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Abstract

We introduce ENACT, a scalable benchmark for studying Embodied Cognition
via world modeling through egocentric interaction, probing how spatial perception,
physical interaction, and language cohere in modern Vision—-Language Models
(VLMs). Grounded in a POMDP view of decision making, ENACT comprises
two complementary permutation tasks: forward world modeling (reorder future
observations to match a given action sequence) and inverse world modeling
(reorder actions to explain a given observation sequence). Data are generated by
replaying diverse household activities in the reproducible simulator (Behavior)
that aligns symbolic scene graphs with egocentric RGB, yielding 8,972 QA items.
Predictions are validated by an online verifier that accepts any sequence consistent
with task constraints, and we report Task Accuracy (exact ordering) and Pairwise
Accuracy (adjacent consistency). Across evaluated VLMs, performance degrades
with longer interaction horizons, and inverse is consistently easier than forward.
Targeted probes of GPT-5 mini and InternVL-3.5 show limited sensitivity to image
realism and robot appearance, and GPT-5 mini exhibits marked sensitivity to
camera-distribution shifts (elevated viewpoints, extreme apertures, fisheye). Both
models display a handedness asymmetry with fewer right-hand errors. Overall,
ENACT offers a scalable proxy for studying embodied cognition and a tool to
inform models that better bind perception to action over long horizons.

1 Introduction

Intelligence is not simply computed, but enacted through interaction. The theory of Embodied
Cognition holds that flexible thought grows from an agent’s continuous sensorimotor dialogue with a
physical, social, and linguistic world [1]. This perspective suggests that the mind is woven from the
interplay between the body and its environment. Spatial perception shapes the boundaries of what
is knowable [2], physical interaction uncovers what is possible, and language provides the tools to
compress, name, and plan from this grounded experience. In this synthesis, space gives structure,
contact gives evidence, and words bind these elements into shareable models. Following this thread,
our work investigates the egocentric interaction experience to understand how perception and action
co-author a world model, one step at a time.

The quest for intelligence has seen remarkable advancements with the scaling of large foundation
models [3, 4]. Yet these models are fundamentally trained in a disembodied manner, learning from a
volume of non-interactive data that vastly exceeds any single human’s lived experience. This raises a
natural and intellectually curious question: Does embodied cognition emerge from such training?
Valuable prior work has begun to probe the parts: spatial perception in static scenes [2], physical
interactions in contrived settings [5, 6] (e.g., a rolling ball hits another ball in a clean environment),
and purely linguistic reasoning [7]. While these lines of work have been insightful, a gap still remains:
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Egocentric Interaction Data For Modeling Embodied Cognition
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Figure 1: Grounded in a POMDP framework, ENACT probes embodied cognition in a simple and
scalable way via world modeling through egocentric interaction (left). It poses two tasks (right
top): forward world modeling (ordering observations given actions) and inverse world modeling
(ordering actions given observations). Evaluation (right bottom) shows that GPT-5 performance drops
as step length scales, solves better on inverse task, and lags behind humans.

the interplay among physical interaction, spatial perception, and linguistic understanding is seldom
examined within a unified, egocentric experience where perception and action must cohere over time.

To bridge this gap, we introduce ENACT, a benchmark that studies the synergy of embodied
capabilities through a simple, powerful objective: world modeling through egocentric interaction.
Grounded in a Partially Observable Markov Decision Process [POMDP, 8], ENACT poses two
complementary tasks (shown in Figure 1). In forward world modeling, the model receives an
initial observation, a sequence of abstract actions, and a shuffled set of future observations, and must
reorder the observations to match the actions. In inverse world modeling, it receives an ordered
sequence of observations and must reorder a shuffled set of actions that explains the progression.
Though conceptually simple, they demand a rich synthesis: fine-grained spatial understanding, long-
horizon memory, and a tight binding between perception and interaction. The benchmark leverages
a reproducible simulator to capture a robot’s egocentric interactions from diverse household tasks,
which also allows controlled experiments for probing existing models’ data biases.

Our curation pipeline is simple and scalable. We replay long-horizon household tasks in a simulator
that records aligned symbolic scene graphs (states) and egocentric RGB observations. We segment
each replay at abstract state changes, prune near-duplicates via predicate-level changes, and assemble
validated key-frame trajectories with visible transitions. From these, we use question templates to
build QAs for forward and inverse world modeling. We report two metrics: Task Accuracy (exact
ordering) and Pairwise Accuracy (adjacent consistency). Predictions are validated by an online
verifier that accepts any sequence consistent with the constraints.

Our experiments reveal several key findings. Across all evaluated VLMs, two general trends emerge:
performance significantly degrades as the interaction step length increases, and models consistently
perform better on the inverse world modeling task than on the forward one.

Overall, our contributions are threefold: (1) We introduce a simple yet insightful objective for studying
embodied cognition, scalable by design, that probes complex reasoning about world interaction
through simple question-answering tasks. (2) We built a scalable data generation process on simulated
interactions with autonomous annotations, from which we uniformly sampled 8,972 QAs to form
the main body of ENACT. (3) We conduct experiments that reveal key limitations in current VLMs,
offering insights for improving their long-horizon reasoning, grounding, and embodiment.
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Figure 2: Overview of ENACT data curation pipeline. We first replay robot trajectories to
obtain aligned scene graphs (states) and RGB observations. The raw trajectory is then segmented
by identifying frames where an abstract state change occurs (i.e., the scene graph difference is
non-empty). From this set of segmented frames, we sample multiple key-frame trajectories, which
are finally used to construct the forward and inverse world modeling questions.

2 ENACT: Egocentric Interactive Embodied Cognition Test

2.1 Problem Formulation

We investigate the Embodied Cognition of VLMs by framing it as a world modeling problem,
which we probe using egocentric, interactive reasoning tasks. We formulate our benchmark from
robot raw dense trajectories, comprised of state-observation pairs {(s:,0:)}. The state s; is a
symbolic scene graph from the simulator state space G, while the observation o, € RH*Wx3 g
the corresponding egocentric RGB image. We view the underlying embodied task as a Partially
Observable Markov Decision Process (POMDP, (author?) [8]). As shown in Figure 2, we first
filter this raw data to identify all timestamps where a semantic change occurs (i.e., the scene-graph
difference 0(s¢, st—1) # ). This process yields a smaller, chronologically ordered set of segmented
frames, which serve as the candidate pool for our benchmark.

From the pool of segmented frames, we sample R trajectories, each with a chronologically ordered
tuple 7 = (ig, - ,ir—1) of L key frames. This initial abstraction into discrete decision epochs
is similar to a semi-MDP [9]. However, we treat each of these final key-frame trajectories as a
self-contained POMDP instance with scene graphs S, and observations O,. For k =0,--- , L — 2,
the action connecting consecutive key frames is the visible scene-graph delta ay, := Avis(s;, 419 Sik ),
where Avs;g returns the subset of differences in 0(s;,, ,, si, ) that are visible in both images. Together,
these actions form a discrete symbolic action space 4. For notation simplicity, we relabel indices in
w for each key-frame trajectory tom = (0,--- , L — 1) and (sk, o) := (84, 04, )-

Building on these trajectories, we formalize two tasks. For forward world modeling, given the
current image oy, the correct ordered action sequence (ag, - - ., ar,—2), and a shuffled list of next-state
images O’ = (0f,..., 0} _;), the model outputs a permutation ¢ € Sym([L — 1]) that orders the
images to match the actions: (o[, ;), ..., 0, _y)) = (01,...,0r-1). For inverse world modeling,
given o, the correctly ordered state images (01, ...,0r_1), and a shuffled list of actions A’ =
(ag, - - ., al,_5), the model outputs a permutation 7 € Sym([L — 1]) that orders the actions to be
consistent with the state progression: (., ..., a%; 1)) = (ao, ..., ar—2).

2.2 Key-Frame Trajectories Synthesis for Scalable Data Generation

Segmented Frames with Semantic Changes. Raw robot replays often contain long stretches with no
meaningful semantic change (e.g., gripper motion when opening the toolbox in Figure 2) . We mark a
timestamp ¢ whenever the simulator state makes a minimal semantic edit (e.g., the robot is now right
grasping the drill). The Behavior simulator [10] exposes boolean and relational predicates, where
flipping one predicate or updating a relation is our atomic change. A time ¢ enters the candidate pool
if the scene-graph difference §(s¢, s;—1) is nonempty. To avoid near-duplicate frames, we compare
each new change with the last accepted segmented frame: we form a predicate-level change signature
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Figure 3: Data sources and QA examples. ENACT is built from diverse, long-horizon tasks
performed by real robots (Left). We provide examples for (mid) forward world modeling and (right)
inverse world modeling.

and keep t only if its cosine similarity with the previous signature is below a threshold. This yields a
chronological set of segmented frames K = {t1 < -+ < tpr} with (s¢,, 0, ).

Key-Frame Trajectories Synthesis. From the segmented M frames, we sample length-L key-frame
trajectories m = (ig,...,ir—1) wWith 1 <ig < --- < iy_; <M, so indices do not need to be adjacent.
Each candidate is strictly validated: for every k, the visible state change Avis(s;,, ,, 51, ) is nonempty,
and the edited objects are visible in both images, except for object transitioning events (e.g., pineapple
being diced), where transient occlusion is permitted. We then treat each valid key-frame trajectory as
an individual POMDP instance, with .S;; and A as defined in the problem formulation. To make data
generation scalable, we exploit that typically L < M (in practice L <10 while M = 30), and we use

skipping to convert trajectory construction into a “seat selection” combinatorics problem, choosing L

seats out of M, which yields at most (A]f ) distinct candidates from a single replay. These trajectories

are later converted into the forward and inverse world-modeling tasks by shuffling future states or
actions, as specified in the problem formulation.

2.3 Dataset Overview and Evaluation Design

Dataset overview. We construct the benchmark from the Behavior simulator and challenge [10].
Behavior Challenge provides 50 long-horizon tasks with up to 200 trajectories per task. We use 29
tasks and replay one trajectory per task to recover aligned pairs { (s, 0;)}. Each replay is segmented
into segmented frames IC, then converted into key-frame trajectories and finally into two QA types:
forward world modeling and inverse world modeling (examples in Figure 3). Across step lengths
L € {3,...,10} we sample about 560 items per L for each QA type, yielding 8,972 total questions.
The data uses 11 predicate classes (e.g., Inside, Open, Cooked, Grasping) over 149 object categories,
and distributions are shown in Figure 3.

Evaluation design. Multiple valid answers can exist for a given question. We therefore use an online
verifier that accepts any predicted permutation, o or 7, that is consistent with the corresponding input
description constraints. Furthermore, we report two complementary metrics: Task accuracy captures
exact ordering, while Pairwise accuracy grants partial credit for near-correct sequences. Specifically,
(1) Task accuracy measures exact success at the question level. A question receives score 1 if the
verifier accepts the full prediction and 0 otherwise. The dataset score is the average over questions,
TA = (1/|D|) >_,cp H{accepted(x)}. (2) Pairwise accuracy measures stepwise consistency. For a
question with length L, we count how many adjacent pairs pass the verifier’s local check (state—action
for forward; action—state for inverse) and divide by L. We report the micro-average across the split,
PA = (X, #correct pairsinz) /(Y Ly), which is equivalent to averaging per-item pairwise
scores when L is fixed.
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Forward World Modeling Inverse World Modeling

Model 3 4 5 6 7 8 9 10 3 4 s 6 7 3 9 10
Proprietary Models

GPT-5 84.62 7526 69.96 [648 57.48 52.16 [4945) [4693] 8628 80.37 [76109] 68.78 6571 62.13 S57.12 5533
GPT-5 mini 87550] 76.25 [70:65] 63.41 [58.14] [52.38] 46.65 44.11 8505 7677 7543 67.67 6379 S57.04 55.04 50.02
GPT-5 nano 67.83 5029 38.61 3035 2597 2190 1759 1684 7281 5395 4248 3645 31.68 2820 24.11 2033
Gemini 2.5 Pro 86.10 [7643] 9.83 60.80 5326 48.12 40.12 36.98 [§7.94 88| 7539 [70103) [66.03] [62:91 [57.78] 56162
Gemini 2.5 Flash 8164 67.94 5417 4338 3743 3273 20.88 2807 82.78 72.18 60.83 58.19 53.14 51.78 47.99 44.98
Gemini 2.5 Flash-Lite 6434 4907 3870 33.87 27.81 2544 2331 2031 69.58 57.55 46.04 39.00 3406 30.18 2751 23.16
Claude Sonnet 4 65.65 4582 36.65 30.52 2661 2278 2149 20.16 7325 5685 48.87 43.07 37.00 3271 3050 28.49
Open-Weight Models

GLM-4.5V 7430 5999 47.65 3878 3083 25.69 2160 19.67 80.50 6928 57.04 5153 4695 41.68 3736 37.93

Llama-4-Mav-17B-128E-Ins 72.47 52.09 43.87 3530 29.90 25.89 22.79 20.49 7255 62.60 50.52 43.10 35.17 31.68 28.10 25.80
InternVL3.5-241B-A28B 75.79 16225 [50.83| 45.85 37.84 |32.88 27.85 2524 8226 70.09 60.61 [53.38 4590 39.35 34.12 30.56

Gemma-3-27b-it 6329 44.66 32.04 2582 22.11 19.50 16.74 1629 64.95 4837 40.04 33.87 2853 23.63 21.74 19.36
QVQ-72B-Preview 69.14 5296 40.83 3627 33.16 30.63 2630 24.76 7133 58.77 4843 4436 4026 39.30 36.66 36.58
Qwen2.5-VL-72B-Ins 78.15 60.05 49.87 4192 36.77 31.73 [28.03] 25.07 77.80 65.85 53.30 48.19 44.07 37.57 33.76 36.27
Qwen2.5-VL-32B-Ins 67.83 5546 4435 3575 27.52 2642 2201 18.07 63.55 59.70 54.57 51.01 [49.36 47.17 41.47 [40.16
Ovis2.5-9B 5839 4251 3496 31.08 24.61 20.78 18.11 1696 64.86 51.74 41.65 3547 3095 26.64 23.70 23.25
MiniCPM-V-4.5 60.75 3873 33.65 2547 24.81 2140 21.56 1833 69.23 53.08 47.35 39.55 34.87 30.63 27.05 2571
Idefics3-8B-Llama3 60.23 3699 31.83 2425 21.29 20.80 2046 17.71 4738 33.86 27.26 2348 19.87 1850 17.04 15.16
Cosmos-Reasonl 56.28 41.86 3475 28.40 2646 2649 2541 2488 5830 4593 4425 3850 3572 3456 31.50 28.64
Human Performance 93.62 9530 95.04 93.87 9543 9541 9475 95.13 92.15 9385 94.77 94.58 96.23 97.74 95.21 95.46

Table 1: Evaluation on ENACT (Pairwise Accuracy). Dark gray indicates the best result within

each category (Proprietary or Open-Weight Models), and Light gray denotes the second-best result
within the category.

3 Experiments and Analysis

3.1 World Modeling as a Proxy for Evaluating Embodied Cognition

Experimental Setup. (1) VLM evaluation setup. We evaluate 7 proprietary VLMs from 3 families [3,
4, 11] and 22 open-weight models from 10 families [12-20]. For input, all images are resized to
512 x 512, and we use a unified prompt template per QA type. Models are instructed to return a
parsable Python list encoding a permutation of indices. We apply the online verifier in Section 2.3
and report Task Accuracy and Pairwise Accuracy. (2) Human evaluation setup. We also recruit
trained annotators to answer the benchmark under the same interface and instructions as the models.
For inter-annotator agreement (IAA), we uniformly stratify 240 items over QA type and step length,
collect independent labels from three annotators, and report Krippendorff’s o with 95% bootstrap
confidence intervals.

We visualize Task Accuracy for GPT-5 and human annotators in Figure 1. Since many models
collapse at long horizons (L = 8-10, near-zero task success), we focus on the more informative
Pairwise Accuracy. The main results are in Table 1.

Is inverse world modeling easier than forward? Across families and step lengths, inverse con-
sistently outperforms forward, with the margin widening as L grows. For example, GPT-5 and
Gemini 2.5 Pro maintain clear gaps at L > 6, and open-weight models such as GLM-4.5V and
Qwen2.5-VL also show higher inverse scores than forward for most L (see Table 1).

How does performance scale with step length? Accuracy decreases monotonically with L for
nearly every model, no matter proprietary or open-weight. Shorter tasks (L < 4) are manageable for
several VLMs, while longer tasks (L > 8) are challenging even for the strongest models. Pairwise
Accuracy slows down the performance drop compared to Task Accuracy, but follows the same trend.

Can SOTA VLMs achieve near-human performance? As we can see from the Table 1, human
performance is far better than any tested VLM. SOTA VLMs like GPT-5 mini and Gemini-2.5 Pro
achieve comparable performance with humans at step 3, but drop significantly when step length
scales.

What is the performance comparison among VLMs? GPT-5 and Gemini 2.5 Pro are the
strongest overall in both forward and inverse settings. Several open-weight VLMs are competi-
tive: InternVL3.5-241B-A28B, GLM-4.5V, and Qwen2.5-VL often close much of the gap, and even
surpass Claude 4 Sonnet in multiple settings (e.g., inverse at L = 3-6). Notably, GPT-5 mini is highly
competitive, even achieving the best score in short and mid horizons (e.g., forward at L = 3,7, 8).
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Figure 4: Probing studies’ performance delta with the baseline and its significance (deeper the red,
the smaller the p-value is).

@ Key Takeaways: World Modeling as a Proxy for Evaluating Embodied Cognition

e Inverse consistently surpasses forward, and the margin grows as the horizon L increases.
e Accuracy declines steadily with step length L, and all VLMs drop sharper at long horizons.
* Humans achieve near-ceiling performance.

3.2 Are VLMs Sensitive to Image Realism?

Experimental Setup. (1) Probing configuration. Motivated by GPT-5 mini’s strong cost and
performance balance in Section 3.1, we use it as the base model to represent SOTA VLMs. We
evaluate step lengths L € {3,6,9}. For each L and each QA type (forward, inverse), we sample 50
items, yielding 300 total QAs. Question text is held fixed, and we vary only the image source. Outputs
are parsed as permutations and scored by the online verifier in Section 2.3 with Pairwise Accuracy.
We report, for each setting, the Pairwise Accuracy difference A = PApyseline — PAvariane and two-sided
p-values versus the baseline. (2) Image realism implementation. Behavior uses Isaac Sim [21], our
baseline uses Ray Tracing [22] with default global effects. We probe three alternatives on a realism
spectrum: Realistic (segmented frames translated to a real-world style using GPT-image-1 [23] while
we try to maintain the consistency), Path Tracing (higher-fidelity rendering, (author?) [24]), and Ray
Tracing Only (Ray Tracing with global effects such as reflections and stage lights disabled). Results
are summarized in Figure 4 (panel 3.1).

Does rendering realism change performance? We find no statistically significant degradation or
improvement across the spectrum. All settings have p > 0.2 relative to the baseline, and observed
deltas are small across both QA types and all step lengths (Figure 4, A). This suggests the model is
not sensitive to image realism in our embodied tasks.

I @ Key Takeaways: Image Realism

* Robustness to realism variations reduces concern about simulator-real gaps for our tasks.

3.3 How Do Camera Parameters Affect VLM Performance?

Experimental Setup. (1) Probing configuration. We reuse the setup from Section 3.2. We still use
GPT-5 mini as the base VLM. (2) Camera FOV. The baseline is Aperture 40. We probe Aperture
30, 60, 80, and Fisheye. Rendering and all other parameters are held fixed. (3) Camera Height. The
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baseline is (1.75m) high for eye-level view used in Behavior replays. We probe High (+0.5 m) and
Low (—0.25m). We choose (—0.25m) since a lower height will consistently make relevant objects
invisible. Results are summarized in Figure 4 (panels 3.2.1 and 3.2.2).

Does field of view matter? Figure 4 (B.1) shows the results. A small change to Aperture 30 shows
no significant difference from baseline (p > 0.1). Larger deviations substantially hurt performance.
Aperture 60, 80, and Fisheye are consistently and significantly worse than baseline across QA types
and step lengths (p < 0.01). This suggests that the model performs better with a human-like FOV.

Does camera height matter? As shown in Figure 4 (B.2), raising the camera (High) degrades
accuracy relative to baseline with statistical significance at the 10% level (p < 0.10) and with
negative A across settings. Lowering the camera (Low) yields mixed effects. Forward shows a mild
drop (p = 0.07, A = —0.05). The inverse setting is statistically indistinguishable from the baseline
(p = 0.51, A = —0.02). There are two likely reasons for this. First, the —0.25 m shift falls within
the typical variation of human eye-level, which keeps the image statistics similar to the pretraining
data. Second, the inverse task itself may be less sensitive to small vertical changes because it relies
on a fixed state sequence and coarse-grained relationships. Overall, the model performance peaks at
a typical human eye level.

@ Key Takeaways: Camera Parameters

* The accuracy of models declines as the perspective becomes overly wide or distorted.
* Performance is sensitive to camera height, peaking at a typical human eye-level.

3.4 Do VLMs Have Embodied Biases?

To further understand the nature of VLM embodiment, we investigate two potential biases: self-
awareness regarding the robot’s own body and handedness asymmetry, a common trait in humans.

Experimental Setup. We probe these two aspects using distinct experimental setups. (1) Robot
Appearance. To test for self-awareness, we assess whether VLMs can recognize their embodiment
regardless of its appearance. We reuse the probing configuration from Section 3.2, with GPT-5 mini
as the base model. The baseline is the default black-and-white robot appearance from the Behavior
simulator. We test three variants: White Color (robot is entirely white), Random Color (robot color
is randomized at each frame), and Skin Color (robot is rendered with a human-like skin tone). We
hypothesize that a model with robust self-awareness will maintain consistent performance across these
visual changes. (2) Handedness Asymmetry. Inspired by human motor control, where approximately
89% of the population is right-handed [25], we investigate if VLLMs exhibit a similar “dominant hand”.
This analysis does not use the probing configuration but instead relies on a predicate-level error
analysis of the main GPT-5 experiment results. We isolate all errors related to the LeftGrasping
and RightGrasping predicates. Using the error analysis framework described in Section 3.5, we
treat the ground-truth and model-predicted state differences for each hand as two distinct pools. This
allows us to frame the problem in terms of precision and recall. For fair comparison between the
hands, which may not appear equally in the data, we report Precision, Recall, and a Mixing rate. The
mixing rate measures the proportion of ground-truth state differences for one hand that the model
incorrectly attributes to the other. Higher precision and recall with lower mixing indicate greater
proficiency with that hand.

Are VLMs aware of their own embodiment, and is this awareness robust to changes in their
visual appearance? As shown in Figure 4 (panel 3.3.1), altering the robot’s appearance has no
statistically significant impact on performance. For all variants (White, Random, Skin Color), the
performance deltas are small (|A| < 0.05) and the results are not significant (all p > 0.10). This
suggests that the model’s understanding of its interaction with the world is not tied to a specific visual
representation of its own body, indicating a robust sense of self-embodiment within the task context.

Do VLMs exhibit a handedness asymmetry in their interactions with the world? Our analysis of
hand-related errors, summarized in Figure 4 (panel 3.3.2), reveals a consistent and strong asymmetry.
For both forward and inverse tasks, the right hand consistently outperforms the left hand across all
metrics. Precision and recall are substantially higher for the right hand, while the mixing rate (i.e.,
misattributing a left-hand action to the right hand or vice versa) is significantly lower. For instance, in
the forward task, 10.95% of true left-hand changes were incorrectly identified as right-hand changes,
whereas only 4.89% of right-hand changes were misattributed to the left. This suggests VLMs are
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more prone to making mistakes with their left hand, mirroring the right-hand dominance prevalent in
humans.

@ Key Takeaways: Embodied Biases

e GPT-5 mini demonstrates strong self-awareness, irrespective of its appearance.

* GPT-5 mini demonstrates a significant right-handed bias, which is similar to human handed-
ness.

3.5 Error Analysis

3.5.1 Preparation for Error Analysis

To gain a deeper insight into the reasoning failures of VLMs, we designed a systematic error analysis
framework. Evaluating errors directly from output permutations (e.g., comparing predicted order
[3, 2, 1] to ground truth [2, 3, 1] is difficult and often uninformative about the underlying cognitive
mistakes. Our approach instead converts the model’s output into a format that allows for a direct,
fine-grained comparison with the ground truth. For the forward world modeling task, we take

the model’s predicted permutation of images (0;(1)7 . 70:;(1:71)) = (01,...,0r—1) and compute
the corresponding sequence of actions (i.e., visible state differences) that this ordering implies:
Qi = AVis(S;(k+1),S;(k)). This yields a predicted action sequence (ag,- - ,é4r—2). For the

inverse world modeling task, the model already outputs a predicted action sequence.

With both a predicted and a ground-truth action sequence, we can perform a pairwise comparison
at each step k. Each action ay, is a ser of atomic state differences (e.g., {add_Open(fridge),
remove_Inside(basket, cabinet)}). By comparing the predicted set a; with the grounded-
truth set ay, we can categorize each atomic state difference. This comparison, akin to analyzing a
Venn diagram, yields three primary outcomes for each ground-truth state difference: (1) Correct:
The state difference is present in both the ground-truth and predicted sets. (2) Omission: The state
difference is in the ground-truth set but missing from the prediction. (3) Hallucination: The state
difference is in the predicted set but not in the ground truth.

We assume each state difference is an independent event and aggregate these counts across all actions
and all questions in the dataset. Based on this framework, we classify errors into five main categories:

1. Entity Substitution. The model correctly identifies the state change predicate but applies it to
the wrong object(s).

2. Polarity Inversion. The model correctly identifies both the object(s) and the predicate, but
reverses the polarity of the change (e.g., ‘remove’ instead of ‘add’).

3. Predicate Substitution. The model correctly identifies the object(s) involved but describes the
state change with an incorrect predicate.

4. Hallucination. The model predicts a state change that did not occur in the ground truth.
5. Omission. The model fails to predict a ground-truth state change that occurred.

3.5.2 Error Distribution Analysis

Our error analysis for GPT-5, shown in Figure 5,
reveals that the vast majority of errors fall into . -
two main categories: Omission and Hallucina-

tion. For the forward task, these two error types
account for a combined 81% of all failures. This

figure is even higher for the inverse task, where

they make up nearly 84% of errors. This indi-  'nverse

cates that the model’s primary challenge is not . ' . ‘ : ‘ : :
misinterpreting the specifics of a known state 0% 25% 50% 75% 100%
Change’ but rather COITCCtly ldentlf}’lng Wthh M Entity Substitution W Polarity Inversion M Hallucination
changes occurred and which did not. While mPredicate Substitution i Omission

Omission and Hallucination errors are dominant

in both settings, their distribution shifts between ~Figure 5: Error distribution (GPT-5) across EN-
tasks. In forward modeling, Hallucination is ACT, broken down by forward and inverse tasks.
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the most common error at 43.9%, followed by Omission at 37.1%. Remarkably, in the inverse task,
these two errors are perfectly balanced, each accounting for exactly 41.8% of all failures. Other error
types are far less frequent. Polarity Inversion is more common in the forward setting (12.4%) than
the inverse (9.2%). Interestingly, Entity Substitution is also slightly more prevalent in the forward
task (6.3% vs. 5.4%). Finally, Predicate Substitution remains the rarest error type, though it is more
pronounced in the inverse setting (1.9%) compared to the forward task (0.3%).

4 Related Work

Embodied Cognition. Our work is grounded in classical Embodied Cognition, where cognition
arises from brain—body—environment coupling, and meaning is grounded in an agent’s sensorimotor
repertoire [26—30]. This rich theoretical lineage, spanning ecological views, the extended mind, and
sensorimotor accounts [31-35], is supported by empirical findings in psychology and has inspired
innovations in robotics and active inference [36—41]. In modern Al, this has motivated a shift towards
egocentric, interactive benchmarks (e.g., Ego4D, VLN) [42—45], though the term is sometimes used
without theoretical grounding [46].

World Modeling. World Modeling is well aligned with this embodied perspective. It learns action-
conditioned dynamics for imagination and planning [47, 48]. Despite achieving scalable imagination
and policy gains from counterfactual rollouts [49-52], the grasp of embodied interaction in recent
models remains limited. This limitation stems from two issues: many models lack real-world physics
grounding due to their reliance on internet video or game data [50, 51], while others, focusing on short-
horizon, low-level predictions, fail to maintain causal state progression [53, 54]. Correspondingly,
benchmarks for embodied world modeling either score superficial qualities like outcome plausibility
and action-video consistency, or remain coarse and non-interactive [55-58, 5, 59, 60, 10, 61]. Recent
benchmarks like [62, 63], which emphasize sequencing, but do not verify the consequences of
individual actions or the dynamics between states. As raised by [64], we posit that the ability to serve
as a sandbox for reasoning and thought experiments is a core function of a world model. To address
this, our benchmark is built to probe forward and inverse ordering with a clean action space and a
scalable construction.

VLMs in Embodied AI. VLMs are increasingly central to embodied agents, serving as high-level
planners that handle task decomposition and subgoal selection [65—70] or as end-to-end policies
that directly map vision to action [71-74]. However, current applications and their corresponding
benchmarks share critical limitations. Deployments are often confined to tabletop manipulation or
simulated environments with limited real-world execution [75]. Similarly, benchmark evaluations tend
to prioritize simple instruction-following, neglecting the multi-step, consequence-aware reasoning
essential for complex interaction [45, 76-78, 7, 61]. Our work addresses this gap by introducing a
benchmark focused on egocentric interaction that specifically probes an agent’s understanding of
forward and inverse world modeling.

5 Conclusion

ENACT offers a simple and scalable way to probe how perception and action cohere over time. In
extensive simulations, we observe steady degradation with longer horizons and consistently higher
accuracy on inverse than forward ordering, while sensitivity analyses suggest limited dependence
on rendering realism or robot appearance, but noticeable effects from camera field of view and
height. Future work should broaden tasks, diversify environments, and connect sequence ordering to
real-robot control to test external validity.
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