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Abstract

Survival analysis is a task to model the time until an event of interest occurs, widely
used in clinical and biomedical research. A key challenge is to model patient
heterogeneity while also adapting risk predictions to both individual characteristics
and temporal dynamics. We propose a dual mixture-of-experts (MoE) framework
for discrete-time survival analysis. Our approach combines a feature-encoder
MoE for subgroup-aware representation learning with a hazard MoE that leverages
patient features and time embeddings to capture temporal dynamics. This dual-MoE
design flexibly integrates with existing deep learning—based survival pipelines. On
METABRIC and GBSG breast cancer datasets, our method consistently improves
performance, boosting the time-dependent C-index up to 0.04 on the test sets, and
yields further gains when incorporated into the Consurv framework.

1 Introduction

Survival analysis aims to predict the time until an event while properly accounting for censoring. A
long-standing approach is the Cox Proportional Hazards (CPH) model [Cox||1972], which assumes
that hazard ratios between patients remain proportional over time. While effective in many settings,
this assumption often fails in real-world clinical data, where risk dynamics are non-proportional
over time. To address this limitation, recent deep learning models (e.g., DeepHit [Lee et al.,|2018]],
ConSurv [Lee et al., 2024]) replace the CPH constraint with flexible neural architectures and are
trained with negative log-likelihood objectives [Gensheimer and Narasimhan, 2019} |Ren et al., 2019,
Curth et al.| 2021} [Lee et al., |2024]], enabling the modeling of non-proportional hazards.

Despite this progress, most deep survival models still rely on a single shared feature encoder. In
practice, patients form heterogeneous subgroups with distinct risk profiles, and a single encoder
tends to favor dominant patterns while underrespenting minority subgroups [Zhou et al 2021} |Guo
et al.} 2018} Jin et al.| |2023]]. Hazard estimation is likewise commonly implemented with a single
network, yet survival risk is both time-varying and patient-specific: two patients at the same time
point may exhibit markedly different risk trajectories depending on their clinical characteristics. A
single network implicitly ties all patients and all time bins to one shared functional form, leaving
further room for improvement in capturing patient heterogeneity and temporal dynamics.

In this paper, we propose a dual mixture-of-experts (MoE) [Shazeer et al., 2017] framework that
integrates a mixture of feature encoders and a mixture of hazard networks to address these limita-
tions (Fig.[T). The feature-encoder MoE models patient heterogeneity through soft routing based
on each patient’s encoded features, while the hazard-network MoE outputs a full hazard vector
over the prediction horizon with a soft router conditioned on both patient representation and time
embedding. This joint design enables experts to specialize along temporal horizons while adapting to
patient subgroups, resulting in finer-grained, context-aware hazard modeling. Experiments on the
METABRIC and GBSG datasets show consistent improvements in both overall and time-dependent
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Figure 1. Overall architecture of the proposed framework. Unlike prior survival models that use a single encoder
and a single hazard head, our framework employs dual mixtures of experts: one over feature encoders and
another over hazard networks, where hazard experts are shared across time bins and dynamically routed by
patient and time embeddings.

C-index over conventional single-network models, with further gains when incorporated into the
ConSurv framework.

2 Method

2.1 Preliminary

We formulate survival prediction in discrete-time setting. Each patient ¢ € {1, ..., N} is represented
by covariates z;, an observed time 7; € {0, ..., Tnaz }» and an event indicater 6; € {0, 1}, where
d; = 1 denotes an obersved event at 7; and J; = 0 indicates that the observation is right-censored at
74, 1.€., the patient was event-free up to 7; but their subsequent status is unobserved.

The conditional hazard function specifies the instantaneous event probability at time ¢:
At|2)=P(T =t|T >t a).

It induces the survival function
Stlz) =[] (1-At|2),
<t
which captures the probability of remaining event-free after ¢. The probability mass for an event at
time ¢ is then
p(t[x) = At |x) S(t—1]x).
Model estimation proceeds via maximum likelihood. The negative log-likelihood objective combines

information from observed and censored cases:
N

Lnir = —Z {51- logp(7; | ;) + (1 — 5i)log§(n | mz)}

i=1
2.2 Mixture of Feature Encoders

We first enhance the representation learning stage by introducing a mixture of feature encoder

architecture. An initial encoder g(-) extracts patient-level representations, which are then routed into
multiple expert encoders { fk}szl. The router takes patient features as input and produces 77,{ ot via
softmax function, which represents the routing probability (or mixing weight) of expert k for patient

z. The final encoded representation for patient x is computed as

Zﬂ_feat A I))

By conditioning routing decisions on patient features, this design encourages the encoder to discover
hidden subgroups and produce subgroup-aware representations. To prevent collapse into a single

expert, we incorporate a load balancing loss £1%" = a(K o ﬁ,{eatz — 1) , where 7i/*"" =

5 ZZ 1 ﬂlfiat denotes the batch wise averaged assignment probability for routing logit for expert

k. This regularizer promotes healthy utilization of all experts by penalizing excessive reliance on a
subset of them.
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2.3 Mixture of Hazard Networks

On top of the encoded patient representations, we further introduce a mixture of hazard network for
hazard prediction. Unlike feature encoder MoE, the hazard MoE conditions routing on both patient
features and temporal embeddings. Each hazard expert {h; } /-, predicts hazards for all discrete time
bins, while the router conditions by concatenation of patient features and time embeddings to produce
routing probability w,{f‘;z. The final hazard prediction at ¢ is expressed as

L
Mitlz) =D mpi* - hu(z(x), e0)
=1

where e; denotes the learnable time embedding for time-bin ¢. Joint conditioning on patient features
and time enables experts to specialize across both patient heterogeneity and temporal dynamics.
This enables experts to capture finer-grained survival patterns (e.g., subgroups that differ not only in
patient profiles but also in how risks evolve over time). As with the feature encoder MoE, we apply a
load balancing loss £"% = (Tmax LY, ﬁﬁ‘l’z2 — 1) to encourage balanced usage of hazard
experts across all time-bin.

2.4 Overall Training Objective

The overall training objective combines the discrete-time negative log-likelihood (NLL) loss with the
load balancing regularizers applied at both stages:

L=CLypp+LI5+Lhas.

This formulation ensures that the model not only fits observed survival outcomes but also maintains
balanced expert utilization across both representation and prediction stages, leading to more robust
subgroup- and time-aware survival modeling.

3 Experiment

Time-dependent C-index

Method Dual MoE C-index
10% 20% 30% 40% 50% 60% 70% 80% 90%
Metabric

CoxPH|Cox|[1972 - 0.663 0017 0.658 £0032  0.667 £0022  0.665 0018  0.665 0019  0.659 0013  0.651 0015 0.648 0015  0.639 0020  0.646 +0.026
Naive impl. X 0.646 0021 0.670 0050  0.660 £0.032  0.644 £0019  0.644 £0021  0.638 002 0.629 0015  0.621 0017  0.611 0024  0.606 = 0.022

Naive impl. v 0.654 0015 0.669 0032 0.667 £0022  0.657 £0013  0.653 £0017 0.646 0015  0.638 £0016  0.628 o018  0.621 0027  0.623 +0.022
ConSurv|Lee et al. [12024: X 0.657 0020 0.656 £o0044  0.668 +0030 0.658 +0018 0.657 £0021 0.649 £ 0018 0.639 +o0011  0.629 £o0010 0.616 £o024 0.617 0026
ConSurv|Lee et al.|[2024 v 0.668 +0018  0.696 £0034 0.689 + 0024 0.676 0021 0.669 £0022 0.657 £0017 0.647 +o0015 0.642 0016 0.632 £o021  0.634 +0019

GBSG
CoxPH|Cox |[1972 - 0.659 0012 0.739 £ 0046 0.709 £o001s  0.681 £0017 0.676 £0014 0.670 £0013 0.662 £0012 0.658 £0011  0.655 0011 0.652 + 0011

0.662 £0012  0.744 £0039  0.706 £0017  0.678 o018 0.674 £o0015  0.669 0014 0.662 +0012  0.657 0011 0.655 0012 0.652 + 0011
0.667 £0010  0.751 0033 0.717 0015 0.689 0016  0.684 0016  0.677 £0014  0.670 0011 0.666 £0011  0.663 £o011  0.659 +0.010
0.665 0011 0.742 0039 0.709 £0017  0.682 £0016  0.679 0014 0.674 0013  0.667 o011 0.663 £o011  0.661 o011 0.658 0010
0.668 0011 0.752 £0036 0.715 L0018 0.689 £0017 0.684 0016 0.677 0014 0.670 o012  0.666 o011 0.663 o011 0.659 0010

Naive impl.

Naive impl.
ConSurv|Lee et al.|[2024
ConSurv|Lee et al.||2024

x| S

Table 1. Comparison of both overall and time-dependent C-index on the Metabric and GBSG datasets. We
report the average performance over 10 random seeds[]

3.1 Experimental Settings

Dataset. We evaluate our method on two widely used breast cancer survival datasets, which are
Metabric [Curtis et al.,[2012]] and GBSG [Schumacher et al.,|1994]] . Metabric contains clinical and
gene expression information from 1,981 patients, with 21 variables in total; 55.2% of the cases are
censored and 44.8% uncensored. GBSG includes 2,232 patients with 21 clinical and tumor-related
variables, originally collected to study the impact of hormone therapy on recurrence-free survival. In
this dataset, 43.2% of the cases are censored and 56.8% uncensored.

Comparison Methods. We evaluated the effectiveness of the proposed dual mixture-of-experts
framework under two experimental settings. First, we considered a naive implementation trained
solely with L1, 1,, consisting of a single feature encoder and a single hazard network, and compared
it against our proposed dual MoE framework. Second, we applied our approach on top of the ConSurv
framework [Lee et al.l [2024], replacing its feature encoder and hazard network with a mixture of

'Results may differ from [Lee et al.,[2024] since dataset splits vary with different random seeds.
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Figure 2. Average routing probabilities
of feature-encoder experts across ER and
HER?2 subgroups.

feature encoders and a mixture of hazard networks, respectively. In both cases, we set the number of
feature-encoder experts (/) and hazard experts (L) to (4, 4) for Metabric and (6, 3) for GBSG. More
details can be found in the Appendix.

Evaluation Metrics. We evaluate performance using the concordance index (C-index)
[1984], which measures concordance between predicted hazards and observed event times across the
entire period. However, this global measure may overlook how performance varies across different
time intervals. To assess temporal variations, we also report time-dependent C-index, computed at
multiple time horizons defined by the 10%—90% percentiles of observed event times

2013].

3.2 Results

Table [T summarizes the main performance comparison of the proposed dual MoE framework. By
replacing the single feature encoder and hazard network with dual mixtures, we observed consistent
improvements in both overall and time-dependent C-index on the METABRIC and GBSG datasets.
Furthermore, integrating our framework with ConSurv leads to additional gains, indicating that the
proposed method is easily applicable to other deep learning based discrete-time survival models.

Visualization of Feature Routing Probability. We examined the routing behavior of the feature-
encoder MoE across estrogen receptor (ER) and HER2 subgroups using Metabric dataset (Fig. [2)).
Specifically, for each subgroup, we averaged the feature-encoder routing probabilities across all
patients belonging to that subgroup to obtain representative expert assignment distributions. The
router exhibited distinct expert preferences between subgroups, indicating that it adapts to patient
heterogeneity rather than assigning weights uniformly.

Visualization of Trajectory of Hazard Routing Probability through Time. We visualized patient-
level routing probabilities of the hazard router (Fig. 3). Each panel shows the soft assignment
probabilities of four hazard experts over time for each of 4 patients (A-D). Routing patterns vary
across patients but consistently show shifts in expert dominance between early and late time horizons,
indicating adaptation to both individual heterogeneity and temporal structure.

More ablation studies, including effect of each MoE architecture and input of hazard router, are
provided in the Appendix.

4 Conclusion & Future Work

In this work, we proposed a dual mixture-of-experts framework for discrete-time survival analysis
that integrates mixtures of feature encoders and hazard networks to model patient heterogeneity and
temporal risk variation. On the Metabric and GBSG datasets, our method consistently outperformed
conventional single-network models and yielded further gains with ConSurv. As future work, we
plan to further analyze the role of each expert and extend our framework to multimodal settings, such
as mammography-based risk prediction.
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A Training Details

182 Table 2] summarizes the key hyperparameters used in our experiments.
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Item

METABRIC

GBSG

Initial encoder

Feature-encoder router
Feature-encoder expert
Number of feature-encoder experts (K)

Hazard router
Hazard expert

MLP (depth=4)

MLP (depth=1)

MLP (depth=1)
4

MLP (depth=1)

MLP (depth=1)

MLP (depth=3)

MLP (depth=1)

MLP (depth=2)
6

MLP (depth=1)

MLP (depth=1)

Number of hazard experts (L) 4 3
Time embedding dim (d¢ime) 8 8
Load-balancing coef. (feature) 0.3 0.3
Load-balancing coef. (hazard) 3 0.5 0.5

Table 2. Hyperparameter details. Here, depth refers to the number of hidden layers in each MLP.

B More Ablation Studies

Input of Hazard Router

067 e —e— Feature_Embedding
Feat. MoE Haz. MoE C-index TSN L e Embeddings Festure_Embecting

X X 0.646 + 0.021 R

v/ X 0.649 + 0.023 o

X v 0.650 +0.025 063

v/ v 0.654 +0.015 0s2 — .
o061 10% 20% 30% 40% 50% 60% 70% 80”/: _____ 9_ U.%

Table 3. Ablation on each MoE architecture. Time

Figure 4. Ablation on input of hazard router.

For simplicity, we restrict our ablation experiments using Naive implementation using the Metabric
dataset.

Effect of each MoE Architecture. We conducted ablation studies to evaluate the contribution of
each MoE component, the mixture of feature encoders and the mixture of hazard networks. As shown
in Table[3] introducing the mixture of feature encoders or the mixture of hazard networks individually
improves performance over the conventional single-network models When combined, the full dual
mixture achieves the best performance, demonstrating that the two components are complementary.

Input of Hazard Router. We evaluate how the choice of router inputs affects performance. Specifi-
cally, we measured time-dependen C-index for three variants: patient features only, time embeddings
only, and both. Note that in all variants the hazard experts themselves still take both patient features
and time embeddings as input; only the inputs to the router are modified. As shown in Figure {4}
using either patient features or time embeddings alone is suboptimal; their combination consistently
achieves the best performance, highlighting the importance of jointly conditioning the router on both
patient heterogeneity and temporal variation.
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