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Abstract

Accurately approximating an unnormalized distribution with a discrete sample is a fun-
damental challenge in machine learning, probabilistic inference, and Bayesian inference.
Particle evolution methods like Stein variational gradient descent have found great success
in approximating unconstrained distributions but break down for constrained targets. We
introduce a new family of particle evolution samplers suitable for constrained domains
and non-Euclidean geometries. They minimize the Kullback-Leibler (KL) divergence to
constrained target distributions by evolving particles in a dual space defined by a mirror
map. We derive these samplers from a new class of mirrored Stein operators and adaptive
kernels developed in this work. We establish the convergence of our new procedures under
verifiable conditions on the target distribution. Finally, we demonstrate that these new
samplers yield accurate approximations to distributions on the simplex and deliver valid
confidence intervals in post-selection inference.

1. Background: Mirror Descent

Standard gradient descent can be viewed as optimizing a local quadratic approximation
to the target function f : θt+1 = argminθ∈Θ∇f(θt)

>θ + 1
2εt
‖θ − θt‖22. When Θ ⊆ Rd is

constrained, it can be advantageous to replace ‖ · ‖2 with a function Ψ that reflects the
geometry of a problem (Nemirovskij and Yudin, 1983; Beck and Teboulle, 2003): θt+1 =
argminθ∈Θ∇f(θt)

>θ + 1
εt

Ψ(θ, θt). The mirror descent (MD) algorithm chooses Ψ to be the

Bregman divergence induced by a strongly convex, essentially smooth1 function ψ : Θ→
R ∪ {∞}: Ψ(θ, θ′) = ψ(θ)− ψ(θ′)−∇ψ(θ′)>(θ − θ′). The solution of the problem is

θt+1 = ∇ψ∗(∇ψ(θt)− εt∇f(θt)), (1)

where ψ∗(η) , supθ∈Θ η
>θ−ψ(θ) is the convex conjugate of ψ and ∇ψ is a bijection from Θ

to dom(ψ∗) with inverse map (∇ψ)−1 = ∇ψ∗. We can view (1) as first mapping θt to ηt by
∇ψ, applying the update ηt+1 = ηt−εt∇f(θt), and mapping back through θt+1 = ∇ψ∗(ηt+1).

We can view MD as a discretization of the continuous-time dynamics dηt = −∇f(θt)dt, θt =
∇ψ∗(ηt). It is equivalent to the Riemannian gradient flow (see App. B):

dθt = −∇2ψ(θt)
−1∇f(θt)dt, or equivalently, dηt = −∇2ψ∗(ηt)

−1∇ηtf(∇ψ∗(ηt))dt, (2)

where ∇2ψ(θ) and ∇2ψ∗(η) are Riemannian metric tensors. In information geometry, the
discretization of (2) is known as natural gradient descent (Amari, 1998). There is considerable
theoretical and practical evidence (Martens, 2014) showing that natural gradient works
efficiently in learning.

1. ψ is continuously differentiable on the interior of Θ with ‖∇ψ(θt)‖ → ∞ whenever θt → θ ∈ ∂Θ.
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Figure 1: Updating particle approximations in constrained domains Θ. Standard updates
like SVGD (dashed arrow) can push particles outside of the support. Our mirrored
Stein updates in Alg. 1 (solid arrows) preserve the support.

2. Sampling with Mirrored Stein Operators

Particle evolution methods like Stein variational gradient descent (SVGD, Liu and Wang,
2016) apply deterministic updates to particles using operators based on Stein’s method (Stein,
1972; Gorham and Mackey, 2015) and reproducing kernels (Berlinet and Thomas-Agnan,
2011) to sequentially minimize Kullback-Leibler (KL) divergence. Specifically, SVGD updates
each particle in its approximation by applying θt+1 = θt + εtgt(θt) for a chosen mapping
gt : Rd → Rd. It chooses the mapping g∗t that leads to the largest decrease in KL divergence
to p in the limit as εt → 0. The following theorem summarizes their main findings.

Theorem 1 (Liu and Wang, 2016, Thm. 3.1) Suppose (θt)t≥0 satisfies dθt = gt(θt)dt
for bounded Lipschitz gt ∈ C1 : Rd → Rd and that θt has density qt with Eqt [‖∇ log qt(θ)‖2] <
∞. If KL(qt‖p) , Eqt [log(qt(θ)/p(θ))] exists then,

d
dtKL(qt‖p) = −Eqt [(Spgt)(θ)], (3)

where Sp is the Langevin Stein operator (Gorham and Mackey, 2015) given by

(Spg)(θ) = g(θ)>∇ log p(θ) +∇ · g(θ). (4)

For an unconstrained domain with Ep[‖∇ log p(θ)‖2] <∞, Stein’s identity Ep[(Spg)(θ)] =
0 holds whenever g ∈ C1 is bounded and Lipschitz by (Gorham et al., 2019, proof of Prop. 3),
which ensures qt = p is a stationary point of the dynamics. To improve its current particle
approximation, SVGD find the choice of gt that most quickly decreases KL(qt‖p) at time t,
i.e., they minimize d

dtKL(qt‖p) over a set G of candidate directions gt. SVGD chooses gt in
a reproducing kernel Hilbert space (RKHS, Berlinet and Thomas-Agnan, 2011) norm ball
BHd = {g : ‖g‖Hd ≤ 1}, where Hd is the product RKHS containing vector-valued functions
with each component in the RKHS H of k. Then the optimal g∗t ∈ BHd that minimizes (3) is

g∗t ∝ g∗qt,k , Eqt [k(θ, ·)∇ log p(θ) +∇θk(θ, ·)] = Eqt [SpKk(·, θ)],

where we let Kk(θ, θ′) = k(θ, θ′)I, and SpKk(·, θ) denotes applying Sp to each row of Kk(·, θ).

2.1. Mirrored dynamics

SVGD encounters two difficulties when faced with a constrained support. First, the SVGD
updates can push θt outside of its support Θ, rendering all future updates undefined. Second,
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Stein’s identity Ep[(Spg)(θ)] = 0 often fails to hold for BHd (cf. Ex. 1) if p is non-vanishing
or explosive at the boundary. When this occurs, SVGD need not converge to p as p is not a
stationary point of its dynamics. To fix this, we consider the following mirrored dynamics

θt = ∇ψ∗(ηt) for dηt = gt(θt)dt, or, equivalently, dθt = ∇2ψ(θt)
−1gt(θt)dt, (5)

where gt : Θ→ Rd now represents the update direction in η space. The inverse mirror map
∇ψ∗ guarantees that θt belongs to the constrained domain Θ. Since ψ is strongly convex
and ∇2ψ−1 is bounded Lipschitz, from Thm. 1 it follows for any bounded Lipschitz gt that

d
dtKL(qt‖p) = −Eqt [(Mp,ψgt)(θ)], (6)

where we introduce the mirrored Stein operator Mp,ψ
2:

(Mp,ψg)(θ) = g(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1g(θ)), (7)

Here ψ is as in Sec. 1 with (∇2ψ)−1 differentiable and Lipschitz on Θ. The following result,
proved in App. L.1, shows that Mp,ψ generates mean-zero functions under p whenever
∇2ψ−1 suitably cancels the growth of p at the boundary.

Proposition 2 Suppose that ∇2ψ−1∇ log p and ∇·∇2ψ−1 are p-integrable. If lim
r→∞

∫
∂Θr

p(θ)

‖∇2ψ(θ)−1nr(θ)‖2dθ = 0 for Θr , {θ ∈ Θ : ‖θ‖∞ ≤ r} and nr(θ) the outward unit normal
vectorto ∂Θr at θ, then Ep[(Mp,ψg)(θ)] = 0 if g ∈ C1 is bounded Lipschitz.

Example 1 (Dirichlet p, Negative entropy ψ) When θ1:d+1 ∼ Dir(α) for α ∈ Rd+1
+ ,

even setting g(θ) = 1 in (4) need not cause Ep[(Spg)(θ)] = 0 when ∃j, αj ≤ 1. However, we

show in App. C that the conditions of Prop. 2 are met for any α if ψ(θ) =
∑d+1

j=1 θj log θj.

We propose new deterministic sampling algorithms by seeking optimal directions gt that
minimizes (6) over different function classes. Thm. 3 forms the basis of our analysis.

Theorem 3 (Optimal mirror updates in RKHS, proved in App. L.2) Let (θt)t≥0

follow the mirrored dynamics (5). Let HK denote the RKHS of a matrix-valued kernel
K : Θ × Θ → Sd×d (Micchelli and Pontil, 2005). Then, the optimal direction of gt that
minimizes (6) in the norm ball BHK , {g : ‖g‖HK ≤ 1} is

g∗t ∝ g∗qt,K , Eqt [Mp,ψK(·, θ)], (8)

2.2. Mirrored Stein Variational Gradient Descent

We can simply choose the K to be Kk(θ, θ′) = k(θ, θ′)I. In this case, the update g∗qt,Kk(·) =
Eqt [Mp,ψKk(·, θ)] is equivalent to running SVGD in the η space before mapping back to Θ.

Theorem 4 (Mirrored SVGD, proof is in App. L.3) In the setting of Thm. 3, let
kψ(η, η′) = k(∇ψ∗(η),∇ψ∗(η′)), pH(η) = p(∇ψ∗(η)) · |det∇2ψ∗(η)| denote the density of
η = ∇ψ(θ) when θ ∼ p, and qt,H denote the distribution of ηt under the mirrored dynamics
(5). If Kk = kI,

g∗qt,Kk(θ′) = Eηt∼qt,H [kψ(ηt, η
′)∇ log pH(ηt) +∇ηtkψ(ηt, η

′)] ∀θ′ ∈ Θ, η′ = ∇ψ(θ′). (9)

2. We derive Mp,ψ from the (infinitesimal) generator of the mirror-Langevin diffusion. See App. D.
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The proof is in App. L.3. By discretizing the dynamics dηt = g∗qt,Kk(θt)dt and initializing

with any particle approximation q0 = 1
n

∑n
i=1 δθi0

, we obtain Mirrored SVGD (MSVGD), our
first algorithm for sampling in constrained domains. The details are summarized in Alg. 1.

When a single particle is used and the kernel satisfies ∇k(θ, θ) = 0, the MSVGD update
(9) reduces to gradient descent on − log pH(η). This however is not MD: although MD
operates in η space, it uses the gradient of − log p(θ) instead of − log pH(η). Also note
the modes of pH(η) need not match those of p(θ) (cf. examples in App. F). Since we are
primarily interested in the θ-space density, it is natural to ask whether there exists a mirrored
dynamics that reduces to finding the mode of p(θ) when n = 1. In the next section, we give
an answer to this question by designing an adaptive kernel that yields a MD-like update.

2.3. Stein Variational Mirror Descent

Our second sampling algorithm for constrained problems is called Stein Variational Mirror
Descent (SVMD). We start by introducing a new adaptive matrix-valued kernel.

Definition 5 (Kernels for SVMD) Given a scalar-valued kernel k, consider the Mercer
representation3 k(θ, θ′) =

∑
i≥1 λt,iut,i(θ)ut,i(θ

′) w.r.t. qt, where ut,i is an eigenfunction:

Eθt∼qt [k(θ, θt)ut,i(θt)] = λt,iut,i(θ). (10)

For k
1/2
t (θ, θ′) ,

∑
i≥1 λ

1/2
t,i ut,i(θ)ut,i(θ

′), we define the adaptive SVMD kernel at time t,

Kψ,t(θ, θ
′) , Eθt∼qt [k

1/2
t (θ, θt)∇2ψ(θt)k

1/2
t (θt, θ

′)]. (11)

By Thm. 3, the optimal update direction for the SVMD kernel ball is g∗qt,Kψ,t =

Eqt [Mp,ψKψ,t(·, θ)]. We obtain the SVMD algorithm (summarized in Alg. 1) by discretizing
dηt = g∗qt,Kψ,t(θt)dt and initializing with q0 = 1

n

∑n
i=1 δθi0

. Because of the discrete representa-

tion of qt, Kψ,t takes the form Kψ,t(θ, θ
′) =

∑n
i=1

∑n
j=1 λ

1/2
t,i λ

1/2
t,j ut,i(θ)ut,j(θ

′)Γt,ij , for Γt,ij =
1
n

∑n
`=1 ut,i(θ

`
t)ut,j(θ

`
t)∇2ψ(θ`t). λt,j , ut,j(θ

i
t) and its gradients can be computed by solving a

matrix eigenvalue problem involving the particle set {θit}ni=1. We give the details in App. H.
Notably, SVMD differs from MSVGD only in its choice of kernel, but, whenever∇k(θ, θ) =

0, this change is sufficient to exactly recover MD when n = 1.

Proposition 6 (Single-particle SVMD is MD) If n = 1, then one step of SVMD
becomes ηt+1 = ηt + εt(k(θt, θt)∇ log p(θt) +∇k(θt, θt)), θt+1 = ∇ψ∗(ηt+1).

In App. I, we establish convergence guarantees for our proposed algorithms. By leveraging
the connection between MD and natural gradient descent, we further generalize SVMD to
an algorithm for unscontrained domains that can exploit the geometry of the problems. We
describe this algorithm in App. J.

3. Experiments

3.1. Approximation quality on the simplex

We first measure distributional approximation quality using two 20-dimensional simplex-
constrained targets: the sparse Dirchlet posterior of Patterson and Teh (2013) and the

3. See App. G for background on Mercer representations in non-compact domains.
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Figure 2: Quality of 50-particle approximations to 20-dimensional distributions on the
simplex after T particle updates. (Left) Sparse Dirichlet posterior. (Right)
Quadratic simplex target. Details of the target distributions are in App. K.1.

quadratic simplex target of Ahn and Chewi (2020). The Dirichlet mimics the multimodal
conditionals that arise in latent Dirichlet allocation (Blei et al., 2003) but induces a log
concave density in η space, while the quadratic is log-concave in θ space. To compare
with standard SVGD and to prevent its particles from exiting the domain, we introduce a
Euclidean projection onto Θ following each SVGD update. In Fig. 2, we compare MSVGD,
SVMD, and projected SVGD with 50 particles and inverse multiquadric kernel k (Gorham
and Mackey, 2017) by computing the energy distance (Székely and Rizzo, 2013) to a surrogate
ground truth sample. We also compare to MSVGD with k2(θ, θ′) = k(∇ψ(θ),∇ψ(θ′)), a
choice which corresponds to running SVGD in the dual space with kernel k by Thm. 4 and
which ensures the convergence of MSVGD to p by Thms. 9, 11 and 12.

In the quadratic case, SVMD is favored over MSVGD as it is able to exploit the log-
concavity of p(θ). In contrast, for the multimodal sparse Dirichlet with p(θ) unbounded near
the boundary, MSVGD converges slightly more rapidly than SVMD by exploiting the log
concave structure in η space. Projected SVGD fails to converge to the target in both cases
and has particular difficulty in approximating the sparse Dirichlet target with unbounded
density. MSVGD with k and k2 perform similarly, but k yields better approximation quality
upon convergence. Therefore, we employ k in the remaining MSVGD experiments.

3.2. Confidence intervals for post-selection inference

We next apply our methods to the constrained sampling problems that arise in post-selection
inference (Taylor and Tibshirani, 2015). Specifically, we consider the task of forming valid
confidence intervals (CIs) for regression parameters selected by the randomized Lasso (Tian
and Taylor, 2018) with data X ∈ Rñ×p and y ∈ Rñ and user-generated randomness w ∈ Rp
from a log-concave distribution with density g. The Lasso returns β̂ ∈ Rp with non-zero
coefficients denoted by β̂E and their signs by sE . It is common practice to report least
squares CIs for βE by running a linear regression on the selected features E. However, since
E is chosen based on the same data, the resulting CIs are often invalid.

Post-selection inference solves this problem by conditioning the inference on the knowledge
of E and sE . To construct valid CIs, it suffices to approximate the selective distribution
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Figure 3: (Left) Sampling from a 2D selective density; (Right) Unadjusted and post-selection
CIs for the mutations selected by the randomized Lasso as candidates for HIV-1
drug resistance (see Sec. 3.2).

with support {β̂E , u−E : sE � β̂E > 0, u−E ∈ [−1, 1]p−|E|} and density

ĝ(β̂E , u−E) ∝ g
(
X>y −

(X>EXE+εI|E|
X>−EXE

)
β̂E + λ

( sE
u−E

))
.

In our experiments, we integrate out u−E analytically, following Tian and Taylor (2018),
and reparameterize β̂E as sE � |β̂E | to obtain a log-concave density of |β̂E | supported on the
nonnegative orthant. We choose ψ(θ) =

∑d
j=1(θj log θj − θj). In Fig. 3 (left) we show the

example of a 2D selective distribution. We also plot the results by projected SVGD, SVMD,
and MSVGD in this example. Projected SVGD fails to approximate the target, while the
samples by MSVGD and SVMD closely resemble the truth.

We then compare our methods with the standard norejection MCMC approach of
the selectiveInference R package (Tibshirani et al., 2019) using the example simulation
setting described in Sepehri and Markovic (2017). To generate N total sample points we run
MCMC for N iterations after burn-in or aggregate the particles from N/n independent runs
of MSVGD or SVMD with n = 50 particles. As N ranges from 1000 to 3000 in Fig. 4(a), the
MSVGD and SVMD CIs consistently yield higher coverage than the standard 90% CIs. This
increased coverage is of particular value for smaller sample sizes, for which the standard CIs
tend to undercover. For a much larger sample size of N = 5000 in Fig. 4(b), the SVMD and
standard CIs closely track one another across confidence levels, while MSVGD overcovers.

We next apply our samplers to a post-selection inference task on the HIV-1 drug resistance
dataset (Rhee et al., 2006), where we run randomized Lasso (Tian and Taylor, 2018) to
find statistically significant mutations associated with drug resistance using susceptibility
data on virus isolates. In Fig. 3 (right) we plot the CIs of selected mutations obtained with
N = 5000 sample points. We see that the invalid unadjusted least squares CIs can lead to
premature conclusions, e.g., declaring mutation 215Y significant when there is insufficient
support after conditioning on the selection event. In contrast, mutation 184V, which has
known association with drug resistance, is declared significant by all methods even after
post-selection adjustment. The MSVGD and SVMD CIs mostly track those of the standard
selectiveInference method, but their conclusions sometimes differ: e.g., 62Y is flagged
as significant by MSVGD and SVMD but not by selectiveInference.
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Algorithm 1: Mirrored SVGD & Stein Variational Mirror Descent

Input: density p on Θ, kernel k, mirror function ψ, particles (θi0)ni=1 ⊂ Θ, step sizes (εt)
T
t=1;

Init: ηi0 ← ∇ψ(θi0) for i ∈ [n];
for t = 0 : T do

if SVMD then Kt ← Kψ,t (11) else Kt ← kI (MSVGD);

for i ∈ [n], ηit+1 ← ηit + εt
1
n

∑n
j=1Mp,ψKt(θ

i
t, θ

j
t ) (for Mp,ψKt(·, θ) defined in Thm. 3);

for i ∈ [n], θit+1 ← ∇ψ∗(ηit+1);

end
return {θiT+1}ni=1.

Algorithm 2: Stein Variational Natural Gradient (SVNG)

Input: density p(θ) on Rd, kernel k, metric tensor G(θ), particles (θi0)ni=1, step sizes (εt)
T
t=1;

for t = 0 : T do
for i ∈ [n], θit+1 ← θit + εtG(θit)

−1g∗G,t(θ
i
t), where

g∗G,t(θ) = 1
n

∑n
j=1[KG,t(θ, θ

j
t )G(θjt )

−1∇ log p(θjt ) +∇θjt · (KG,t(θ, θ
j
t )G(θjt )

−1)] (see (18));

end
return {θiT+1}ni=1.

Appendix A. Related Work

Our mirrored Stein operators (7) are instances of diffusion Stein operators in the sense
of Gorham and Mackey (2017), but their specific properties have not been studied, nor
have they been used to develop sampling algorithms. There is now a large body of work
on transferring algorithmic ideas from optimization to sampling (see, e.g., Dalalyan, 2017;
Welling and Teh, 2011; Durmus et al., 2018; Ma et al., 2019; Simsekli et al., 2016). The closest
to our work in this space is the recent marriage of mirror descent and MCMC. For example,
Hsieh et al. (2018) propose to run Langevin Monte Carlo (LMC, an Euler discretization
of the Langevin diffusion) in a mirror space. Zhang et al. (2020) analyze the convergence
properties of the mirror-Langevin diffusion, Chewi et al. (2020) demonstrate its advantages
over the Langevin diffusion when using a Newton-type metric, and Ahn and Chewi (2020)
study its discretization for MCMC sampling in constrained domains. Relatedly, Patterson
and Teh (2013) proposed stochastic Riemannian LMC for sampling on the simplex.

Several modifications of SVGD have been proposed to incorporate geometric information.
Riemannian SVGD (RSVGD, Liu and Zhu, 2018) generalizes SVGD to Riemannian manifolds,
but, even with the same metric tensor, their updates are more complex than ours: notably
they require higher-order kernel derivatives, do not operate in a mirror space, and do not
reduce to natural gradient descent when a single particle is used. They also reportedly
do not perform well when with scalable stochastic estimates of ∇ log p. Stein Variational
Newton (SVN, Detommaso et al., 2018; Chen et al., 2019) introduces second-order information
into SVGD. Their algorithm requires an often expensive Hessian computation and need not
lead to descent directions, so inexact approximations are employed in practice. Our SVNG
can be seen as an instance of matrix SVGD (MatSVGD, Wang et al., 2019) with an adaptive
time-dependent kernel discussed in App. J, a choice that is not explored in Wang et al.
(2019) and which recovers natural gradient descent when n = 1 unlike the heuristic kernel

11
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Figure 4: Coverage of post-selection CIs across (a) 500 / (b) 200 replications of simulation
of Sepehri and Markovic (2017).

constructions of Wang et al. (2019). None of the aforementioned works provide convergence
guarantees, and neither SVN nor matrix SVGD deals with constrained domains.

Appendix B. Mirror Descent, Riemannian Gradient Flow, and Natural
Gradient

The equivalence between the mirror flow dηt = −∇f(θt)dt, θt = ∇ψ∗(ηt)dt and the Rieman-
nian gradient flow in (2) is a direct result of the chain rule:

dθt
dt

= −∇ηtθt
dηt
dt

= −(∇θtηt)−1dηt
dt

= −∇2ψ(θt)
−1∇f(θt), (12)

dηt
dt

= −∇f(θt) = −∇θtηt∇ηtf(∇ψ∗(ηt)) = −∇2ψ∗(ηt)
−1∇ηtf(∇ψ∗(ηt)). (13)

Depending on discretizing (12) or (13), there are two natural gradient descent (NGD) updates
that can arise from the same gradient flow:

NGD (a): θt+1 = θt − εt∇2ψ(θt)
−1∇f(θt),

NGD (b): ηt+1 = ηt − εt∇2ψ∗(ηt)
−1∇ηtf(∇ψ∗(ηt)).

With finite step sizes εt, their updates need not be the same and can lead to different
optimization paths. Since ∇f(θt) = ∇2ψ∗(ηt)

−1∇ηtf(∇ψ∗(ηt)), NGD (b) is equivalent to
the dual-space update by mirror descent. This relationship was pointed out in Raskutti and
Mukherjee (2015) and has been used for developing natural gradient variational inference
algorithms (Khan and Nielsen, 2018). We emphasize, however, our SVNG algorithm
developed in App. J corresponds to the discretization in the primal space as in NGD (a).
Therefore, it does not require an explicit dual space, and allows replacing ∇2ψ with more
general information metric tensors.

Appendix C. Details of Example 1

For the entropic mirror map ψ(θ) =
∑d+1

j=1 θj log θj , we have ∇2ψ(θ)−1 = diag(θ) − θθ>.

Note here θ denotes a d-dimensional vector and does not include θd+1 = 1−∑d
j=1 θd. Since

12
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Θ is a (d+ 1)-simplex, ∂Θ is composed of d+ 1 faces with θ in the j-th face satisfies θj = 0.
The outward unit normal vector n(θ) for the first d faces are −ej for 1 ≤ j ≤ d, where ej
denotes the j-th standard basis of Rd. The outward unit normal vector for the (d+ 1)-st
face is a vector with 1/

√
d in all coordinates. Therefore, we have∫

∂Θ
p(θ)g(θ)>∇2ψ(θ)−1n(θ)dθ =

∫
∂Θ
p(θ)g(θ)>(diag(θ)− θθ>)n(θ)dθ

=

∫
∂Θ
p(θ)(θ � g(θ)− θθ>g(θ))>n(θ)dθ

=
d∑
j=1

∫
θj=0

p(θ)(θ>g(θ)− gj(θ))θjdθ−j

+
1√
d

∫
θd+1=0

p(θ)θ>g(θ)θd+1dθ

=0,

where in the second to last identity we used θ>1 = 1 − θd+1. Finally, we can verify the
condition in Prop. 2 as

lim
r→∞

∫
∂Θr

p(θ)‖∇2ψ(θ)−1nr(θ)‖2dθ = sup
‖g‖∞≤1

∫
∂Θ
p(θ)g(θ)>∇2ψ(θ)−1n(θ)dθ = 0.

Appendix D. Derivation of the Mirrored Stein Operator

We first review the (overdamped) Langevin diffusion – a Markov process that underlies
many recent advances in Stein’s method – along with its recent mirrored generalization.
The Langevin diffusion with equilibrium density p on Rd is a Markov process (θt)t≥0 ⊂ Rd
satisfying the stochastic differential equation (SDE)

dθt = ∇ log p(θt)dt+
√

2dBt (14)

with (Bt)t≥0 a standard Brownian motion (Bhattacharya and Waymire, 2009, Sec. 4.5).
To identify Stein operators that generate mean-zero functions under p for broad classes

of targets p, Gorham and Mackey (2015) proposed to build upon the generator method
of Barbour (1988): First, identify a Markov process (θt)t≥0 that has p as the equilibrium
density; they chose the Langevin diffusion of (14). Next, build a Stein operator based on
the (infinitesimal) generator A of the process (Øksendal, 2003, Def. 7.3.1):

(Af)(θ) = limt→0
1
t (Ef(θt)− Ef(θ0)) for f : Rd → R,

as the generator satisfies Ep[(Af)(θ)] = 0 under relatively mild conditions. We use the
following theorem to derive the generator of the processes described by SDEs like (14):

Theorem 7 (Generator of Itô diffusion; Øksendal, 2003, Thm 7.3.3) Let (xt)t≥0

be the Itô diffusion in X ⊆ Rd satisfying dxt = b(xt)dt+ σ(xt)dBt. For any f ∈ C2
c (X ), the

(infinitesimal) generator A of (xt)t≥0 is

(Af)(x) = b(x)>∇f(x) + 1
2 Tr(σ(x)σ(x)>∇2f(x)).
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Substituting∇ log p(·) for b(·) and
√

2I for σ(·) in Thm. 7, we obtain Af = (∇ log p)>∇f+
∇ · ∇f . Replacing ∇f with a vector-valued function g gives the Langevin Stein operator in
(4).

To derive a Stein operator that works well for constrained domains, we consider the
Riemannian Langevin diffusion (Patterson and Teh, 2013; Xifara et al., 2014; Ma et al.,
2015) that extends the Langevin to non-Euclidean geometries encoded in a positive definite
metric tensor G(θ):

dθt = (G(θt)
−1∇ log p(θt) +∇ ·G(θt)

−1)dt+
√

2G(θt)
−1/2dBt.

4

We show in App. E that the choice G = ∇2ψ yields the recent mirror-Langevin diffu-
sion (Zhang et al., 2020; Chewi et al., 2020)

θt = ∇ψ∗(ηt), dηt = ∇ log p(θt)dt+
√

2∇2ψ(θt)
1/2dBt. (15)

According to Thm. 7, the generator of the mirror-Langevin diffusion described by (16) is

(Ap,ψf)(θ) = (∇2ψ(θ)−1∇ log p(θ) +∇ · ∇2ψ(θ)−1)>∇f(θ) + Tr(∇2ψ(θ)−1∇2f(θ))

= ∇f(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1∇f(θ)).

Now substituting g(θ) for ∇f(θ), we obtain the associated mirrored Stein operator:

(Mp,ψg)(θ) = g(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1g(θ)).

Appendix E. Riemannian Langevin Diffusions and Mirror-Langevin
Diffusions

Zhang et al. (2020) pointed out (15) is a particular case of the Riemannian LD. However,
they did not give an explicit derivation. The Riemannian LD (Patterson and Teh, 2013;
Xifara et al., 2014; Ma et al., 2015) with ∇2ψ(·) as the metric tensor is

dθt = (∇2ψ(θt)
−1∇ log p(θt) +∇ · ∇2ψ(θt)

−1)dt+
√

2∇2ψ(θt)
−1/2dBt. (16)

To see the connection with mirror-Langevin diffusion, we would like to obtain the SDE
that describes the evolution of ηt = ∇ψ(θt) under the diffusion. This requires the following
theorem that provides the analog of the “chain rule” in SDEs.

Theorem 8 (Itô formula; Øksendal, 2003, Thm 4.2.1) Let (xt)t≥0 be an Itô process
in X ⊂ Rd satisfying dxt = b(xt)dt+ σ(xt)dBt. Let f(x) ∈ C2 : Rd → Rd′ . Then yt = f(xt)
is again an Itô process, and its i-th dimension satisfies

dyt,i = (∇fi(xt)>b(xt) +
1

2
Tr(∇2fi(xt)σ(xt)σ(xt)

>)dt+∇fi(xt)>σ(xt)dBt.

Substituting ∇ψ for f in Thm. 8, we have the SDE of ηt = ∇ψ(θt) as

dηt = (∇ log p(θt) +∇2ψ(θt)∇ · ∇2ψ(θt)
−1 + h(θt))dt+

√
2∇2ψ(θt)

1/2dBt,

4. A matrix divergence ∇ ·G(θ) is the vector obtained by computing the divergence of each row of G(θ).
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Figure 5: The density functions of the same distribution in θ (left) and η (right) space under
the transformation η = ∇ψ(θ). Top: θ ∼ Beta(0.5, 0.5). Dashed lines mark the
mode of the transformed density pH(η) and the corresponding θ, which gives the
lowest value of p(θ); Bottom: θ ∼ Beta(1.1, 10). Dashed lines mark the mode of
the target density p(θ) and the corresponding η, which clearly does not match the
mode of pH(η).

where h(θt)i = Tr(∇2
θt

(∇θt,iψ(θt))∇2ψ(θt)
−1). Moreover, we have

[∇2ψ(θt)∇ · ∇2ψ(θt)
−1]i + Tr(∇2

θt(∇θt,iψ(θt))∇2ψ(θt)
−1)

=
d∑
`=1

d∑
j=1

∇2ψ(θt)ij∇θt,` [∇2ψ(θt)
−1]j` +

d∑
`=1

d∑
j=1

∇θt,`∇2ψ(θt)ij [∇2ψ(θt)
−1]j`

=

d∑
`=1

∇θt,`

 d∑
j=1

∇2ψ(θt)ij [∇2ψ(θt)
−1]j`

 =

d∑
`=1

∇θt,`Ii` = 0.

Therefore, the ηt diffusion is described by the SDE:

dηt = ∇ log p(θt)dt+
√

2∇2ψ(θt)
1/2dBt, θt = ∇ψ∗(ηt).

Appendix F. Mode Mismatch Under Transformations

In Fig. 5, we present two examples where the modes of density functions in θ and η space
do not match. We assume θs follow Beta distributions on [0, 1]. And we choose the negative
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entropy ψ(θ) = θ log θ + (1− θ) log(1− θ). Then, the transformation is the logit function
η = log(θ/(1− θ)) and its reverse is the sigmoid function θ = 1/(1 + e−η).

Appendix G. Background on Reproducing Kernel Hilbert Spaces

Let H be a Hilbert space of functions defined on X and taking their values in R. We say k is
a reproducing kernel (or kernel) of H if ∀x ∈ X , k(x, ·) ∈ H and ∀f ∈ H, 〈f, k(x, ·)〉H = f(x).
H is called a reproducing kernel Hilbert space (RKHS) if it has a kernel. Kernels are positive
definite (p.d.) functions, which means that matrices with the form (k(xi, xj))ij are positive
semidefinite. For any p.d. function k, there is a unique RKHS with k as the reproducing
kernel, which can be constructed by the completion of {∑n

i=1 aik(xi, ·), xi ∈ X , ai ∈ R, i ∈ N}.
Now we assume X is a metric space, k is a bounded continuous kernel with the RKHS H,

and ν is a positive measure on X . L2(ν) denote the space of all square-integrable functions
w.r.t. ν. Then the kernel integral operator Tk : L2(ν)→ L2(ν) defined by

Tkg =

∫
X
g(x)k(x, ·)dν

is compact and self-adjoint. Therefore, according to the spectral theorem, there exists an at
most countable set of positive eigenvalues {λj}j∈J ⊂ R with λ1 ≥ λ2 ≥ . . . converging to
zero and orthonormal eigenfunctions {uj}j∈J such that

Tkuj = λjuj ,

and k has the representation k(x, x′) =
∑

j∈J λjuj(x)uj(x
′) (Mercer’s theorem on non-

compact domains), where the convergence of the sum is absolute and uniform on compact
subsets of X × X (Ferreira and Menegatto, 2009).

Appendix H. Computational Details of Stein Variational Mirror Descent

The matrix eigenvalue problem is defined as

Btvt,j = nλt,jvt,j ,

where Bt = (k(θit, θ
j
t ))

n
i,j=1 ∈ Rn×n is the Gram matrix of pairwise kernel evaluations at

particle locations, and the i-th element of vt,j is ut,j(θ
i
t). To compute ∇θKψ,t(θ, θ

′), we
differentiate both sides of (10) to find that

∇ut,j(θ) =
1

λt,j

n∑
i=1

vt,j,i∇θk(θ, θit).

This technique was used in Shi et al. (2018) to estimate gradients of eigenfunctions w.r.t. a
continuous q. Following their recommendations, we truncate the sum at the J-th largest
eigenvalues according to a threshold (τ ≥∑J

j=1 λt,j/
∑n

j=1 λt,j) to ensure numerical stability.
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Appendix I. Convergence Guarantees

In this section, we turn our attention to the convergence properties of our proposed methods.
For Kt and εt as in Alg. 1, let (q∞t , q

∞
t,H) represent the distributions of the mirrored Stein

updates (θt, ηt) when θ0 ∼ q∞0 and ηt+1 = ηt + εtg
∗
qt,Kt

(θt) for t ≥ 0. Our first result, proved

in App. L.5, shows that if the Alg. 1 initialization qn0,H = 1
n

∑n
i=1 δηi0

converges in Wasserstein
distance to a distribution q∞0,H as n→∞, then, on each round t > 0, the output of Alg. 1,

qnt = 1
n

∑n
i=1 δθit , converges to q∞t .

Theorem 9 (Convergence of mirrored updates as n→∞) Suppose Alg. 1 is initial-
ized with qn0,H = 1

n

∑n
i=1 δηi0

satisfying W1(qn0,H , q
∞
0,H) → 0 for W1 the L1 Wasserstein

distance. Define the η-induced kernel K∇ψ∗,t(η, η
′) , Kt(∇ψ∗(η),∇ψ∗(η′)). If, for some

c1, c2 > 0,

‖∇(K∇ψ∗,t(·, η)∇ log pH(η) +∇ ·K∇ψ∗,t(·, η))‖op ≤ c1(1 + ‖η‖2),

‖∇(K∇ψ∗,t(η
′, ·)∇ log pH(·) +∇ ·K∇ψ∗,t(η′, ·))‖op ≤ c2(1 + ‖η′‖2),

then, W1(qnt,H , q
∞
t,H)→ 0 and qnt ⇒ q∞t for each round t.

Remark 10 The pre-conditions hold, for example, whenever ∇ log pH is Lipschitz, ψ is
strongly convex, and Kt = kI for k bounded with bounded derivatives.

Given a mirrored Stein operator (7), an arbitrary Stein set G, and an arbitrary matrix-
valued kernel K we define the mirrored Stein discrepancy and mirrored kernel Stein discrep-
ancy

MSD(q, p,G) , supg∈G Eq[(Mp,ψg)(θ)] and MKSDK(q, p) , MSD(q, p,BHK ). (17)

The former is an example of a diffusion Stein discrepancy (Gorham et al., 2019) and the
latter an example of a diffusion kernel Stein discrepancy (Barp et al., 2019). Since the MKSD
optimization problem (17) matches that in Thm. 3, we have that MKSDK(q, p) = ‖g∗q,K‖HK .
Our next result, proved in App. L.6, shows that the infinite-particle mirrored Stein updates
reduce the KL divergence to p whenever the step size is sufficiently small and drive MKSD
to 0 if, for example, εt = Ω(MKSDKt(q

∞
t , p)

α) for any α > 0.

Theorem 11 (Infinite-particle mirrored Stein updates decrease KL and MKSD)
Assume κ1 , supθ‖Kt(θ, θ)‖op <∞, and κ2 ,

∑d
i=1 supθ ‖∇2

i,d+iKt(θ, θ)‖op <∞, ∇ log pH

is L-Lipschitz, and ψ is α-strongly convex. If εt < 1/(‖∇ηtg∗q∞t ,Kt(θt) +∇ηtg∗q∞t ,Kt(θt)
>‖op),

then

KL(q∞t+1‖p)−KL(q∞t ‖p) ≤ −
(
εt −

(
Lκ1

2 + 2κ2
α2

)
ε2t
)
MKSDKt(q

∞
t , p)

2.

Our last result, proved in App. L.7, shows that q∞t ⇒ p if MKSDKk(q∞t , p)→ 0. Hence,
by Thms. 9 and 11, n-particle MSVGD converges weakly to p if εt decays at a suitable rate.

Theorem 12 (MKSDKk determines weak convergence) Assume pH is distantly dis-
sipative (Eberle, 2016) with ∇ log pH Lipschitz, ψ is strongly convex with continuous ∇ψ∗,
and k(θ, θ′) = κ(∇ψ(θ),∇ψ(θ′)) for κ(x, y) = (c2 + ‖x− y‖22)β with β ∈ (−1, 0). Then,
q∞t ⇒ p if MKSDKk(q∞t , p)→ 0.

Remark 13 The pre-conditions hold, for example, for any Dirichlet target with negative
entropy ψ.
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Appendix J. Stein Variational Natural Gradient

The fact that SVMD recovers mirror descent as a special case is not only of relevance in
constrained problems. We next exploit the connection between MD and natural gradient
descent discussed in Sec. 1 to design a new sampler – Stein Variational Natural Gradient
(SVNG) – that more efficiently approximates unconstrained targets. The idea is to replace
the Hessian ∇2ψ(·) in the SVMD dynamics dθt = ∇2ψ(θt)

−1g∗qt,Kψ,t(θt) with a general metric

tensor G(·). The result is the Riemannian gradient flow

dθt = G(θt)
−1g∗qt,KG,t(θt)dt with KG,t(θ, θ

′) , Eθt∼qt [k1/2(θ, θt)G(θt)k
1/2(θt, θ

′)]. (18)

Given any initial particle approximation q0 = 1
n

∑n
i=1 δθi0

, we discretize these dynamics to
obtain the unconstrained SVNG sampler of Alg. 2.

SVNG can be seen as an instance of MatSVGD (Wang et al., 2019) with a new adaptive
time-dependent kernel G−1(θ)KG,t(θ, θ

′)G−1(θ′). However, similar to Prop. 6 and unlike the
heuristic kernels of Wang et al. (2019), SVNG reduces to natural gradient ascent for finding
the mode of p(θ) when n = 1.

SVNG is well-suited to Bayesian inference problems where the target is a posterior
distribution p(θ) ∝ π(θ)π(y|θ). There, the metric tensor G(θ) can be set to the Fisher
information matrix Eπ(y|θ)[∇ log π(y|θ)∇ log π(y|θ)>] of the data likelihood π(y|θ). Ample
precedent from natural gradient variational inference (Hoffman et al., 2013; Khan and
Nielsen, 2018) and Riemannian MCMC (Patterson and Teh, 2013) suggests that encoding
problem geometry in this manner often leads to more rapid convergence. In App. K.3, we
demonstrate the advantages of SVNG on unconstrained large-scale posterior inference with
the Fisher information metric.

Appendix K. Supplementary Experimental Details and Additional
Results

In this section, we report supplementary details and additional results from the experiments
of Sec. 3. In Secs. 3.1 and 3.2, we use the inverse multiquadric input kernel k(θ, θ′) =
(1 + ‖θ − θ′‖22/`2)−1/2 due to its convergence control properties (Gorham and Mackey, 2017).
In the unconstrained experiments of App. K.3, we use the Gaussian kernel k(θ, θ′) =
exp(−‖θ − θ′‖22/`2) for consistency with past work. The bandwidth ` is determined by
the median heuristic (Garreau et al., 2017). We select τ from {0.98, 0.99} for all SVMD
experiments. For unconstrained targets, we report, for each method, results from the
best fixed step size ε ∈ {0.01, 0.05, 0.1, 0.5, 1} selected on a separate validation set. For
constrained targets, we select step sizes adaptively to accommodate rapid density growth
near the boundary; specifically, we use RMSProp (Hinton et al., 2012), an extension of
the AdaGrad algorithm (Duchi et al., 2011) used in Liu and Wang (2016), and report
performance with the best learning rate. Results were recorded on an Intel(R) Xeon(R)
CPU E5-2690 v4 @ 2.60GHz and an NVIDIA Tesla P100 PCIe 16GB.

K.1. Approximation quality on the simplex

The sparse Dirichlet posterior of Patterson and Teh (2013) extended to 20 dimensions
features a sparse, symmetric Dir(α) prior with αk = 0.1 for k ∈ {1, . . . , 20} and sparse
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Figure 6: Sampling from a Dirichlet target on a 20-simplex. We plot the energy distance to
a ground truth sample of size 1000.
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Figure 7: Sampling from a quadratic target on a 20-simplex. We plot the energy distance to
a ground truth sample of size 1000 drawn by NUTS (Hoffman and Gelman, 2014).

count data n1 = 90, n2 = n3 = 5, nj = 0 (j > 3), modeled via a multinomial likelihood.
The quadratic target satisfies log p(θ) = − 1

2σ2 θ
>Aθ + const, where we slightly modify the

target density of Ahn and Chewi (2020) to make it less flat by introducing a scale parameter
σ = 0.01. A ∈ R19×19 is a positive definite matrix generated by normalizing products of
random matrices with i.i.d. elements drawn from Unif[−1, 1].

We initialize all methods with i.i.d samples from Dirichlet(5) to prevent any of the initial
particles being too close to the boundary. For each method and each learning rate we
apply 500 particle updates. For SVMD we set τ = 0.98. We search the base learning rates
of RMSProp in {0.1, 0.01, 0.001} for SVMD and MSVGD. Since projected SVGD applies
updates in the θ space, the appropriate learning rate range is smaller than those of SVMD
and MSVGD. There we search the base learning rate of RMSProp in {0.01, 0.001, 0.0001}.
For all methods the results under each base learning rate are plotted in Fig. 6.
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K.2. Confidence intervals for post-selection inference

Given a dataset X ∈ Rñ×p, y ∈ Rñ, the randomized Lasso (Tian and Taylor, 2018) solves
the following problem:

argminβ∈Rp
1
2‖y −Xβ‖

2
2 + λ‖β‖1 − w>β + ε

2‖β‖
2
2, w ∼ G.

where G is a user-specified log-concave distribution with density g. We choose G to be zero-
mean independent Gaussian distributions while leaving its scale and the ridge parameter ε to
be automatically determined by the randomizedLasso function of the selectiveInference
package. We initialize the particles of our SVMD and MSVGD in the following way: First,
we map the solution β̂E to the dual space by ∇ψ. Next, we add i.i.d. standard Gaussian
noise to n copies of the image in the dual space. Finally, we map the n particles back to the
primal space by ∇ψ∗ and use them as the initial locations. Below we discuss the remaining
settings and additional results of the simulation and the HIV-1 drug resistance experiment
separately.

Simulation In our simulation we mostly follow the settings of Sepehri and Markovic (2017)
except using a different penalty level λ recommended in the selectiveInference R package.
We set ñ = 100 and p = 40. The design matrix X is generated from an equi-correlated model,
i.e., each datapoint xi ∈ Rp is generated i.i.d. from N (0,Σ) with Σii = 1,Σij = 0.3 (i 6= j)
and then normalized to have almost unit length. The normalization is done by first centering
each dimension by subtracting the mean and dividing the standard deviation of that column
of X, then additionally multiplying 1/ñ1/2. y is generated from a standard Gaussian which
is independent of X, i.e., we assume the global null setting where the true value of β is zero.
We set λ to be the value returned by theoretical.lambda of the selectiveInference R
package multiplied a coefficient 0.7ñ, where the 0.7 adjustment is introduced in the test
examples of the R package to reduce the regularization effect so that we have a reasonably
large set of selected features when p = 40. The base learning rates for SVMD and MSVGD
are set to 0.01 and we run them for T = 1000 particle updates. τ is set to 0.98 for SVMD.

Our 2D example in Fig. 3 (left) is grabbed from one run of the simulation where there
happen to be only 2 features selected by the randomized Lasso. The selective distribution in
this case has log-density log p(θ) = −8.07193((2.39859θ1+1.90816θ2+2.39751)2+(1.18099θ2−
1.46104)2) + const, θ1,2 ≥ 0.

The error bars for actual coverage levels in Fig. 4(a) and Fig. 4(b) are 95% Wilson
intervals (Wilson, 1927), which is known to be more accurate than ±2 standard deviation
intervals for binomial proportions like the coverage. In Fig. 8(a) and Fig. 8(b) we additionally
plot the average length of the confidence intervals w.r.t. different sample size N and nominal
coverage levels. For all three methods the CI widths are very close, although MSVGD
consistently has wider intervals than SVMD and selectiveInference. This indicates that
SVMD can be preferred over MSVGD when both methods produce coverage above the
nominal level.

HIV-1 drug resistance We take the vitro measurement of log-fold change under the
3TC drug as response and include mutations that had appeared 11 times in the dataset as
regressors. This results in ñ = 663 datapoints with p = 91 features. We choose λ to be the
value returned by theoretical.lambda of the selectiveInference R package multiplied
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by ñ. The base learning rates for SVMD and MSVGD are set to 0.01 and we run them for
T = 2000 particle updates. τ is set to 0.99 for SVMD.
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Figure 8: Width of post-selection CIs across (a) 500 / (b) 200 replications of simulation of
Sepehri and Markovic (2017).

K.3. Large-scale posterior inference with non-Euclidean geometry

Finally, we demonstrate the advantages of exploiting non-Euclidean geometry by recreating
the real-data large-scale Bayesian logistic regression experiment of Liu and Wang (2016)
with 581,012 datapoints and d = 54 feature dimensions. Here, the target p is the posterior
distribution over logistic regression parameters. We adopt the Fisher information metric
tensor G, compare 20-particle SVNG to SVGD and its prior geometry-aware variants RSVGD
(Liu and Zhu, 2018) and MatSVGD with average and mixture kernels (Wang et al., 2019),
and for all methods use stochastic minibatches of size 256 to scalably approximate each
log likelihood query. In Fig. 9, all geometry-aware methods substantially improve the log
predictive probability of SVGD.5 SVNG also strongly outperforms RSVGD and converges
to its maximum test probability in half as many steps as MatSVGD (Avg) and more rapidly
than MatSVGD (Mixture).

The Bayesian logistic regression model we consider is
∏ñ
i=1 p(yi|xi, w)p(w), where p(w) =

N (w|0, I), p(yi|xi, w) = Bernoulli(σ(w>xi)). The bias parameter is absorbed into into w by
adding an additional feature 1 to each xi. The gradient of the log density of the posterior
distribution of w is ∇w log p(w|{yi, xi}Ni=1) =

∑N
i=1 xi(yi − σ(w>xi)) − w. We choose the

5. Notably, on the same dataset, SVGD was shown to outperform preconditioned stochastic gradient
Langevin dynamics (Li et al., 2016), a leading MCMC method imbued with geometric information (Wang
et al., 2019).
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Figure 9: Value of non-Euclidean geometry in large-scale Bayesian logistic regression.

metric tensor ∇2ψ(w) to be the Fisher information matrix (FIM) of the likelihood:

F =
1

ñ

ñ∑
i=1

Ep(yi|w,xi)[∇w log p(yi|xi, w)∇w log p(yi|xi, w)>]

=
1

ñ

ñ∑
i=1

σ(w>xi)(1− σ(w>xi))xix
>
i .

Following Wang et al. (2019), for each iteration r (r ≥ 1), we estimate the sum with
a stochastic minibatch Br of size 256: F̂Br = ñ

|Br|
∑

i∈Br σ(w>xi)(1 − σ(w>xi))xix
>
i and

approximate the FIM with a moving average across iterations:

F̂r = ρrF̂r−1 + (1− ρr)F̂Br , where ρr = min(1− 1/r, 0.95).

To ensure the positive definiteness of the FIM, a damping term 0.01I is added before taking
the inverse. For RSVGD and SVNG, the gradient of the inverse of FIM is estimated with
∇wjF−1 ≈ −F̂−1

r (∇̂rwjF )F̂−1
r , where ∇̂rwjF = ρr∇̂r−1

wj F + (1− ρr)∇wj F̂Br .
We run each method for T = 3000 particle updates with learning rates in {0.01, 0.05,

0.1, 0.5, 1} and average the results for 5 random trials. τ is set to 0.98 for SVNG. For
each run, we randomly keep 20% of the dataset as test data, 20% of the remaining points
as the validation set, and all the rest as the training set. The results of each method on
validation sets with all choices of learning rates are plotted in Fig. 10. We see that the
SVNG updates are very robust to the change in learning rates and is able to accommodate
very large learning rates (up to 1) without a significant loss in performance. The results in
Fig. 9 are reported with the learning rate that performs best on the validation set.

Appendix L. Proofs

L.1. Proof of Prop. 2

Proof Fix any g ∈ Gψ. Since g and ∇g are bounded and ∇2ψ(θ)−1∇ log p(θ) and ∇ ·
∇2ψ(θ)−1 are p-integrable, the expectation Ep[(Mp,ψg)(θ)] exists. Because Θ is convex, Θr
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is bounded and convex with Lipschitz boundary. Since p∇2ψ−1g ∈ C1, we have

|Ep[(Mp,ψg)(θ)]| = |Ep[g(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1g(θ))]|

=

∣∣∣∣∫
Θ
∇p(θ)>∇2ψ(θ)−1g(θ) + p(θ)∇ · (∇2ψ(θ)−1g(θ))dθ

∣∣∣∣
=

∣∣∣∣∫
Θ
∇ · (p(θ)∇2ψ(θ)−1g(θ))dθ

∣∣∣∣
=

∣∣∣∣ lim
r→∞

∫
Θr

∇ · (p(θ)∇2ψ(θ)−1g(θ))dθ

∣∣∣∣ (by dominated convergence)

=

∣∣∣∣ lim
r→∞

∫
∂Θr

(p(θ)∇2ψ(θ)−1g(θ))>nr(θ)dθ

∣∣∣∣ (by the divergence theorem)

≤ lim
r→∞

∫
∂Θr

p(θ)‖g(θ)‖2
∥∥∇2ψ(θ)−1nr(θ)

∥∥
2
dθ (by Cauchy-Schwarz)

≤ ‖g‖∞ lim
r→∞

∫
∂Θr

p(θ)
∥∥∇2ψ(θ)−1nr(θ)

∥∥
2
dθ = 0 (by assumption).

L.2. Proof of Thm. 3: Optimal mirror updates in RKHS

Proof Let ei denote the standard basis vector of Rd with the i-th element being 1 and
others being zeros. Since m ∈ HK , we have

m(θ)>∇2ψ(θ)−1∇ log p(θ) = 〈m,K(·, θ)∇2ψ(θ)−1∇ log p(θ)〉HK

∇ · (∇2ψ(θ)−1m(θ)) =
d∑
i=1

∇θi(m(θ)>∇2ψ(θ)−1ei)

=
d∑
i=1

〈m,∇θi(K(·, θ)∇2ψ(θ)−1ei)〉HK

= 〈m,∇θ · (K(·, θ)∇2ψ(θ)−1)〉HK ,

where we define the divergence of a matrix as a vector whose elements are the divergences
of each row of the matrix. Then, we write (6) as

− Eqt [m(θ)>∇2ψ(θ)−1∇ log p(θ) +∇ · (∇2ψ(θ)−1m(θ))]

= −Eqt [〈m,K(·, θ)∇2ψ(θ)−1∇ log p(θ) +∇θ · (K(·, θ)∇2ψ(θ)−1)〉HK ]

= −〈m,Eqt [K(·, θ)∇2ψ(θ)−1∇ log p(θ) +∇θ · (K(·, θ)∇2ψ(θ)−1)]〉HK
= −〈m,Eqt [Mp,ψK(·, θ)]〉HK .

Therefore, the optimal direction in the HK norm ball BHK = {g : ‖g‖HK ≤ 1} that minimizes
(6) is g∗t ∝ g∗qt,K = Eqt [Mp,ψK(·, θ)].
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L.3. Proof of Thm. 4: Mirrored SVGD updates

Proof A p.d. kernel k composed with any map φ is still a p.d. kernel. To prove this, let
{x1, . . . , xp} = {φ(η1), . . . , φ(ηn)}, p ≤ n. Then∑

i,j

αiαjk(φ(ηi), φ(ηj)) =
∑
`,m

β`βmk(x`, xm) ≥ 0,

where β` =
∑

i∈S` αi, S` = {i : φ(ηi) = x`}. Therefore, kψ(η, η′) = k(∇ψ∗(η),∇ψ∗(η′)) is a
p.d. kernel. Plugging K = kI into Lem. 14, for any θ′ ∈ Θ and η′ = ∇ψ(θ′), we have

g∗qt,Kk(θ′) = Eηt∼qt,H [K∇ψ∗(∇ψ(θ′), ηt)∇ log pH(ηt) +∇ηt ·K∇ψ∗(∇ψ(θ′), ηt)]

= Eηt∼qt,H [k(∇ψ∗(η′),∇ψ∗(ηt))∇ log pH(ηt) +

d∑
j=1

∇ηt,jk(∇ψ∗(η′),∇ψ∗(ηt))ej ]

= Eηt∼qt,H [kψ(η′, ηt)∇ log pH(ηt) +∇ηtkψ(η′, ηt)].

L.4. Proof of Prop. 6: Single-particle SVMD is mirror descent

Proof When n = 1, λ1 = k(θt, θt), u1 = 1, and thus Kψ,t(θt, θt) = k(θt, θt)∇2ψ(θt).

L.5. Proof of Thm. 9: Convergence of mirrored updates as n→∞
Proof The idea is to reinterpret our mirrored updates as one step of a matrix SVGD in η
space based on Lem. 14 and then follow the path of Gorham et al. (2020, Thm. 7). Assume
that qnt,H and q∞t,H have integrable means. Let ηn, η∞ be an optimal Wasserstein-1 coupling
of qnt,H and q∞t,H . Let Φqt,Kt denote the transform through one step of mirrored update:
θt = ∇ψ?(ηt), ηt+1 = ηt + εtg

∗
qt,Kt

(θt). Then, with Lem. 14, we have

‖Φqt,Kt(η)− Φqt,Kt(η
′)‖2

= ‖η + εtg
∗
qnt ,Kt

(θ)− η′ − εtg∗q∞t ,Kt(θ
′)‖2

≤ ‖η − η′‖2 + εt‖g∗qnt ,Kt(θ)− g
∗
q∞t ,Kt

(θ′)‖2
≤ ‖η − η′‖2
+ εt‖Eηn [K∇ψ∗,t(η, η

n)∇ log pH(ηn) +∇ηn ·K∇ψ∗,t(η, ηn)

− (K∇ψ∗,t(η
′, ηn)∇ log pH(ηn) +∇ηn ·K∇ψ∗,t(η′, ηn))]‖2

+ εt‖Eηn,η∞ [K∇ψ∗,t(η
′, ηn)∇ log pH(ηn) +∇ηn ·K∇ψ∗,t(η, ηn)

− (K∇ψ∗,t(η
′, η∞)∇ log pH(η∞) +∇η∞ ·K∇ψ∗,t(η′, η∞))]‖2

≤ ‖η − η′‖2 + εtc1(1 + E[‖ηn‖2)]‖η − η′‖2 + εtc2(1 +
∥∥η′∥∥

2
)Eηn,η∞ [‖ηn − η∞‖2]

= ‖η − η′‖2 + εtc1(1 + Eqnt,H [‖·‖2])‖η − η′‖2 + εtc2(1 +
∥∥η′∥∥

2
)W1(qnt,H , q

∞
t,H).
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Since Φqt,Kt(η
n) ∼ qnt+1,H , Φqt,K(η∞) ∼ q∞t+1,H , we conclude

W1(qnt+1,H , q
∞
t+1,H)

≤ E[‖Φqt,K(ηn)− Φqt,K(η∞)‖2]

≤ (1 + εtc1(1 + Eqnt,H [‖·‖2]))E[‖ηn − η∞‖2] + εtc2(1 +
∥∥η′∥∥

2
)W1(qnt,H , q

∞
t,H)]

≤ (1 + εtc1(1 + Eqnt,H [‖·‖2]) + εtc2(1 + Eq∞t,H [‖·‖2]))W1(qnt,H , q
∞
t,H).

The final claim qnt ⇒ q∞t now follows by the continuous mapping theorem as ∇ψ∗ is
continuous.

L.6. Proof of Thm. 11: Infinite-particle mirrored Stein updates decrease KL
and MKSD

Proof Let Tq∞t ,Kt denote transform of the density function through one step of mirrored
update: θt = ∇ψ?(ηt), ηt+1 = ηt + εtg

∗
q∞t ,Kt

(θt). Then

KL(q∞t+1‖p)−KL(q∞t ‖p)
= KL(q∞t ‖T−1

q∞t ,Kt
p)−KL(q∞t ‖p)

= Eηt∼q∞t,H [log pH(ηt)− log pH(ηt + εtg
∗
q∞t ,Kt

(θt))− log | det(I + εt∇ηtg∗q∞t ,Kt(θt))|],

where we have used the invariance of KL divergence under reparameterization: KL(qt‖p) =
KL(qt,H‖pH) . Following Liu (2017), we bound the difference of the first two terms as

log pH(ηt)− log pH(ηt + εtg
∗
q∞t ,Kt

(θt))

= −
∫ 1

0
∇s log pH(ηt(s)) ds, where ηt(s) , ηt + sεtg

∗
q∞t ,Kt

(θt)

= −
∫ 1

0
∇ log pH(ηt(s))

>(εtg
∗
q∞t ,Kt

(θt)) ds

= −εt∇ log pH(ηt)
>g∗q∞t ,Kt(θt) +

∫ 1

0
(∇ log pH(ηt)−∇ log pH(ηt(s)))

>(εtg
∗
q∞t ,Kt

(θt)) ds

≤ −εt∇ log pH(ηt)
>g∗q∞t ,Kt(θt) + εt

∫ 1

0
‖∇ log pH(η)−∇ log pH(ηt(s))‖2 · ‖g∗q∞t ,Kt(θt)‖2 ds

≤ −εt∇ log pH(ηt)
>g∗q∞t ,Kt(θt) +

Lε2t
2
‖g∗q∞t ,Kt(θt)‖

2
2,

and bound the log determinant term using Lem. 16:

− log | det(I + εt∇ηtg∗q∞t ,Kt(θt)) ≤ −εt Tr(∇ηtg∗q∞t ,Kt(θt)) + 2ε2t ‖∇ηtg∗q∞t ,Kt(θt)‖
2
F .

The next thing to notice is that Eηt∼q∞t,H [∇ log pH(ηt)
>g∗q∞t ,Kt

(θt) + Tr(∇ηtg∗q∞t ,Kt(θt))] is the

square of the MKSD in (17). We can show this equivalence using the identity proved in
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Lem. 15:

Eηt∼q∞t,H [g∗q∞t ,Kt(θt)
>∇ log pH(ηt) + Tr(∇ηtg∗q∞t ,Kt(θt))]

= Eθt∼q∞t [g∗q∞t ,Kt(θt)
>∇2ψ(θt)

−1∇θt(log p(θt)− log det∇2ψ(θt))

+ Tr(∇2ψ(θt)
−1∇g∗q∞t ,Kt(θt))]

= Eθt∼q∞t [g∗q∞t ,Kt(θt)
>∇2ψ(θt)

−1∇ log p(θt) +∇ · (∇2ψ(θt)
−1g∗q∞t ,Kt(θt))] (Lem. 15)

= Eθt∼q∞t [(Mp,ψg
∗
q∞t ,Kt

)(θt)]

= MKSDKt(q
∞
t , p)

2.

Finally, we are going to bound ‖g∗q∞t ,Kt(θt)‖
2
2 and ‖∇ηtg∗q∞t ,Kt(θt)‖

2
F . From the assumptions

we have ψ is α-strongly convex and thus ψ∗ is 1
α -strongly smooth (Kakade et al., 2009),

therefore ‖∇2ψ∗(·)‖2 ≤ 1
α . By Lem. 17, we know

‖g∗q∞t ,Kt(θt)‖
2
2 ≤ ‖g∗q∞t ,Kt‖

2
HKt
‖K(θt, θt)‖op = MKSDKt(q

∞
t , p)

2‖Kt(θt, θt)‖op,

‖∇ηtg∗q∞t ,Kt(θt)‖
2
F = ‖∇2ψ∗(ηt)∇g∗q∞t ,Kt(θt)‖

2
F

≤ ‖∇2ψ∗(ηt)‖22‖∇g∗q∞t ,Kt(θt)‖
2
F

≤ 1

α2
‖g∗q∞t ,Kt‖

2
HKt

d∑
i=1

‖∇2
i,d+iKt(θt, θt)‖op

=
1

α2
MKSDKt(q

∞
t , p)

2
d∑
i=1

‖∇2
i,d+iKt(θt, θt)‖op,

where ∇2
i,d+iK(θ, θ) denotes ∇2

θi,θ′i
K(θ, θ′)|θ′=θ. Combining all of the above, we have

KL(q∞t+1‖p)−KL(q∞t ‖p)

≤ −
(
εt −

Lε2t
2

sup
θ
‖Kt(θ, θ)‖op −

2ε2t
α2

d∑
i=1

sup
θ
‖∇2

i,d+iKt(θ, θ)‖op

)
MKSDKt(q

∞
t , p)

2.

Plugging in the definition of κ1 and κ2 finishes the proof.

L.7. Proof of Thm. 12: MKSDKk determines weak convergence

Proof According to Thm. 4,

g∗q,Kk = EqH [k(·,∇ψ∗(η))∇ log pH(η) +∇ηk(∇ψ∗(η), ·)],
where qH(η) denotes the density of η = ∇ψ(θ) under the distribution θ ∼ q. From the
assumptions we have k(θ, θ′) = κ(∇ψ(θ),∇ψ(θ′)). With this specific choice of k, the squared
MKSD is

MKSDKk(q, p)2 = ‖g∗q,Kk‖
2
HKk

= Eη,η′∼qH

[
1

pH(η)pH(η′)
∇η∇η′(pH(η)k(∇ψ∗(η),∇ψ∗(η′))pH(η′))

]
= Eη,η′∼qH

[
1

pH(η)pH(η′)
∇η∇η′(pH(η)κ(η, η′)pH(η′))

]
. (19)
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The final expression in (19) is the squared kernel Stein discrepancy (KSD) (Liu et al., 2016;
Chwialkowski et al., 2016; Gorham and Mackey, 2017) between qH and pH with the kernel
κ: KSDκ(qH , pH)2. Recall that it is proved in Gorham and Mackey (2017, Theorem 8)
that, for κ(x, y) = (c2 + ‖x − y‖22)β with β ∈ (−1, 0) and distantly dissipative pH with
Lipschitz score functions, qH ⇒ pH if KSDκ(qH , pH)→ 0. The advertised result (q ⇒ p if
MKSDKk(q, p)→ 0) now follows by the continuous mapping theorem as ∇ψ∗ is continuous.

Appendix M. Lemmas

Lemma 14 Let K∇ψ∗(η, η
′) , K(∇ψ∗(η),∇ψ∗(η′)). The mirrored updates g∗qt,K in (8)

can be equivalently expressed as

g∗qt,K = Eqt,H [K∇ψ∗(∇ψ(·), η)∇ log pH(η) +∇η ·K∇ψ∗(∇ψ(·), η)].

Proof We will use the identity proved in Lem. 15.

g∗qt,K = Eqt [Mp,ψK(·, θ)]
= Eqt [K(·, θ)∇2ψ(θ)−1∇ log p(θ) +∇θ · (K(·, θ)∇2ψ(θ)−1)]

= Eqt [K(·, θ)∇2ψ(θ)−1∇θ(log pH(∇ψ(θ)) + log det∇2ψ(θ)) +∇θ · (K(·, θ)∇2ψ(θ)−1)]
(by change-of-variable formula)

= Eqt [K(·, θ)∇2ψ(θ)−1∇θ log pH(∇ψ(θ)) +
d∑

i,j=1

[∇2ψ(θ)−1]ij∇θiK(·, θ):,j ]

(by applying Lem. 15 to each row of K(·, θ))

= Eqt [K(·, θ)∇2ψ(θ)−1∇θ log pH(∇ψ(θ)) +

d∑
j=1

∇ηjK(·, θ):,j ]

= Eqt,H [K(·,∇ψ∗(η))∇ log pH(η) +

d∑
j=1

∇ηjK(·,∇ψ∗(η)):,j ]

= Eqt,H [K∇ψ∗(∇ψ(·), η)∇ log pH(η) +∇η ·K∇ψ∗(∇ψ(·), η)],

where A:,j denotes the j-th column of a matrix A.

Lemma 15 For a strictly convex function ψ ∈ C2 : Rd → R and any vector-valued
g ∈ C1 : Rd → Rd, the following relation holds:

∇ · (∇2ψ(θ)−1g(θ)) = Tr(∇2ψ(θ)−1∇g(θ))− g(θ)>∇2ψ(θ)−1∇θ log det∇2ψ(θ).

Proof By the product rule of differentiation:

∇ · (∇2ψ(θ)−1g(θ)) = Tr(∇2ψ(θ)−1∇g(θ)) + g(θ)>∇ · (∇2ψ(θ)−1). (20)
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This already gives us the first term on the right side. Next, we have

[∇2ψ(θ)−1∇ log det∇2ψ(θ)]i

=

d∑
j=1

[∇2ψ(θ)−1]ij Tr(∇2ψ(θ)−1∇θj∇2ψ(θ))

=

d∑
j=1

[∇2ψ(θ)−1]ij

d∑
`,m=1

[∇2ψ(θ)−1]`m[∇θj∇2ψ(θ)]m`

=

d∑
j,`,m=1

[∇2ψ(θ)−1]ij [∇2ψ(θ)−1]`m∇θj∇2ψ(θ)m`

=

d∑
j,`,m=1

[∇2ψ(θ)−1]ij∇θm∇2ψ(θ)j`[∇2ψ(θ)−1]`m

= −
d∑

m=1

∇θm(∇2ψ(θ)−1)im

= −[∇ · ∇2ψ(θ)−1]i.

Plugging the above relation into (20) proves the claimed result.

Lemma 16 (Liu, 2017, Lemma A.1) Let A be a square matrix, and 0 < ε < 1
2‖A +

A>‖op. Then,
log |det(I + εA)| ≥ εTr(A)− 2ε2‖A‖2F ,

where ‖ · ‖F denotes the Frobenius norm of a matrix.

Lemma 17 Let K be a matrix-valued kernel and HK be the corresponding RKHS. Then,
for any f ∈ HK (f is vector-valued), we have

‖f(x)‖2 ≤ ‖f‖HK‖K(x, x)‖1/2op , ‖∇f(x)‖2F ≤ ‖f‖2HK
d∑
i=1

‖∇2
xi,x′i

K(x, x′)|x′=x‖op,

where ‖ · ‖op denotes the operator norm of a matrix induced by the vector 2-norm.

Proof We first bound the ‖f(x)‖2 as

‖f(x)‖2 = sup
‖y‖2=1

f(x)>y = sup
‖y‖2=1

〈f,K(·, x)y〉HK ≤ ‖f‖HK sup
‖y‖2=1

‖K(·, x)y‖HK

= ‖f‖HK sup
‖y‖2=1

(y>K(x, x)y)1/2 ≤ ‖f‖HK sup
‖y‖2=1

sup
‖u‖2=1

(u>K(x, x)y)1/2

= ‖f‖HK sup
‖y‖2=1

‖K(x, x)y‖1/22 = ‖f‖HK‖K(x, x)‖1/2op .
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The second result follows similarly,

‖∇f(x)‖2F =
d∑
i=1

‖∇xif(x)‖22 =
d∑
i=1

sup
‖y‖2=1

(∇xif(x)>y)2 =
d∑
i=1

sup
‖y‖2=1

(∇xi〈f,K(·, x)y〉HK )2

=
∑
i=1

sup
‖y‖2=1

(〈f,∇xiK(·, x)y〉HK )2 ≤ ‖f‖2HK
d∑
i=1

sup
‖y‖2=1

‖∇xiK(·, x)y‖2HK

= ‖f‖2HK
d∑
i=1

sup
‖y‖2=1

(y>∇2
xi,x′i

K(x, x′)|x=x′y)

≤ ‖f‖2HK
d∑
i=1

sup
‖y‖2=1

sup
‖u‖2=1

(u>∇2
xi,x′i

K(x, x′)|x=x′y)

= ‖f‖2HK
d∑
i=1

sup
‖y‖2=1

‖∇2
xi,x′i

K(x, x′)|x=x′y‖2

= ‖f‖2HK
d∑
i=1

‖∇2
xi,x′i

K(x, x′)|x′=x‖op.
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Figure 10: Logistic regression results on validation sets with learning rates in {0.01, 0.05,
0.1, 0.5, 1}. Running RSVGD with learning rates 0.5 and 1 produces numerical
errors. Therefore, we did not include them in the plot.
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