk) +H(θk)(θ(t)− θk) = (I − αtH(θk))∇L(θk) (12)

and combining Eq.(11) and Eq.(12) proves Eq.(5).

C IMPLEMENTATION DETAILS

Hyperparameter Details For the inner loop, we set the learning rate as 0.5 and 0.3 for 4-Conv
network and ResNet-12, respectively. Also, we set the meta-learning rate, which is the learning rate

13



Under review as a conference paper at ICLR 2023

of outer loops as 0.001 and 0.0006 for 4-Conv network and 0.3 for ResNet-12. For fair comparison,
we pretrained FOMAML with LIL loss for 15k iterations and then trained with FOMAML without
LIL loss for the remaining 15k iterations.

Fine-Tuning of learning rate in the inner loop We have fine-tuned the learning rate in the inner
loop from Finn et al. (2017). Our fine-tuned settings work better even though it has harsher condi-
tions. For example, in miniImageNet, Finn et al. (2017) exploited 5 gradient steps in the inner loop
for training, and 10 gradient steps for inference; it is contradictory to their report that 3 gradient
steps are enough for the inner loop. They also used additional gradient steps at the test time which is
advantageous to performance by degrading its inference time twice. While ours exploits only 3 gra-
dient steps in both training and inference, we achieved higher performance compared to the original
ones: Finn et al. (2017) reported 63.11%p and ours reported 64.81%p.

Usage of Pseudo-Amplitude loss For BOIL and ANIL, we only used the phase loss without pseudo-
amplitude loss because both of them have more stable dynamics due to their innate linearity prior
(See Appendix A) and pre-training scheme (See Appendix E) was used.

D GBML IS A VARIANT OF PROTOTYPE VECTOR METHOD

Suppose there exists a meta-learning model that satisfies the linearity assumption in the inner loop,
then classifying a new classification task with a task-specific function f(·|θ⋆) after an inner loop is
equivalent to creating a prototype vector for each class on a specific feature map and classifying the
input as the class of the most similar prototype vector.

The proof starts by defining the prototype vector at first.

Prototype Vector We define a prototype vector Vc for class c in an N -way K-shot classification
task formally as

Vc =

N∑
i=1

K∑
j=1

βijφc(Xij), c ∈ {1, · · · , N}, (13)

where Xij is the j-th input sample for the i-th class, φc(·) ∈ H is a class-specific feature map and
βij indicates the importance of Xij for constituting the prototype vector Vc.

In other words, there exists a feature map φc for each class c, and the support set is mapped to
the corresponding feature map and then weighted-averaged to constitute the prototype vector of the
corresponding class. At inference time, the classification of a given query X is done by taking the
class of the most similar prototype vector as follows:

ĉ = argmax
c

⟨Vc, φ(X)⟩. (14)

Here, φ : X → H is a non-class-specific mapping. We can also rewrite the prototype vector using
φ and by defining a projection Pc : X → X as

Pc(X) =

{
X if y(X) = c,
ν ∈ N (φ), if y(X) ̸= c

(15)

where y(X) is the ground truth class of X and N is the null space of φ i.e., φ(ν) = 0.

Then by defining φc ≜ φ ◦ Pc and βij ≜ 1
K , it becomes

Vc =
1

K

K∑
j=1

φ(Xcj). (16)

SGD in the inner loop If GBML satisfies the hypothesis of linearity in the inner loop, f is locally
linear in θ in an inner loop. More specifically, there exists an equivalent feature map φc : X → H
which satisfies fc(·|θc) = ⟨θc, φc(·)⟩ for every x ∈ X where f(·|θ) = [f1(·|θ1), · · · , fN (·|θN )]T .
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Figure 5: Overall view of pretraining scheme, which has same architecture to Grill et al. (2020) on
abstract level to prevent collapse.

With the loss function L(x, y|θ) = D(s(f(x|θ)), y) for some distance measure D such as cross
entropy, we can formulate the inner loop of N -way K-shot meta learning by SGD as

θk+1
c = θkc − α

N∑
i=1

K∑
j=1

∂L(Xij , y(Xij)|θ)
∂θc

= θkc − α

N∑
i=1

K∑
j=1

∂D

∂fc
φc(Xij), (17)

since all samples in the support set are inputted in a batch of an inner loop.

Because the model is linear in the inner loop, the batch gradient does not change. Let βij =

− ∂D
∂fc

|θ0
c ,Xij

. Then after t steps, by (13), the model becomes

θtc = θ0c + αt

N∑
i=1

K∑
j=1

βijφc(Xij) = θ0c + αtVc. (18)

At the initialization step of an inner loop, there is no information about the class, even the config-
uration order of the class, because the task is randomly sampled. If so, the problem is solved in
the inner loop. For example, if a class Dog is allocated to a specific index such as Class 3. There
is no guarantee that it will have the identical index the next time the class Dog comes in. Thus,
at a meta-initialization point θ0, the scores for different classes would not be much different, i.e.,
fi(x|θ0i ) ≃ fj(x|θ0j ) for i, j ∈ [1, · · · N ].

Considering the goal of classification is achieved through relative values between fi(X)’s, the value
at the initialization point does not need to be considered significantly. Therefore

argmax
c

fc(X) = argmax
c

⟨θtc, φ(X)⟩ = argmax
c

⟨θ0c + αtVc, φ(X)⟩ ∼ argmax
c

⟨Vc, φ(X)⟩ (19)

So inner loop in GBML can be interpreted as making proptotype vector with given support set. □

E PRETRAINING A GBML WITH LIL LOSS

When we see Figure 3, the phase loss reduces the distance between f(x|θ⋆)) and f(x|θ̂⋆) which
can be viewed as different views of the same input x. So it can be interpreted as reducing the
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mutual information between the two representations, which is a typical objective in conventional
self-supervised learning (SSL) methods such as Chen et al. (2020); Grill et al. (2020); Chen & He
(2021). These SSL methods can also be categorized as metric-based meta-learning methods because
they learn a good encoder to produce a good prototype for each sample. Considering SSL methods
are typically used for pretraining a model, we might expect the possibility of LIL as a pretraining
scheme. Since our phase loss only reduces the distance between positive pair, it has the same problem
as the SSL algorithms (Chen & He, 2021; Grill et al., 2020), i.e., it can collapse to zero embedding.
For example, if f falls into space where gradient is zero everywhere, f(x|θ⋆)) and f(x|θ̂⋆) will be
exactly the same. This kind of problem occurs similarly to SSL which exploits only positive pair
such as Grill et al. (2020); Chen & He (2021). To prevent this phenomenon, we adapted similar
methodology from BYOL (Grill et al., 2020) as described below.

Fig. 5 shows the overall training scheme. For pretraining, we exploit only the phase loss which
corresponds to reducing the mutual information. In the student network, we infer one-step approxi-
mation (f(x|θ̂⋆)) and for the teacher network, we infer with 3-optimization steps (f(x|θ⋆)). For fair
comparison, we did not use any augmentation both in inner and outer loops. Note that computation
cost of LIL in pretaining is similar to other GBML methodologies which exploits 1-step optimiza-
tion in the inner loop. This is because it only calculates the student’s gradient. Which produces the
one-step approximation f(x|θ̂⋆). So, there is no need to compute multiplication between Hessians,
i.e., Πk−1

i=0
dfθi+1

dfθi
.

We set the momentum parameter as 0.999 and multiplied 0.1 to the phase loss.

F KERNEL TRICK AND KERNEL SGD

This part is just for completeness of the paper and most materials are from Hofmann et al. (2008)

For shallow learning, it is often beneficial to map data with feature map ϕ : X → Rd. Then we can
apply SGD in that feature space.

Hilbert space SGD. Let H be a Hilbert space and X be input space, Y ⊂ R, θ ∈ H and hθ(x) = ⟨θ,
ϕ(x)⟩H. Consider the following problem:

min
θ∈H

E(X,Y )∼H[l(hθ(X);Y )]. (20)

We can solve this problem with SGD:

θk+1 = θk − βk+1ϕ(Xk+1), (21)

where θ0 = 0 and βk+1 = αk+1 l
′(hθk(Xk+1);Yk+1)ϕ(Xk+1). Here, l′ ≜ ∂l

∂hθ
and αk is the

learning rate.

Although it is feasible if dimH < ∞, we cannot solve this with one-pass SGD if H has infinite
dimension and if H is an RKHS on X with RK K, This becomes

fk+1 = fk − βkK(Xk+1, ·) (22)

for f0 = 0. However, we normally access data multiple times during training. So one should think
about the situation of random indices, i(k), such that Xi(k) ∈ X . Then SGD becomes

fk+1 = fk − βkK(Xi(k+1), ·). (23)

This type of SGD has been proven to be optimal by the Representor theorem (Kimeldorf & Wahba,
1971). and this problem usually focuses on how to find a ‘good’ RK that produces its RKHS that fits
the data well.
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