
Subtask-Aware Visual Reward Learning from
Segmented Demonstrations

Anonymous Author(s)
Affiliation
Address
email

Abstract: Reinforcement Learning (RL) agents have demonstrated their potential1

across various robotic tasks. However, they still heavily rely on human-engineered2

reward functions, requiring extensive trial-and-error and access to target behav-3

ior information, often unavailable in real-world settings. This paper introduces4

REDS: REward learning from Demonstration with Segmentations, a novel reward5

learning framework that leverages action-free videos with minimal supervision.6

Specifically, REDS employs video demonstrations segmented into subtasks from7

diverse sources and treats these segments as ground-truth rewards. We train a8

dense reward function conditioned on video segments and their corresponding9

subtasks to ensure alignment with ground-truth reward signals by minimizing the10

Equivalent-Policy Invariant Comparison distance. Additionally, we employ con-11

trastive learning objectives to align video representations with subtasks, ensuring12

precise subtask inference during online interactions. Our experiments show that13

REDS significantly outperforms baseline methods on complex robotic manipula-14

tion tasks in Meta-World and more challenging real-world tasks, such as furniture15

assembly in FurnitureBench, with minimal human intervention.16

1 Introduction17

Reinforcement Learning (RL) has demonstrated significant potential for training autonomous agents18

in various real-world robotic tasks, provided that appropriate reward functions are available [1, 2, 3,19

4, 5]. However, reward engineering typically requires substantial trial-and-error [6, 7] and extensive20

task knowledge, often necessitating specialized instrumentation (e.g., motion trackers [8] or tactile21

sensors [9]) or detailed information about target objects [10, 11, 12, 13, 14, 15], which are difficult22

to obtain in real-world settings. Learning reward functions from action-free videos has emerged as a23

promising alternative, as it avoids the need for detailed action annotations or precise target behavior24

information, and video data can be easily collected from online sources [16, 17, 18]. Approaches in25

this domain include learning discriminators between video demonstrations and policy rollouts [19,26

20], training temporally aligned visual representations from large-scale video datasets [21, 22, 23,27

24, 25] to estimate reward based on distance to a goal image, and using video prediction models to28

generate reward signals [26, 27].29

Despite this progress, existing methods often struggle with long-horizon, complex robotic tasks that30

involve multiple subtasks. These approaches typically fail to provide context-aware reward signals,31

relying only on a few consecutive frames or the final goal image without considering subsequent32

subtasks. For example, in One Leg task (see Figure 2d) from FurnitureBench [28], prior methods33

often overemphasize the reward for picking up the leg while neglecting crucial steps such as inserting34

the leg into a hole and tightening it. Recent work [29] proposes a discriminator-based approach that35

treats complex tasks as a sequence of subtasks. However, it assumes that the environment provides36

explicit subtask identification, which often demands significant human intervention in real-world37

scenarios. Moreover, discriminator-based methods are known to be prone to mode collapse [30,38

31]. Consequently, designing an effective visual reward function for real-world, long-horizon tasks39

remains an open problem.40

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

EPIC
Loss

1. Subtask segmentation on video

RL Agent

Replay
Buffer

Predict subtask

Label reward

3. Online RL with learned reward

REDS 2

2. Reward learning

 Segmented video

Video
Encoder

M
LP

Contrastive
Loss

1 32

Subtask Instruction
 Grab a box
 Lift the box
 Put the box on the table

1

1

Subtask
Embedder

Timestep

2
3

2 3

... ...

Figure 1: Illustration of REDS. Our main idea is to leverage expert demonstrations annotated with
the ongoing subtask as the source of implicit reward signals (left). We train a reward model con-
ditioned on video segments and corresponding subtasks with 1) contrastive loss to attract the video
segments and corresponding subtask embeddings and 2) EPIC [32] loss to generate reward equiva-
lent to subtask segmentations (middle). In online RL, REDS infers the ongoing subtask using only
video segments at each timestep and computes the reward with that (right).

Our approach To address the aforementioned limitations, we propose a novel reward learning41

framework, REDS: REward learning from Demonstration with Segmentations, which infers subtask42

information from video segments and generates corresponding reward signals for each subtask. The43

key idea is to employ minimal supervision to produce appropriate reward signals for intermediate44

subtask completion. Specifically, REDS utilizes expert demonstrations, where subtasks are anno-45

tated at each timestep by various sources (e.g., human annotators, code snippets, vision-language46

models; see the left figure of Figure 1). These annotations serve as ground-truth rewards. For train-47

ing, we introduce a new objective function minimizing the Equivalent-Policy Invariant Comparison48

(EPIC) [32] between the learned reward function and the ground-truth rewards, guaranteeing a theo-49

retical upper bound on regret relative to the ground-truth reward function. Additionally, to correctly50

infer the ongoing subtask in online interactions, we adopt a contrastive learning objective to align51

video representations with task embeddings. In terms of architecture, our reward model is designed52

to capture temporal dependencies in video segments using transformers [33], leading to enhanced53

reward signal quality.54

Contributions We present a novel visual reward learning framework REDS: REward learning55

from Demonstration with Segmentations, which can produce suitable reward signals aware of sub-56

tasks in long-horizon complex robotic manipulation tasks. We show that REDS significantly out-57

performs baselines in training RL agents for robotic manipulation tasks in Meta-world, and even58

surpasses dense reward functions in some tasks. Furthermore, we demonstrate that REDS can59

train real-world RL agents to perform long-horizon complex furniture assembly tasks from Fur-60

nitureBench.61

2 REward learning from Demonstration with Segmentations62

2.1 Intuition63

The sparse reward function R provides feedback only on the overall success or failure of a task,64

which is insufficient for guiding the agent through intermediate states. To address this, drawing65

inspiration from previous work on long-range robotic manipulation tasks [28, 29], we decompose66

the task into m subtasks, denoted as U = {U1, ..., Um}, using domain knowledge. Each subtask Ui67

represents a distinct step in the task sequence, where i indicates its order. For task success, the agent68

must complete these subtasks in sequence, meaning subtask Ui must be finished before moving to69

Ui+1.1 To further guide the agent, we provide text instructions X = {xi}mi=1, describing how to70

solve each subtask. To obtain subtask segmentations, we map each observation ot in the trajectory71

1For instance, Door Open can be divided into (i) reaching the door handle and (ii) pulling the door to the
target position.

2

(a) Door Open (b) Peg Insert Side (c) Sweep Into (d) One Leg

Figure 2: Examples of visual observations used in our experiments. We consider a variety of robotic
manipulation tasks from Meta-world [12] and FurnitureBench [28].

τ = (o0, ..., oT) to its corresponding subtask using a segmentation function ψ : O → U from72

various sources.73

2.2 Reward Modeling74

Architecture As mentioned in Section 1, previous reward learning methods generate rewards only75

by a single frame or consequent frames, not taking into account the order of subtasks. To resolve76

the issue, we propose a new reward predictor R̂U = R̂(s;U) conditioned on each subtask.77

Reward equivariance with subtask segmentation Our key insight is that the subtask segmenta-78

tion function ψ can be thought of as the ground-truth reward function, providing implicit signals for79

solving intermediate tasks. To ensure our reward function induces the same set of optimal policies80

as ψ, we train to minimize EPIC [32] distance between our reward model R̂U
θ parameterized by θ81

and ψ for all subtasks.82

Progressive reward signal However, minimizing EPIC with ψ alone can lead to overfitting and83

the inability to provide progressive signals within each subtask. To mitigate this issue, we propose an84

additional regularization term to enforce progressive reward signals. Inspired by previous work [34,85

35, 36], we view the reward function as a progress indicator for each subtask, and we regularize the86

reward function output to be higher in later states of expert demonstration.87

Aligning video representation with subtask embeddings As the reward model lacks informa-88

tion about the ongoing subtasks in online interactions, it must infer the agent’s current subtask. To89

achieve this, we train the video representation to be closely aligned with the corresponding sub-90

task embedding by adopting a contrastive learning objective. The model can select the appropriate91

subtask embedding only by the video segment.92

3 Experiments93

3.1 Meta-world Experiments94

Setup We first evaluate our method on 8 different visual robotic manipulation tasks from Meta-95

world [12]. As a backbone algorithm, we use DreamerV3 [37], a state-of-the-art visual model-based96

RL algorithm that learns from latent imaginary rollouts. For collecting subtask segmentations, we97

utilize a scripted teacher in simulation environments for scalability. Specifically, we use the pre-98

defined indicator for subtasks provided in the benchmark for all subtask segmentations (see Ap-99

pendix E for the list of subtasks and corresponding text instructions for each task). We do not use100

these indicators when training/evaluating RL agents. For training REDS, we first collect subtask101

segmentations from 50 expert demonstrations for initial training and train DreamerV3 agents for102

100K environment steps with the initial reward model to collect suboptimal trajectories, which is103

used for fine-tuning. In evaluation, we measure the success rate averaged over 10 episodes in every104

20K steps. Please refer to Appendix B for more details.105

Results Figure 3 shows that REDS consistently improves the sample-efficiency of DreamerV3106

agents by outperforming all baselines. While baselines exhibit non-zero success rates in simple107

tasks like Faucet Close, their performance significantly deteriorates in more complex tasks, such as108

Peg Insert Side. On the other hand, our method maintains non-zero success rates across all tasks and109

even surpasses human-engineered reward functions in some tasks (e.g., Drawer Open, Push, Cof-110

3

REDS (Ours) Human-Engineered ORIL R2R VIPER DrS

0 1 2 3 4 5

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Faucet Close

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Drawer Open

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Lever Pull

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Door Open

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Coffee Pull

0 6 12 18 24 30

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Peg Insert Side

0 6 12 18 24 30

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Push

0 6 12 18 24 30

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Sweep Into

Figure 3: Learning curves of DreamerV3 [37] agents trained with different reward functions for
solving eight robotic manipulation tasks from Meta-world [12], measured by success rate (%). The
solid line and shaded regions represent the mean and stratified bootstrap interval across 4 runs.

fee Pull) without requiring task-specific reward engineering. These results show that REDS effec-111

tively generates appropriate rewards for solving intermediate tasks by leveraging subtask-segmented112

demonstrations.113

3.2 FurnitureBench Experiments114

Setup We further evaluate our method on real-world furniture assembly tasks from Furni-115

tureBench [28], specifically focusing on One Leg assembly. This task involves a sequence of com-116

plex subtasks such as picking up, inserting, and screwing (see Figure 2d). For training REDS, we117

use 300 expert demonstrations with subtask segmentations provided by FurnitureBench, along with118

an additional 200 rollouts from IQL [38] policy trained with expert demonstrations in a single train-119

ing iteration. To prevent misleading reward signals stemming from visual occlusions, we utilize120

visual observations from the front camera and wrist cameras in training REDS. For downstream RL,121

we first train offline RL agents using 300 expert demonstrations labeled with each reward model,122

followed by online fine-tuning to assess improvements. We provide more details in Appendix B.123

Table 1: Online fine-tuning results of IQL
agents in One Leg from FurnitureBench. We
report the initial performance after offline RL
(left) and the performance after 150 episodes
of online RL (right).

Method # Expert Demos Completed Subtasks
(Offline → Online)

Sparse (Offline) [28] 500 1.8
VIPER 300 1.10 → 1.25
DrS 300 1.05 → 1.10
REDS (Ours) 300 1.10 → 2.45

Results As shown in Table 1, REDS achieves sig-124

nificant performance improvements through online125

fine-tuning, whereas the improvements from base-126

lines are marginal. These results indicate that our127

method produces informative signals for solving a128

sequence of subtasks, while baselines either fail to129

provide context-aware signals or dense rewards for130

better exploration (see Appendix H for qualitative131

examples). Moreover, we note that our method out-132

performs the IQL trained with 500 expert demon-133

strations, achieving a score of 2.45 compared to 1.8134

reported by FurnitureBench, despite using only 300 expert demonstrations. Considering that REDS135

does not require additional human interventions beyond resetting the environment, these results136

highlight the potential to extend our approach to a wider range of real-world robotics tasks.137

4 Conclusion138

We proposed REDS, a visual reward learning framework considering subtasks by utilizing subtask139

segmentation. Our main contribution is based on proposing a new reward model leveraging minimal140

domain knowledge as a ground-truth reward function. Our approach is generally applicable and141

does not require any additional instrumentations in online interactions. We believe REDS will sig-142

nificantly alleviate the burden of reward engineering and facilitate the application of RL to a broader143

range of real-world robotic tasks.144

4

References145

[1] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.146

Journal of Machine Learning Research, 2016.147

[2] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manip-148

ulation with asynchronous off-policy updates. In IEEE International Conference on Robotics149

and Automation, 2017.150

[3] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,151

A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.152

International Journal of Robotics Research, 2020.153

[4] L. Smith, I. Kostrikov, and S. Levine. A walk in the park: Learning to walk in 20 minutes with154

model-free reinforcement learning. In Robotics: Science and Systems, 2023.155

[5] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,156

K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand157

manipulation from simulation to reality. In IEEE International Conference on Robotics and158

Automation, 2023.159

[6] S. Booth, W. B. Knox, J. Shah, S. Niekum, P. Stone, and A. Allievi. The perils of trial-and-160

error reward design: misdesign through overfitting and invalid task specifications. In AAAI161

Conference on Artificial Intelligence, 2023.162

[7] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone. Reward (mis) design for au-163

tonomous driving. Artificial Intelligence, 2023.164

[8] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine. Learning agile robotic165

locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.166

[9] Y. Yuan, H. Che, Y. Qin, B. Huang, Z.-H. Yin, K.-W. Lee, Y. Wu, S.-C. Lim, and167

X. Wang. Robot synesthesia: In-hand manipulation with visuotactile sensing. arXiv preprint168

arXiv:2312.01853, 2023.169

[10] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &170

learning environment. IEEE Robotics and Automation Letters, 2020.171

[11] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiriany, and Y. Zhu. ro-172

bosuite: A modular simulation framework and benchmark for robot learning. arXiv preprint173

arXiv:2009.12293, 2020.174

[12] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A175

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on176

Robot Learning, 2020.177

[13] T. Mu, Z. Ling, F. Xiang, D. C. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill:178

Generalizable manipulation skill benchmark with large-scale demonstrations. In Conference179

on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.180

[14] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei, Y. Yao, X. Yuan,181

P. Xie, Z. Huang, R. Chen, and H. Su. Maniskill2: A unified benchmark for generalizable182

manipulation skills. In International Conference on Learning Representations, 2023.183

[15] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel. Humanoidbench: Simu-184

lated humanoid benchmark for whole-body locomotion and manipulation. arXiv preprint185

arXiv:2403.10506, 2024.186

[16] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes from187

videos in the wild. arXiv preprint arXiv:1212.0402, 2012.188

5

[17] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,189

T. Green, T. Back, P. Natsev, et al. The kinetics human action video dataset. arXiv preprint190

arXiv:1705.06950, 2017.191

[18] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Moltisanti,192

J. Munro, T. Perrett, W. Price, and M. Wray. Scaling egocentric vision: The epic-kitchens193

dataset. In European Conference on Computer Vision, 2018.194

[19] A. S. Chen, S. Nair, and C. Finn. Learning generalizable robotic reward functions from” in-195

the-wild” human videos. In Robotics: Science and Systems, 2021.196

[20] D. Yang, D. Tjia, J. Berg, D. Damen, P. Agrawal, and A. Gupta. Rank2reward: Learning197

shaped reward functions from passive video. In IEEE International Conference on Robotics198

and Automation, 2024.199

[21] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain. Time-200

contrastive networks: Self-supervised learning from video. In IEEE International Conference201

on Robotics and Automation, 2018.202

[22] K. Zakka, A. Zeng, P. Florence, J. Tompson, J. Bohg, and D. Dwibedi. Xirl: Cross-embodiment203

inverse reinforcement learning. In Conference on Robot Learning, 2021.204

[23] S. Kumar, J. Zamora, N. Hansen, R. Jangir, and X. Wang. Graph inverse reinforcement learning205

from diverse videos. In Conference on Robot Learning. PMLR, 2022.206

[24] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang. VIP: Towards207

universal visual reward and representation via value-implicit pre-training. In International208

Conference on Learning Representations, 2023.209

[25] Y. J. Ma, W. Liang, V. Som, V. Kumar, A. Zhang, O. Bastani, and D. Jayaraman. Liv:210

Language-image representations and rewards for robotic control. In International Conference211

on Machine Learning, 2023.212

[26] A. Escontrela, A. Adeniji, W. Yan, A. Jain, X. B. Peng, K. Goldberg, Y. Lee, D. Hafner, and213

P. Abbeel. Video prediction models as rewards for reinforcement learning. In Conference on214

Neural Information Processing Systems, 2023.215

[27] T. Huang, G. Jiang, Y. Ze, and H. Xu. Diffusion reward: Learning rewards via conditional216

video diffusion. In European Conference on Computer Vision, 2024.217

[28] M. Heo, Y. Lee, D. Lee, and J. J. Lim. Furniturebench: Reproducible real-world benchmark218

for long-horizon complex manipulation. In Robotics: Science and Systems, 2023.219

[29] T. Mu, M. Liu, and H. Su. Drs: Learning reusable dense rewards for multi-stage tasks. In220

International Conference on Learning Representations, 2024.221

[30] Z. Wang, J. S. Merel, S. E. Reed, N. de Freitas, G. Wayne, and N. Heess. Robust imitation of222

diverse behaviors. In Conference on Neural Information Processing Systems, 2017.223

[31] K. Zolna, S. Reed, A. Novikov, S. G. Colmenarejo, D. Budden, S. Cabi, M. Denil, N. de Freitas,224

and Z. Wang. Task-relevant adversarial imitation learning. In Conference on Robot Learning.225

PMLR, 2021.226

[32] A. Gleave, M. D. Dennis, S. Legg, S. Russell, and J. Leike. Quantifying differences in reward227

functions. In International Conference on Learning Representations, 2021.228

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-229

sukhin. Attention is all you need. In Conference on Neural Information Processing Systems,230

2017.231

6

[34] Y. Lee, A. Szot, S.-H. Sun, and J. J. Lim. Generalizable imitation learning from observation232

via inferring goal proximity. In Conference on Neural Information Processing Systems, 2021.233

[35] K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine. Dynamical distance learning for semi-234

supervised and unsupervised skill discovery. In International Conference on Learning Repre-235

sentations, 2020.236

[36] Z. Wu, W. Lian, V. Unhelkar, M. Tomizuka, and S. Schaal. Learning dense rewards for contact-237

rich manipulation tasks. In IEEE International Conference on Robotics and Automation, 2021.238

[37] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world239

models. arXiv preprint arXiv:2301.04104, 2023.240

[38] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.241

In International Conference on Learning Representations, 2022.242

[39] A. Pan, K. Bhatia, and J. Steinhardt. The effects of reward misspecification: Mapping and mit-243

igating misaligned models. In International Conference on Learning Representations, 2022.244

[40] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,245

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-246

sion. In International Conference on Machine Learning. PMLR, 2021.247

[41] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding248

by generative pre-training. 2018.249

[42] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Confer-250

ence on Learning Representations, 2019.251

[43] D. Yarats, I. Kostrikov, and R. Fergus. Image augmentation is all you need: Regularizing deep252

reinforcement learning from pixels. In International Conference on Learning Representations,253

2021.254

[44] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved255

data-augmented reinforcement learning. In International Conference on Machine Learning,256

2022.257

[45] Y. Seo, D. Hafner, H. Liu, F. Liu, S. James, K. Lee, and P. Abbeel. Masked world models for258

visual control. In Conference on Robot Learning. PMLR, 2022.259

[46] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-260

tation for robot manipulation. In Conference on Robot Learning, 2022.261

[47] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with262

offline data. In International Conference on Machine Learning, 2023.263

[48] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,264

2016.265

[49] K. Zolna, A. Novikov, K. Konyushkova, C. Gulcehre, Z. Wang, Y. Aytar, M. Denil, N. de Fre-266

itas, and S. Reed. Offline learning from demonstrations and unlabeled experience. In Confer-267

ence on Neural Information Processing Systems, 2020.268

[50] D. Xu and M. Denil. Positive-unlabeled reward learning. In Conference on Robot Learning,269

2021.270

[51] W. Yan, Y. Zhang, P. Abbeel, and A. Srinivas. Videogpt: Video generation using vq-vae and271

transformers. arXiv preprint arXiv:2104.10157, 2021.272

[52] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion273

models. In Conference on Neural Information Processing Systems, 2022.274

7

[53] A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In International275

Conference on Machine Learning, 2000.276

[54] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Inter-277

national Conference on Machine Learning, 2004.278

[55] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse reinforce-279

ment learning. In AAAI Conference on Artificial Intelligence, 2008.280

[56] J. Ho and S. Ermon. Generative adversarial imitation learning. In Conference on Neural281

Information Processing Systems, 2016.282

[57] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adverserial inverse reinforcement283

learning. In International Conference on Learning Representations, 2018.284

[58] K. Zolna, S. Reed, A. Novikov, S. G. Colmenarejo, D. Budden, S. Cabi, M. Denil, N. de Freitas,285

and Z. Wang. Task-relevant adversarial imitation learning. In Conference on Robot Learning,286

2021.287

[59] B. Wulfe, L. M. Ellis, J. Mercat, R. T. McAllister, and A. Gaidon. Dynamics-aware comparison288

of learned reward functions. In International Conference on Learning Representations, 2022.289

[60] J. M. V. Skalse, L. Farnik, S. R. Motwani, E. Jenner, A. Gleave, and A. Abate. STARC:290

A general framework for quantifying differences between reward functions. In International291

Conference on Learning Representations, 2024.292

[61] J. Rocamonde, V. Montesinos, E. Nava, E. Perez, and D. Lindner. Vision-language models are293

zero-shot reward models for reinforcement learning. In International Conference on Learning294

Representations, 2024.295

[62] A. Adeniji, A. Xie, and P. Abbeel. Skill-based reinforcement learning with intrinsic reward296

matching. arXiv preprint arXiv:2210.07426, 2022.297

[63] X. Liang, K. Shu, K. Lee, and P. Abbeel. Reward uncertainty for exploration in preference-298

based reinforcement learning. In International Conference on Learning Representations, 2022.299

[64] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic300

manipulation. IEEE Robotics and Automation Letters, 2022.301

[65] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning302

for visual robotic manipulation via discretisation. In IEEE Conference on Computer Vision and303

Pattern Recognition, 2022.304

[66] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic305

manipulation. In Conference on Robot Learning, 2022.306

[67] L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn. Waypoint-based imitation learning for robotic307

manipulation. In Conference on Robot Learning, 2023.308

[68] Z. Zhang, Y. Li, O. Bastani, A. Gupta, D. Jayaraman, Y. J. Ma, and L. Weihs. Universal visual309

decomposer: Long-horizon manipulation made easy. In IEEE International Conference on310

Robotics and Automation, 2024.311

[69] L. Kou, F. Ni, Y. Zheng, J. Liu, Y. Yuan, Z. Dong, and H. Jianye. Kisa: A unified keyframe312

identifier and skill annotator for long-horizon robotics demonstrations. In International Con-313

ference on Machine Learning, 2024.314

[70] A. Xie, L. Lee, T. Xiao, and C. Finn. Decomposing the generalization gap in imitation learning315

for visual robotic manipulation. In IEEE International Conference on Robotics and Automa-316

tion, 2024.317

8

[71] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai,318

A. Singh, A. Brohan, et al. Open x-embodiment: Robotic learning datasets and rt-x mod-319

els. arXiv preprint arXiv:2310.08864, 2023.320

[72] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,321

M. K. Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation322

dataset. arXiv preprint arXiv:2403.12945, 2024.323

[73] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak. Affordances from human videos as324

a versatile representation for robotics. In IEEE Conference on Computer Vision and Pattern325

Recognition, 2023.326

[74] C. Devin, P. Abbeel, T. Darrell, and S. Levine. Deep object-centric representations for gener-327

alizable robot learning. In IEEE International Conference on Robotics and Automation, 2018.328

9

A REDS Training and Inference329

Inference For each transition (st, a, st+1) at timestep t, we compute the reward using st+1. To330

infer ongoing subtasks in REDS, we first encode the visual observations from executed actions and331

the history of previous observations using a pre-trained visual encoder and a causal transformer.332

The transformer’s final output, vt, is used to predict the subtask. REDS selects the subtask index ī333

by choosing the subtask embedding eī resulting in the highest cosine similarity with vt. The final334

reward is computed as R̂θ(st−1, ot;Uī). Please refer to Appendix B for more details.335

Training We outline the training procedure for REDS. First, we collect subtask segmentations336

from expert demonstrations, creating a dataset D0, and use it to train the initial reward model,337

M0. However, reward models trained solely on expert data are susceptible to reward misspecifica-338

tion [39]. To address this, we iteratively collect suboptimal demonstrations and fine-tune the reward339

model using expert and suboptimal data. Unlike expert demonstrations, suboptimal demonstrations340

cover a broader range of states and more diverse observations, making manual segmentation labor-341

intensive and error-prone. To reduce the burden on human annotators, we develop an automatic342

subtask inference procedure, avoiding the need for manual segmentation.343

Before the iterative process, we compute similarity scores for all states in the expert demonstrations344

using the initial reward model M0. For each subtask Ui, we calculate a threshold TUi
based on345

the similarity scores between the expert states and the corresponding instructions, ensuring TUi346

represents the minimum similarity required for successful subtask completion. In each iteration347

i ∈ {1, ..., n}, we proceed as follows:348

• Step 1 (Suboptimal data collection): We train an RL agent using the reward modelM i and collect349

suboptimal demonstrations Di
replay from the agent’s replay buffer.350

• Step 2 (Subtask inference for suboptimal data): For each timestep in the suboptimal trajectory,351

we infer the subtask index î using the same procedure as in inference and compute sim(vt, eî).352

If the similarity falls below the threshold TUi at any timestep, we mark the subtask as failed and353

assign the remaining timesteps to that subtask.354

• Step 3 (Fine-tuning): We fine-tune the reward model M i−1 using the combined dataset Di =355

Di ∪ Di
replay to obtain M i.356

We use the final reward model Mn for downstream RL training.357

B Experiment Details358

Training and inference details We used the open-source pre-trained CLIP [40] with ViT-B/16359

architecture to encode images and subtask instructions for all experiments. We adopt a GPT [41]360

architecture with 3 layers and 8 heads for the causal transformer. To canonicalize our reward func-361

tions, we use the same D for both coverage distribution DC and potential shaping distribution DS ,362

and we estimate the expectation over state distributions using a sample-based average over 8 ad-363

ditional samples from D per sample. All models are trained with AdamW [42] optimizer with a364

learning rate of 1× 10−4 and a mini-batch size of 32. To ensure robustness against visual changes,365

we apply data augmentations, including random shifting [43, 44] and color jittering. For optimiza-366

tion, we train REDS with AdamW [42] optimizer with a learning rate of 1× 10−4, weight decay of367

2× 10−2, and a cosine decay schedule for adjusting the training learning rate. We apply a warm-up368

scheduling for the initial 500 gradient steps starting from a learning rate of 0. Note that the param-369

eters for CLIP visual/text encoders have not been updated. For training downstream RL agents, we370

normalize the reward by dividing it by the maximum value observed in the expert demonstrations.371

We report the hyperparameters used in our experiments in Table 2. For both coverage distribution372

DC and potential shaping distribution DS , we use the same dataset with subtask segmentations Di,373

unlike prior work dealing with arbitrarily random distributions because of the absence of subtask374

segmentations. To canonicalize our reward functions, we estimate the expectation over state dis-375

tributions using a sample-based average over 8 additional samples from D per sample. To prevent376

10

false positive cases in predicting subatsks in online interactions, we add margins to similarity scores377

inversely proportional to the subtasks in online interactions. Specifically, we infer the subtask î as378

follows:379

î = argmaxi∈{1,...,k}(sim(vt, ei) + η ∗ (k − i)), (1)

where η is a hyperparameter for the margin between subtasks.380

Table 2: Hyperparameters of REDS used in our experiments.

Hyperparameter Value

Batch size 32 (Meta-world, RLBench), 8 (FurnitureBench)
Training steps 5000
Learning rate 0.0001
Optimizer AdamW [42]
Optimizer momentum β1 = 0.9, β2 = 0.999
Weight decay 0.02
Learning rate decay Linear warmup and cosine decay
Warmup steps 500
Context length 4
Causal transformer size 3 layers, 8 heads, 512 units

EPIC canonical samples 8
ϵ for progressive reward signal 0.05
η for inferring subtasks 0.01 (Meta-world, RLBench), 0.05 (FurnitureBench)
number of training iterations n 2 (Meta-world, RLBench), 1 (FurnitureBench)

Meta-world experiments We use visual observations of 64× 64× 3. To consistently use a single381

camera viewpoint over all tasks, we use the modified version of the corner2 viewpoint as suggested382

by Seo et al. [45]. Expert demonstrations for each task are collected using scripted policies publicly383

released in the benchmark. We use an action repeat of 2 to accelerate training and set the maximal384

episode length as 250 for all Meta-world tasks. For downstream RL, we use the implementation385

of DreamerV3 from VIPER2. We report the hyperparameters of DreamerV3 agents used in our386

experiments in Table 3. Unless otherwise specified, we use the same set of hyperparameters as387

VIPER.388

RLBench experiments For training both reward models and downstream RL agents, we utilize389

64 × 64 × 3 RGB observations from the front camera and wrist camera. For downstream RL, we390

don’t use any expert demonstrations and we use the same set of hyperparameters as VIPER.391

FurnitureBench experiments We use the implementation of IQL from FurnitureBench 3 for our392

experiments. We utilize 224× 224× 3 RGB observations from the front camera and wrist cameras,393

along with proprioceptive states, to represent the current state. We encode each image with pre-394

trained R3M [46] for visual observations. Following [38], we first run offline RL for 1M gradient395

steps, then continue training while collecting environment interaction data, adding it to the replay396

buffer, and repeating this process for 150 episodes. Before online fine-tuning, we pre-fill the re-397

play buffer with 10 rollouts from the pre-trained IQL policy. We adopt techniques from RLPD [47]398

for efficient offline-to-online RL training. Specifically, we sample 50% of the data from the replay399

buffer and the remaining 50% from the offline data buffer containing 300 expert demonstrations. We400

also apply LayerNorm [48] in the critic/value network of the IQL agent to prevent catastrophic over-401

estimation. We list the hyperparameters used in our experiments in Table 4. For training REDS, we402

collect subtask segmentations for suboptimal demonstrations using the automatic subtask inference403

procedure described in Appendix A, and we manually modified some subtask segmentations with404

false negatives to guarantee stable performance. For baselines, we compare against VIPER and DrS.405

We emphasize that our method enables fully autonomous training in online RL sessions, in contrast406

2https://github.com/Alescontrela/viper_rl
3https://github.com/clvrai/furniture-bench/tree/main/implicit_q_learning

11

https://github.com/Alescontrela/viper_rl
https://github.com/clvrai/furniture-bench/tree/main/implicit_q_learning

Table 3: Hyperparameters of DreamerV3 [26]
used in Meta-world experiments.

Hyperparameter Value

General

Replay Capacity (FIFO) 5× 105

Start learning (prefill) 5000
MLP size 2× 512

World Model

RSSM size 512
Base CNN channels 32
Codes per latent 32

Table 4: Hyperparameters of IQL [38] used in
FurnitureBench experiments.

Hyperparameter Value

Learning rate 3× 10−4

Batch size 256
Policy # hidden units (512, 256, 256)
Critic/value # hidden units (512, 256, 256)
Image encoder R3M [46]
Discount factor (γ) 0.996
Expectile (τ) 0.8
Inverse Temperature (β) 10.0

to DrS, which relies on a subtask indicator provided by humans. In our DrS experiments, subtasks407

were manually identified by a human. We measure the average number of completed subtasks over408

20 rollouts for evaluation.409

Computation We use 24 Intel Xeon CPU @ 2.2GHz CPU cores and 4 NVIDIA RTX 3090 GPUs410

for training our reward model, which takes about 1.5 hours in Meta-world and 3 hours in Furni-411

tureBench due to high-resolution visual observations from multiple views. For training DreamerV3412

agents in Meta-world, we use 24 Intel Xeon CPU @ 2.2GHz CPU cores and a single NVIDIA RTX413

3090 GPU, which takes approximately 4 hours over 500K environment steps. For training IQL414

agents in FurnitureBench, we use 24 Intel Xeon CPU @ 2.2GHz CPU cores and a single NVIDIA415

RTX 3090 GPU, taking approximately 2 hours for 1M gradient steps in offline RL and 4.5 hours416

over 150 episodes of environment interactions in online RL.417

C REDS Architecture Details418

We encode visual observations with a pre-trained CLIP [40] ViT-B/16 visual encoder, utilizing all419

representations from the sequence of patches. We adopt 1D learnable parameters with the same size420

for positional embedding, and we add these parameters to 2D fixed sin-cos embeddings and add them421

to features. To encode temporal dependencies in visual observations, we use a GPT [41] architecture422

with 3 layers and 8 heads. In FurnitureBench, we use a sequence of images from both the front423

camera and wrist camera as input. Given sfrontt /swrist
t from the front/wrist camera, we concatenate424

visual observations to [ofrontt−K−1, o
wrist
t−K−1, ..., o

front
t , owrist

t], add positional embeddings, 2D fixed sin-425

cos embeddings, and additional 1D learnable parameters for each viewpoint for effectively utilizing426

images from multiple cameras. We then pass the features to the transformer layer, the same as the427

model with a single image. The subtask embedder and final reward predictor are implemented as428

2-layer MLPs.429

D Baseline Details430

We consider the following baselines: (1) human-engineered reward functions provided in the bench-431

mark, (2) ORIL [49], an adversarial imitation learning (AIL) method trained only with offline432

demonstrations, (3) Rank2Reward (R2R) [20], an AIL method which trains a discriminator weighted433

with temporal ranking of video frames to reflect task progress, (4) VIPER [26], a reward model uti-434

lizing likelihood from a pre-trained video prediction model as a reward signal, and (5) DrS [29], an435

AIL method that assumes subtask information from the environment and trains a separate discrimi-436

nator for each subtask.437

ORIL [49] For implementing ORIL with visual observations, we use the CNN architecture from438

Yarats et al. [43] to encode image observations. For training data, we use the same set of demon-439

12

strations as for training REDS. Since our training data are divided into success and failure demon-440

strations, we do not use positive-unlabeled learning [50] in our experiments. For robustness against441

visual changes, we apply the same augmentation techniques used for training REDS.442

Rank2Reward (R2R) [20] To ensure compatibility with backbone RL algorithms [37, 38] imple-443

mented in JAX, we reimplement the reward model with JAX following the official implementation of444

Rank2Reward 4 and use the same hyperparameters. We first pre-train the ranking network using the445

same expert demonstrations as REDS, and we then train a discriminator for the expert demonstration446

and policy rollouts, weighted by the output from the pre-trained ranking network. For training effi-447

ciency, we use the CNN architecture from Yarats et al. [43] for encoding visual observations instead448

of R3M [46], finding no significant difference when we use the pre-trained visual representations449

like R3M, but with much slower training in online RL. We observe that our R2R implementation450

with DreamerV3 in JAX outperforms the original version implemented with DrQ-V2 [44] agents.451

DrS [29] Similar to R2R, we reimplement DrS with JAX following the official implementation of452

DrS 5, and use the same set of hyperparameters for reward learning. As the original DrS implemen-453

tation is based on a state-based environment, we switch the backbone RL algorithm from SAC to454

DrQ-V2 [44] and apply the augmentation technique in the reward learning phase for processing vi-455

sual observations efficiently. To report the RL performance, we use the learned dense reward model456

to train new RL agents. In FurnitureBench experiment, we train the reward model with the same457

expert/failure demonstrations as in Section 3.2, without online interaction, to avoid unsafe behaviors458

and a significant increase in training time from online interactions.459

VIPER [26] We use the official implementation of VIPER 6 for our experiments. Given the460

similarities among robotic manipulation tasks, we use the same set of hyperparameters as in RL-461

Bench [10] experiments to train VQ-GAN and VideoGPT. We train 100K steps, choosing the check-462

point with the minimum validation loss. In FurnitureBench experiment, we use images from the463

front camera, resized to 64× 64× 3, and set the exploration objective β as 0.464

E Task Descriptions465

In this section, we list the subtasks and corresponding text instructions for each task in Table 5. For466

Meta-world tasks, we provide the code snippet used to determine the success of each subtask (Please467

refer to the Meta-world [12] for more details). For the FurnitureBench One Leg task, we outline the468

criteria used by human experts to assess the success of each subtask based on the metric defined in469

FurnitureBench [28].470

F Related Work471

Reward learning from videos Learning from observations without expert actions has been a472

promising research area because it does not require extensive instrumentation and allows for the473

easy collection of vast amounts of video from online sources. Notably, several studies have pro-474

posed methods for learning rewards directly from videos and using the signal to train RL agents.475

Previous work has been focused on learning a reward function by aligning video representations in476

temporal order [21, 22, 23] while others train a reward function for expressing the progress of the477

agent towards the goal [35, 34, 20]. Most recent work [26] inspired by the success of video gener-478

ative models [51, 52] utilizes the likelihood of pre-trained video prediction models as a reward. To479

effectively utilize video for long-horizon tasks, we propose a new reward model conditioned both480

on video segments and corresponding subtasks trained with subtask segmentations.481

4https://github.com/dxyang/rank2reward
5https://github.com/tongzhoumu/DrS
6https://github.com/Alescontrela/viper_rl

13

https://github.com/dxyang/rank2reward
https://github.com/tongzhoumu/DrS
https://github.com/Alescontrela/viper_rl

Table 5: A list of subtasks and language description for each subtask used in our experiments.
Task Subtask Success condition Language description

Meta-world Faucet Close 1 object grasped ≤ 0.9 a robot arm reaching the faucet handle.
2 target to obj ≤ 0.07 a robot arm rotating the faucet handle to the right.

Meta-world Drawer Open 1 gripper error ≤ 0.03 a robot arm grabbing the drawer handle.
2 handle error ≤ 0.03 a robot arm opening a drawer to the green target point.
3 handle error ≤ 0.03 a robot arm holding the drawer handle near the green target point after opening.

Meta-world Lever Pull 1 ready to lift > 0.9 a robot arm touching the lever.
2 lever error ≤ np.pi/24 a robot arm pulling up the lever to the red target point.

Meta-world Door Open 1 reward ready ≥ 1.0 a robot arm grabbing the door handle.
2 abs(obs[4]− self. target pos[0]) ≤ 0.08 a robot arm opening a door to the green target point.
3 abs(obs[4]− self. target pos[0]) ≤ 0.08 a robot arm holding the door handle near the green target point after opening.

Meta-world Coffee Pull 1 tcp to obj < 0.04 ∧ tcp open > 0 a robot arm grabbing the coffee cup.
2 obj to target ≤ 0.07 a robot arm moving the coffee cup to the green target point.
3 obj to target ≤ 0.07 a robot arm holding the cup near the green target point.

Meta-world Peg Insert Side 1 tcp to obj < 0.02 ∧ tcp open > 0 a robot arm grabbing the green peg.
2 obj[2]− 0.1 > self.obj init pos[2] a robot arm lifting the green peg from the floor.
3 obj to target ≤ 0.07 a robot arm inserting the green peg to the hole of the red box.
4 obj to target ≤ 0.07 a robot arm holding the green peg after inserting.

Meta-world Push 1 tcp to obj ≤ 0.03 a robot arm grabbing the red cube.
2 target to obj ≤ 0.05 a robot arm pushing the grabbed red cube to the green target point.
3 target to obj ≤ 0.05 a robot arm holding the grabbed red cube near the green target point.

Meta-world Sweep Into 1 self.touching main object > 0 ∧ tcp opened > 0 a robot arm grabbing the red cube.
2 target to obj ≤ 0.05 a robot arm sweeping the grabbed red cube to the blue target point.
3 target to obj ≤ 0.05 a robot arm holding the grabbed red cube near the blue target point.

Meta-world Door Close 1 in place == 1.0 a robot arm grabbing the door handle.
2 obj to target ≤ 0.08 a robot arm closing a door to the green target point.
3 obj to target ≤ 0.08 a robot arm holding the door handle near the green target point after closing.

Meta-world Window Close 1 tcp to obj ≤ 0.05 a robot arm grabbing the window handle.
2 target to obj ≤ 0.05 a robot arm closing a window from left to right.
3 target to obj ≤ 0.05 a robot arm holding the window handle after closing.

FurnitureBench One Leg 1 robot gripper tips make contact with one surface of the tabletop. a robot arm picking up the white tabletop.
2 nearest corner of the tabletop is placed close to the right edge of the obstacle. a robot arm pushing the white tabletop to the front right corner.
3 robot gripper securely grasps a leg of the table and lifts it. a robot arm picking up the white leg.
4 leg is inserted into one of the screw holes of the tabletop, and the robot releases the gripper. a robot arm inserting the white leg into screw hole.
5 leg is fully assembled to the tabletop. a robot arm screwing the white leg until tightly lifted.
6 leg is fully assembled to the tabletop. a robot arm holding the white leg in place.

RLBench Take Umbrella Out of Umbrella Stand 1 GraspedCondition(self.robot.gripper, self.umbrella).conditionmet()[0] a robot arm grasping the umbrella.
2 DetectedCondition(self.umbrella, self.successsensor,negated = True).conditionmet()[0] a robot arm taking the grasped umbrella ouf of the umbrella stand.
3 DetectedCondition(self.umbrella, self.successsensor,negated = True).conditionmet()[0] a robot arm holding the umbrella on the umbrella stand.

Inverse reinforcement learning Designing an informative reward function remains a long-482

standing challenge for training RL agents. To achieve this, Inverse Reinforcement Learning (IRL)483

[53, 54, 55] aims to estimate the underlying reward function from expert demonstrations. Adversar-484

ial imitation learning (AIL) approaches [56, 57, 49, 58, 29] address this by training a discriminator485

network to discriminate transitions from expert data or policy rollouts and using the output from the486

discriminator as a reward for training agents with RL. The most similar work to ours is DrS [29],487

which also utilizes subtask information of the multi-stage task. While DrS assumes that the infor-488

mation on ongoing subtasks can be obtained from the environment during online interaction, our489

method has no such assumption, so it can be applied in more general cases when the segmenting of490

the subtask is hard in automatic ways (e.g., [28]).491

Quantifying differences between reward functions Previous work has explored methods for492

measuring the difference between reward functions without relying on policy optimization proce-493

dures [32, 59, 60]. In particular, Gleave et al. [32] introduced the EPIC distance, a pseudometric494

invariant to equivalent classes of reward functions. Subsequent work [61, 62, 63] has employed495

EPIC to assess the quality of reward functions. In this paper, we take a different approach by using496

EPIC distance as an optimization objective. While Adeniji et al. [62] also utilizes EPIC distance for497

optimizing intrinsic reward functions in skill discovery, our method applies EPIC distance to train498

dense reward functions for long-horizon tasks, serving as a direct reward signal for RL training.499

Segmenting demonstrations for long-horizon manipulation tasks Several approaches have500

been proposed to decompose long-horizon demonstrations into multiple subgoals to prevent error501

accumulation and provide intermediate signals for agent training. These include extracting key502

points from proprioceptive states [64, 65, 66, 67], employing greedy heuristics on off-the-shelf vi-503

sual representations pre-trained with robotic data [68], and learning additional modules on top of504

pre-trained visual-language models to align with keyframes [69]. Our work builds on these efforts505

by leveraging subtask segmentations but focuses on developing a reward learning framework that506

explicitly incorporates subtask decomposition to generate suitable reward signals for intermediate507

tasks. Additionally, we further demonstrate that our model generalizes effectively to unseen tasks508

and robot embodiments.509

14

(a) Door Open (b) One Leg

Figure 4: Qualitative results of REDS in Door Open in Meta-world [12] and One Leg from Furni-
tureBench [28]. We observe that REDS produces suitable reward signals aligned with ground-truth
reward functions by predicting ongoing subtasks effectively and providing progressive reward sig-
nals.

Drawer Open Drawer Close Door Open
Training with 3 different tasks

Door Close Window Close

Evaluation on 2 unseen tasks

0 1 2 3 4 5

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Door Close

Human-engineered (Oracle)
REDS (Unseen)
REDS

0 1 2 3 4 5

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

Window Close

Human-engineered (Oracle)
REDS (Unseen)
REDS

Figure 5: We train REDS with 3 different tasks from Meta-world [12] and use this model to train
RL agents in 2 unseen tasks (left). We present learning curves on Door Close (center) and Window
Close (right), as measured by success rate (%). The solid line and shaded regions represent the mean
and stratified bootstrap interval across 4 runs.

G Additional Experimental Results510

G.1 Alignment with Ground-truth Rewards511

Table 6: EPIC [32] distance (lower is better) between
learned reward functions and hand-engineered reward
functions (Meta-world) / subtask segmentations (Fur-
nitureBench) in unseen data.
Task VIPER R2R ORIL REDS (Ours)

Meta-world Door Open 0.5934 0.5649 0.7071 0.4913
Meta-world Push 0.6144 0.6838 0.7073 0.5381
Meta-world Peg Insert Side 0.5974 0.5806 0.6989 0.4674
Meta-world Sweep Into 0.6248 0.6413 0.7001 0.4673
FurnitureBench One Leg 0.7035 0.6001 0.7014 0.0713

EPIC measurement To quantitatively512

validate the alignment of our method with513

ground-truth reward functions, we mea-514

sure the EPIC distance with a set of unseen515

demonstrations during training. Specifi-516

cally, we use rollouts from the reference517

policy trained with expert demonstrations518

for state distribution. In Table 6, we519

observe that REDS exhibits significantly520

lower EPIC distance than baselines across521

all tasks. Particularly, the difference between REDS and baselines is more pronounced in complex522

tasks like One Leg. This result consistently supports the empirical findings from previous sections.523

Qualitative analysis We provide the graph of computed rewards from REDS in Figure 4. We524

observe that REDS can induce suitable reward signals aligned with ground-truth reward functions.525

For example, REDS provides subtask-aware signals in transition states (e.g., between 2 and 3, and526

between 4 and 5) and generates progressive reward signals throughout each subtask. Please refer to527

Appendix H for the extensive comparison between REDS and baselines.528

15

table_pos: 0.00 0.00 0.00

light: 0.40

(a) Original

table_pos: 0.04 0.06 -0.08
light: 0.31

table_pos: 0.04 -0.09 -0.02
light: 0.71

table_pos: -0.02 -0.02 -0.08
light: 0.60

(b) Examples of visual distractions

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS
REDS (Visual distraction)

(c) Learing curve

Figure 6: We provide visual observations from (a) the original environment and (b) unseen environ-
ments with visual distractions used in our experiments in Section G.2 .

G.2 Generalization Capabilities529

Transfer to unseen tasks REDS can be applied as a reward function in unseen tasks. To validate530

this, we conduct additional experiments by training REDS with segmentation data from 3 tasks531

(Door Open, Drawer Open/Close) and using the reward model to train RL agents in two unseen532

tasks. In Door Close, we aim to validate that REDS can provide informative signals for a new task533

involving a previously seen object and behaviors. In Window Close, we aim to determine whether534

REDS can provide suitable reward signals for familiar behaviors (closing) with an unseen object535

(window). In evaluation, we change the text instruction following the target object (as shown in536

Table E), and we do not fine-tune the reward model. Figure 5 shows that REDS provides effective537

reward signals on unseen tasks and achieves comparable or even better RL performance than REDS538

trained on the target task. This result demonstrates that REDS can be applied to RL training in539

unseen tasks that share properties with training tasks.540

Robustness to visual distractions To prove the robust performance of REDS against visual dis-541

tractions, we train RL agents with our reward model in new Meta-world environments incorporating542

visual distractions, such as varying light and table positions following [70] (see Figure 6b). Note543

that the reward model was trained using demonstrations only from the original environment. As544

Figure 6c shows, REDS can generate robust reward signals despite visual distractions and train RL545

agents to solve the task effectively.546

Figure 7: Learning curve for
DreamerV3 agents in envi-
ronments of the Sawyer Arm.

0 1 2 3 4 5

Environment Step (×10
5
)

0

20

40

Su
cc

es
s

R
at

e
(%

)

Human-engineered (Oracle)
REDS (Unseen)

Transfer to unseen embodiments Since our framework lever-547

ages only action-free video data, we hypothesize that transferring548

to other robot embodiments with similar DoFs is feasible. To sup-549

port this claim, we train REDS with demonstrations of the Franka550

Panda Arm and then compute the reward of an unseen demon-551

stration of the Sawyer Arm in Take Umbrella Out of Stand from552

RLBench [10]. Figure 8 shows that REDS generates informative553

reward signals even with the unseen embodiment. For instance,554

REDS can capture the behavior of taking the umbrella out of the555

stand, as indicated by the increased reward signals between 6 and556

7. Additionally, Figure 7 shows that REDS trained only with the557

Panda Arm can be used to train downstream RL agents in the environment with the Sawyer Arm.558

G.3 Ablation Studies559

Effect of training objectives We investigate the effect of each training objective in Figure 9a.560

Specifically, we compare REDS with 1) a baseline trained with regression to subtask segmentation561

instead of EPIC loss LEPIC, 2) a baseline that utilizes only video representations without subtask562

embeddings, and 3) a baseline trained without the regularization loss Lreg. We observe that RL563

performance significantly degrades without each component, implying that our losses synergistically564

improve reward quality.565

16

(a) (Train) Panda (b) (Unseen) Sawyer

Figure 8: Qualitative results of REDS with different robot embodiments. REDS was trained using
demonstrations from the Panda Arm and evaluated on an unseen demonstration from the Sawyer
Arm in Take Umbrella Out of Stand from RLBench [10]. We visualize several frames above the
graph and mark them with a diamond symbol.

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS (EPIC: O, Cont: O, Reg: O)
REDS (EPIC: X, Cont: O, Reg: O)
REDS (EPIC: O, Cont: X, Reg: O)
REDS (EPIC: O, Cont: O, Reg: X)

(a) Training objectives

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS (PVR: O, Trans: O)
REDS (PVR: O, Trans: X)
REDS (PVR: X, Trans: O)

(b) Architecture

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS (Fine-tuning: O)
REDS (Fine-tuning: X)

(c) Fine-tuning

0 4 8 12 16 20

Environment Step (×10
5
)

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

REDS (50 Demos)
REDS (20 Demos)
REDS (10 Demos)

(d) Expert demonstrations

Figure 9: Learning curves for two Meta-world [12] robotic manipulation tasks, measured by success
rate (%), to examine the effects of (a) training objectives, (b) architecture, (c) fine-tuning, and (d) the
number of expert demonstrations. The solid line and shaded regions show the mean and stratified
bootstrap interval across 8 runs.

Effect of architecture To verify the design choice, we compare REDS with 1) a baseline using566

a CNN for encoding images instead of pre-trained visual representations (PVR) and 2) a baseline567

simply concatenating pre-trained visual representations without a causal transformer. Figure 9b568

shows that both baselines show worse performance compared to ours. Notably, detaching a causal569

transformer significantly degrades RL performance, implying that temporal information is essential570

for providing suitable reward signals in robotic manipulation.571

Effect of fine-tuning In Figure 9c, we compare REDS trained only with the expert demonstrations572

in the initial phase to REDS fine-tuned with additional suboptimal demonstrations as described573

in Appendix A. REDS shows improved RL performance when trained with additional suboptimal574

demonstrations, indicating that the coverage of state distribution impacts the reward quality. Further575

investigation on how to efficiently collect suboptimal demonstrations to enhance the performance of576

learned reward function is a promising future direction.577

Effect of the number of expert demonstrations We investigate the effect of the number of expert578

demonstrations by measuring the RL performance of DreamerV3 agents with REDS trained with579

different numbers of expert demonstrations in 2 tasks (Door Open, Drawer Open) from Meta-world.580

Figure 9d shows that the agents’ RL performance positively correlates with the number of expert581

demonstrations trained for reward learning.582

17

H Extended Qualitative Analysis583

Figure 10: Qualitative results of VIPER [26], ORIL [49], DrS [29], and REDS (Ours) in Peg Insert
Side (left), and Sweep Into (right) from Meta-world [12]. We visualize several frames above the
graph and mark them with a diamond symbol.

18

Figure 11: Qualitative results of VIPER [26], DrS [29], and REDS (Ours) in One Leg from Furni-
tureBench [28]. We visualize several frames above the graph and mark them with a diamond symbol.
VIPER, which does not utilize subtask information, failed to produce suitable rewards for transition-
ing between subtasks. While DrS uses ground-truth subtask information from the environment, it
produces sparse reward signals within each subtask. In contrast, REDS provides subtask-aware sig-
nals in transition states (e.g., between 2 and 3, and 4 and 5) and generates dense reward signals
throughout each subtask.

19

I Limitation and Future Directions584

One limitation of our work is the reliance on pre-trained representations trained with natural im-585

age/text data for encoding videos and subtasks. Although REDS proves its effectiveness in various586

robotic manipulation tasks, we observe that REDS struggles to distinguish subtle changes. We be-587

lieve that the quality of rewards can be further improved by utilizing 1) larger models pre-trained588

with large-scale data with diverse robotic tasks [71, 72] and 2) representations trained with objec-589

tives considering affordances [73] or object-centric methods [74]. Moreover, the number of expert590

demonstrations and the number of iteration for fine-tuning REDS are determined by empirical trials.591

Investigating how to efficiently collect failure demonstrations to mitigate reward misspecification is592

an interesting future direction.593

J Ethics Statement594

Video demonstrations and subtask segmentations used in the experiments were sourced from pub-595

licly available benchmarks (Meta-world, RLBench, FurnitureBench), ensuring no personal or sen-596

sitive information is involved. Potential risks could arise when training and deploying RL agents597

directly in real-world scenarios, particularly in human-robot interactions. Ensuring the safety and598

reliability of these agents before deployment is essential to prevent harm.599

K Reproducibility Statement600

For the reproducibility of REDS, we have provided a detailed explanation of implementation details601

and experimental setups in Appendix A, Section 3, and Appendix B. In addition, to further facilitate602

the reproduction, we attach the source code used in our experiments in the supplementary materials.603

20

	Introduction
	REward learning from Demonstration with Segmentations
	Intuition
	Reward Modeling

	Experiments
	Meta-world Experiments
	FurnitureBench Experiments

	Conclusion
	REDS Training and Inference
	Experiment Details
	REDS Architecture Details
	Baseline Details
	Task Descriptions
	Related Work
	Additional Experimental Results
	Alignment with Ground-truth Rewards
	Generalization Capabilities
	Ablation Studies

	Extended Qualitative Analysis
	Limitation and Future Directions
	Ethics Statement
	Reproducibility Statement

