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Abstract. Applying deep learning (DL) to medical imaging generally
requires large amounts of expert-annotated data. Foundation models,
that are pretrained on huge unlabeled datasets offer a promising way to
reduce this reliance. While self-supervised learning (SSL) has advanced
foundation model development for 2D natural and medical images, ex-
tending these methods to 3D medical imaging remains computationally
challenging and often constrained by limited pretraining data. In this
work, we adapt the 3DINO framework—an extension of DINOv2 to vol-
umetric inputs—to the MICCAI-FLARE25 Challenge Task 4, leverag-
ing 20,000 unlabeled CT and MRI scans for pretraining. To efficiently
transfer learned representations to diverse tasks while avoiding overfit-
ting, we employ parameter-efficient fine-tuning via Low-Rank Adapta-
tion (LoRA). Our results demonstrate that combining 3DINO pretrain-
ing with LoRA improves performance across segmentation, classification,
survival prediction, and regression. These findings highlight the potential
of SSL-based pretrained models to enable more label-efficient training for
diverse 3D medical imaging applications.

Keywords: Self-supervised learning · Medical imaging · Parameter-efficient
fine-tuning

1 Introduction

Enlisting the support of trained medical professionals to create detailed annota-
tions for training deep learning (DL) models for medical imaging applications is
both expensive and time-consuming. In 2D natural images, numerous works have
employed self-supervised learning (SSL) to great success in scaling to larger and
more diverse pre-training datasets and creating image representations that are
generalizable to many downstream tasks [3,1,7,20,9]. These methods have been
shown to be highly successful in reducing the amount of annotations required
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to train DL models for 2D natural images, and more recently have benefited 2D
medical image applications as well [2,16]. The ability of such pretrained models
to learn from vast unannotated datasets in both computer vision and natural
language processing have prompted the creation of the term "foundation mod-
els": models that can generalize to huge amounts of downstream tasks without
significant amounts of labeled data or tuning.

In the domain of SSL applied to 3D medical images, Taleb et al. [15] intro-
duced a suite of self-supervised tasks, including rotation prediction and shuffle.
Another related study by Chen et al. [4] investigated the efficacy of masked im-
age modeling for creating representations of medical images. This generative SSL
technique involves masking patch regions in an input image, and tasking a Vision
Transformer (ViT) [6] model to predict the masked locations. While these meth-
ods introduced in the literature show that SSL can be an effective tool for im-
proving the label-efficiency of training ML models on medical imaging datasets,
they performed SSL pre-training on relatively smaller datasets that were aligned
to the fine-tuning task in both organ and modality. This limits the scalability
and generalizability of their methods, requiring in-domain pre-training datasets,
and a separate model to be trained for each downstream task.

While existing SSL methods for images are excellent for 2D representation
learning, scaling them to 3D is prohibitively computationally expensive due to
the large batch sizes needed to train effectively. The recently proposed DINOv2
SSL methodology [14] provides numerous improvements in computational effi-
ciency and training stability relative to its counterparts, which motivated the
creation of 3DINO [17], a work adapting DINOv2 to 3D medical imaging inputs.
In this work, we apply the 3DINO framework to the MICCAI-FLARE25 Chal-
lenge Task 4: Foundation Models for 3D CT and MRI. This challenge aims to
develop and tune foundation models for volumetric medical imaging modalities
using 10,000 unlabeled CT scans and 10,000 unlabeled MRI scans. While 3DINO
appeared to generalize well to the challenge dataset, we also expect the scale of
pretraining to be suboptimal, especially given that 2D datasets easily surpass
1,000,000 unlabeled pretraining images. Thus, we enhance and adjust our pre-
trained model weights for downstream tasks while maintaining generalizability
using parameter-efficient fine-tuning methods. Specifically, in this work we use
the well known Low-Rank Adaptation (LoRA) method.

2 Method

Our overall method involves first using 3DINO to pretrain a ViT-Large [6] on
the pooled CT and MRI unlabeled datasets (approx. 20,000 images total). Then,
using LoRA to adapt pretrained model weights, we perform downstream fine-
tuning on all challenge tasks. A summary of our method can be seen in Figure
1.
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Fig. 1. Diagram summarizing pretraining and downstream finetuning methodology.

2.1 Preprocessing

For SSL pretraining, the only preprocessing steps we use are intensity normal-
ization and foreground cropping. Since we pool CT data with non-quantitative
MRI data, we use a simple percentile-based normalization, mapping from 0.05
and 99.95 percentiles to -1 and 1 (clipping values smaller and larger). For fine-
tuning, on top of applying intensity normalization and foreground cropping, we
also normalize the pixel resolution between scans. The normalized voxel size was
determined manually by inspecting each downstream dataset.

2.2 Proposed Method

3DINO We employ 3DINO [17] as our pretraining method of choice. 3DINO
is built on DINOv2 [14], which performs SSL using a self-distillation objective
utilizing a teacher and student network. From an unlabeled medical image sam-
pled from the dataset, two randomly augmented "crops" are taken (called crop
‘A’ and ‘B’). DINOv2 consists of two primary objectives. The first objective
passes crop A to the student, and uses the image-level feature to predict the
feature vector output by passing crop B to the teacher (and vice versa passing
crop B to the student). The second objective masks patches in crop A, and tasks
the student with reconstructing the patch-level features output by passing the
unmasked crop A to the teacher. The teacher is parameterized simply as an
exponential moving average of the student’s weights. More information on this
method can be found in the original work [14].

Using 3DINO, we pretrain a vanilla ViT-Large adapted to 3D inputs on
the 20,000-volume unlabeled dataset. The input dimensions to the network are
96× 96× 96 with a patch size of 16× 16× 16. The model has 24 layers and 16
heads, with a feature embedding size of 1024.

LoRA For all downstream tasks, we use LoRA [10] to slightly adapt pretrained
weights during fine-tuning. LoRA is a method to fine-tune large models by up-
dating only a small set of extra parameters on top of frozen pretrained weights.
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It functions by assuming that downstream task-specific adjustments are intrin-
sically low-rank. This is implemented by adding a r-rank update to existing
pretrained weight matrices. In this work, we apply LoRA to the query and key
projection matrices, with rank r = 16. More information on this method can be
found in the original work [10].

Prediction Tasks For prediction-like tasks that yield a single image-level fea-
ture, we append a simple 2-layer linear model to the pretrained ViT-Large model.
The linear layer either inputs the [CLS] token output of the final ViT layer, or
the [CLS] token concatenated with the averaged patch tokens. This architec-
ture is consistent with all prediction tasks, with the main difference being the
the number of output classes and loss functions. For downstream classification
tasks, we use cross-entropy (CE) loss. For regression, we use mean-squared error.
For multi-label prediction tasks we use binary CE. Survival prediction employs
the negative log-likelihood formulation from [19].

Segmentation Tasks For dense segmentation tasks, we append a convolu-
tional decoder onto the pretrained ViT-Large model similarly to the UNETR
[8] architecture. Segmentation tasks use the compound Dice-CE loss due to its
robustness for medical image segmentation tasks [13].

Joint Segmentation and Classification Tasks A single downstream task
looked to jointly tackle image classification and segmentation. For this task, we
used a merged segmentation decoder with a linear classification decoder archi-
tecture. The segmentation decoder was trained regularly using Dice-CE loss,
with the classification decoder trained using CE loss only on randomly sam-
pled patches that contain foreground. Both decoders shared a ViT backbone
and LoRA weights. During inference, a sliding window is used to segment fore-
ground regions for a whole image, and a crop centered on the predicted fore-
ground regions is passed to the classification decoder to predict the class of the
image.

Resource Efficiency While the pretrained network is relatively large (1.3Gb),
performing inference is not costly due to FlashAttention [5] and having lightweight
decoders and minimal weight adaptation. Classification weights including LoRA
weights are only about 8.1Mb per task, and convolutional decoders including
LoRA are about 80Mb per task. With the settings used in this work, inference
could be performed on a 8Gb consumer GPU in under 1 minute per case.
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3 Experiments

3.1 Dataset and evaluation measures

Details regarding the composition of the pretraining and downstream fine-tuning
datasets can be found in the challenge website 5. A brief summary of the down-
stream tasks for each modality follows:

CT validation tasks:

1. Abdominal disease classification (‘CT Ab. Cls.’): A 24-class multi-label ab-
dominal disease classification task. Performance on this task is determined
using mean average precision (mAP).

2. Abdominal lesion segmentation (‘CT Ab. Les.’): A 2-class abdominal lesion
segmentation task. Performance on this task is determined using the Dice
segmentation score (DSC) averaged over the foreground class.

3. Abdominal organ segmentation (‘CT Ab. Org.’): A 14-class abdominal or-
gan segmentation task. Performance on this task is determined using DSC
averaged over all foreground classes.

4. Lung lesion segmentation (‘CT Lung Les.’): A 2-class lung lesion segmenta-
tion task. Performance on this task is determined using DSC averaged over
the foreground class.

CT testing tasks:

1. Abdominal disease classification: The same 24-class multi-label abdominal
disease classification task, except tested on an unseen test set.

2. MSWAL Abdominal lesion segmentation: An 8-class abdominal lesion seg-
mentation task on multiple lesion types.

MRI validation tasks:

1. Brain age prediction (‘MRI Age’): A brain age regression task. Performance
on this task is determined using mean absolute error (MAE) in years.

2. Neuropsychiatric phenomics classification (‘MRI Phen.’): A 4-class neuropsy-
chiatric phenomics prediction task. Performance on this task is determined
using balanced accuracy (bal. acc.) and area under the receiver operating
characteristic curve (AUC).

3. Autism diagnosis (‘ABIDEII’): A 2-class autism diagnosis task. Performance
on this task is determined using bal. acc. and AUC.

4. Survival prediction (‘UPenn-GBM’): A survival regression task on brain
MRI. Performance on this task is determined using the concordance index
(C-Index).

5 https://www.codabench.org/competitions/7150/#/pages-tab



6 T. Xu et al.

5. Liver tumor segmentation (‘ATLAS23’): A 2-class liver tumor segmentation
task. Performance on this task is determined using DSC averaged over the
foreground class.

6. Heart segmentation and classification (‘EMIDEC Seg.’ or ‘EMIDEC Cls.’):
A joint 5-class heart segmentation task and 2-class classification task. Per-
formance on this task is determined using DSC averaged over the foreground
classes, bal. acc., and AUC.

MRI testing tasks:

1. Endometriosis classification: A 2-class endometriosis classification task from
pelvic MRI with multiple potential input modalities.

2. Abdomen organ segmentation: A 14-class abdominal organ segmentation
task on MRI scans.

3.2 Implementation details

Environment settings The development environments and requirements for
pretraining are presented in Table 1.

Table 1. Development environments and requirements.

CPU AMD EPYC 7742 64-Core Processor
RAM 300Gb
GPU Two A100-SXM4-80GB
CUDA version 12.2
Programming language Python 3.9
Deep learning framework torch 2.0, torchvision 0.15.0
Specific dependencies MONAI 1.3.0
Code https://github.com/AICONSlab/3DINO

Training protocols Pretraining augmentations include a 3D version of Ran-
domResizedCrop [17], random flips and rotation, contrast adjustment, additive
noise, histogram shift, Gaussian smoothing and sharpening, and Gibbs noise.
Fine-tuning augmentations included random flips and rotation, affine transforms,
contrast adjustment, Gaussian smoothing and sharpening, additive noise, and
intensity shifts.

For prediction tasks, patches are sampled from full images using a random
crop. To minimize the chances of missing important image regions after cropping,
image sizes were larger (1283 or 1443) and spacing normalization was chosen so
that full images were slightly larger than the image size. During inference, a
deterministic center crop is taken instead.

For segmentation tasks, patches are sampled from images using random crops
that had 50% chance of being sampled from foreground voxels, and 50% chance of
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being sampled from background. Image sizes were smaller due to computational
complexity of training a convolutional decoder (1123), and a sliding window was
applied to segment a full image during inference.

On downstream validation tasks, best models were selected by the highest
performance on the validation sets. For the endometriosis classification testing
task, a 3-fold cross-validation scheme was used with the final prediction aver-
aging the outputs of the 3 folds. For CT Ab. Cls., the best performing model
on the validation test was chosen. For the two testing segmentation tasks, the
final models were used. Additional details on training protocols (pretraining and
downstream fine-tuning) are in Tables 2 and 3.

Table 2. Pretraining protocols.

Batch size 256
Patch size 96×96×96
Total iterations 125,000
Optimizer AdamW
Initial learning rate (lr) 0.001
Lr decay schedule Linear Warmup Cosine Annealing
Training time 10 days
Loss function DINOv2 loss [14]
Number of model parameters 300M

Table 3. Training protocols for downstream fine-tuning. If two values, the first refers
to segmentation parameters and the second refers to prediction.

Network initialization 3DINO pretraining, model frozen
Batch size 8, 16
Patch size 112×112×112, 128×128×128
Total iterations Varies per task
Optimizer AdamW
Initial learning rate (lr) Varies per task
Lr decay schedule Linear Warmup Cosine Annealing
Training time 8 hours, Approx. 2 hours
Number of model parameters 20M, 2.5M
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4 Results and discussion

4.1 Pre-training Progress

To evaluate the progression of SSL pretraining, we perform linear evaluation
using the pretraining weights saved at 5 iteration checkpoints. For prediction
tasks, this means training a 2-layer linear network on top of a frozen pretrained
model without using LoRA. To save time for segmentation, we also only train
a 2-layer linear network on top of patch-level features (and do not use LoRA),
meaning the resulting segmentation feature maps are 16× downsampled. We
evaluate performance by upsampling these feature maps. Since this segmenta-
tion decoder is very lightweight, segmentation performance is degraded, though
we are mainly looking at relative improvements in performance over pretraining
epochs. As a sanity-check baseline comparison, we also add an experiment at it-
eration 0 (randomly initialized backbone). The results are summarized in Figure
2. Overall, performance seems to increase over pretraining progression.

Fig. 2. Linear evaluation results for 5 validation tasks taken at 5 checkpoints every
25000 iterations.

4.2 Use of LoRA

To evaluate the importance of using LoRA to tune pretrained ViT weights, we
perform experiments with and without it. These experiments use the same de-
coder and training recipe, only differing in use of LoRA. Results are summarized
in Figure 3. We found LoRA to benefit all tasks except for CT Abdomen Lesion
segmentation, where it performed similarly. LoRA benefited MRI Brain Age re-
gression the most, which we expect may be due to the fine-grained nature of the
task. Qualitative performance on the CT Abdomen Organ segmentation task
are displayed in Figure 4. We found that LoRA appeared to help particularly in
detecting smaller organs.

4.3 Quantitative results on validation set

We report results on the validation set of the challenge using the ViT pretrained
for 50,000 iterations as the pretrained encoder. We did not use the final pre-
trained model because it was not done training by the end of the validation
phase of the challenge. Performance on segmentation tasks are displayed in Ta-
ble 4, and prediction tasks in Table 5.
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Fig. 3. LoRA results for 5 validation tasks.

Fig. 4. Performance with and without using LoRA on CT Abdomen Organ segmen-
tation. The two rows are separate cases in the validation set, with columns in order
being original image, ground truth, segmentation prediction without using LoRA and
segmentation prediction with LoRA.

Table 4. Quantitative validation segmentation task performance.

Task CT Ab. Les. CT Ab. Org. CT Lung Les. ATLAS23 EMIDEC Seg.
Metric DSC DSC DSC DSC DSC
Value 0.3254 0.7511 0.5798 0.5944 0.4969

Table 5. Quantitative validation prediction task performance.

Task CT Ab. Cls. MRI Age MRI Phen. ABIDEII UPenn-GBM EMIDEC Cls.
Metric mAP MAE Bal. Acc. AUC Bal. Acc. AUC C-Index Bal. Acc. AUC
Value 0.2469 3.262 0.4104 0.6423 0.6439 0.6439 0.5967 0.8439 0.8972
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4.4 Results on final testing set

Final testing results will be added after their release.

4.5 Limitation and future work

One limitation of our work is that it appears to struggle with segmentation tasks
that contain smaller foreground regions (e.g. lesion segmentation). This may be
because ViTs inherently operate on the downsampled patch-level. While LoRA
did appear to help with this, additional work incorporating adapters, pretrain-
ing vision-specific ViTs like Sliding Window Transformer [12], or distilling ViT
weights to convolutional encoders could further improve performance.

Another limitation of this work is that it used a relatively barebones pre-
processing and training recipe, and did not use any postprocessing. Additional
work on this, perhaps incorporating the nnUNet [11] framework may improve
our segmentation performance.

5 Conclusion

In this work, we apply the 3DINO pretraining method to generate representa-
tions from the pooled 20,000-scan FLARE Challenge Task 4 unlabeled dataset.
To better adapt the pretrained model to downstream tasks without overfitting
and with minimal additional trained weights, we utilize LoRA. We show that pre-
training and LoRA benefits performance in a large variety of downstream tasks
in medical imaging including segmentation, classification, survival prediction,
and regression. Overall, the creation of SSL methods that are capable of gener-
ating salient features for 3D medical images could greatly reduce the amount of
labeled data needed for diverse downstream medical imaging tasks.
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Strategies to use the partial label Pg. 4
Strategies to use the unlabeled images. Pg. 3
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The dataset and evaluation metric section are presented Pg. 5
Environment setting table is provided Tab. 1
Training protocol table is provided Tab. 2, 3
Ablation study Pg. 8
Efficiency evaluation results are provided Pg. 4
Visualized segmentation example is provided Fig. 4
Limitation and future work are presented Yes/No
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