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Abstract

We introduce ENACT, a scalable benchmark for studying Embodied Cognition1

via world modeling through egocentric interaction, probing how spatial perception,2

physical interaction, and language cohere in modern Vision–Language Models3

(VLMs). Grounded in a POMDP view of decision making, ENACT comprises4

two complementary permutation tasks: forward world modeling (reorder future5

observations to match a given action sequence) and inverse world modeling6

(reorder actions to explain a given observation sequence). Data are generated by7

replaying diverse household activities in the reproducible simulator (Behavior)8

that aligns symbolic scene graphs with egocentric RGB, yielding 8,972 QA items.9

Predictions are validated by an online verifier that accepts any sequence consistent10

with task constraints, and we report Task Accuracy (exact ordering) and Pairwise11

Accuracy (adjacent consistency). Across evaluated VLMs, performance degrades12

with longer interaction horizons, and inverse is consistently easier than forward.13

Targeted probes of GPT-5 mini and InternVL-3.5 show limited sensitivity to image14

realism and robot appearance, and GPT-5 mini exhibits marked sensitivity to15

camera-distribution shifts (elevated viewpoints, extreme apertures, fisheye). Both16

models display a handedness asymmetry with fewer right-hand errors. Overall,17

ENACT offers a scalable proxy for studying embodied cognition and a tool to18

inform models that better bind perception to action over long horizons.19

1 Introduction20

Intelligence is not simply computed, but enacted through interaction. The theory of Embodied21

Cognition holds that flexible thought grows from an agent’s continuous sensorimotor dialogue with a22

physical, social, and linguistic world [1]. This perspective suggests that the mind is woven from the23

interplay between the body and its environment. Spatial perception shapes the boundaries of what24

is knowable [2], physical interaction uncovers what is possible, and language provides the tools to25

compress, name, and plan from this grounded experience. In this synthesis, space gives structure,26

contact gives evidence, and words bind these elements into shareable models. Following this thread,27

our work investigates the egocentric interaction experience to understand how perception and action28

co-author a world model, one step at a time.29

The quest for intelligence has seen remarkable advancements with the scaling of large foundation30

models [3, 4]. Yet these models are fundamentally trained in a disembodied manner, learning from a31

volume of non-interactive data that vastly exceeds any single human’s lived experience. This raises a32

natural and intellectually curious question: Does embodied cognition emerge from such training?33

Valuable prior work has begun to probe the parts: spatial perception in static scenes [2], physical34

interactions in contrived settings [5, 6] (e.g., a rolling ball hits another ball in a clean environment),35

and purely linguistic reasoning [7]. While these lines of work have been insightful, a gap still remains:36
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Figure 1: Grounded in a POMDP framework, ENACT probes embodied cognition in a simple and
scalable way via world modeling through egocentric interaction (left). It poses two tasks (right
top): forward world modeling (ordering observations given actions) and inverse world modeling
(ordering actions given observations). Evaluation (right bottom) shows that GPT-5 performance drops
as step length scales, solves better on inverse task, and lags behind humans.

the interplay among physical interaction, spatial perception, and linguistic understanding is seldom37

examined within a unified, egocentric experience where perception and action must cohere over time.38

To bridge this gap, we introduce ENACT, a benchmark that studies the synergy of embodied39

capabilities through a simple, powerful objective: world modeling through egocentric interaction.40

Grounded in a Partially Observable Markov Decision Process [POMDP, 8], ENACT poses two41

complementary tasks (shown in Figure 1). In forward world modeling, the model receives an42

initial observation, a sequence of abstract actions, and a shuffled set of future observations, and must43

reorder the observations to match the actions. In inverse world modeling, it receives an ordered44

sequence of observations and must reorder a shuffled set of actions that explains the progression.45

Though conceptually simple, they demand a rich synthesis: fine-grained spatial understanding, long-46

horizon memory, and a tight binding between perception and interaction. The benchmark leverages47

a reproducible simulator to capture a robot’s egocentric interactions from diverse household tasks,48

which also allows controlled experiments for probing existing models’ data biases.49

Our curation pipeline is simple and scalable. We replay long-horizon household tasks in a simulator50

that records aligned symbolic scene graphs (states) and egocentric RGB observations. We segment51

each replay at abstract state changes, prune near-duplicates via predicate-level changes, and assemble52

validated key-frame trajectories with visible transitions. From these, we use question templates to53

build QAs for forward and inverse world modeling. We report two metrics: Task Accuracy (exact54

ordering) and Pairwise Accuracy (adjacent consistency). Predictions are validated by an online55

verifier that accepts any sequence consistent with the constraints.56

Our experiments reveal several key findings. Across all evaluated VLMs, two general trends emerge:57

performance significantly degrades as the interaction step length increases, and models consistently58

perform better on the inverse world modeling task than on the forward one.59

Overall, our contributions are threefold: (1) We introduce a simple yet insightful objective for studying60

embodied cognition, scalable by design, that probes complex reasoning about world interaction61

through simple question-answering tasks. (2) We built a scalable data generation process on simulated62

interactions with autonomous annotations, from which we uniformly sampled 8,972 QAs to form63

the main body of ENACT. (3) We conduct experiments that reveal key limitations in current VLMs,64

offering insights for improving their long-horizon reasoning, grounding, and embodiment.65
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Figure 2: Overview of ENACT data curation pipeline. We first replay robot trajectories to
obtain aligned scene graphs (states) and RGB observations. The raw trajectory is then segmented
by identifying frames where an abstract state change occurs (i.e., the scene graph difference is
non-empty). From this set of segmented frames, we sample multiple key-frame trajectories, which
are finally used to construct the forward and inverse world modeling questions.

2 ENACT: Egocentric Interactive Embodied Cognition Test66

2.1 Problem Formulation67

We investigate the Embodied Cognition of VLMs by framing it as a world modeling problem,68

which we probe using egocentric, interactive reasoning tasks. We formulate our benchmark from69

robot raw dense trajectories, comprised of state-observation pairs {(st, ot)}. The state st is a70

symbolic scene graph from the simulator state space G, while the observation ot ∈ RH×W×3 is71

the corresponding egocentric RGB image. We view the underlying embodied task as a Partially72

Observable Markov Decision Process (POMDP, (author?) [8]). As shown in Figure 2, we first73

filter this raw data to identify all timestamps where a semantic change occurs (i.e., the scene-graph74

difference δ(st, st−1) ̸= ∅). This process yields a smaller, chronologically ordered set of segmented75

frames, which serve as the candidate pool for our benchmark.76

From the pool of segmented frames, we sample R trajectories, each with a chronologically ordered77

tuple π = (i0, · · · , iL−1) of L key frames. This initial abstraction into discrete decision epochs78

is similar to a semi-MDP [9]. However, we treat each of these final key-frame trajectories as a79

self-contained POMDP instance with scene graphs Sπ and observations Oπ . For k = 0, · · · , L− 2,80

the action connecting consecutive key frames is the visible scene-graph delta ak := ∆Vis(sik+1
, sik),81

where ∆Vis returns the subset of differences in δ(sik+1
, sik) that are visible in both images. Together,82

these actions form a discrete symbolic action space A. For notation simplicity, we relabel indices in83

π for each key-frame trajectory to π = (0, · · · , L− 1) and (sk, ok) := (sik , oik).84

Building on these trajectories, we formalize two tasks. For forward world modeling, given the85

current image o0, the correct ordered action sequence (a0, . . . , aL−2), and a shuffled list of next-state86

images O′ = (o′1, . . . , o
′
L−1), the model outputs a permutation σ ∈ Sym([L − 1]) that orders the87

images to match the actions: (o′σ(1), . . . , o
′
σ(L−1)) = (o1, . . . , oL−1). For inverse world modeling,88

given o0, the correctly ordered state images (o1, . . . , oL−1), and a shuffled list of actions A′ =89

(a′0, . . . , a
′
L−2), the model outputs a permutation τ ∈ Sym([L − 1]) that orders the actions to be90

consistent with the state progression: (a′τ(1), . . . , a
′
τ(L−1)) = (a0, . . . , aL−2).91

2.2 Key-Frame Trajectories Synthesis for Scalable Data Generation92

Segmented Frames with Semantic Changes. Raw robot replays often contain long stretches with no93

meaningful semantic change (e.g., gripper motion when opening the toolbox in Figure 2) . We mark a94

timestamp t whenever the simulator state makes a minimal semantic edit (e.g., the robot is now right95

grasping the drill). The Behavior simulator [10] exposes boolean and relational predicates, where96

flipping one predicate or updating a relation is our atomic change. A time t enters the candidate pool97

if the scene-graph difference δ(st, st−1) is nonempty. To avoid near-duplicate frames, we compare98

each new change with the last accepted segmented frame: we form a predicate-level change signature99
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Figure 3: Data sources and QA examples. ENACT is built from diverse, long-horizon tasks
performed by real robots (Left). We provide examples for (mid) forward world modeling and (right)
inverse world modeling.

and keep t only if its cosine similarity with the previous signature is below a threshold. This yields a100

chronological set of segmented frames K = {t1 < · · · < tM} with (sti , oti).101

Key-Frame Trajectories Synthesis. From the segmented M frames, we sample length-L key-frame102

trajectories π = (i0, . . . , iL−1) with 1≤ i0 < · · · < iL−1≤M , so indices do not need to be adjacent.103

Each candidate is strictly validated: for every k, the visible state change ∆Vis(sik+1
, sik) is nonempty,104

and the edited objects are visible in both images, except for object transitioning events (e.g., pineapple105

being diced), where transient occlusion is permitted. We then treat each valid key-frame trajectory as106

an individual POMDP instance, with Sπ and Aπ as defined in the problem formulation. To make data107

generation scalable, we exploit that typically L < M (in practice L≤10 while M≳30), and we use108

skipping to convert trajectory construction into a “seat selection” combinatorics problem, choosing L109

seats out of M , which yields at most
(
M
L

)
distinct candidates from a single replay. These trajectories110

are later converted into the forward and inverse world-modeling tasks by shuffling future states or111

actions, as specified in the problem formulation.112

2.3 Dataset Overview and Evaluation Design113

Dataset overview. We construct the benchmark from the Behavior simulator and challenge [10].114

Behavior Challenge provides 50 long-horizon tasks with up to 200 trajectories per task. We use 29115

tasks and replay one trajectory per task to recover aligned pairs {(st, ot)}. Each replay is segmented116

into segmented frames K, then converted into key-frame trajectories and finally into two QA types:117

forward world modeling and inverse world modeling (examples in Figure 3). Across step lengths118

L ∈ {3, . . . , 10} we sample about 560 items per L for each QA type, yielding 8,972 total questions.119

The data uses 11 predicate classes (e.g., Inside, Open, Cooked, Grasping) over 149 object categories,120

and distributions are shown in Figure 3.121

Evaluation design. Multiple valid answers can exist for a given question. We therefore use an online122

verifier that accepts any predicted permutation, σ or τ , that is consistent with the corresponding input123

description constraints. Furthermore, we report two complementary metrics: Task accuracy captures124

exact ordering, while Pairwise accuracy grants partial credit for near-correct sequences. Specifically,125

(1) Task accuracy measures exact success at the question level. A question receives score 1 if the126

verifier accepts the full prediction and 0 otherwise. The dataset score is the average over questions,127

TA = (1/|D|)
∑

x∈D 1{accepted(x)}. (2) Pairwise accuracy measures stepwise consistency. For a128

question with length L, we count how many adjacent pairs pass the verifier’s local check (state–action129

for forward; action–state for inverse) and divide by L. We report the micro-average across the split,130

PA =
(∑

x #correct pairs in x
)/(∑

x Lx

)
, which is equivalent to averaging per-item pairwise131

scores when L is fixed.132
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Model
Forward World Modeling Inverse World Modeling

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Proprietary Models

GPT-5 84.62 75.26 69.96 64.18 57.48 52.16 49.45 46.93 86.28 80.37 76.09 68.78 65.71 62.13 57.12 55.33
GPT-5 mini 87.50 76.25 70.65 63.41 58.14 52.38 46.65 44.11 85.05 76.77 75.43 67.67 63.79 57.04 55.04 50.02
GPT-5 nano 67.83 50.29 38.61 30.35 25.97 21.90 17.59 16.84 72.81 53.95 42.48 36.45 31.68 28.20 24.11 20.33
Gemini 2.5 Pro 86.10 76.42 69.83 60.80 53.26 48.12 40.12 36.98 87.94 81.18 75.39 70.03 66.03 62.91 57.78 56.62
Gemini 2.5 Flash 81.64 67.94 54.17 43.38 37.43 32.73 29.88 28.07 82.78 72.18 60.83 58.19 53.14 51.78 47.99 44.98
Gemini 2.5 Flash-Lite 64.34 49.07 38.70 33.87 27.81 25.44 23.31 20.31 69.58 57.55 46.04 39.09 34.06 30.18 27.51 23.16
Claude Sonnet 4 65.65 45.82 36.65 30.52 26.61 22.78 21.49 20.16 73.25 56.85 48.87 43.07 37.00 32.71 30.50 28.49

Open-Weight Models
GLM-4.5V 74.30 59.99 47.65 38.78 30.83 25.69 21.60 19.67 80.59 69.28 57.04 51.53 46.95 41.68 37.36 37.93
Llama-4-Mav-17B-128E-Ins 72.47 52.09 43.87 35.30 29.90 25.89 22.79 20.49 72.55 62.60 50.52 43.10 35.17 31.68 28.10 25.80
InternVL3.5-241B-A28B 75.79 62.25 50.83 45.85 37.84 32.88 27.85 25.24 82.26 70.09 60.61 53.38 45.90 39.35 34.12 30.56
Gemma-3-27b-it 63.29 44.66 32.04 25.82 22.11 19.50 16.74 16.29 64.95 48.37 40.04 33.87 28.53 23.63 21.74 19.36
QVQ-72B-Preview 69.14 52.96 40.83 36.27 33.16 30.63 26.30 24.76 71.33 58.77 48.43 44.36 40.26 39.30 36.66 36.58
Qwen2.5-VL-72B-Ins 78.15 60.05 49.87 41.92 36.77 31.73 28.03 25.07 77.80 65.85 53.30 48.19 44.07 37.57 33.76 36.27
Qwen2.5-VL-32B-Ins 67.83 55.46 44.35 35.75 27.52 26.42 22.01 18.07 63.55 59.70 54.57 51.01 49.36 47.17 41.47 40.16
Ovis2.5-9B 58.39 42.51 34.96 31.08 24.61 20.78 18.11 16.96 64.86 51.74 41.65 35.47 30.95 26.64 23.70 23.25
MiniCPM-V-4.5 60.75 38.73 33.65 25.47 24.81 21.40 21.56 18.33 69.23 53.08 47.35 39.55 34.87 30.63 27.05 25.71
Idefics3-8B-Llama3 60.23 36.99 31.83 24.25 21.29 20.80 20.46 17.71 47.38 33.86 27.26 23.48 19.87 18.50 17.04 15.16
Cosmos-Reason1 56.28 41.86 34.75 28.40 26.46 26.49 25.41 24.88 58.30 45.93 44.25 38.50 35.72 34.56 31.50 28.64

Human Performance 93.62 95.30 95.04 93.87 95.43 95.41 94.75 95.13 92.15 93.85 94.77 94.58 96.23 97.74 95.21 95.46

Table 1: Evaluation on ENACT (Pairwise Accuracy). Dark gray indicates the best result within
each category (Proprietary or Open-Weight Models), and Light gray denotes the second-best result
within the category.

3 Experiments and Analysis133

3.1 World Modeling as a Proxy for Evaluating Embodied Cognition134

Experimental Setup. (1) VLM evaluation setup. We evaluate 7 proprietary VLMs from 3 families [3,135

4, 11] and 22 open-weight models from 10 families [12–20]. For input, all images are resized to136

512 × 512, and we use a unified prompt template per QA type. Models are instructed to return a137

parsable Python list encoding a permutation of indices. We apply the online verifier in Section 2.3138

and report Task Accuracy and Pairwise Accuracy. (2) Human evaluation setup. We also recruit139

trained annotators to answer the benchmark under the same interface and instructions as the models.140

For inter-annotator agreement (IAA), we uniformly stratify 240 items over QA type and step length,141

collect independent labels from three annotators, and report Krippendorff’s α with 95% bootstrap142

confidence intervals.143

We visualize Task Accuracy for GPT-5 and human annotators in Figure 1. Since many models144

collapse at long horizons (L = 8–10, near-zero task success), we focus on the more informative145

Pairwise Accuracy. The main results are in Table 1.146

Is inverse world modeling easier than forward? Across families and step lengths, inverse con-147

sistently outperforms forward, with the margin widening as L grows. For example, GPT-5 and148

Gemini 2.5 Pro maintain clear gaps at L ≥ 6, and open-weight models such as GLM-4.5V and149

Qwen2.5-VL also show higher inverse scores than forward for most L (see Table 1).150

How does performance scale with step length? Accuracy decreases monotonically with L for151

nearly every model, no matter proprietary or open-weight. Shorter tasks (L ≤ 4) are manageable for152

several VLMs, while longer tasks (L ≥ 8) are challenging even for the strongest models. Pairwise153

Accuracy slows down the performance drop compared to Task Accuracy, but follows the same trend.154

Can SOTA VLMs achieve near-human performance? As we can see from the Table 1, human155

performance is far better than any tested VLM. SOTA VLMs like GPT-5 mini and Gemini-2.5 Pro156

achieve comparable performance with humans at step 3, but drop significantly when step length157

scales.158

What is the performance comparison among VLMs? GPT-5 and Gemini 2.5 Pro are the159

strongest overall in both forward and inverse settings. Several open-weight VLMs are competi-160

tive: InternVL3.5-241B-A28B, GLM-4.5V, and Qwen2.5-VL often close much of the gap, and even161

surpass Claude 4 Sonnet in multiple settings (e.g., inverse at L = 3–6). Notably, GPT-5 mini is highly162

competitive, even achieving the best score in short and mid horizons (e.g., forward at L = 3, 7, 8).163
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Hand Precision(↑) Recall(↑) Mixing(↓)

Left 0.3932±0.0075 0.3594±0.0071 0.1095

Right 0.4845±0.0055 0.4819±0.0055 0.0489

Left 0.3915±0.0077 0.3916±0.0077 0.1809

Right 0.4897±0.0059 0.4894±0.0059 0.0984

F
or

w
ar

d
In

ve
rs

e

3.3.2: Robot Handedness Analysis (GPT-5) 

0.05(sig)

Figure 4: Probing studies’ performance delta with the baseline and its significance (deeper the red,
the smaller the p-value is).

� Key Takeaways: World Modeling as a Proxy for Evaluating Embodied Cognition

• Inverse consistently surpasses forward, and the margin grows as the horizon L increases.
• Accuracy declines steadily with step length L, and all VLMs drop sharper at long horizons.
• Humans achieve near-ceiling performance.

164

3.2 Are VLMs Sensitive to Image Realism?165

Experimental Setup. (1) Probing configuration. Motivated by GPT-5 mini’s strong cost and166

performance balance in Section 3.1, we use it as the base model to represent SOTA VLMs. We167

evaluate step lengths L ∈ {3, 6, 9}. For each L and each QA type (forward, inverse), we sample 50168

items, yielding 300 total QAs. Question text is held fixed, and we vary only the image source. Outputs169

are parsed as permutations and scored by the online verifier in Section 2.3 with Pairwise Accuracy.170

We report, for each setting, the Pairwise Accuracy difference ∆ = PAbaseline−PAvariant and two-sided171

p-values versus the baseline. (2) Image realism implementation. Behavior uses Isaac Sim [21], our172

baseline uses Ray Tracing [22] with default global effects. We probe three alternatives on a realism173

spectrum: Realistic (segmented frames translated to a real-world style using GPT-image-1 [23] while174

we try to maintain the consistency), Path Tracing (higher-fidelity rendering, (author?) [24]), and Ray175

Tracing Only (Ray Tracing with global effects such as reflections and stage lights disabled). Results176

are summarized in Figure 4 (panel 3.1).177

Does rendering realism change performance? We find no statistically significant degradation or178

improvement across the spectrum. All settings have p≥0.2 relative to the baseline, and observed179

deltas are small across both QA types and all step lengths (Figure 4, A). This suggests the model is180

not sensitive to image realism in our embodied tasks.181

� Key Takeaways: Image Realism

• Robustness to realism variations reduces concern about simulator–real gaps for our tasks.
182

3.3 How Do Camera Parameters Affect VLM Performance?183

Experimental Setup. (1) Probing configuration. We reuse the setup from Section 3.2. We still use184

GPT-5 mini as the base VLM. (2) Camera FOV. The baseline is Aperture 40. We probe Aperture185

30, 60, 80, and Fisheye. Rendering and all other parameters are held fixed. (3) Camera Height. The186
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baseline is (1.75m) high for eye-level view used in Behavior replays. We probe High (+0.5m) and187

Low (−0.25m). We choose (−0.25m) since a lower height will consistently make relevant objects188

invisible. Results are summarized in Figure 4 (panels 3.2.1 and 3.2.2).189

Does field of view matter? Figure 4 (B.1) shows the results. A small change to Aperture 30 shows190

no significant difference from baseline (p > 0.1). Larger deviations substantially hurt performance.191

Aperture 60, 80, and Fisheye are consistently and significantly worse than baseline across QA types192

and step lengths (p ≤ 0.01). This suggests that the model performs better with a human-like FOV.193

Does camera height matter? As shown in Figure 4 (B.2), raising the camera (High) degrades194

accuracy relative to baseline with statistical significance at the 10% level (p < 0.10) and with195

negative ∆ across settings. Lowering the camera (Low) yields mixed effects. Forward shows a mild196

drop (p = 0.07, ∆ = −0.05). The inverse setting is statistically indistinguishable from the baseline197

(p = 0.51, ∆ = −0.02). There are two likely reasons for this. First, the −0.25m shift falls within198

the typical variation of human eye-level, which keeps the image statistics similar to the pretraining199

data. Second, the inverse task itself may be less sensitive to small vertical changes because it relies200

on a fixed state sequence and coarse-grained relationships. Overall, the model performance peaks at201

a typical human eye level.202

� Key Takeaways: Camera Parameters

• The accuracy of models declines as the perspective becomes overly wide or distorted.
• Performance is sensitive to camera height, peaking at a typical human eye-level.

203

3.4 Do VLMs Have Embodied Biases?204

To further understand the nature of VLM embodiment, we investigate two potential biases: self-205

awareness regarding the robot’s own body and handedness asymmetry, a common trait in humans.206

Experimental Setup. We probe these two aspects using distinct experimental setups. (1) Robot207

Appearance. To test for self-awareness, we assess whether VLMs can recognize their embodiment208

regardless of its appearance. We reuse the probing configuration from Section 3.2, with GPT-5 mini209

as the base model. The baseline is the default black-and-white robot appearance from the Behavior210

simulator. We test three variants: White Color (robot is entirely white), Random Color (robot color211

is randomized at each frame), and Skin Color (robot is rendered with a human-like skin tone). We212

hypothesize that a model with robust self-awareness will maintain consistent performance across these213

visual changes. (2) Handedness Asymmetry. Inspired by human motor control, where approximately214

89% of the population is right-handed [25], we investigate if VLMs exhibit a similar “dominant hand”.215

This analysis does not use the probing configuration but instead relies on a predicate-level error216

analysis of the main GPT-5 experiment results. We isolate all errors related to the LeftGrasping217

and RightGrasping predicates. Using the error analysis framework described in Section 3.5, we218

treat the ground-truth and model-predicted state differences for each hand as two distinct pools. This219

allows us to frame the problem in terms of precision and recall. For fair comparison between the220

hands, which may not appear equally in the data, we report Precision, Recall, and a Mixing rate. The221

mixing rate measures the proportion of ground-truth state differences for one hand that the model222

incorrectly attributes to the other. Higher precision and recall with lower mixing indicate greater223

proficiency with that hand.224

Are VLMs aware of their own embodiment, and is this awareness robust to changes in their225

visual appearance? As shown in Figure 4 (panel 3.3.1), altering the robot’s appearance has no226

statistically significant impact on performance. For all variants (White, Random, Skin Color), the227

performance deltas are small (|∆| < 0.05) and the results are not significant (all p > 0.10). This228

suggests that the model’s understanding of its interaction with the world is not tied to a specific visual229

representation of its own body, indicating a robust sense of self-embodiment within the task context.230

Do VLMs exhibit a handedness asymmetry in their interactions with the world? Our analysis of231

hand-related errors, summarized in Figure 4 (panel 3.3.2), reveals a consistent and strong asymmetry.232

For both forward and inverse tasks, the right hand consistently outperforms the left hand across all233

metrics. Precision and recall are substantially higher for the right hand, while the mixing rate (i.e.,234

misattributing a left-hand action to the right hand or vice versa) is significantly lower. For instance, in235

the forward task, 10.95% of true left-hand changes were incorrectly identified as right-hand changes,236

whereas only 4.89% of right-hand changes were misattributed to the left. This suggests VLMs are237
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more prone to making mistakes with their left hand, mirroring the right-hand dominance prevalent in238

humans.239

� Key Takeaways: Embodied Biases

• GPT-5 mini demonstrates strong self-awareness, irrespective of its appearance.
• GPT-5 mini demonstrates a significant right-handed bias, which is similar to human handed-

ness.
240

3.5 Error Analysis241

3.5.1 Preparation for Error Analysis242

To gain a deeper insight into the reasoning failures of VLMs, we designed a systematic error analysis243

framework. Evaluating errors directly from output permutations (e.g., comparing predicted order244

[3, 2, 1] to ground truth [2, 3, 1] is difficult and often uninformative about the underlying cognitive245

mistakes. Our approach instead converts the model’s output into a format that allows for a direct,246

fine-grained comparison with the ground truth. For the forward world modeling task, we take247

the model’s predicted permutation of images (o′σ(1), . . . , o
′
σ(L−1)) = (o1, . . . , oL−1) and compute248

the corresponding sequence of actions (i.e., visible state differences) that this ordering implies:249

âk := ∆Vis(s
′
σ(k+1), s

′
σ(k)). This yields a predicted action sequence (â0, · · · , âL−2). For the250

inverse world modeling task, the model already outputs a predicted action sequence.251

With both a predicted and a ground-truth action sequence, we can perform a pairwise comparison252

at each step k. Each action ak is a set of atomic state differences (e.g., {add_Open(fridge),253

remove_Inside(basket, cabinet)}). By comparing the predicted set âk with the grounded-254

truth set ak, we can categorize each atomic state difference. This comparison, akin to analyzing a255

Venn diagram, yields three primary outcomes for each ground-truth state difference: (1) Correct:256

The state difference is present in both the ground-truth and predicted sets. (2) Omission: The state257

difference is in the ground-truth set but missing from the prediction. (3) Hallucination: The state258

difference is in the predicted set but not in the ground truth.259

We assume each state difference is an independent event and aggregate these counts across all actions260

and all questions in the dataset. Based on this framework, we classify errors into five main categories:261

1. Entity Substitution. The model correctly identifies the state change predicate but applies it to262

the wrong object(s).263

2. Polarity Inversion. The model correctly identifies both the object(s) and the predicate, but264

reverses the polarity of the change (e.g., ‘remove’ instead of ‘add’).265

3. Predicate Substitution. The model correctly identifies the object(s) involved but describes the266

state change with an incorrect predicate.267

4. Hallucination. The model predicts a state change that did not occur in the ground truth.268

5. Omission. The model fails to predict a ground-truth state change that occurred.269

3.5.2 Error Distribution Analysis270

0% 25% 50% 75% 100%

Forward

Inverse

Entity Substitution
Predicate Substitution

Polarity Inversion
Omission

Hallucination

Figure 5: Error distribution (GPT-5) across EN-
ACT, broken down by forward and inverse tasks.

Our error analysis for GPT-5, shown in Figure 5,271

reveals that the vast majority of errors fall into272

two main categories: Omission and Hallucina-273

tion. For the forward task, these two error types274

account for a combined 81% of all failures. This275

figure is even higher for the inverse task, where276

they make up nearly 84% of errors. This indi-277

cates that the model’s primary challenge is not278

misinterpreting the specifics of a known state279

change, but rather correctly identifying which280

changes occurred and which did not. While281

Omission and Hallucination errors are dominant282

in both settings, their distribution shifts between283

tasks. In forward modeling, Hallucination is284
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the most common error at 43.9%, followed by Omission at 37.1%. Remarkably, in the inverse task,285

these two errors are perfectly balanced, each accounting for exactly 41.8% of all failures. Other error286

types are far less frequent. Polarity Inversion is more common in the forward setting (12.4%) than287

the inverse (9.2%). Interestingly, Entity Substitution is also slightly more prevalent in the forward288

task (6.3% vs. 5.4%). Finally, Predicate Substitution remains the rarest error type, though it is more289

pronounced in the inverse setting (1.9%) compared to the forward task (0.3%).290

4 Related Work291

Embodied Cognition. Our work is grounded in classical Embodied Cognition, where cognition292

arises from brain–body–environment coupling, and meaning is grounded in an agent’s sensorimotor293

repertoire [26–30]. This rich theoretical lineage, spanning ecological views, the extended mind, and294

sensorimotor accounts [31–35], is supported by empirical findings in psychology and has inspired295

innovations in robotics and active inference [36–41]. In modern AI, this has motivated a shift towards296

egocentric, interactive benchmarks (e.g., Ego4D, VLN) [42–45], though the term is sometimes used297

without theoretical grounding [46].298

World Modeling. World Modeling is well aligned with this embodied perspective. It learns action-299

conditioned dynamics for imagination and planning [47, 48]. Despite achieving scalable imagination300

and policy gains from counterfactual rollouts [49–52], the grasp of embodied interaction in recent301

models remains limited. This limitation stems from two issues: many models lack real-world physics302

grounding due to their reliance on internet video or game data [50, 51], while others, focusing on short-303

horizon, low-level predictions, fail to maintain causal state progression [53, 54]. Correspondingly,304

benchmarks for embodied world modeling either score superficial qualities like outcome plausibility305

and action-video consistency, or remain coarse and non-interactive [55–58, 5, 59, 60, 10, 61]. Recent306

benchmarks like [62, 63], which emphasize sequencing, but do not verify the consequences of307

individual actions or the dynamics between states. As raised by [64], we posit that the ability to serve308

as a sandbox for reasoning and thought experiments is a core function of a world model. To address309

this, our benchmark is built to probe forward and inverse ordering with a clean action space and a310

scalable construction.311

VLMs in Embodied AI. VLMs are increasingly central to embodied agents, serving as high-level312

planners that handle task decomposition and subgoal selection [65–70] or as end-to-end policies313

that directly map vision to action [71–74]. However, current applications and their corresponding314

benchmarks share critical limitations. Deployments are often confined to tabletop manipulation or315

simulated environments with limited real-world execution [75]. Similarly, benchmark evaluations tend316

to prioritize simple instruction-following, neglecting the multi-step, consequence-aware reasoning317

essential for complex interaction [45, 76–78, 7, 61]. Our work addresses this gap by introducing a318

benchmark focused on egocentric interaction that specifically probes an agent’s understanding of319

forward and inverse world modeling.320

5 Conclusion321

ENACT offers a simple and scalable way to probe how perception and action cohere over time. In322

extensive simulations, we observe steady degradation with longer horizons and consistently higher323

accuracy on inverse than forward ordering, while sensitivity analyses suggest limited dependence324

on rendering realism or robot appearance, but noticeable effects from camera field of view and325

height. Future work should broaden tasks, diversify environments, and connect sequence ordering to326

real-robot control to test external validity.327
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