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ABSTRACT

Reverse-Kullback-Leibler regularization has emerged to be a predominant tech-
nique used to enhance policy optimization in reinforcement learning (RL) and
reinforcement learning from human feedback (RLHF), which forces the learned
policy to stay close to a reference policy. While the effectiveness and necessity
of KL-regularization have been empirically demonstrated in various practical sce-
narios, current theoretical analysis of KL-regularized RLHF still obtains the same
O(1/ϵ2) sample complexity as problems without KL-regularization. To under-
stand the fundamental distinction between policy learning objectives with KL-
regularization and ones without KL-regularization, we are the first to theoretically
demonstrate the power of KL-regularization by providing a sharp analysis for KL-
regularized contextual bandits and RLHF, revealing anO(1/ϵ) sample complexity
when ϵ is sufficiently small.
We further explore the role of data coverage in contextual bandits and RLHF.
While the coverage assumption is commonly employed in offline RLHF to link
the samples from the reference policy to the optimal policy, often at the cost of
a multiplicative dependence on the coverage coefficient, its impact on the sam-
ple complexity of online RLHF remains unclear. Previous theoretical analyses of
online RLHF typically require explicit exploration and additional structural as-
sumptions on the reward function class. In contrast, we show that with sufficient
coverage from the reference policy, a simple two-stage mixed sampling strategy
can achieve a sample complexity with only an additive dependence on the cover-
age coefficient. Our results provide a comprehensive understanding of the roles
of KL-regularization and data coverage in RLHF, shedding light on the design of
more efficient RLHF algorithms.

1 INTRODUCTION

Recently, Reinforcement Learning from Human Feedback (RLHF) has emerged as a central tool for
aligning large language models (LLMs) and diffusion models with human values and preferences
(Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022; Rafailov et al.,
2024), exhibiting impressive capabilities in applications, such as Chatgpt (Achiam et al., 2023),
Claude (Anthropic, 2023), Gemini (Team et al., 2023), and LLaMA-3 (Meta, 2024).

RLHF methods treat the language model as a policy that takes a prompt x and produces a response
a conditioned on x, and they optimize the policy by aligning it with human feedback. There are
mainly two kinds of feedback: absolute rating and preference comparison. For absolute rating, the
collection typically involves human annotators to provide rating scores like 1 to 5 (Wang et al.,
2024a;b) for responses or hard 0-1 scores for math reasoning tasks since the reasoning tasks often
have gold standard answers (Cobbe et al., 2021; Hendrycks et al., 2021; Xiong et al., 2024b).

On the other hand, preference comparison is frequently applied in chat tasks when making com-
parisons is much easier for human labeler (Achiam et al., 2023). Although preference feedback is
believed to be more intuitive for human users and easier to collect, it also poses more challenges
for the RLHF algorithms to effectively leverage the feedback signals since the reward signals are
not directly observed. In practice, the learning process typically involves (a) constructing a reward
model based on the maximum likelihood estimation (MLE) of Bradley-Terry (BT) (Bradley & Terry,
1952b) model from the preference feedback; (b) applying RL algorithms like PPO (Schulman et al.,
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2017b) to train the language model so that it maximizes the reward signals with KL regularization
(Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023). There is also a series of work on direct
preference learning algorithms, including Slic (Zhao et al., 2023b), DPO (Rafailov et al., 2024),
IPO (Azar et al., 2024), which directly optimize the preference signals to train the language model
without constructing the reward model. However, despite their efficiency, these types of algorithms
often suffer from overfitting, and DPO suffers from a drop of chosen probability (Song et al., 2024;
Liu et al., 2024; Amini et al., 2024; Huang et al., 2024).

Since human value and preference are so complicated that they are unlikely to be encompassed by
the considered preference model classes, the learned model is easy to be hacked and become biased.
Practically, the policy may generate disproportionate bold words or emoji to please the learned re-
ward (Zhang et al., 2024). Hence, the KL-regularization between the learned policy and a reference
policy (the pre-trained model after supervised fine-tuning) plays a fundamental role in RLHF to
avoid overfitting. There is a line of RLHF work that realizes the significance of KL-regularization
and regards the problem as a reverse-KL regularized contextual bandit (Ziegler et al., 2019; Wu
et al., 2021; Ouyang et al., 2022; Rafailov et al., 2024; Xiong et al., 2024a; Ye et al., 2024b). How-
ever, they adopt the techniques from bandit framework and neglect the characteristic of reverse-
KL-regularization, thus obtaining almost the same sample complexity with problems without KL-
regularization. Therefore, the question of whether there exists a fundamental distinction between
policy learning objectives with and without KL-regularization is still largely under-explored.

Compared to the offline RLHF algorithms (Rafailov et al., 2024; Azar et al., 2024; Chen et al., 2024)
that can only use planning to approximate the solution to the relative entropy minimization problem
(Ziebart et al., 2008; Song et al., 2024), online RLHF has been demonstrated to outperform offline
methods empirically and theoretically (Bai et al., 2023; Meta, 2024; Xiong et al., 2024a; Tajwar
et al., 2024; Song et al., 2024; Wu et al., 2024), because it has further interactions with human or the
preference oracle. Most standard theoretical online RL techniques apply optimism to balance explo-
ration and exploitation (Abbasi-Yadkori et al., 2011; Wang et al., 2020; Jin et al., 2021). However,
it is inefficient to implement exploration for practical RLHF algorithms. Meanwhile, an emerging
line of offline RLHF literature highlights the coverage of the reference policy π0. The coverage of
π0 refers to the ability of the model to generate diverse responses for a wide range of prompts. A
model with good coverage can generalize well to unseen contexts and actions, which is essential for
the learned reward function to also generalize well. In practice, this is evidenced by the fact that the
simple best-of-n sampling based on π0 is competitive with the well-tuned PPO algorithm for general
open-ended conversation tasks (Dong et al., 2023), and the fact that the π0 can solve a majority of
the math problems with multiple responses (Shao et al., 2024; Nakano et al., 2021). However, the
theoretical understanding of the role of coverage in online RLHF is still largely understudied. Thus,
it is natural to ask if explicit exploration is necessary for online RLHF with good coverage of π0 and
how the coverage of π0 affects the sample complexity of online RLHF.

In this paper, we answer the above questions by
• providing a novel fine-grained analysis for KL-regularized contextual bandits and RLHF, which

adapts to the optimization landscape of the reverse-KL regularization and reveals a sharper sample
complexity than the existing results,

• proposing an efficient 2-stage mixed sampling strategy for online RLHF with good coverage of π0,
which achieves sample complexity with only an additive dependence on the coverage coefficient.

1.1 OUR CONTRIBUTIONS

In this work, we make a first attempt to illustrate the statistical benefits of KL-regularization for
policy optimization in contextual bandits and reinforcement learning (RL) from preference feedback.
Our main contributions are summarized as follows:
• In Section 3, we formulate RLHF with absolute-rating feedback as a contextual bandit problem

with KL-regularization. First, we provide a lower bound for the KL-regularized contextual bandit
problem, which indicates that the sample complexity of the problem is Ω(η logNR(ϵ)/ϵ) when
ϵ is sufficiently small, where NR(ϵ) is the covering number of the reward function class and η is
the KL-regularization coefficient.

• Then we showcase a novel analysis to upper bound the suboptimality gap of the KL-regularized
objective in contextual bandits, and propose a simple two-stage mixed sampling strategy for online
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RLHF which achieves a sample complexity ofO(max(η2D2, η/ϵ) logNR(ϵ/δ)) when the reward
scale is a constant, where D is the coverage coefficient of the reference policy π0 and δ is the
confidence parameter. To the best of our knowledge, this is the first work to provide a sharp
sample complexity for KL-regularized contextual bandits.

• In Section 4, we extend our analysis to reinforcement learning from preference feedback. We
rigorously demonstrate that KL-regularization is essential for more efficient policy learning in
RLHF with preference data. We further propose a two-stage mixed sampling strategy for online
preference learning setting with good coverage of π0, which achieves a sample complexity of
O(max(η2D2, η/ϵ) logNR(ϵ/δ)) when the reward scale is a constant.

1.2 PREVIOUS UNDERSTANDING OF KL-REGULARIZATION IN RL

While we mainly focus on the theoretical understanding of KL-regularization in RLHF, it is also
worth mentioning that our analysis for KL-regularized contextual bandits also contributes to the
theoretical understanding of the impact of KL-regularization in RL since contextual bandits can be
viewed as a simplified version of Markov decision processes (MDPs).

In RL, KL-regularization has been widely used to stabilize the learning process and prevent the
policy from deviating too far from the reference policy. Here, we provide a brief overview of the
existing understanding of KL-regularization in decision-making problems. From the perspective of
policy optimization, KL-regularization captures entropy regularization as a special case 1, which is
also an extensively used technique in RL literature (Sutton, 2018; Szepesvári, 2022). There is a
large body of literature that has explored the benefits of entropy regularization or KL-regularization
in RL (Schulman et al., 2015; Fox et al., 2016; Schulman et al., 2017a; Haarnoja et al., 2017; 2018;
Ahmed et al., 2019). Most related to our work, Ahmed et al. (2019) provided a comprehensive
understanding of the role of entropy regularization in RL, showing that entropy regularization can
improve the training efficiency and stability of the policy optimization process by changing the
optimization landscape through experiments on continuous control tasks (Brockman, 2016).

Theoretically, Neu et al. (2017) provided a unified view of entropy regularization as approximate
variants of Mirror Descent or Dual Averaging, and left the statistical justification for using entropy
regularization in RL as an open question. Geist et al. (2019) provided a framework for analyzing the
error propagation in regularized MDPs, which also focused on the proof of the convergence for the
policy optimization methods with regularization and lacked a sharp sample complexity analysis.

1.3 OTHER RELATED WORK

Analyses for Policy Optimization with Regularization While it is previously unknown whether
regularization can improve the sample complexity of policy optimization without additional assump-
tions, there are some works that provided a sharp convergence rate in the presence of regularization
(Mei et al., 2020; Shani et al., 2020; Agarwal et al., 2020; 2021). However, these works either
assumed the access of exact or unbiased policy gradient or required uniform value function approx-
imation error, which are not the standard case in sample-based RL setting.

RLHF Algorithms There are mainly three types of RLHF algorithms: offline, online and hyrbid.
The most well-known offline algorithms are Slic (Zhao et al., 2023b), Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024), Identity-PO (IPO) (Azar et al., 2024) and (SPIN) (Chen et al.,
2024). They aim to approximate the closed-form solution of the optimization problem on a fixed
offline dataset. For the online algorithms, the most representative one is Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017b). PPO has been used in the Chat-GPT (OpenAI, 2023), Gemini
(Team et al., 2023), and Claude (Bai et al., 2022). However, the deep RL method PPO is known to be
sample inefficient and unstable, making its success hard to reproduce for the open-source commu-
nity. In response to this, there have been many efforts to propose alternative algorithms to the PPO
algorithm. The Reward ranked fine-tuning (RAFT) (also known as rejection sampling finetuning)
(Dong et al., 2023; Touvron et al., 2023; Gulcehre et al., 2023; Gui et al., 2024) is a stable frame-
work requiring minimal hyper-parameter tuning, which iteratively learns from the best-of-n policy
(Nakano et al., 2021). This framework proves to be particularly effective in the reasoning task such

1We can regard the entropy regularization as a special case of KL-regularization by setting the reference
policy as the uniform distribution.
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as (Gou et al., 2024; Tong et al., 2024). However, the RAFT-like algorithms only use the positive
signal by imitating the best-of-n sampling. To further improve the efficiency, there is an emerging
body of literature that proposes online direct preference optimization by extending DPO or IPO to
an online iterative framework (Xiong et al., 2024a; Guo et al., 2024; Wu et al., 2024; Calandriello
et al., 2024; Xiong et al., 2024b). Finally, for the third type, the common point of hybrid and online
algorithms is that they both require further interaction with the preference oracle and on-policy data
collection. The difference is that hybrid algorithms start with a pre-collected dataset (Xiong et al.,
2024a; Song et al., 2024; Touvron et al., 2023), while the online algorithms learn from scratch.

RLHF Theory The theoretical study of RLHF can date back to the dueling bandits (Yue et al.,
2012) and follow-up work on MDPs (Wang et al., 2023a; Zhu et al., 2023). However, these works
deviate from the practice because they do not realize the significance of KL-regularization and still
choose the greedy policy that simply maximizes the reward. After this line of work, Xiong et al.
(2024a); Ye et al. (2024b); Song et al. (2024) highlight the KL-regularization theoretically and in-
corporate the KL term into the learning objective. However, they circumvent the special advantages
of KL-regularization and still follow the techniques in bandit analysis, thus obtaining loose bounds.
In our paper, we establish a new lower bound and a sharper upper bound for the KL-regularized
framework, thus validating the empirical advantage of KL-regularization. There are also some works
extending KL-regularized RLHF from bandit problems to the Markov decision process (MDP) prob-
lems (Zhong et al., 2024; Xiong et al., 2024b). We expect that our techniques can also be extended
to the MDP setting, which we leave for future work.

2 PRELIMINARIES

In this section, we formally state the problem settings of RL from human feedback (RLHF), where
we consider two types of feedback: absolute rating and preference.

2.1 CONTEXTUAL BANDITS WITH KL REGULARIZATION

The first setting is the absolute-rating feedback, where we can query the ground-truth reward func-
tion to measure the quality of the responses by providing absolute reward value. For instance, in
the NVIDIA Helpsteer project (Wang et al., 2023b; 2024c), human labelers are required to provide
absolute score in five attributes: helpfulness, correctness, coherence, complexity, and verbosity. The
dataset leads to many high-ranking open-source reward models, including the ArmoRM-Llama3-
8B-v0.1 (Wang et al., 2024a;b), URM-LLaMa-3.1-8B2, and Llama-3.1-Nemotron-70B-Reward3.
We also notice that recently this feedback framework is extended to other task such as video gener-
ation (He et al., 2024).

The absolute-rating feedback is directly modeled as reward functions (Wang et al., 2024a; Xiong
et al., 2024b), and is regarded as contextual bandits with KL regularization. In the contextual bandit
setting, at each round t, the agent observes a context xt ∈ X generated from a distribution d0 and
chooses an action at ∈ A. The agent receives a stochastic reward rt ∈ R depending on the context
xt and the action at. The goal is to maximize the expected cumulative reward over T rounds.

The learner has access to a family of reward functions R(θ, x, a) parameterized by θ ∈ Θ, such that
there exists θ∗ ∈ Θ satisfying E[rt|x1:t, a1:t] = R(θ∗, xt, at). WLOG, we assume that the reward
feedback rt at all rounds is a non-negative real number bounded by B. We consider a KL-regularized
objective as follows:

Q(π) = Ex∼d0Ea∼π(·|x)

[
R(θ∗, x, a)− η−1 ln

π(a|x)
π0(a|x)

]
, (2.1)

where π0 is a known fixed policy, and η > 0 is a hyperparameter that controls the trade-off between
maximizing rewards and staying close to the reference policy π0.
Remark 2.1. It is worth noting that entropy or Kullback-Leibler (KL) regularization is also widely
used in contextual bandits (Berthet & Perchet, 2017; Wu et al., 2016) and deep RL algorithms
(Schulman et al., 2015; Fox et al., 2016; Schulman et al., 2017a; Haarnoja et al., 2017; 2018),
where KL-divergence regularization is a popular technique for preventing drastic updates to the

2https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B
3https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward
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policy. Algorithms such as Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) ex-
plicitly incorporate KL-regularization to limit the policy updates during optimization, ensuring that
the updated policy does not deviate too much from the current policy. This constraint promotes sta-
ble and reliable learning, particularly in high-dimensional state-action spaces. Additionally, KL-
regularization is central to Proximal Policy Optimization (PPO) (Schulman et al., 2017a), where a
penalty term involving KL-divergence ensures updates remain within “trust region”.

2.2 REINFORCEMENT LEARNING FROM PREFERENCE FEEDBACK

The second framework we consider is preference feedback, which is widely applied in projects such
as Chat-GPT (OpenAI, 2023) and Claude (Bai et al., 2022). Specifically, when receiving a prompt
x ∈ X , and two actions (responses) a1, a2 ∈ A from some LLM policy π(·|x), a preference oracle
will give feedback y defined as follows:

Definition 2.2 (Preference Oracle). A Preference Oracle is a function P : X × A × A → {0, 1}.
Given a context x ∈ X and two actions a1, a2 ∈ A, the oracle can be queried to obtain a preference
signal y ∼ Bernoulli(P(x, a1, a2)), where y = 1 indicates that a1 is preferred to a2 in the context
x, and y = 0 indicates the opposite.

To learn the preference, we follow Ouyang et al. (2022); Zhu et al. (2023); Rafailov et al. (2024);
Liu et al. (2023); Xiong et al. (2024a) and assume that the preference oracle is measured by the
difference of ground-truth reward functions R(θ∗, x, a), which is named the Bradley-Terry (BT)
model (Bradley & Terry, 1952a).
Definition 2.3 (Bradley-Terry Model). Given a context x ∈ X and two actions a1, a2 ∈ A, the
probability of a1 being preferred to a2 is modeled as

P(x, a1, a2) =
exp(R(θ∗, x, a1))

exp(R(θ∗, x, a1)) + exp(R(θ∗, x, a2))
= σ(R(θ∗, x, a1)−R(θ∗, x, a2)), (2.2)

where σ(·) is the sigmoid function.

The RLHF training always follows the fine-tuning process, which yields a reference policy π0.
When performing RLHF on specific tasks, to avoid overfitting, we impose KL-regularization to the
learned reward model when optimizing the policy. Hence, our objective function is also (2.1).

2.3 ADDITIONAL NOTATIONS AND DEFINITIONS

In this subsection, we introduce the definitions shared by both settings.

Reward function class. We consider a function class R = {R(θ, ·, ·)|θ ∈ Θ} and for the realiz-
ability, we assume that the ground truth reward function R(θ∗, x, a) is in the function classR. Then,
we define the covering number ofR as follows.

Definition 2.4 (ϵ-cover and covering number). Given a function class F , for each ϵ > 0, an ϵ-cover
ofF with respect to ||·||∞, denoted by C(F , ϵ), satisfies that for any f ∈ F , we can find f ′ ∈ C(F , ϵ)
such that ||f − f ′||∞ ≤ ϵ. The ϵ-covering number, denoted as NF (ϵ), is the smallest cardinality of
such C(F , ϵ).

Planning oracle. Given a reward model, we can learn the policy by optimizing the KL-regularized
objective in (2.1). To simplify the analysis, we assume that there exists a planning oracle, which in
empirical can be efficiently approximated by rejection sampling (Liu et al., 2023), Gibbs sampling
(Xiong et al., 2024a), and iterative preference learning with a known reward (Dong et al., 2024).
Definition 2.5 (Policy Improvement Oracle). For a reward function R(θ, ·, ·) ∈ R and a reference
policy π0, for any prompt x ∼ d0, we can compute:

πη
θ (·|x) := argmax

π(·|x)∈∆(A)

Ea∼π(·|x)

[
R(θ, x, a)− η−1 log

π(a|x)
π0(a|x)

]
∝ π0(·|x) · exp

(
ηR(θ, x, ·)

)
.

Hence, the comparator policy is the solution of the oracle given the true reward function R(θ∗, ·, ·):
π∗(·|·) ∝ π0(·|·) ·exp(ηR(θ∗, ·, ·)). The goal is to minimize the sub-optimality of our learned policy
π̂ with π∗: Q(π∗)−Q(π̂).
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Coverage conditions. It is crucial to assume that our data-collector policy π0 possesses good
coverage, which can ensure that the learned reward function can generalize well to unseen contexts
(prompts) and actions (responses), and thus can enable us to approximate the optimal policy. The
global coverage is the uniform cover over all the policies in the considered class Π, which is standard
in offline RL (Munos & Szepesvári, 2008; Song et al., 2024) and online RL (Xie et al., 2022; Rosset
et al., 2024). Essentially, Song et al. (2024) demonstrated that global coverage is necessary for
offline framework and Direct Preference Optimization (DPO) fails without global coverage. Hence,
we introduce two types of global-coverage conditions.
Definition 2.6 (Data Coverage). Given a reference policy π0, D2 is the minimum positive real
number satisfying ∀ (x, a) ∈ X ×A, s.t. π(a|x) > 0 and ∀ b : X → [−B,B], we have

sup
θ,θ′∈Θ

|R(θ′, x, a)−R(θ, x, a)− b(x)|2

Ex′∼d0Ea′∼π0(·|x′)|R(θ′, x′, a′)−R(θ, x′, a′)− b(x′)|2 ≤ D2.

The coverage coefficient D measures how well the in-sample error induced by distribution d0 ×
π0 can cover the out-of-sample error, identifically speaking, it depicts the ability of π0 to cover
the action space. This concept is adapted from the F-design for online RL under general function
approximation (Agarwal et al., 2024), and resembles the coverage coefficient for offline RL (Ye
et al., 2024c;a), and the eluder dimension (Wang et al., 2020; Ye et al., 2023; Agarwal et al., 2023;
Zhao et al., 2023a) for online RL.
Definition 2.7 (Global-Policy Coverage). Given a reference policy π0, CGL is the minimum positive
real number satisfying that for any π : X → A

sup
x∼d0,a∈A

π(a|x)
π0(a|x)

≤ CGL.

The two conditions require the reference policy to cover all possible policy distributions, which is
standard and common in RL literature. Additionally, although the two conditions defined above are
both global, it is obvious that D2 ≤ CGL, indicating that it is more general to assume a finite D.

Because of the KL-regularization for RLHF, the learned policy will not move too far from the ref-
erence policy. Hence, it is natural to relax the global coverage to local coverage inside the KL-ball
(Song et al., 2024).
Definition 2.8 (Local KL-ball Coverage). Given a reference policy π0, for a positive constant ρKL <
∞, and all policy satisfying that Ex∼d0

[KL(π, π0)] ≤ ρKL, we define

sup
x∼d0,a∈A

π(a|x)
π0(a|x)

:= CρKL .

Remark 2.9 (Relation between Local and Global Coverage Conditions). The local-coverage con-
dition (Definition 2.8) is more precise because compared to the global conditions targeting all
possible policies, it only constrains the coverage to a KL-ball. In Song et al. (2024), because
of the specific form of the oracle (Definition 2.5), the considered policy class is Π = {π(·|·) ∝
π0(·|·) exp(ηR(θ, ·, ·)) : R(θ, ·, ·) ∈ R}. Thus, they only need to assume that the condition hold for
ρ = 2ηB, indicating that CρKL ≤ CGL. On the other hand, the data coverage condition (Definition
2.6) is measured on the level of reward functions instead of policies. In this sense, the data coverage
condition and local-coverage condition do not encompass each other.

3 KL-REGULARIZED CONTEXTUAL BANDITS

3.1 LOWER BOUND

In this section, we provide a lower bound for the KL-regularized contextual bandit problem.
Theorem 3.1. For any ϵ ∈ (0, 1), η > 0, and any algorithm A, there exists a KL-regularized
contextual bandit problem with O(1) coverage coefficient and reward function class R such that A
requires at least Ω

(
min(η logNR(ϵ)

ϵ , logNR(ϵ)
ϵ2 )

)
rounds to achieve a suboptimality gap of ϵ.

Remark 3.2. The lower bound in Theorem 3.1 indicates that the sample complexity of the KL-
regularized contextual bandit problem is Ω(η logNR(ϵ)/ϵ) when ϵ is sufficiently small. In our
proof, the KL-regularization term shifts the local landscape of the objective function, which prevents
us to directly apply the standard bandit analysis, and thus requires a novel analysis to derive the
new lower bound. This Ω(η logNR(ϵ)/ϵ) lower bound suggests that the KL-regularized contextual
bandit problem enjoys a lower sample complexity compared to the standard contextual bandit.

6
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3.2 THE PROPOSED ALGORITHM

Algorithm 1 Two-Stage mixed-policy sampling
1: Input: η, ϵ, π0, Θ.

▷ Use policy π0 to achieve sufficient data coverage
2: for i = 1, . . . ,m do
3: Sample context x0

i ∼ d0 and action a0i ∼ π0(·|x0
i ).

4: Observe reward r0i = R(θ∗, x
0
i , a

0
i ) + ϵ0i , where ϵ0i is the random noise.

5: end for
6: Compute the least square estimate of the reward function based on D0 = {(x0

i , a
0
i , r

0
i )}mi=1:

θ̂0 ← argmin
θ∈Θ

m∑
i=1

(R(θ, x0
i , a

0
i )− r0i )

2.

7: Apply the planning oracle to compute πη

θ̂0
(·|·) ∝ π0(·|·) exp

(
ηR(θ̂0, ·, ·)

)
.

▷ Use policy πη

θ̂0
to sample new responses

8: for i = 1, . . . , n do
9: Sample context xi ∼ d0 and action ai ∼ πη

θ̂0
(·|xi).

10: Observe reward ri = R(θ∗, xi, ai) + ϵi, where ϵi is the random noise.
11: end for
12: Compute the least square estimate of the reward function using {(xi, ai, ri)}ni=1 together with

D0:

θ̂ ← argmin
θ∈Θ

m∑
i=1

(R(θ, x0
i , a

0
i )− r0i )

2 +

n∑
i=1

(R(θ, xi, ai)− ri)
2.

13: Output πη

θ̂
(·|·) ∝ π0(·|·) exp

(
ηR(θ̂, ·, ·)

)
.

We present the algorithmic framework in Algorithm 1 for the KL-regularized contextual bandit
problem, which serves as a theoretical model for online RLHF with absolute-rating feedback. The
algorithm consists of two states:
• In the first stage, we sample m contexts (prompts) and actions (answers) from the foundation

model π0 and observe the corresponding rewards (absolute ratings). These ratings can be regarded
as noisy observations of the underlying reward function R(θ∗, x, a). In line 6, we compute an
estimate of the reward function θ̂0 using least squares regression based on the collected data.
In line 7, we apply the planning oracle to obtain the policy πη

θ̂0
which maximizes the following

KL-regularized estimated objective in Definition 2.5 with reward function R(θ, ·, ·) = R(θ̂0, ·, ·).
• In the second stage, we utilize the trained policy πη

θ̂0
to sample n contexts (prompts) and actions

(responses). With the intermediate policy πη

θ̂0
, we can collect new data {(xi, ai, ri)}ni=1 which is

more aligned with the data distribution induced by the optimal policy π∗. In line 12, the algorithm
combines data from both stages {(xi, ai, ri)}ni=1 and {(x0

i , a
0
i , r

0
i )}mi=1 to compute a refined least

squares estimate θ̂ of the reward function, minimizing the sum of squared errors across both
datasets. By aggregating the two datasets together, there is an overlap between the data to compute
θ̂ and θ̂0, so that the output policy πη

θ̂
is well covered by the intermediate policy πη

θ̂0
.

3.3 THEORETICAL GUARANTEES

Loose Bound of Previous Analysis. The previous analysis is loose since they basically follow
the techniques of bandits and neglect the significance of KL-regularization. For simplicity, We use
short-hand notation R(θ, x, π) = Ea∼π(·|x)R(θ, x, a) and denote KL(π(·|x)∥π′(·|x)) by KL(π∥π′)
when there is no confusion. We make the estimation on a dataset {(xi, ai, ri) : xi ∼ d0, si ∼
π0}ni=1: πη

θ̂
= argmaxπ∈Π Ex∼d0 [R(θ̂, x, π) − η−1KL(π∥π0)], and has a small in-sample-error:

Ex∼d0Ea∼πo(·|x)
[
(R(θ̂, x, a)−R(θ∗, x, a))2

]
= O(1/n). The sub-optimality is decomposed as:

Q(π∗)−Q(πη

θ̂
) =Ex∼d0

[
R(θ∗, x, π∗)−R(θ̂, x, π∗)

]
+ Ex∼d0

[
R(θ̂, x, πη

θ̂
)−R(θ∗, x, πη

θ̂
)
]

7
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+ Ex∼d0

[
R(θ̂, x, π∗)− η−1KL(π∗∥π0)

]
− Ex∼d0

[
R(θ̂, x, πη

θ̂
)− η−1KL(πη

θ̂
∥π0))

]
≤Ex∼d0

[
R(θ∗, x, π∗)−R(θ̂, x, π∗) +R(θ̂, x, πη

θ̂
)−R(θ∗, x, πη

θ̂
)
]
,

where the inequality holds since πη

θ̂
is the maximum.

Then, the suboptimality can be further bounded by using the coverage condition (Definition 2.7) and
concentration inequalities:

Q(π∗)−Q(πη

θ̂
) ≤2CGLEx∼d0Ea∼π0(·|x)

[
|R(θ∗, x, a)−R(θ̂, x, a)|

]
≤2CGL

√
Ea∼π0(·|x)

[
(R(θ∗, x, a)−R(θ̂, x, a))2

]
= O(CGL/

√
n).

Hence, they need Θ(C2
GL/ϵ

2) sample complexity to ensure O(ϵ) sub-optimility.

Power of KL-regularization The crucial point of the sharper result is utilizing the strong convex-
ity of the objective Q because of the KL-regularization. Specifically, we take the first-order Taylor
expansion of sub-optimality with respect to {∆(x, a) = R(θ̂, x, a)−R(θ∗, x, a) : a ∈ A}

Q(π∗)−Q(πη

θ̂
) =ηEx∼d0

[ ∑
a∈A

πη
f (a|x)∆

2(x, a)−
∑

a1,a2∈A
πη
f (a1|x)π

η
f (a2|x)∆(x, a1)∆(x, a2)

]
≤ηEx∼d0

[ ∑
a∈A

πη
f (a|x)∆

2(x, a)
]
,

where f(·, ·) = γR(θ̂, ·, ·) + (1 − γ)R(θ∗, ·, ·) (γ ∈ (0, 1)) the inequality uses the fact that second
term on the right-hand side of the equality is (

∑
a∈A πη

f (a|x)∆(x, a))2 ≥ 0.

Now, under Algorithm 1, the coverage condition (Definition 2.6) and with concentration inequal-
ities, if the datasize m = Θ(η2D2), we can prove that for ∥R(θ̂, ·, ·) − R(θ∗, ·, ·)∥∞ ≤ η−1

and ∥R(θ̂0, ·, ·) − R(θ∗, ·, ·)∥∞ ≤ η−1, which implies the whole-policy coverage condition:
∥πη

f (·|·)/π
η

θ̂0
(·|·)∥∞ ≤ e4. Therefore, by setting n = Θ(η/ϵ), we obtain that πη

θ̂
is O(ϵ) optimal.

The conclusion is presented in the following theorem.
Theorem 3.3. Suppose that Assumption 2.6 holds. For any δ ∈ (0, 1/5), ϵ > 0 and constant
cm,n > 0, if we set m = Θ(η2D2 ·B2 log(2NR(ϵc)/δ)) and n = Θ(η/ϵ ·B2 log(NR(ϵc)/δ)) and
ϵc = min{ ϵ

2(1+c−1
m,n)B

, 1
8(1+cm,n)Bη2D2 }, then with probability at least 1 − 5δ the output policy of

Algorithm 1 πη

θ̂
is O(ϵ) optimal.

Remark 3.4. Theorem 3.3 shows that the sample complexity of Algorithm 1 isO(η/ϵ logNR(ϵ/δ))
when the reward scale is a constant and ϵ is sufficiently small. The result indicates that the pro-
posed two-stage mixed sampling strategy can achieve a suboptimality gap of ϵ with only an additive
dependence on the coverage coefficient D2.

3.4 DISCUSSION: RESULT FOR LOCAL-COVERAGE

In this subsection, we consider a more general assumption as described in Definition 2.8.
Corollary 3.5. Let CρKL

be in Definition 2.8 where ρKL = 2ηB. For any δ ∈ (0, 1/6) and ϵ > 0,
if we set n = cm,nm = Θ(CρKLη/ϵ ·B log(NR(ϵc)/δ)) (where constant cm,n > 0, ϵc = ϵ/(2(1 +
c−1
m,n)B)) then with probability at least 1− 6δ the output policy of Algorithm 2 πη

θ̂
is O(ϵ) optimal.

In comparison with the sample complexity Θ(η2D2 + η/ϵ) under global-coverage in Theorem 3.3,
the order Θ(CρKL

η/ϵ) depends on a weaker coverage CρKL
, but only has a multiplicative depen-

dence on the coverage coefficient instead of additive dependence. whether the additive dependence
can be achieved under the local-coverage condition is left as future work. Moreover, we compare
this result with Theorem 4.2 in Song et al. (2024) and suppose that the in-sample-error ϵreward of
Song et al. (2024) is O(1/n), their sample complexity is Θ(C2

ρKL
/ϵ2), which is looser than ours

Θ(CρKL
η/ϵ) when η = o(CρKL

/ϵ).

4 REINFORCEMENT LEARNING FROM PREFERENCE FEEDBACK

In this section, we consider the problem of aligning the language model with preference feedback.
As discussed in Section 2.2, at each round, we can sample a pair of actions (responses) a1, a2 and call

8
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a preference oracle to get the preference label y ∈ {0, 1}, where y = 1 means that the user prefers
a1 over a2 (Definition 2.2). To learn the reward function, we introduce the following assumption for
step 1 to ensure the existence of an MLE estimation oracle that can globally maximize the likelihood
of the BT model over all possible reward functions.
Definition 4.1 (MLE estimation oracle). Given a set of context-action pairs {(xi, a

1
i , a

2
i , yi)}ni=1

generated from the BT model, can output the parameter θ̂ such that

θ̂ = argmax
θ∈Θ

n∑
i=1

yi · log σ(R(θ, xi, a
1
i )−R(θ, xi, a

2
i )) + (1− yi) · log σ(R(θ, xi, a

2
i )−R(θ, xi, a

1
i ))︸ ︷︷ ︸

L(θ|xi,a
1
i ,a

2
i ,yi)

.

Following the previous analysis for RLHF (Xiong et al., 2024a), we assume the existence of a policy
improvement oracle (Definition 2.5, corresponding to step 2) that can compute the optimal policy
πη

θ̂
based on the reward function θ̂.

Remark 4.2. We learn the reward function since we can always control the reward (like clipping and
normalization) to ensure that the reward function is always bounded by B. The bounded assumption
does not apply for direct preference learning like DPO (Rafailov et al., 2024) since there is no
intrinsic policy function class encompassing the soundness (Song et al., 2024), thus increasing the
cases of overfitting.

4.1 THEORETICAL GUARANTEES

Lower Bound We provide a lower bound for the RLHF problem with preference feedback. The
lower bound is derived by constructing a hard instance where the reward function is difficult to
estimate from the preference feedback.
Theorem 4.3. For any ϵ ∈ (0, 1), η > 0, and any algorithm A, there exists a KL-regularized
preference learning problem as defined in Section 2.2 with O(1) coverage coefficient and reward
function class R such that A requires at least Ω

(
min(η logNR(ϵ)

ϵ , logNR(ϵ)
ϵ2 )

)
samples to achieve a

suboptimality gap of ϵ.

We defer Algorithm 2, a 2-stage mixed-policy sampling algorithm for RLHF with preference feed-
back, to Appendix A for conciseness because of its similarity to Algorithm 1.

Upper bound for global coverage We provide the theoretical guarantees for Algorithm 2 in the
following theorem.
Theorem 4.4. Suppose that Assumption 2.6 holds. For any δ ∈ (0, 1/6) and ϵ > 0, if we
set m = Θ(η2D2 · eB log(NR(ϵc)/δ)) and n = Θ(η/ϵ · eB log(NR(ϵc)/δ)) (where ϵc =
min{ ϵ

2(1+c−1
m,n)eB

, 1
8(1+cm,n)eBη2D2 }) then with probability at least 1 − 6δ the output policy of Al-

gorithm 2 πη

θ̂
is O(ϵ) optimal.

Remark 4.5 (Comparison with Hybrid Framework). We compare our two-stage mixed sampling
method with hybrid frameworks. From the algorithmic perspective, a hybrid algorithm first learns
from an offline dataset and then requires sufficient online iterations to ensure the performance (Xiong
et al., 2024a). For example, for a finite action space with A actions, the number of online iterations
should be Θ(A). In contrast, our method only requires two iterations of sampling from mixed policy
and interacting with the environment. Moreover, the results of hybrid literature depend on both
the coverage coefficient and the structure complexity of the function class (like the dimension for
a linear function class or eluder dimension (Russo & Van Roy, 2013)). Our result only needs the
coverage condition of the reference policy. More importantly, we obtain a sharper bound on the
sample complexity and derive the additive dependence on the coverage coefficient.
Remark 4.6. Although the coefficient eB appearing in sample size m,n can be exponentially large,
this term is caused by the non-linearity of the link function for the preference model, and is common
in RLHF literature (Zhu et al., 2023; Xiong et al., 2024a; Ye et al., 2024b; Song et al., 2024).

Theorem 4.4 shows that the sample complexity of Algorithm 2 is O(η/ϵ logNR(ϵ/δ)) when the
reward scale is a constant and ϵ is sufficiently small. The result indicates that the proposed two-stage
mixed sampling strategy can achieve a suboptimality gap of ϵ with only an additive dependence on
the coverage coefficient D2.

Besides, the algorithm only requires sampling from the reference policy π0 and the intermediate
policy πη

θ̂0
, which is more aligned with the practical scenarios where the preference feedback is

9
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Figure 1: Suboptimality gap for reinforcement learning from preference feedback.

collected from the human users and it is expensive to collect the data while the language model is
being updated. Our result implies that we may achieve a near-optimal sample complexity by simply
leveraging an intermediate policy to collect more data, and the training process of the reward model
and the policy (language model) can be highly decoupled.

Upper bound for local coverage We also show the result under the local-coverage assumption
(Definition 2.8) as follows.
Corollary 4.7. Let CρKL

be in Definition 2.8 where ρ = 2ηB. For any δ ∈ (0, 1/6) and ϵ > 0, if we
set n = cm,nm = Θ(CρKLη/ϵ · eB log(NR(ϵc)/δ)) (where constant cm,n > 0, ϵc = ϵ

2(1+c−1
m,n)eB

)

then with probability at least 1− 6δ the output policy of Algorithm 2 πη

θ̂
is O(ϵ) optimal.

5 EXPERIMENTAL RESULTS

In this section, we conduct experiments with synthetic data to investigate the benefit of mixed-policy
sampling and the effect of KL-regularization coefficient on the sample complexity of the problem.
We plot the experimental results for RL from preference feedback in Figure 1 and defer the results
for KL-regularized contextual bandits in Appendix B. All of the trials are repeated for 10 times and
plotted with the standard variation.

We consider the case where context distribution d0 is a projected gaussian distribution over the unit
sphere and A is a discrete set with |A| = 5. We construct the reward functions as R(ϕ, x, a) =
⟨x, ϕ(a)⟩, parameterized by a mapping ϕ from A to R10. To generate ϕ∗, we sample ϕ∗(a) inde-
pendently for each a ∈ A according to another projected gaussian distribution over the sphere with
radius equal to 5. In Figure 1(a), we compare the suboptimality gaps of mixed-policy sampling with
m = n to those of offline sampling using π0 under the same sample sizes. The result indicates
that the usage of mixed-policy sampling reduces the suboptimality gap by a large margin. In Figure
1(b), it is shown that the sample complexity is remarkably affected by the KL-regularization term,
corroborating our sharp analysis for regularized RLHF.

6 CONCLUSION

We have presented a comprehensive theoretical analysis of the role of reverse-KL regularization in
decision-making models including contextual bandits and reinforcement learning from preference
feedback, highlighting its significance in terms of sample complexity. Our results provide new
insights into the power of regularization extending beyond its traditional role of mitigating errors
from the current critic (or reward) model.

Additionally, we examined the role of data coverage in both contextual bandits and RLHF. Our
analysis shows that with sufficient coverage from the reference policy, a mixed sampling strategy can
achieve a sample complexity that exhibits only an additive dependence on the coverage coefficient
without the need for explicit exploration or additional structural assumptions.

10
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A ALGORITHM FOR PREFERENCE FEEDBACK

Algorithm 2 2-Stage mixed-policy sampling for preference feedback
1: Input: η, ϵ, π0, Θ.

▷ Use policy π0 to achieve sufficient data coverage
2: for i = 1, . . . ,m do
3: Sample context x̃i ∼ d0 and 2 actions ã1i , ã

2
i ∼ π0(·|x̃i).

4: Observe preference label ỹi ∈ {0, 1} from the preference oracle defined in Definition 2.2.
5: end for
6: Compute the MLE estimator of the reward function based on {(x̃i, ã

1
i , ã

2
i , ỹi)}mi=1:

θ̂0 ← argmax
θ

m∑
i=1

ỹi · log σ(R(θ, x̃i, ã
1
i )−R(θ, x̃i, ã

2
i )) + (1− ỹi) · log σ(R(θ, x̃i, ã

2
i )−R(θ, x̃i, ã

1
i )).

7: Apply the planning oracle to compute πη

θ̂0
(·|·) ∝ π0(·|·) exp

(
ηR(θ̂0, ·, ·)

)
.

▷ Use policy πη

θ̂0
to sample new responses

8: for i = 1, . . . , n do
9: Sample context xi ∼ d0 and 2 actions a1i , a

2
i ∼ πη

θ̂0
(·|xi).

10: Observe preference label yi ∈ {0, 1} from the preference oracle defined in Definition 2.2.
11: end for
12: Compute the MLE estimator of the reward function using {(xi, a

1
i , a

2
i , yi)}ni=1 together with

{(x̃i, ã
1
i , ã

2
i , ỹi)}mi=1:

θ̂ ← argmax
θ

m∑
i=1

ỹi · log σ(R(θ, x̃i, ã
1
i )−R(θ, x̃i, ã

2
i )) + (1− ỹi) · log σ(R(θ, x̃i, ã

2
i )−R(θ, x̃i, ã

1
i ))

+

n∑
i=1

yi · log σ(R(θ, xi, a
1
i )−R(θ, xi, a

2
i )) + (1− yi) · log σ(R(θ, xi, a

2
i )−R(θ, xi, a

1
i ))

13: Output πη

θ̂
(·|·) ∝ π0(·|·) exp

(
ηR(θ̂, ·, ·)

)
.

In the first stage, we sample m context-action pairs {(x̃i, ã
1
i , ã

2
i , ỹi)}mi=1 from the BT model and

call the preference oracle to get the preference labels. We then compute the MLE estimator of the
reward function θ̂0 based on the preference feedback in line 6. Afterwards, we apply the planning
oracle to compute the optimal policy πη

θ̂0
based on the reward function θ̂0 in line 7. Line 6 and line 7

correspond to the practical implementation of RLHF(Ouyang et al., 2022; Bai et al., 2022; Touvron
et al., 2023) given a dataset of preference feedback.

In the second stage, we sample n context-action pairs {(xi, a
1
i , a

2
i , yi)}ni=1 using the intermediate

policy πη

θ̂0
and call the preference oracle to get the preference labels. We then compute the MLE

estimator of the reward function θ̂ based on the preference feedback from both stages. Finally, we
apply the planning oracle to compute the optimal policy πη

θ̂
based on the reward function θ̂.

B ADDITIONAL EXPERIMENTAL RESULTS

We show our experimental results for regularized contextual bandits in the following figure 2, which
also corroborate our theory.

C PROOFS FROM SECTION 3

C.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Consider a simple case when |X | = M and |A| = 2. We suppose that the
context x is drawn uniformly from X at the beginning of each round. Let Θ be the set consisting of
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Figure 2: Suboptimality gap for KL-regularized contextual bandits.

mappings from X to A = {0, 1}. For each θ ∈ Θ, we have R(θ, x, a) =

{
1/2 + c if a = θ(x),

1/2 if a ̸= θ(x),
where c > 0 is a constant, and θ(x) is the optimal action under context x when the model is θ.

For any (θ, x, a) ∈ Θ× X ×A, we assume the reward feedback r ∼ Bernoulli(R(θ, x, a)) when
the model is θ and a is chosen under context x.

We pick a pair of model θ1, θ2 in Θ, such that θ1(x) =
{
θ2(x) if x ̸= x0,

1− θ2(x) if x = x0.

We denote by Pθ, Eθ the probability measure and expectation under the model θ.

Applying Pinsker’s inequality (Lemma E.3), we have for all event A measurable with respect to the
filtration generated by the observations,

|Pθ1(A)− Pθ2(A)| ≤
√

1

2
log(1− 4c2)Eθ1 [N(x0)] ≤

√
2c2Eθ1 [N(x0)] =

√
2c2T/M,

where the first inequality follows from the chain rule of KL divergence, and the fact that
Eθ1 [N(x0)] = T/M .

Set A to be the event that πout(θ1(x0)|x0) > 1/2. Then we have

Pθ1(πout(θ1(x0)|x0) ≤ 1/2) + Pθ2(πout(θ2(x0)|x0) ≤ 1/2) ≥ 1− |Pθ1(A)− Pθ2(A)| ≥ 1−
√

2c2T/M.

If the model θ is uniformly drawn from Θ, then we have

Eθ∼Unif(Θ)Pθ(πout(θ(x0)) ≤ 1/2) ≥ 1

2
−

√
c2T/2M

for an arbitrary x0.

Then we consider the following suboptimality gap:

Eπη
θ∗

[
R(θ∗, x, a)−

1

η
ln

πη
θ∗
(a|x)

π0(a|x)

]
− Eπout

[
R(θ∗, x, a)−

1

η
ln

πout(a|x)
π0(a|x)

]
=

1

η
Eπη

θ∗

[
ln

π0(a|x) · exp
(
ηR(θ∗, x, a)

)
πη
θ∗
(a|x)

]
− 1

η
Eπout

[
ln

π0(a|x) · exp
(
ηR(θ∗, x, a)

)
πout(a|x)

]
=

1

η
Eπout

[
ln

πout(a|x)
π∗(a|x)

]
,

where the last equality follows from the fact that πη
θ∗
∝ π0(a|x) · exp(ηR(θ∗, x, a)).

To bound the suboptimality gap, we further have

Eθ∼Unif(Θ)Eπout

[
ln

πout(a|x)
π∗(a|x)

]
17
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= Eθ∼Unif(Θ)
1

M

∑
x∈X

Ea∼πout(·|x)

[
ln

πout(a|x)
π∗(a|x)

]
≥ Eθ∼Unif(Θ)

1

M

∑
x∈X

Pθ(πout(θ(x)) ≤ 1/2) ·
[
1

2
ln

1 + exp(−ηc)
2

+
1

2
ln

1 + exp(ηc)

2

]
≥

(1
2
−
√
c2T/2M

)[1
2
ln

1 + exp(−ηc)
2

+
1

2
ln

1 + exp(ηc)

2

]
(C.1)

Note that
d

du

[1
2
ln

1 + e−u

2
+

1

2
ln

1 + eu

2

]∣∣∣
u=0

=
1

2

[ 1

1 + exp(−u)
− 1

1 + exp(u)

]∣∣∣
u=0

= 0,

d2

du2

[1
2
ln

1 + e−u

2
+

1

2
ln

1 + eu

2

]
=

exp(u)

[1 + exp(u)]2
.

Thus, applying Taylor’s expansion on the right-hand side of (C.1), we have

Eθ∼Unif(Θ)Eπout

[
ln

πout(a|x)
π∗(a|x)

]
≥ 1

2
·
(1
2
−
√
c2T/2M

)
η2c2 · 1

3 + exp(ηc)

When ϵ < 1/64η, we can set c = 8
√

ϵ/η. To achieve a suboptimality gap of ϵ, we need to satisfy:
1

2
·
(1
2
−
√

c2T/2M
)
η2c2 · 1

3 + exp(ηc)
≤ ηϵ,

indicating that T ≥ ηM
512ϵ = Ω(ηMϵ ).

When ϵ ≥ 1/64η, or equivalently, η ≥ 1/64ϵ, we employ a different lower bound for (C.1) as
follows:

1

2
ln

1 + exp(−ηc)
2

+
1

2
ln

1 + exp(ηc)

2
=

1

2
ln

2 + exp(ηc) + exp(−ηc)
4

≥ 1

2
· 1
2

(
ln

exp(ηc) + exp(−ηc)
2

)
≥ 1

4
(ηc− ln 2), (C.2)

where the first inequality follows from Jensen’s inequality.

Substituting (C.2) into (C.1), we have

ϵ ≥ 1

η
Eθ∼Unif(Θ)Eπout

[
ln

πout(a|x)
π∗(a|x)

]
≥ 1

4
·
(1
2
−

√
c2T/2M

)
(ηc− ln 2) · 1

η
.

Set c = 64ϵ. Then we have T = Ω(M/ϵ2).

C.2 PROOF OF THEOREM 3.3

We start with the following lemma, which provides an on-policy generalization bound for the reward
function. Due to the on-policy nature of the algorithm (i.e., the usage of intermediate πη

θ̂0
), we can

leverage the covering number of the reward function classR to derive the generalization error. Since
we are using a fixed policy πη

θ̂0
to sample in the second stage, we can derive the generalization error

of the reward function as follows:
Lemma C.1 (Generalization error of reward function). For an arbitrary policy π, a set of context-
action pairs {(xi, ai)}ni=1 generated i.i.d. from π, and a distance threshold 0 < ϵc ≤ B, we have
with probability at least 1− δ, for any pair of parameters θ1 and θ2,

Eπ|R(θ1, x, a)−R(θ2, x, a)|2

≤ 2

n

n∑
i=1

|R(θ1, xi, ai)−R(θ2, xi, ai)|2 +
32B2

3n
log(2NR(ϵc)/δ) + 10ϵcB.
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Proof. We first consider an ϵc-net Rc of the reward function class R where Rc = {R(θ, ·, ·)|θ ∈
Θc} with size NR(ϵc). For any R(θ, ·, ·) ∈ R, there exists θc such that ∥R(θ, ·, ·)−R(θc, ·, ·)∥∞ ≤
ϵc.

By Lemma E.1, for each pair of θc1, θ
c
2 ∈ Θc (corresponding to θ1, θ2), we have with probability at

least 1− δ, ∣∣∣∣ 1n
n∑

i=1

(R(θc1, xi, ai)−R(θc2, xi, ai))
2 − Eπ|R(θc1, x, a)−R(θc2, x, a)|2

∣∣∣∣
≤

√
2Varπ|R(θc1, x, a)−R(θc2, x, a)|2

n
log(2/δ) +

2

3n
B2 log(2/δ)

≤
√

2B2Eπ|R(θc1, x, a)−R(θc2, x, a)|2
n

log(2/δ) +
2

3n
B2 log(2/δ)

where the second inequality follows from the fact that R(θc1, x, a), R(θc2, x, a) ≤ B.

Using union bound over all θc1, θ
c
2 ∈ Θc, we have with probability at least 1− δ, for all θc1, θ

c
2 ∈ Θc,

Eπ|R(θc1, x, a)−R(θc2, x, a)|2 −
1

n

n∑
i=1

(R(θc1, xi, ai)−R(θc2, xi, ai))
2

≤
√

4B2Eπ|R(θc1, x, a)−R(θc2, x, a)|2
n

log(2NR(ϵc)/δ) +
4B2

3n
log(2NR(ϵc)/δ),

from which we further obtain the following inequality by Lemma E.2,

Eπ|R(θc1, x, a)−R(θc2, x, a)|2 ≤
2

n

n∑
i=1

(R(θc1, xi, ai)−R(θc2, xi, ai))
2 +

32B2

3n
log(2NR(ϵc)/δ).

(C.3)

Then we can complete the proof by the definition of ϵ-net.

Next, we provide the following lemma, which gives an upper bound on the cumulative square error
of the learned reward function.
Lemma C.2 (Confidence bound for reward function). For an arbitrary policy π, and a set of data
{(xi, ai, ri)}ni=1 generated i.i.d. from π, suppose that θ̂ is the least squares estimator of θ∗, i.e.,
θ̂ = argminθ∈Θ

∑n
i=1(R(θ, xi, ai)− ri)

2. Then for any threshold ϵc > 0, with probability at least
1− δ, it holds that

n∑
i=1

(R(θ̂, xi, ai)−R(θ∗, xi, ai))
2 ≤ 16B2 log(2NR(ϵc)/δ) + 4ϵcnB.

Proof. We have the following inequality for
∑n

i=1(R(θ̂, xi, ai)−R(θ∗, xi, ai))
2,

n∑
i=1

(R(θ̂, xi, ai)−R(θ∗, xi, ai))
2

=

n∑
i=1

(R(θ̂, xi, ai)− ri)
2 −

n∑
i=1

(R(θ∗, xi, ai)− ri)
2

+ 2

n∑
i=1

(R(θ̂, xi, ai)−R(θ∗, xi, ai)(ri −R(θ∗, xi, ai))

≤ 2

n∑
i=1

(R(θ̂, xi, ai)−R(θ∗, xi, ai))(ri −R(θ∗, xi, ai)),

where the last inequality follows from the fact that
∑n

i=1(R(θ̂, xi, ai) − ri)
2 ≤∑n

i=1(R(θ∗, xi, ai)− ri)
2.
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We then consider an ϵc-netRc of the reward function classR whereRc = {R(θ, ·, ·)|θ ∈ Θc} with
size NR(ϵc). For any R(θ, ·, ·) ∈ R, there exists θc such that ∥R(θ, x, a) − R(θc, x, a)∥∞ ≤ ϵc.
From Azuma-Hoeffding inequality, with probability at least 1− δ, it holds for all θ ∈ Θc that

n∑
i=1

(R(θ, xi, ai)−R(θ∗, xi, ai))(ri −R(θ∗, xi, ai))

≤

√√√√2B2

n∑
i=1

(R(θ, xi, ai)−R(θ∗, xi, ai))2 log(2NR(ϵc)/δ).

Then we further have with probability at least 1− δ, there exists ∥R(θc, ·, ·)−R(θ̂, ·, ·)∥ ≤ ϵc such
that

n∑
i=1

(R(θ̂, xi, ai)−R(θ∗, xi, ai))(ri −R(θ∗, xi, ai))

≤

√√√√2B2

n∑
i=1

(R(θ, xi, ai)−R(θ∗, xi, ai))2 log(2NR(ϵc)/δ) + 2ϵcnB,

which implies that
n∑

i=1

(R(θ̂, xi, ai)−R(θ∗, xi, ai))
2 ≤ 16B2 log(2NR(ϵc)/δ) + 4ϵcnB (C.4)

from Lemma E.2.

With the above lemmas, we are now ready to prove the following lemma that bounds the estimation
error of the reward function R(θ̂, ·, ·) under the sampled policy πη

θ̂0
.

Lemma C.3. Let θ̂0 be the least squares estimator of the reward function based on the data
{(x0

i , a
0
i , r

0
i )}mi=1 generated from π0 as defined in Algorithm 1. Then for any threshold ϵc > 0,

with probability at least 1− 2δ, we have

Eπη

θ̂0

|R(θ̂, x, a)−R(θ∗, x, a)|2 ≤
43B2

n
log(2NR(ϵc)/δ) + 10ϵc(1 +m/n)B.

Proof. By Lemma C.1, we have with probability at least 1− δ, the following upper bound holds for
Eπη

θ̂0

|R(θ1, x, a)−R(θ2, x, a)|2,

Eπη

θ̂0

|R(θ1, x, a)−R(θ2, x, a)|2

≤ 2

n

n∑
i=1

|R(θ1, xi, ai)−R(θ2, xi, ai)|2 +
32B2

3n
log(2NR(ϵc)/δ) + 10ϵcB. (C.5)

By Lemma C.2, with probability at least 1− δ

n∑
i=1

|R(θ∗, xi, ai)−R(θ̂, xi, ai)|2 ≤ 16B2 log(2NR(ϵc)/δ) + 4ϵc(n+m)B. (C.6)

Then we can complete the proof using a union bound and substituting (C.6) into (C.5).

Lemma C.4. If m ≥ 128η2D2B2 · log(2NR(ϵc)/δ)), and there exists a positive constant cm,n > 0
such that n = cm,nn in Algorithm 1 and Assumption 2.6 holds, then by taking ϵc ≤ min{B, (8(1 +
cm,n)Bη2D2)−1}, with probability at least 1− 3δ, we have

η|R(θ̂0, x, a)−R(θ∗, x, a)| ≤ 1, η|R(θ̂, x, a)−R(θ∗, x, a)| ≤ 1

for any pair (x, a) ∈ X ×A such that π0(a|x) > 0.
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Proof. By Lemma C.1, with probability at least 1− δ, for all θ1, θ2 ∈ Θ, we have

Eπ0
|R(θ1, x, a)−R(θ2, x, a)|2 ≤

2

m

m∑
i=1

|R(θ1, x
0
i , a

0
i )−R(θ2, x

0
i , a

0
i )|2 +

32B2

3m
log(2NR(ϵc)/δ).

By Lemma C.2, with probability at least 1− δ, we have
m∑
i=1

|R(θ̂0, x
0
i , a

0
i )−R(θ∗, x

0
i , a

0
i )|2 ≤ 16B2 log(2NR(ϵc)/δ) + 4ϵcm.

Also, with probability at least 1− δ, we have
m∑
i=1

|R(θ∗, x
0
i , a

0
i )−R(θ̂, x0

i , a
0
i )|2 ≤ 16B2 log(2NR(ϵc)/δ) + 4ϵc(m+ n)B.

Similar to the proof of Lemma C.3, we have if m ≥ 128η2D2B2 · log(2NR(ϵc)/δ), n = cm,nn,
then with probability at least 1− 3δ,

Eπ0 |R(θ∗, x, a)−R(θ̂0, x, a)|2 ≤ 1/η2D2, Eπ0 |R(θ∗, x, a)−R(θ̂, x, a)|2 ≤ 1/η2D2.

which implies that η|R(θ̂0, x, a) − R(θ∗, x, a)| ≤ 1 and η|R(θ̂, x, a) − R(θ∗, x, a)| ≤ 1 for all
(x, a) ∈ X ×A such that π0(a|x) > 0.

Proof of Theorem 3.3. We have

Eπη
θ∗

[
R(θ∗, x, a)−

1

η
ln

πη
θ∗
(a|x)

π0(a|x)

]
− Eπη

θ̂

[
R(θ∗, x, a)−

1

η
ln

πη

θ̂
(a|x)

π0(a|x)

]
=

1

η
Eπη

θ∗

[
ln

π0(a|x) · exp
(
ηR(θ∗, x, a)

)
πη
θ∗
(a|x)

]
− 1

η
Eπη

θ̂

[
ln

π0(a|x) · exp
(
ηR(θ∗, x, a)

)
πη

θ̂
(a|x)

]
=

1

η
Ex∼d0

[
lnZη

θ∗
(x)

]
− 1

η
Ex∼d0

[
lnZη

θ̂
(x)

]
− Ex∼d0

[ ∑
a∈A

πη

θ̂
(a|x) ·

(
R(θ∗, x, a)−R(θ̂, x, a)

)]

For an arbitrary reward function f : X × A → R, let ∆(x, a) = f(x, a) − R(θ∗, x, a). Consider
the following first derivative of J(f) = lnZη

f (x) − η
∑

a∈A πη
f (a|x) · ∆(x, a), where Zη

f (x) =∑
a∈A π0(a|x) · exp(η · f(x, a)) and πη

f (a|x) ∝ π0(a|x) · exp(η · f(x, a)).

∂

∂∆(x, a)

[
lnZη

f (x)− η
∑
a∈A

πη
f (a|x) ·∆(x, a)

]
=

1

Zη
f (x)

· π0(a|x) exp
(
η · f(x, a)

)
· η − η · πη

f (a|x)

− η ·∆(x, a) ·
π0(a|x) · exp

(
η · f(x, a)

)
Zη
f (x)

· η + η ·∆(x, a) ·
[
π0(a|x) · exp

(
η · f(x, a)

)]2
[Zη

f (x)]
2

· η

+ η
∑

a′∈A\{a}

π0(a
′|x) · exp

(
η · f(x, a′)

)
Zη
f (x)

· η ·∆(x, a′) ·
π0(a|x) · exp

(
η · f(x, a)

)
Zη
f (x)

= −η2πη
f (a|x)∆(x, a) + η2[πη

f (a|x)]
2 ·∆(x, a) + η2

∑
a′∈A\{a}

πη
f (a

′|x)πη
f (a|x)∆(x, a′).

Therefore, there exists f(·, ·) = γR(θ̂, ·, ·) + (1− γ)R(θ∗, ·, ·) such that (γ ∈ (0, 1))

Ex∼d0 [J(R(θ̂, ·, ·))− J(R(θ∗, ·, ·))] =
1

η
Ex∼d0

[
−η2

∑
a∈A

πη
f (a|x) · γ ·

(
R(θ̂, x, a)−R(θ∗, x, a)

)2]
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+
1

η
Ex∼d0

[
γη2

∑
a1∈A

∑
a2∈A

πη
f (a1|x)π

η
f (a2|x)

(
R(θ̂, x, a1)−R(θ∗, x, a1)

)(
R(θ̂, x, a2)−R(θ∗, x, a2)

)]
≥ −η · Eπη

f

[(
R(θ̂, x, a)−R(θ∗, x, a)

)2]
From Lemma C.4, if m ≥ 128η2D2B2 · log(2NR(ϵc)/δ), for any (x, a) ∈ X × A such that
π0(a|x) > 0, it holds that

η|R(θ̂0, x, a)−R(θ∗, x, a)| ≤ 1, η|R(θ̂, x, a)−R(θ∗, x, a)| ≤ 1,

which means that for any (x, a) ∈ X ×A
πη
f (a|x)

πη

θ̂0
(a|x)

≤ e4.

Let ϵc = min{ ϵ
(1+c−1

m,n)B
, 1
8(1+cm,n)Bη2D2 , B}. From Lemma C.3, if m ≥ 128η2D2B2 ·

log(2NR(ϵc)/δ) and n ≥ η/ϵ · B2 log(NR(ϵc)/δ)) and n = cm,nm then with high probability
the output policy πη

θ̂
is O(ϵ) optimal.

C.3 PROOF OF COROLLARY 3.5

Proof of Corollary 3.5. The proof follows the same lines as Theorem 4.4 by replacing the global-
coverage condition with the local-coverage condition. It still holds that

Q(π∗)−Q(πη

θ̂0
) ≤ η · Eπη

f

[(
R(θ̂0, x, a)−R(θ∗, x, a)

)2]
where πη

f (a|x) ∝ π0(a|x) · exp(η · f(x, a)) and f(·, ·) = γR(θ̂0, ·, ·) + (1− γ)R(θ∗, ·, ·) for some
γ ∈ (0, 1). Thus, We have KL(πη

f (a|x)∥π0) ≤ 2ηB, which further implies that

Q(π∗)−Q(πη

θ̂
) ≤ η · CρKL

·O
( 1
n
B log(NR(ϵc)/δ) +B(1 + c−1

m,n)ϵc
)

by Lemma D.4. Then we can conclude by substituting the value of m into the suboptimality gap.

D PROOFS FROM SECTION 4

D.1 PROOF OF THEOREM 4.3

Proof of Theorem 4.3. The proof follows a similar construction as the one for Theorem 3.1. Con-
sider a simple case when |X | = M and |A| = 2. We suppose that the context x is drawn uni-
formly from X at the beginning of each round. Let Θ be the set consisting of mappings from X to

A = {0, 1}. For each θ ∈ Θ, we have R(θ, x, a) =

{
c if a = θ(x),

0 if a ̸= θ(x),
where c > 0 is a constant,

and θ(x) is the optimal action under context x when the model is θ.

We pick a pair of model θ1, θ2 in Θ, such that θ1(x) =
{
θ2(x) if x ̸= x0,

1− θ2(x) if x = x0.

We denote by Pθ, Eθ the probability measure and expectation under the model θ.

Applying Pinsker’s inequality (Lemma E.3), we have for all event A measurable with respect to the
filtration generated by the observations,

|Pθ1(A)− Pθ2(A)| ≤
√
log(1/2 + ec/4 + e−c/4)Eθ1 [N(x0)] ≤

√
c2Eθ1 [N(x0)] =

√
c2T/M,

where the first inequality follows from the chain rule of KL divergence, and the fact that
Eθ1 [N(x0)] = T/M .

Set A to be the event that πout(θ1(x0)|x0) > 1/2. Then we have

Pθ1(πout(θ1(x0)|x0) ≤ 1/2) + Pθ2(πout(θ2(x0)|x0) ≤ 1/2) ≥ 1− |Pθ1(A)− Pθ2(A)| ≥ 1−
√

c2T/M.
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If the model θ is uniformly drawn from Θ, then we have

Eθ∼Unif(Θ)Pθ(πout(θ(x0)) ≤ 1/2) ≥ 1

2
−

√
c2T/4M

for an arbitrary x0.

Then we consider the following suboptimality gap:

Eπη
θ∗

[
R(θ∗, x, a)−

1

η
ln

πη
θ∗
(a|x)

π0(a|x)

]
− Eπout

[
R(θ∗, x, a)−

1

η
ln

πout(a|x)
π0(a|x)

]
=

1

η
Eπη

θ∗

[
ln

π0(a|x) · exp
(
ηR(θ∗, x, a)

)
πη
θ∗
(a|x)

]
− 1

η
Eπout

[
ln

π0(a|x) · exp
(
ηR(θ∗, x, a)

)
πout(a|x)

]
=

1

η
Eπout

[
ln

πout(a|x)
π∗(a|x)

]
,

where the last equality follows from the fact that πη
θ∗
∝ π0(a|x) · exp(ηR(θ∗, x, a)).

To bound the suboptimality gap, we further have

Eθ∼Unif(Θ)Eπout

[
ln

πout(a|x)
π∗(a|x)

]
= Eθ∼Unif(Θ)

1

M

∑
x∈X

Ea∼πout(·|x)

[
ln

πout(a|x)
π∗(a|x)

]
≥ Eθ∼Unif(Θ)

1

M

∑
x∈X

Pθ(πout(θ(x)) ≤ 1/2) ·
[
1

2
ln

1 + exp(−ηc)
2

+
1

2
ln

1 + exp(ηc)

2

]
≥

(1
2
−
√
c2T/4M

)[1
2
ln

1 + exp(−ηc)
2

+
1

2
ln

1 + exp(ηc)

2

]
(D.1)

Note that

d
du

[1
2
ln

1 + e−u

2
+

1

2
ln

1 + eu

2

]∣∣∣
u=0

=
1

2

[ 1

1 + exp(−u)
− 1

1 + exp(u)

]∣∣∣
u=0

= 0,

d2

du2

[1
2
ln

1 + e−u

2
+

1

2
ln

1 + eu

2

]
=

exp(u)

[1 + exp(u)]2
.

Thus, applying Taylor’s expansion on the right-hand side of (D.1), we have

Eθ∼Unif(Θ)Eπout

[
ln

πout(a|x)
π∗(a|x)

]
≥ 1

2
·
(1
2
−
√
c2T/4M

)
η2c2 · 1

3 + exp(ηc)

When ϵ < 1/64η, we can set c = 8
√

ϵ/η. To achieve a suboptimality gap of ϵ, we need to satisfy:

1

2
·
(1
2
−
√

c2T/4M
)
η2c2 · 1

3 + exp(ηc)
≤ ηϵ,

indicating that T ≥ ηM
512ϵ = Ω(ηMϵ ).

When ϵ ≥ 1/64η, or equivalently, η ≥ 1/64ϵ, we employ a different lower bound for (C.1) as
follows:

1

2
ln

1 + exp(−ηc)
2

+
1

2
ln

1 + exp(ηc)

2
=

1

2
ln

2 + exp(ηc) + exp(−ηc)
4

≥ 1

2
· 1
2

(
ln

exp(ηc) + exp(−ηc)
2

)
≥ 1

4
(ηc− ln 2), (D.2)

where the first inequality follows from Jensen’s inequality.
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Substituting (D.2) into (D.1), we have

ϵ ≥ 1

η
Eθ∼Unif(Θ)Eπout

[
ln

πout(a|x)
π∗(a|x)

]
≥ 1

4
·
(1
2
−

√
c2T/4M

)
(ηc− ln 2) · 1

η
.

Set c = 64ϵ. Then we have T = Ω(M/ϵ2).

D.2 PROOF OF THEOREM 4.4

First, we provide the following lemma for the connection between the likelihood loss and the reward
difference, which is a key step to upper bound the reward difference between θ̂ and θ∗.
Lemma D.1. For an arbitrary policy π, and a set of context-action pairs {(xi, a

1
i , a

2
i , yi)}ni=1 gen-

erated i.i.d. from the BT model and π, we have with probability at least 1− δ, for any s ≤ n,

1

2

s∑
i=1

L(θ|xi, a
1
i , a

2
i , yi)− L(θ∗|xi, a

1
i , a

2
i , yi)

≤ log(1/δ)− 1

8
e−B

s∑
i=1

(
[R(θ, xi, a

2
i )−R(θ, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2
Proof. Applying Lemma E.4 to the sequence{
−1

2
yi·log

σ(R(θ∗, xi, a
1
i )−R(θ∗, xi, a

2
i ))

σ(R(θ, xi, a1i )−R(θ, xi, a2i ))
−1

2
(1−yi)·log

σ(R(θ∗, xi, a
2
i )−R(θ∗, xi, a

1
i ))

σ(R(θ, xi, a2i )−R(θ, xi, a1i ))

}n

i=1

,

We have with probability at least 1− δ, for all s ≤ n,

1

2

s∑
i=1

L(θ|xi, a
1
i , a

2
i , yi)− L(θ∗|xi, a

1
i , a

2
i , yi)

≤ log(1/δ) +

s∑
i=1

log

(√
σ(R(θ∗, xi, a2i )−R(θ∗, xi, a1i )) · σ(R(θ, xi, a2i )−R(θ, xi, a1i ))

+
√

σ(R(θ∗, xi, a1i )−R(θ∗, xi, a2i )) · σ(R(θ, xi, a1i )−R(θ, xi, a2i ))

)
= log(1/δ)− 1

2

s∑
i=1

(√
σ(R(θ∗, xi, a2i )−R(θ∗, xi, a1i ))−

√
σ(R(θ, xi, a2i )−R(θ, xi, a1i ))

)2

≤ log(1/δ)− 1

8

s∑
i=1

(
σ(R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i ))− σ(R(θ, xi, a

2
i )−R(θ, xi, a

1
i ))

)2
≤ log(1/δ)− 1

8
e−B

s∑
i=1

(
[R(θ, xi, a

2
i )−R(θ, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2
,

where the equality follows from the fact that σ(r) + σ(−r) = 1 and the last inequality holds since
σ′(r) = σ(r) · (1− σ(r)) ≥ e−B for all r ∈ [−B,B].

To further control the error bound for the reward function with the help of Lemma D.1, we introduce
the following lemma to show that the likelihood function class L can be well-covered by the ϵ-net
of the reward function classR.
Lemma D.2 (Covering number of L). For any ϵc > 0, consider an ϵc-netRc = {R(θ, ·, ·)|θ ∈ Θc}
for the reward function class R with size NR(ϵc). Then for any θ ∈ Θ, there exists θc ∈ Θc such
that for any s ∈ [n],

s∑
i=1

L(θ|xi, a
1
i , a

2
i , yi) ≤

s∑
i=1

L(θc|xi, a
1
i , a

2
i , yi) + 2sϵc.
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Proof. For any r ∈ R, we have

d log(σ(r))
dr

=
1

σ(r)
· σ(r) · (1− σ(r)) = 1− σ(r) ∈ (0, 1).

Thus, for any θ ∈ Θ, x ∈ X , a1, a2 ∈ A and y ∈ {0, 1}, there exists θc ∈ Θc such that∣∣L(θ|x, a1, a2, y)− L(θc|x, a1, a2, y)∣∣
≤

∣∣[R(θ, x, a1)−R(θ, x, a2)]− [R(θc, x, a1)−R(θc, x, a2)]
∣∣ = 2ϵc.

With the above two lemmas, we are now ready to provide the confidence bound for the MLE esti-
mator of the reward function.
Lemma D.3. Consider a set of context-action pairs {(xi, a

1
i , a

2
i , yi)}ni=1 where labels {yi}ni=1 are

generated independently from the BT model. Suppose that θ̂ is the MLE estimator as defined in
Definition 4.1. We have with probability at least 1− δ,

n∑
i=1

(
[R(θ̂, xi, a

2
i )−R(θ̂, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2 ≤ O(eB log(NR(ϵc)/δ) + eBnϵc).

Proof. By Lemma D.1 and Lemma D.2, we have with probability at least 1− δ, for any θ ∈ Θ,

1

2

n∑
i=1

L(θ|xi, a
1
i , a

2
i , yi)− L(θ∗|xi, a

1
i , a

2
i , yi)

≤ log(NR(ϵc)/δ)−
1

8
e−B

n∑
i=1

(
[R(θ, xi, a

2
i )−R(θ, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2
+O(nϵc).

Since θ̂ is the MLE estimator, we have
∑n

i=1 L(θ|xi, a
1
i , a

2
i , yi) − L(θ∗|xi, a

1
i , a

2
i , yi) ≥ 0, which

further implies

0 ≤ log(NR(ϵc)/δ)−
1

8
e−B

n∑
i=1

(
[R(θ, xi, a

2
i )−R(θ, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2
+O(nϵc).

Then we have
n∑

i=1

(
[R(θ̂, xi, a

2
i )−R(θ̂, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2 ≤ O(eB log(NR(ϵc)/δ) + eBnϵc).

Finally, we provide the on-policy confidence bound for the squared reward difference between the
MLE estimator θ̂ and the optimal reward function θ∗.
Lemma D.4. Consider an arbitrary policy π, and a set of context-action pairs {(xi, a

1
i , a

2
i , yi)}ni=1

generated i.i.d. from the BT model and π. Suppose that θ̂ is the MLE estimator. We have with
probability at least 1− 2δ, there exists a mapping b : X → R such that

Eπ

[(
R(θ̂, x, a)−R(θ∗, x, a)− b(x)

)2] ≤ O

(
1

n
eB log(NR(ϵc)/δ) + eBϵc

)
.

Proof. By Lemma D.3, we have with probability at least 1− δ,
n∑

i=1

(
[R(θ̂, xi, a

2
i )−R(θ̂, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2 ≤ O(eB log(NR(ϵc)/δ) + eBnϵc).

We consider an ϵc-net Rc = {R(θ, ·, ·)|θ ∈ Θc} for the reward function class R with size NR(ϵc).
For any R(θ, ·, ·), there exists R(θc, ·, ·) such that∣∣R(θ, x, a)−R(θc, x, a)

∣∣ ≤ O(ϵc)
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for all x ∈ X , a ∈ A.

Applying Lemma E.1, with probability at least 1− δ, we have
n∑

i=1

(
[R(θc, xi, a

2
i )−R(θc, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2
− nEx∼d0

Ea1,a2∼π

[(
R(θc, x, a1)−R(θ∗, x, a

1)−R(θc, x, a2) +R(θ∗, x, a
2)
)2]

≤

√√√√ n∑
i=1

4B2Ex∼d0
Ea1,a2∼π

[(
R(θc, x, a1)−R(θ∗, x, a1)−R(θc, x, a2) +R(θ∗, x, a2)

)2]
log(NR(ϵc)/δ)

+
8

3
B2 log(NR(ϵc)/δ)

for all θc ∈ Θc.

From Lemma E.2 and the definition of Θc, we further have

Ex∼d0Ea1,a2∼π

[(
R(θ̂, x, a1)−R(θ∗, x, a

1)−R(θ̂, x, a2) +R(θ∗, x, a
2)
)2]

≤ O(
1

n
B2 log(NR(ϵc)/δ) +

1

n

n∑
i=1

(
[R(θ̂, xi, a

2
i )−R(θ̂, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2
+Bϵc),

(D.3)

from which we can further derive that

Ex∼d0
Ea1,a2∼π

[(
R(θ̂, x, a1)−R(θ∗, x, a

1)−R(θ̂, x, a2) +R(θ∗, x, a
2)
)2]

≤ O
( 1
n
eB log(NR(ϵc)/δ) + eBϵc

)
with probability at least 1− 2δ from Lemma D.3 and the union bound.

We can then complete the proof by setting

b(x) = Ea2∼π(·|x)
[
R(θ̂, x, a2)−R(θ∗, x, a

2)
]
.

Lemma D.5 (Coverage of π∗ and πθ̂ by πθ̂0
). If m ≥ 32η2D2eB log(NR(ϵc)), n = cm,nm and

ϵc ≤ 1
(1+cm,n)eBη2D2 in Algorithm 2 and Assumption 2.6 holds, then with probability at least 1−4δ,

there exists b1 : X → R and b2 : X → R such that

η|R(θ̂0, x, a)−R(θ∗, x, a)− b1(x)| ≤ 1, η|R(θ̂, x, a)−R(θ∗, x, a)− b2(x)| ≤ 1

for all x ∈ X , a ∈ A such that π0(a|x) > 0.

Proof. By Lemma D.3 and the union bound, we have with probability at least 1− δ, it holds that
m∑
i=1

(
[R(θ̂, x̃i, ã

2
i )−R(θ̂, x̃i, ã

1
i )]− [R(θ∗, x̃i, ã

2
i )−R(θ∗, x̃i, ã

1
i )]

)2
+

n∑
i=1

(
[R(θ̂, xi, a

2
i )−R(θ̂, xi, a

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2
≤ O(eB log(NR(ϵc)/δ) + eB(n+m)ϵc). (D.4)

Consider an ϵc-netRc = {R(θ, ·, ·)|θ ∈ Θc} for the reward function classR with size NR(ϵc). For
any R(θ, ·, ·), there exists R(θc, ·, ·) such that∣∣R(θ, x, a)−R(θc, x, a)

∣∣ ≤ O(ϵc)

for all x ∈ X , a ∈ A.
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Applying Lemma E.1, with probability at least 1− δ, we have
m∑
i=1

(
[R(θc, x̃i, ã

2
i )−R(θc, x̃i, ã

1
i )]− [R(θ∗, xi, a

2
i )−R(θ∗, xi, a

1
i )]

)2
−mEx∼d0

Ea1,a2∼π0

[(
R(θc, x, a1)−R(θ∗, x, a

1)−R(θc, x, a2) +R(θ∗, x, a
2)
)2]

≤

√√√√ m∑
i=1

4B2Ex∼d0
Ea1,a2∼π0

[(
R(θc, x, a1)−R(θ∗, x, a1)−R(θc, x, a2) +R(θ∗, x, a2)

)2]
log(NR(ϵc)/δ)

+
8

3
B2 log(NR(ϵc)/δ)

for all θc ∈ Θc.

From Lemma E.2 and the definition of Θc, we further have

Ex∼d0Ea1,a2∼π

[(
R(θ̂, x, a1)−R(θ∗, x, a

1)−R(θ̂, x, a2) +R(θ∗, x, a
2)
)2]

≤ O(
1

m
B2 log(NR(ϵc)/δ) +

1

m

n∑
i=1

(
[R(θ̂, x̃i, ã

2
i )−R(θ̂, x̃i, ã

1
i )]− [R(θ∗, x̃i, ã

2
i )−R(θ∗, x̃i, ã

1
i )]

)2
+Bϵc).

(D.5)

Substituting (D.4) into (D.5), we have with probability at least 1− 2δ,

Ex∼d0
Ea1,a2∼π0

[(
R(θ̂, x, a1)−R(θ∗, x, a

1)−R(θ̂, x, a2) +R(θ∗, x, a
2)
)2]

≤ O
( 1

m
eB log(NR(ϵc)/δ) + eB · n+m

m
· ϵc

)
.

Therefore, there exists a mapping b2 : X → R such that

Eπ0

[(
R(θ̂, x, a)−R(θ∗, x, a)− b2(x)

)2] ≤ O
( 1

m
eB log(NR(ϵc)/δ) + eB · n+m

m
· ϵc

)
.

From Lemma D.4, we have with probability at least 1−2δ, there exists a mapping b1 : X → R such
that

Eπ0

[(
R(θ̂0, x, a)−R(θ∗, x, a)− b1(x)

)2] ≤ O
( 1

m
eB log(NR(ϵc)/δ) + eB(1 + cm,n)ϵc

)
.

Hence, we can complete the proof by a union bound over the two events and Assumption 2.6.

Proof of Theorem 4.4. Let b be the mapping defined in Lemma D.4 for θ̂ We have

Eπη
θ∗

[
R(θ∗, x, a)−

1

η
ln

πη
θ∗
(a|x)

π0(a|x)

]
− Eπη

θ̂

[
R(θ∗, x, a)−

1

η
ln

πη

θ̂
(a|x)

π0(a|x)

]
=

1

η
Eπη

θ∗

[
ln

π0(a|x) · exp
(
ηR(θ∗, x, a)

)
πη
θ∗
(a|x)

]
− 1

η
Eπη

θ̂

[
ln

π0(a|x) · exp
(
ηR(θ∗, x, a)

)
πη

θ̂
(a|x)

]
=

1

η
Ex∼d0

[
lnZη

θ∗
(x)

]
− 1

η
Ex∼d0

[
lnZη

θ̂
(x)

]
− Ex∼d0

[ ∑
a∈A

πη

θ̂
(a|x) ·

(
R(θ∗, x, a)−R(θ̂, x, a)

)]
.

For an arbitrary reward function f : X × A → R, let ∆(x, a) = f(x, a) − R(θ∗, x, a). Consider
the following first derivative of J(f) = lnZη

f (x) − η
∑

a∈A πη
f (a|x) · ∆(x, a), where Zη

f (x) =∑
a∈A π0(a|x) · exp(η · f(x, a)) and πη

f (a|x) ∝ π0(a|x) · exp(η · f(x, a)).

Similar to the proof of Theorem 3.3, we still have

∂

∂∆(x, a)

[
lnZη

f (x)− η
∑
a∈A

πη
f (a|x) ·∆(x, a)

]
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=
1

Zη
f (x)

· π0(a|x) exp
(
η · f(x, a)

)
· η − η · πη

f (a|x)

− η ·∆(x, a) ·
π0(a|x) · exp

(
η · f(x, a)

)
Zη
f (x)

· η + η ·∆(x, a) ·
[
π0(a|x) · exp

(
η · f(x, a)

)]2
[Zη

f (x)]
2

· η

+ η
∑

a′∈A\{a}

π0(a
′|x) · exp

(
η · f(x, a′)

)
Zη
f (x)

· η ·∆(x, a′) ·
π0(a|x) · exp

(
η · f(x, a)

)
Zη
f (x)

= −η2πη
f (a|x)∆(x, a) + η2[πη

f (a|x)]
2 ·∆(x, a) + η2

∑
a′∈A\{a}

πη
f (a

′|x)πη
f (a|x)∆(x, a′).

Note that
J(R(θ̂, x, ·)) = lnZη

θ̂
(x)− η

∑
a∈A

πη

θ̂
(a|x) ·

(
R(θ̂, x, a)−R(θ∗, x, a)

)
= ln

∑
a∈A

π0(a|x) · exp(η(R(θ̂, x, a)− b(x)))− η
∑
a∈A

πη

θ̂
(a|x) ·

(
R(θ̂, x, a)−R(θ∗, x, a)− b(x)

)
= J(R(θ̂, x, ·)− b(x)).

Therefore, there exists f(·, ·) = γ[R(θ̂, ·, ·)− b(·)] + (1− γ)R(θ∗, ·, ·) such that (γ ∈ (0, 1))

Ex∼d0
[J(R(θ̂, ·, ·))− J(R(θ∗, ·, ·))]

=
1

η
Ex∼d0

[
−η2

∑
a∈A

πη
f (a|x) · γ ·

(
R(θ̂, x, a)−R(θ∗, x, a)− b(x)

)2]
+

1

η
Ex∼d0

[
γη2

∑
a1∈A

∑
a2∈A

πη
f (a1|x)π

η
f (a2|x)

(
R(θ̂, x, a1)−R(θ∗, x, a1)− b(x)

)
(
R(θ̂, x, a2)−R(θ∗, x, a2)− b(x)

)]
≥ −η · Eπη

f

[(
R(θ̂, x, a)−R(θ∗, x, a)− b(x)

)2]
From Lemma D.2, if m ≥ 32η2D2eB ·log(2NR(ϵc)/δ), for any (x, a) ∈ X×A such that π0(a|x) >
0, it holds that

η|R(θ̂0, x, a)−R(θ∗, x, a)− b1(x)| ≤ 1, η|R(θ̂, x, a)−R(θ∗, x, a)− b2(x)| ≤ 1,

which means that
πη
f

πη

θ̂0

≤ e4.

Let ϵc = min{ ϵ
2(1+c−1

m,n)eB
, 1
(1+cm,n)eBη2D2 }. From Lemma D.4, under the condition of the theo-

rem, with high probability the output policy πη

θ̂
is O(ϵ) optimal.

D.3 PROOF OF COROLLARY 4.7

In this subsection, we also discuss our result under the local-coverage condition (Definition 2.8).

Proof of Corollary 4.7. The proof follows the same lines as Theorem 4.4 by replacing the global-
coverage condition with the local-coverage condition. It still holds that

Q(π∗)−Q(πη

θ̂0
) ≤ η · Eπη

f

[(
R(θ̂0, x, a)−R(θ∗, x, a)− b(x)

)2]
where πη

f (a|x) ∝ π0(a|x) · exp(η · f(x, a)) and f(·, ·) = γ[R(θ̂0, ·, ·) − b(·)] + (1 − γ)R(θ∗, ·, ·)
for some γ ∈ (0, 1). Thus, We have KL(πη

f (a|x)∥π0) ≤ 2ηB, which further implies that

Q(π∗)−Q(πη

θ̂
) ≤ η · CρKL

·O
( 1
n
eB log(NR(ϵc)/δ) + eB(1 + c−1

m,n)ϵc
)

by Lemma D.4. Then we can conclude by substituting the value of m into the suboptimality gap.
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E AUXILIARY LEMMAS

Lemma E.1 (Freedman inequality). Let M, v > 0 be fixed constants. Let {Xi}ni=1 be a stochastic
process, {Gi}i be a sequence of σ-fields, and Xi be Gi-measurable, while almost surely

E[Xi|Gi] = 0, |Xi| ≤M, and
n∑

i=1

E[X2
i |Gi−1] ≤ v.

Then for any δ > 0, with probability at least 1− δ, it holds that
n∑

i=1

Xi ≤
√

2v log(1/δ) +
2

3
M log(1/δ).

Lemma E.2. Suppose a, b ≥ 0. If x2 ≤ a+ b · x, then x2 ≤ 2b2 + 2a.

Proof. By solving the root of quadratic polynomial q(x) := x2−b·x−a, we obtain max{x1, x2} =
(b+
√
b2 + 4a)/2. Hence, we have x ≤ (b+

√
b2 + 4a)/2 provided that q(x) ≤ 0. Then we further

have

x2 ≤ 1

4

(
b+

√
b2 + 4a

)2

≤ 1

4
· 2

(
b2 + b2 + 4a

)
≤ 2b2 + 2a. (E.1)

Lemma E.3 (Pinsker’s inequality). If P1, P2 are two probability measures on a common measurable
space (Ω,F), then it holds that

δ(P1,P2) ≤
√

1

2
KL(P1∥P2),

where δ(·, ·) is the total variation distance and KL(·∥·) is the Kullback-Leibler divergence.

Lemma E.4 (Lemma A.4, Foster et al. 2021). For any sequence of real-valued random variables
(Xt)t≤T adapted to a filtration (Ft)t≤T , it holds that with probability at least 1− δ, for all T ′ ≤ T ,

T ′∑
t=1

Xt ≤
T ′∑
t=1

log
(
Et−1[e

Xt ]
)
+ log(1/δ).
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