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Abstract

Survival analysis is a task to model the time until an event of interest occurs, widely1

used in clinical and biomedical research. A key challenge is to model patient2

heterogeneity while also adapting risk predictions to both individual characteristics3

and temporal dynamics. We propose a dual mixture-of-experts (MoE) framework4

for discrete-time survival analysis. Our approach combines a feature-encoder5

MoE for subgroup-aware representation learning with a hazard MoE that leverages6

patient features and time embeddings to capture temporal dynamics. This dual-MoE7

design flexibly integrates with existing deep learning–based survival pipelines. On8

METABRIC and GBSG breast cancer datasets, our method consistently improves9

performance, boosting the time-dependent C-index up to 0.04 on the test sets, and10

yields further gains when incorporated into the Consurv framework.11

1 Introduction12

Survival analysis aims to predict the time until an event while properly accounting for censoring. A13

long-standing approach is the Cox Proportional Hazards (CPH) model [Cox, 1972], which assumes14

that hazard ratios between patients remain proportional over time. While effective in many settings,15

this assumption often fails in real-world clinical data, where risk dynamics are non-proportional16

over time. To address this limitation, recent deep learning models (e.g., DeepHit [Lee et al., 2018],17

ConSurv [Lee et al., 2024]) replace the CPH constraint with flexible neural architectures and are18

trained with negative log-likelihood objectives [Gensheimer and Narasimhan, 2019, Ren et al., 2019,19

Curth et al., 2021, Lee et al., 2024], enabling the modeling of non-proportional hazards.20

Despite this progress, most deep survival models still rely on a single shared feature encoder. In21

practice, patients form heterogeneous subgroups with distinct risk profiles, and a single encoder22

tends to favor dominant patterns while underrespenting minority subgroups [Zhou et al., 2021, Guo23

et al., 2018, Jin et al., 2023]. Hazard estimation is likewise commonly implemented with a single24

network, yet survival risk is both time-varying and patient-specific: two patients at the same time25

point may exhibit markedly different risk trajectories depending on their clinical characteristics. A26

single network implicitly ties all patients and all time bins to one shared functional form, leaving27

further room for improvement in capturing patient heterogeneity and temporal dynamics.28

In this paper, we propose a dual mixture-of-experts (MoE) [Shazeer et al., 2017] framework that29

integrates a mixture of feature encoders and a mixture of hazard networks to address these limita-30

tions (Fig. 1). The feature-encoder MoE models patient heterogeneity through soft routing based31

on each patient’s encoded features, while the hazard-network MoE outputs a full hazard vector32

over the prediction horizon with a soft router conditioned on both patient representation and time33

embedding. This joint design enables experts to specialize along temporal horizons while adapting to34

patient subgroups, resulting in finer-grained, context-aware hazard modeling. Experiments on the35

METABRIC and GBSG datasets show consistent improvements in both overall and time-dependent36
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Figure 1. Overall architecture of the proposed framework. Unlike prior survival models that use a single encoder
and a single hazard head, our framework employs dual mixtures of experts: one over feature encoders and
another over hazard networks, where hazard experts are shared across time bins and dynamically routed by
patient and time embeddings.

C-index over conventional single-network models, with further gains when incorporated into the37

ConSurv framework.38

2 Method39

2.1 Preliminary40

We formulate survival prediction in discrete-time setting. Each patient i ∈ {1, ..., N} is represented41

by covariates xi, an observed time τi ∈ {0, ..., Tmax}, and an event indicater δi ∈ {0, 1}, where42

δi = 1 denotes an obersved event at τi and δi = 0 indicates that the observation is right-censored at43

τi, i.e., the patient was event-free up to τi but their subsequent status is unobserved.44

The conditional hazard function specifies the instantaneous event probability at time t:45

λ(t | x) = P(T = t | T ≥ t, x).

It induces the survival function46

S(t | x) =
∏
t′≤t

(
1− λ(t′ | x)

)
,

which captures the probability of remaining event-free after t. The probability mass for an event at47

time t is then48

p(t | x) = λ(t | x)S(t− 1 | x).
Model estimation proceeds via maximum likelihood. The negative log-likelihood objective combines49

information from observed and censored cases:50

LNLL = −
N∑
i=1

[
δi log p̂(τi | xi) + (1− δi) log Ŝ(τi | xi)

]
.

2.2 Mixture of Feature Encoders51

We first enhance the representation learning stage by introducing a mixture of feature encoder52

architecture. An initial encoder g(·) extracts patient-level representations, which are then routed into53

multiple expert encoders {fk}Kk=1. The router takes patient features as input and produces πfeat
k via54

softmax function, which represents the routing probability (or mixing weight) of expert k for patient55

x. The final encoded representation for patient x is computed as56

z(x) =

K∑
k=1

πfeat
k · fk(g(x))

By conditioning routing decisions on patient features, this design encourages the encoder to discover57

hidden subgroups and produce subgroup-aware representations. To prevent collapse into a single58

expert, we incorporate a load balancing loss Lfeat
LB = α

(
K

∑
k π̄

feat2

k − 1
)

, where π̄feat
k =59

1
B

∑B
i=1 π

feat
k,i denotes the batch wise averaged assignment probability for routing logit for expert60

k. This regularizer promotes healthy utilization of all experts by penalizing excessive reliance on a61

subset of them.62
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2.3 Mixture of Hazard Networks63

On top of the encoded patient representations, we further introduce a mixture of hazard network for64

hazard prediction. Unlike feature encoder MoE, the hazard MoE conditions routing on both patient65

features and temporal embeddings. Each hazard expert {hl}Ll=1 predicts hazards for all discrete time66

bins, while the router conditions by concatenation of patient features and time embeddings to produce67

routing probability πhaz
t,l . The final hazard prediction at t is expressed as68

λ(t|x) =
L∑

l=1

πhaz
t,l · hl(z(x), et)

where et denotes the learnable time embedding for time-bin t. Joint conditioning on patient features69

and time enables experts to specialize across both patient heterogeneity and temporal dynamics.70

This enables experts to capture finer-grained survival patterns (e.g., subgroups that differ not only in71

patient profiles but also in how risks evolve over time). As with the feature encoder MoE, we apply a72

load balancing loss Lhaz
LB = β

(
Tmax

∑
t L

∑
l π̄

haz2

t,l − 1
)

to encourage balanced usage of hazard73

experts across all time-bin.74

2.4 Overall Training Objective75

The overall training objective combines the discrete-time negative log-likelihood (NLL) loss with the76

load balancing regularizers applied at both stages:77

L = LNLL + Lfeat
LB + Lhaz

LB .

This formulation ensures that the model not only fits observed survival outcomes but also maintains78

balanced expert utilization across both representation and prediction stages, leading to more robust79

subgroup- and time-aware survival modeling.80

3 Experiment81

Method Dual MoE C-index Time-dependent C-index
10% 20% 30% 40% 50% 60% 70% 80% 90%

Metabric

CoxPH Cox [1972] - 0.663 ± 0.017 0.658 ± 0.032 0.667 ± 0.022 0.665 ± 0.018 0.665 ± 0.019 0.659 ± 0.013 0.651 ± 0.015 0.648 ± 0.015 0.639 ± 0.020 0.646 ± 0.026

Naïve impl. ✗ 0.646 ± 0.021 0.670 ± 0.050 0.660 ± 0.032 0.644 ± 0.019 0.644 ± 0.021 0.638 ± 0.022 0.629 ± 0.015 0.621 ± 0.017 0.611 ± 0.024 0.606 ± 0.022

Naïve impl. ✓ 0.654 ± 0.015 0.669 ± 0.032 0.667 ± 0.022 0.657 ± 0.013 0.653 ± 0.017 0.646 ± 0.015 0.638 ± 0.016 0.628 ± 0.018 0.621 ± 0.027 0.623 ± 0.022

ConSurv Lee et al. [2024] ✗ 0.657 ± 0.020 0.656 ± 0.044 0.668 ± 0.030 0.658 ± 0.018 0.657 ± 0.021 0.649 ± 0.018 0.639 ± 0.011 0.629 ± 0.010 0.616 ± 0.024 0.617 ± 0.026

ConSurv Lee et al. [2024] ✓ 0.668 ± 0.018 0.696 ± 0.034 0.689 ± 0.024 0.676 ± 0.021 0.669 ± 0.022 0.657 ± 0.017 0.647 ± 0.015 0.642 ± 0.016 0.632 ± 0.021 0.634 ± 0.019

GBSG

CoxPH Cox [1972] - 0.659 ± 0.012 0.739 ± 0.046 0.709 ± 0.018 0.681 ± 0.017 0.676 ± 0.014 0.670 ± 0.013 0.662 ± 0.012 0.658 ± 0.011 0.655 ± 0.011 0.652 ± 0.011

Naïve impl. ✗ 0.662 ± 0.012 0.744 ± 0.039 0.706 ± 0.017 0.678 ± 0.018 0.674 ± 0.015 0.669 ± 0.014 0.662 ± 0.012 0.657 ± 0.011 0.655 ± 0.012 0.652 ± 0.011

Naïve impl. ✓ 0.667 ± 0.010 0.751 ± 0.033 0.717 ± 0.018 0.689 ± 0.016 0.684 ± 0.016 0.677 ± 0.014 0.670 ± 0.011 0.666 ± 0.011 0.663 ± 0.011 0.659 ± 0.010

ConSurv Lee et al. [2024] ✗ 0.665 ± 0.011 0.742 ± 0.039 0.709 ± 0.017 0.682 ± 0.016 0.679 ± 0.014 0.674 ± 0.013 0.667 ± 0.011 0.663 ± 0.011 0.661 ± 0.011 0.658 ± 0.010

ConSurv Lee et al. [2024] ✓ 0.668 ± 0.011 0.752 ± 0.036 0.715 ± 0.018 0.689 ± 0.017 0.684 ± 0.016 0.677 ± 0.014 0.670 ± 0.012 0.666 ± 0.011 0.663 ± 0.011 0.659 ± 0.010

Table 1. Comparison of both overall and time-dependent C-index on the Metabric and GBSG datasets. We
report the average performance over 10 random seeds.1

3.1 Experimental Settings82

Dataset. We evaluate our method on two widely used breast cancer survival datasets, which are83

Metabric [Curtis et al., 2012] and GBSG [Schumacher et al., 1994] . Metabric contains clinical and84

gene expression information from 1,981 patients, with 21 variables in total; 55.2% of the cases are85

censored and 44.8% uncensored. GBSG includes 2,232 patients with 21 clinical and tumor-related86

variables, originally collected to study the impact of hormone therapy on recurrence-free survival. In87

this dataset, 43.2% of the cases are censored and 56.8% uncensored.88

Comparison Methods. We evaluated the effectiveness of the proposed dual mixture-of-experts89

framework under two experimental settings. First, we considered a naïve implementation trained90

solely with LNLL, consisting of a single feature encoder and a single hazard network, and compared91

it against our proposed dual MoE framework. Second, we applied our approach on top of the ConSurv92

framework [Lee et al., 2024], replacing its feature encoder and hazard network with a mixture of93

1Results may differ from [Lee et al., 2024] since dataset splits vary with different random seeds.
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Figure 2. Average routing probabilities
of feature-encoder experts across ER and
HER2 subgroups.
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Figure 3. Patient-level routing probabilities of hazard experts
over time. At any discrete time bin t (a vertical slice), the pro-
portion of each color equals proportion of routing probability
to each hazard experts (πhaz

t,l , l ∈ {1, 2, 3, 4}), which sum to
1.

feature encoders and a mixture of hazard networks, respectively. In both cases, we set the number of94

feature-encoder experts (K) and hazard experts (L) to (4, 4) for Metabric and (6, 3) for GBSG. More95

details can be found in the Appendix.96

Evaluation Metrics. We evaluate performance using the concordance index (C-index) [Harrell et al.,97

1984], which measures concordance between predicted hazards and observed event times across the98

entire period. However, this global measure may overlook how performance varies across different99

time intervals. To assess temporal variations, we also report time-dependent C-index, computed at100

multiple time horizons defined by the 10%–90% percentiles of observed event times [Gerds et al.,101

2013].102

3.2 Results103

Table 1 summarizes the main performance comparison of the proposed dual MoE framework. By104

replacing the single feature encoder and hazard network with dual mixtures, we observed consistent105

improvements in both overall and time-dependent C-index on the METABRIC and GBSG datasets.106

Furthermore, integrating our framework with ConSurv leads to additional gains, indicating that the107

proposed method is easily applicable to other deep learning based discrete-time survival models.108

Visualization of Feature Routing Probability. We examined the routing behavior of the feature-109

encoder MoE across estrogen receptor (ER) and HER2 subgroups using Metabric dataset (Fig. 2).110

Specifically, for each subgroup, we averaged the feature-encoder routing probabilities across all111

patients belonging to that subgroup to obtain representative expert assignment distributions. The112

router exhibited distinct expert preferences between subgroups, indicating that it adapts to patient113

heterogeneity rather than assigning weights uniformly.114

Visualization of Trajectory of Hazard Routing Probability through Time. We visualized patient-115

level routing probabilities of the hazard router (Fig. 3). Each panel shows the soft assignment116

probabilities of four hazard experts over time for each of 4 patients (A-D). Routing patterns vary117

across patients but consistently show shifts in expert dominance between early and late time horizons,118

indicating adaptation to both individual heterogeneity and temporal structure.119

More ablation studies, including effect of each MoE architecture and input of hazard router, are120

provided in the Appendix.121

4 Conclusion & Future Work122

In this work, we proposed a dual mixture-of-experts framework for discrete-time survival analysis123

that integrates mixtures of feature encoders and hazard networks to model patient heterogeneity and124

temporal risk variation. On the Metabric and GBSG datasets, our method consistently outperformed125

conventional single-network models and yielded further gains with ConSurv. As future work, we126

plan to further analyze the role of each expert and extend our framework to multimodal settings, such127

as mammography-based risk prediction.128

4



References129

David R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Method-130

ological), 34(2):187–202, 1972. doi: 10.1111/j.2517-6161.1972.tb00899.x. URL https://doi.org/10.131

1111/j.2517-6161.1972.tb00899.x.132

Alicia Curth, Changhee Lee, and Mihaela van der Schaar. SurvITE: Learning heterogeneous treatment effects133

from time-to-event data. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,134

Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=135

f0_tkoEJV88.136

Christina Curtis, Sohrab P. Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M. Rueda, Mark J. Dunning,137

Doug Speed, Andy G. Lynch, Shamith Samarajiwa, Yinyin Yuan, Stefan Gräf, Gavin Ha, Gholamreza138

Haffari, Ali Bashashati, Roslin Russell, Steven McKinney, METABRIC Group, Anita Langerød, Andrew139

Green, Elena Provenzano, Gordon Wishart, Sarah Pinder, Peter Watson, Florian Markowetz, Leigh Murphy,140

Ian Ellis, Arnie Purushotham, Anne-Lise Børresen-Dale, James D. Brenton, Simon Tavaré, Carlos Caldas,141

and Samuel Aparicio. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel142

subgroups. Nature, 486(7403):346–352, 2012. doi: 10.1038/nature10983. URL https://doi.org/10.143

1038/nature10983. PMCID: PMC3440846.144

Michael F. Gensheimer and Balasubramanian Narasimhan. A scalable discrete-time survival model for neural145

networks. PeerJ, 7:e6257, 2019. doi: 10.7717/peerj.6257. URL https://doi.org/10.7717/peerj.6257.146

Thomas A. Gerds, Michael W. Kattan, Martin Schumacher, and Chang Yu. Estimating a time-dependent147

concordance index for survival prediction models with covariate dependent censoring. Statistics in Medicine,148

32(13):2173–2184, June 2013. doi: 10.1002/sim.5681. Epub 2012 Nov 22.149

Jiang Guo, Darsh Shah, and Regina Barzilay. Multi-source domain adaptation with mixture of experts. In150

Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018151

Conference on Empirical Methods in Natural Language Processing, pages 4694–4703, Brussels, Belgium,152

October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1498. URL153

https://aclanthology.org/D18-1498/.154

Frank E. Jr Harrell, Kerry L. Lee, Robert M. Califf, David B. Pryor, and Robert A. Rosati. Regression modelling155

strategies for improved prognostic prediction. Statistics in Medicine, 3(2):143–152, April–June 1984. doi:156

10.1002/sim.4780030207.157

Yan Jin, Mengke Li, Yang Lu, Yiu-ming Cheung, and Hanzi Wang. Long-tailed visual recognition via self-158

heterogeneous integration with knowledge excavation. In Proceedings of the IEEE/CVF Conference on159

Computer Vision and Pattern Recognition (CVPR), pages 23695–23704, June 2023.160

Changhee Lee, William Zame, Jinsung Yoon, and Mihaela van der Schaar. Deephit: A deep learning approach161

to survival analysis with competing risks. In Proceedings of the AAAI Conference on Artificial Intelligence,162

volume 32, 2018. doi: 10.1609/aaai.v32i1.11842. URL https://doi.org/10.1609/aaai.v32i1.11842.163

Dongjoon Lee, Hyeryn Park, and Changhee Lee. Toward a well-calibrated discrimination via survival outcome-164

aware contrastive learning. In The Thirty-eighth Annual Conference on Neural Information Processing165

Systems, 2024. URL https://openreview.net/forum?id=UVjuYBSbCN.166

Kan Ren, Jiarui Qin, Lei Zheng, Zhengyu Yang, Weinan Zhang, Lin Qiu, and Yong Yu. Deep Recurrent167

Survival Analysis. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19),168

pages 4798–4805. AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014798. URL169

https://doi.org/10.1609/aaai.v33i01.33014798.170

M. Schumacher, G. Bastert, H. Bojar, K. Hübner, M. Olschewski, W. Sauerbrei, C. Schmoor, C. Beyerle, R. L.171

Neumann, and H. F. Rauschecker. Randomized 2 x 2 trial evaluating hormonal treatment and the duration172

of chemotherapy in node-positive breast cancer patients. Journal of Clinical Oncology, 12(10):2086–2093,173

October 1994. doi: 10.1200/JCO.1994.12.10.2086.174

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff175

Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017. URL176

https://arxiv.org/abs/1701.06538.177

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain adaptive ensemble learning. IEEE Transactions178

on Image Processing, 30:8008–8018, 2021. ISSN 1941-0042. doi: 10.1109/tip.2021.3112012. URL179

http://dx.doi.org/10.1109/TIP.2021.3112012.180

5

https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://openreview.net/forum?id=f0_tkoEJV88
https://openreview.net/forum?id=f0_tkoEJV88
https://openreview.net/forum?id=f0_tkoEJV88
https://doi.org/10.1038/nature10983
https://doi.org/10.1038/nature10983
https://doi.org/10.1038/nature10983
https://doi.org/10.7717/peerj.6257
https://aclanthology.org/D18-1498/
https://doi.org/10.1609/aaai.v32i1.11842
https://openreview.net/forum?id=UVjuYBSbCN
https://doi.org/10.1609/aaai.v33i01.33014798
https://arxiv.org/abs/1701.06538
http://dx.doi.org/10.1109/TIP.2021.3112012


A Training Details181

Table 2 summarizes the key hyperparameters used in our experiments.182

Item METABRIC GBSG

Initial encoder MLP (depth=4) MLP (depth=3)
Feature-encoder router MLP (depth=1) MLP (depth=1)
Feature-encoder expert MLP (depth=1) MLP (depth=2)
Number of feature-encoder experts (K) 4 6
Hazard router MLP (depth=1) MLP (depth=1)
Hazard expert MLP (depth=1) MLP (depth=1)
Number of hazard experts (L) 4 3
Time embedding dim (dtime) 8 8
Load-balancing coef. (feature) α 0.3 0.3
Load-balancing coef. (hazard) β 0.5 0.5

Table 2. Hyperparameter details. Here, depth refers to the number of hidden layers in each MLP.

B More Ablation Studies183

Feat. MoE Haz. MoE C-index

✗ ✗ 0.646 ± 0.021
✓ ✗ 0.649 ± 0.023
✗ ✓ 0.650 ± 0.025
✓ ✓ 0.654 ± 0.015

Table 3. Ablation on each MoE architecture.
Figure 4. Ablation on input of hazard router.

For simplicity, we restrict our ablation experiments using Naïve implementation using the Metabric184

dataset.185

Effect of each MoE Architecture. We conducted ablation studies to evaluate the contribution of186

each MoE component, the mixture of feature encoders and the mixture of hazard networks. As shown187

in Table 3, introducing the mixture of feature encoders or the mixture of hazard networks individually188

improves performance over the conventional single-network models When combined, the full dual189

mixture achieves the best performance, demonstrating that the two components are complementary.190

Input of Hazard Router. We evaluate how the choice of router inputs affects performance. Specifi-191

cally, we measured time-dependen C-index for three variants: patient features only, time embeddings192

only, and both. Note that in all variants the hazard experts themselves still take both patient features193

and time embeddings as input; only the inputs to the router are modified. As shown in Figure 4,194

using either patient features or time embeddings alone is suboptimal; their combination consistently195

achieves the best performance, highlighting the importance of jointly conditioning the router on both196

patient heterogeneity and temporal variation.197
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