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ABSTRACT

In goal-conditioned offline reinforcement learning, an agent learns from previously
collected data to go to an arbitrary goal. Since the offline data only contains a
finite number of trajectories a main challenge is how to generate more data. Goal-
swapping generates additional data by switching trajectory goals but while doing
so produces a large number of invalid trajectories. To address this issue we propose
prioritized goal-swapping experience replay (PGSER). PGSER uses a pre-trained
Q function to assign higher priority weights to goal-swapped transitions that allow
reaching the goal. In experiments, PGSER significantly improves over baselines in
a wide range of benchmark tasks.

1 INTRODUCTION

Reinforcement learning (RL) has been used to great success in a variety of tasks, from gaming Mnih
et al. (2013); Frazier & Riedl (2019); Mao et al. (2022) to robotics Brunke et al. (2022); Nguyen
& La (2019). Typically RL is used in a setting where the agent learns to optimize behavior for
one specific task. To allow for a more general RL solution, goal-conditioned RL (GCRL) Liu et al.
(2022b); Chane-Sane et al. (2021); Andrychowicz et al. (2017) learns a policy that can reach arbitrary
goals without needing to be retrained. Training GCRL agents can be difficult due to the sparsity of
rewards in GCRL tasks, forcing the agent to explore the environment, which can be unfeasible or
even dangerous in some real-world tasks. To utilize RL without environment interactions offline RL
allows learning a policy from a dataset without putting real environments at risk Levine et al. (2020);
Prudencio et al. (2022). Offline goal-conditioned RL (offline GCRL) combines the generalizability
of GCRL and the data-efficiency of offline RL, making it a promising approach for real-world
applications Ma et al. (2022).

Although offline goal-conditioned reinforcement learning (GCRL) is an appealing concept, it faces
some challenges. The first is that the offline dataset only covers a limited state-goal-action space,
which can cause incorrect value function estimations for out-of-distribution observations. This
can lead to compounding errors in policy deviation Levine et al. (2020); Prudencio et al. (2022).
Additionally, each state can have multiple goals, making it hard to learn from a limited state-goal
observation space Chebotar et al. (2021). To deal with this issue, prior works have applied hindsight
labeling to generate goal-conditioned observations in sub-sequences Ghosh et al. (2019); Yang
et al. (2022); Ma et al. (2022); Andrychowicz et al. (2017). However, this often leads to overfitted
goal-conditioned policies Chebotar et al. (2021). Furthermore, the goal-chaining technique proposed
by Chebotar et al. (2021) is not able to handle noisy data properly, while inefficiently swapping
goals Ma et al. (2022). In order to achieve successful skill learning across multiple trajectories, a
solution is needed that can make agents effectively learn from the limited data.

This paper presents Prioritized Goal-Swapping Experience Replay (PGSER), an approach for offline
Goal-Conditioned Reinforcement Learning (GCRL) tasks. PGSER provides two main benefits: (1)
allowing the agent to learn goal-conditioned skills across different trajectories, and (2) maximizing
offline data utilization. The process of PGSER is illustrated in Figure 1. During the offline training
stage, random goal-swapping augmentation is used to generate new goal-conditioned transitions ζaug;
a pre-trained Q function is then used to estimate the priority of each ζaug, and these transitions are
stored in an additional prioritized experience replay buffer βaug. During training, data is sampled
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from both the original dataset buffer β and the added buffer βaug , which helps to improve the accuracy
and effectiveness of the training process and enables the agent to learn goal-conditioned skills across
different trajectories. We evaluated PGSER on a wide set of offline GCRL benchmark tasks. The
experimental results show that PGSER outperforms baselines.

Figure 1: An illustration of prioritized goal-swapping experience replay. During the offline training
stage, we conduct random goal-swapping augmentation to create new goal-conditioned transitions
ζaug . A pre-trained Q function estimates the priority w of corresponding ζaug in order to increase the
priority of augmented transitions which are more likely to reach the goal. We store both ζaug and w
into an additional prioritized experience replay buffer βaug . During training the final policy data will
be sampled from both the original dataset buffer β and the prioritized goal-swapping buffer βaug for
goal-conditioned skill learning.

2 PRELIMINARIES

Goal-conditioned Markov decision process. The classical Markov decision process (MDP) M is
defined as a tuple < S,A, T , r, γ, ρ0 >, where S and A denote the state space and the action space,
ρ0 represents the initial states’ distribution, r is the reward, γ is the discount factor, and T denotes the
state transition function Sutton & Barto (2018). For goal-conditioned tasks, an additional vector g
specifying the desired goal is included. This augmentation of MDP is referred as the goal-conditioned
MDP (GC-MDP), < S,G,A, T , r, γ, ρ0, pg > Liu et al. (2022b). This GC-MDP includes a goal
space G and a goal distribution pg, as well as a tractable mapping function ϕ : S → G to map the
state to the corresponding goal. The state-goal pair (s, g) forms a new observation, which is used as
the input for the agent π(a|s, g). The objective of GC-MDP can be formulated as:

J (π) = E
at∼π(·|st,g),g∼pg,st+1∼T (·|st,at)

[ ∞∑
t=0

γtrt

]
. (1)

Two value functions are defined to represent the expected cumulative return in a goal-conditioned
Markov Decision Process (GC-MDP): a state-action value Q and a state value V . The V π(s, g)
function is the goal-conditioned expected total discounted return from the observation pair (s, g) using
policy π, while the Qπ(s, a, g) function estimates the expected return of an observation (s, g) for the
action at for the policy π. Additionally, the advantage function Aπ(s, g, a) is another version of the Q-
value with lower variance, defined as Aπ(s, g, a) = Qπ(s, g, a)−V π(s, g). When the optimal policy
π∗ is obtained, the two value functions converge to the same point, i.e. Q∗(s, g, a) = V ∗(s, g) Sutton
& Barto (2018). In this work, we define a sparse reward

r(s, g) =

{
0, if ||ϕ(s), g|| < ϵ

−1, otherwise
, (2)

where ||ϕ(s), g|| is a distance metric measurement, and ϵ is a distance threshold. We set the discount
factor γ = 1. In such case, V (s, g) represents the expected horizon from state s to goal g, and
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Q(s, g, a) represents the expected horizon from state s to the goal g if an action a is taken. This
setting yields an intuitive objective: finding the policy that takes the minimum number of steps to
achieve the task’s goal. This setting produces an intuitive objective: Find the policy that takes the
minimum number of steps to achieve the task’s goal.

Offline goal-conditioned reinforcement learning. In offline reinforcement learning (offline RL),
an agent must work with a set of static, pre-existing data rather than interacting with an environment
to collect data. This data is often collected by unknown policies Levine et al. (2020); Prudencio et al.
(2022). In the offline goal-conditioned setting, the objective is the same as in online goal-conditioned
RL, as defined by Equation 1. The offline data consists of goal-conditioned trajectories ζ stored in a
dataset D := ζNi,i=1, where N is the number of stored trajectories and

ζi = {< si0, η
i
0, a

i
0, r

i
0 >,< si1, η

i
1, a

i
1, r

i
1 >, ..., < siT , η

i
T , a

i
T , r

i
T >, gi} .

η is the state’s corresponding goal representation calculated using ηt = ϕ(st). The task goal gi
is randomly sampled from pg and the initial state s0 ∼ ρ0. Note that some trajectories can be
unsuccessful (ηiT ̸= gi).

Prioritized experience replay. Prioritized experience replay (PER) Schaul et al. (2015) allows
reinforcement learning from a diverse set of experiences. PER uses the temporal difference (TD)-error
of each experience to determine the priority of that experience in the replay buffer. By prioritizing
experiences with higher TD-errors, the agent can focus on those experiences that are most likely
to reinforce its learning. This technique can be used to improve the convergence of reinforcement
learning algorithms, allowing them to learn more effectively.

3 GENERALIZATION PROBLEM OF GOAL-CONDITIONED RL

Figure 2: The generalizability problem of of-
fline GCRL: the agent needs to learn how to
reach a goal from a state without a trajectory
for this state-goal pair. Each color represents
an individual goal-conditioned trajectory.

Goal-Conditioned Reinforcement Learning (GCRL)
aims to learn a general policy that can reach arbi-
trarily goals Liu et al. (2022b). However, the offline
dataset state-goal pairs only cover a limited space of
the goal-conditioned MDP. In other words, if we train
a policy with the offline dataset, the policy learns to
reach goals within a single trajectory in the dataset.
This solution is not general but undesirably specific.
Fig. 2 shows a simple visual example. In Fig. 2, each
color represents a goal-conditioned trajectory. If we
use the dataset in Fig. 2 for offline RL, we eventually
get an overfitted policy that can only achieve a single
goal starting from a given state. Ideally, we want an
agent that can achieve as many goals as possible (the
blue trajectory).

Several techniques have been proposed to learn a
generalized and effective goal-conditioned policy. Actionable Models (AM) Chebotar et al. (2021) use
a goal-chaining technique that augments the dataset by assigning conservative values to the augmented
out-of-distribution data for Q-learning. However, the performance of AM is limited when the dataset
contains noisy data labels Ma et al. (2022). Hindsight Experience Replay (HER) Andrychowicz
et al. (2017); Yang et al. (2022) relabels trajectory goals to states that were actually achieved instead
of the task-commanded goals, efficiently utilizing the data within a single trajectory. However,
HER is not able to connect different trajectories as goal-chaining does. Contrastive Reinforcement
Learning (CRL) Eysenbach et al. (2022) conducts contrastive learning on the goal-conditioned task
by swapping the future observations between different goal-conditioned trajectories to generalize
the skills. However, CRL focuses more on representation learning rather than addressing the
generalizability of offline goal-conditioned tasks.

4 METHOD

To solve the challenges discussed in the previous section, we propose reusing the pre-trained Q
function to generate better goal-swapping augmentation samples. A schematic illustration of the
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method inside the RL framework is in Fig. 1. We first conduct goal-swapping data augmentation to
generate new state-goal pairs for Q value estimation. In the second stage, we use the pre-trained Q
function to filter out the low-quality augmented samples and store the reachable samples for agent
learning. In this work, we assume that in the same environment, all goals are reachable from all states.
Our approach can be used with off-policy offline RL methods (e.g., TD3BC Fujimoto & Gu (2021),
etc.), which aim to approximate the optimal Q value from the offline dataset.

4.1 GOAL-SWAPPING DATA AUGMENTATION

Figure 3: An example of goal-swapping data augmentation. (a) Original offline trajectories (denoted
by four different colors). (b) Positive augmentation example where the goals are reachable in each
generated trajectory. (c) shows the negative augmentation, where the goals are no longer reachable.

As discussed in Section 3, the offline goal-conditioned dataset contains only a limited number of
state-goal observations. Therefore, training with offline data often results in overfitted policies. An
illustrative example is in Figure 3(a). In this example environment, the goals ga and gb are (forward)
reachable from three states sa0 , sb0, and sc0. However, the original conditioned trajectories τa, τ b, and
τ c limit the agent’s exploration to the known state-goal pairs sa0 → ga, sb0 → gb, and sc0 → gc.

To maximize the efficiency of our agent, we propose a goal-swapping augmented experience replay
technique (detailed in Algorithm 1). This technique randomly samples two trajectories and swaps
their goals, creating a virtually infinite amount of new goal-conditioned trajectories. As reinforcement
learning is a dynamic programming method, this allows us to connect the state-goal pairs across
different trajectories. By doing so, we are able to expand the range of achievable goals significantly
while also increasing the speed and accuracy of our agent’s learning process.

Let’s continue the example in Figure 3(a), where the goals g ∈ [ga, gb, gc] are reachable from the
states s ∈ [sa0 , s

b
0, s

c
0] although they are not explicitly present in the offline dataset. However, if the

goals are swapped between the original three trajectories [τa, τ b, τ c], the augmented goal-conditioned
tuples shown in Figure 3(b) become available. The Q-learning-based approaches can leverage
dynamic programming to chain the new trajectories and backpropagate their state-goal (state-goal-
action) values to the previous pairs. An illustration of this can be seen in Fig.3(b), where the state st is
the ”hub state” shared by the three original trajectories and from which all goals gi ∼ [ga, gb, gc] are
reachable. The values of these goal-conditioned states, Q(st, a

i
t, g

i), can be estimated and recursively
backpropagated to Q(s0, a

i
0, g

i), i ∈ [a, b, c].

The purpose of goal-swapping augmentation is to create as many state-goal pairs as possible so
that the Q-learning (temporal difference learning style) can backpropagate values over all trajectory
combinations. Alg. 1 provides an illustration of how this is done. By swapping goals between
trajectories, the offline RL methods can extend the dataset and make use of diverse information. This
ensures that the agent can explore and discover more accurate and robust policies.

4.2 REACHABLE TRANSITIONS IDENTIFICATION

Although temporal-difference learning can connect goals across trajectories, applying the goal-
swapping augmentation technique can be tricky. The reason is that the goal-swapping process is
random, creating many non-optimal state-action pairs. Those augmented state-action pairs may not
even have a solution (the augmented goals are not reachable) within the offline dataset. This is
demonstrated in Fig. 3(c). To alleviate the inefficiency problem of random data augmentation, we
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Algorithm 1 Random goal-swapping experience replay
Require: Denote the dataset as D, goal-conditioned tuples as ζ, state-goal mapping function gi =

ϕ(si), and reward function r = R(ϕ(s), g).
1: Sample goal-conditioned transitions ζ from D:

ζi = {g, s, a, r, s′} ∼ D.
2: Sample random goals: grand ∼ D
3: Generate τrand by replacing g with grand in ζ:

ζaug = {grand, s, a, raug, s′}
where raug = R(ϕ(s′), grand)

4: Return ζ and ζaug

aim to design a mechanism that makes the agent remember the reachable goal-conditioned transitions
(positive samples) and ignore the unreachable ones (negative samples). In this work, we use a
pre-trained Q-function as a ”past-life” agent to improve the efficiency of random goal-swapping.

Figure 4: Consider a deterministic MDP, the re-
ward and discount factor is defined in Sec 2, and
the maximum horizon Hmax = 4. The agent is
trained with Q-learning with above transitions.

Based on Eq.1, the Q value represents the ex-
pected horizon to reach the goal when γ = 1.
Denote the maximum horizon of the task as H ,
the reachable goal as g, and the unreachable goal
as g′. The Q value estimation should result in
Q(s0, g, a) ≥ −H , indicating that g is reach-
able, and Q(s0, g

′, a) < −H for an unreach-
able goal. As is shown in Fig. 4, given a set
of observed deterministic MDP transitions, the
optimal state-goal-action value Q∗(s, g, a) =
−2 and the unreachable state-goal-action value
Q(s, g′, a) = −4. Such a simple example im-
plies that the trained Q function can be used as
an identifier to tell if the goal is reachable for a
given state-goal-action pair.

Now, we consider the random goal-swapping data augmentation process, denoting transitions in
successful trajectories (goals that are reached) as positive transitions ζP = {sP , gP , aP , rP , s′P },
and random goal-swapping augmentation as negative training samples ζN = {sN , gN , aN , rN , s′N}
(generated using Alg. 1). We also have a pretrained value function Q. For this data, Q will assign
higher values to ζP and, likely, lower values to ζN when goals are not reachable. Consequently, this
pre-trained Q can be used to identify how likely a goal-conditioned tuple {s, g, a, r, s′} belongs to a
reachable trajectory. In other words, the smaller the {s, g, a, r, s′} q-value is, the less likely its goal
is reachable. We provide estimated Q-value distributions in Sec. 5.2 to further illustrate this concept.

4.3 PRIORITIZED GOAL-SWAPPING AUGMENTATION

The random goal-swapping augmentation creates goal-swapped transitions at the same frequency,
regardless of if the augmentation is positive or negative. To improve the efficiency of the augmentation,
we introduce an additional experience replay buffer. This buffer is used to remember positive
augmentations during offline training. As is discussed above, the Q function can be naturally used
to identify if a state-goal-action is a goal-reachable observation. To assign priority values to the
augmented transitions, we pre-train a value function, Q with Q-learning-based offline RL methods.
After the pretraining, this function Q can estimate how likely the augmentations are positive. The
higher the estimated Q value, the more likely the augmented transition is a positive augmentation,
and it shall be sampled more frequently. We illustrate the process of creating an experience replay
buffer in Fig. 1.

The additional experience replay buffer βaug is implemented in a PER style. βaug stores the goal-
swapping augmented transitions ζaug = {s, grand, a, r, s′} and its prioity value Q(s, grand, a).
During the training, the agent samples the goal-swapped augmented transitions according to the their
priority values. We illustrate our framework in Fig. 1 and provide a pseudo-code in Alg. 2. In this
way, the positive goal-swapped augmentations will be sampled more frequently than the negative
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ones. In this way, we have a mechanism that can guide the agent efficiently use the goal-swapping
augmentation to learn general goal-conditioned skills from the offline dataset.

Algorithm 2 Prioritized goal-swapping experience replay
Require: The original offline buffer as β, the augmented buffer as βaug, goal-conditioned tuples

as ζ, state-goal mapping function gi = ϕ(si), reward function r = R(ϕ(s), g), a pre-trained
Q-function Q

1: Pre-train a off-policy value function Q(s, g, a) using random augmentation (Alg. 1).
2: Fill-in βaug using Q:

a) Generate ζaug = {grand, s, a, raug, s′} using Alg. 1.
b) Estimate priority weight w = Q(s, gaug, a).
c) Store ζaug into βaug and set its sampling priority using w.

3: Re-training the RL agent:
a) Sample ζ ∼ β, Sample ζaug ∼ βaug .
b) Combine ζ and ζaug for offline RL training.

5 EXPERIMENTS

The experiments in this section were designed to verify our main claims: 1) The pre-trained value
function is able to identify if the goal is reachable; 2) The filtered goal-swapping experience replay
can improve offline GCRL performances.

Tasks. Six goal-conditioned tasks from Plappert et al. (2018) were selected for the experiments.
The tasks include four fetching manipulation tasks (FetchReach, FetchPickAndPlace, FetchPush,
FetchSlide), and two dexterous in-hand manipulation tasks (HandBlock-Z, HandEgg). In the fetching
tasks, the virtual robot should move an object to a specific position in the virtual space. In the
dexterous in-hand manipulation tasks, the agent is asked to rotate the object to a specific pose. The
offline dataset for each task is a mixture of 500 expert trajectories and 2,000 random trajectories. The
fetching tasks and datasets are taken from Yang et al. (2022). The expert trajectories for the in-hand
manipulation tasks are generated similarly to Liu et al. (2022a).

Baselines. For the experiments, we use TD3 Fujimoto et al. (2018) and TD3BC Fujimoto & Gu
(2021) as they are built on the classical Q-learning approaches and solid baselines for many offline
RL tasks Levine et al. (2020). The HER ratio of 0.5 was used with all methods in all experiments.
We trained each method for 10 seeds, and each training run uses 500k updates. The mini-batch size is
512. We used the cumulative test rewards from the environments as the performance metric in all
experiments.

Figure 5: Six goal-conditioned tasks.

5.1 PRE-TRAINING VALUE FUNCTION

To construct the prioritized goal-swapping experience replay, we first need to train a Q-function
that can assign reasonable values to state-goal-action pairs. In this stage, several algorithms can be
chosen to pre-train the value function, such as conservative Q-learning Kumar et al. (2020), actionable
models Chebotar et al. (2021), TD3BC Fujimoto & Gu (2021), etc. In this work, we choose to
use TD3BC Fujimoto & Gu (2021) as it has a minimal modification on the original Q-learning (its
value function is not heavily modified as other offline methods). To ensure the Q function covers
as much state-goal-action space as possible, we combined the random goal-swapping augmentation
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(Alg. 1) with TD3BC during the pre-training. We trained each value function for each task with
1000k updates, and each update’s batch size is 512.

5.2 PRE-TRAINED Q VALUE DISTRIBUTION

We aim to validate our first research proposal: whether a pre-trained Q function can identify if
transitions are goal-reachable. To do this, we created two classes of data: ζN and ζP . ζN contains
randomly augmented transitions with goal-swapping, while ζP contains expert transitions. We used a
pre-trained value function Q to evaluate all transitions in these two sets, and the results are displayed
in Fig. 6. We believe that the differences in the Q-value distributions provide evidence to support our
hypothesis that a pre-trained Q function can identify if transitions are goal-reachable.

Figure 6: The histagram of Q-value distributions. In this figure we compare the Q-value distributions
of goal-swapping augmentations (dark gray) and the positive goal-conditioned samples (dark green).

Overall, the Q-value distribution of ζP notably differs from that of ζN . Generally, ζP has higher
Q-values than ζN , which validates our proposal in Section 4.2, that goal-reachable transitions will
possess higher Q-values. This statement holds true for the tasks FetchPush, FetchPick, HandEgg and
HandBlockZ. It is worth noting that for the simple task FetchReach, the Q-value of ζN has a similar
distribution as ζP , suggesting that the random goal-swapping augmentation likely yields positive
augmentations. Moreover, in task FetchSlide, the expert also provides unsuccessful trajectories,
resulting in ζP exhibiting two peaks in its Q-value (one on the minimal Q-value side and one on
the maximum Q-value side). This is reflected in the Q-value distribution of ζN , which mirrors the
distribution of ζP .

We also implement a set of simple linear classifiers that utilize the estimated Q-value to classify
whether a given state-goal-action pair ζ = {s, g, a, r, s′} is a reachable transition. The classification
results are presented in Table 1. As shown in the table, the pre-trained value function Q is able
to accurately estimate the goal-reachable transitions in the FetchPush, FetchPick, HandEgg, and
HandBlockZ tasks. The results demonstrate that the pre-trained value function Q is able to identify
the goal-reachable transitions.

5.3 PERFORMANCE

In this experiment, we aim to study the impact of prioritized goal-swapping experience replay on
offline goal-conditioned reinforcement learning (RL). We used two deep Q-learning approaches, TD3
and TD3BC, to compare the performance of agents trained with prioritized goal-swapping experience
replay (Alg. 2) versus the original algorithm and agents trained with random goal-swapping experience
replay (Alg. 1). The comparison results are presented in Tab. 2.

Overall, the prioritized goal-swapping experience replay provided more robust performance im-
provements than the random goal-swapping augmentation for offline GCRL tasks. In particular, the
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Table 1: The goal-reachable identification accuracy. We use the estimated Q-value as the classification
feature to identify if the transition belongs to a successful trajectory (goals are reachable).

FetchPush FetchSlide FetchPick FetchReach HandBlockZ HandEggRotate

Logistic regression 0.915 0.970 0.925 0.770 0.880 0.905
KNN 0.920 0.965 0.910 0.785 0.885 0.905
Naive Bayesian 0.920 0.965 0.905 0.770 0.890 0.915
SVM 0.920 0.965 0.905 0.775 0.885 0.905

Table 2: Evaluation of the goal-swapping augmentation in offline RL. The tested methods were
trained without (*method*) and with (*method*-aug) the random goal-swapping augmentation
(Alg. 1). The methods (*method*-mem) were trained with prioritized goal-swapping augmentation.
The performance metric is the average cumulative reward over 50 random episodes. indicates
that the augmented variant outperforms the original baseline according to the t-test with p-value
< 0.05. text indicates that the (*method*-mem) variant outperforms the (*method*-aug) variant
according to the t-test with p-value < 0.05.

Algorithms FetchPush FetchSlide FetchPick FetchReach HandBlockZ HandEggRotate

TD3BC-mem 29.85± 11.57 1.23± 2.85 28.74± 15.55 48.12± 1.37 28.43± 30.13 34.07± 32.57

TD3BC-swap 27.52± 16.27 0.58± 1.48 27.38± 12.86 47.35± 1.94 28.32± 27.81 32.12± 37.03
TD3BC (baseline) 26.94± 14.42 1.21± 3.98 26.36± 15.75 47.72± 1.12 16.35± 29.78 21.56± 32.68

TD3-mem 32.25± 13.89 1.73± 2.39 23.66± 13.78 48.22± 3.87 24.57± 20.13 15.83± 6.27

TD3-swap 27.83± 15.47 0.99± 1.83 24.23± 15.05 47.09± 1.285 15.43± 27.23 3.28± 2.46
TD3 (baseline) 20.68± 16.27 1.01± 2.96 18.26± 8.43 46.52± 1.47 13.25± 21.08 7.32± 5.27

random goal-swapping augmentation even caused a decrease in performance for the TD3 agent on the
HandEggRotate task. However, for the FetchSlide task, neither random nor prioritized goal-swapping
augmentation resulted in performance improvements. This could be attributed to the limited number
of successful trajectories in the offline dataset, which limits the agent’s performance.

In addition, we observed that the prioritized goal-swapping experience replay even improved the
performance of the non-offline RL agent TD3, making it comparable to TD3BC. This suggests that
the prioritized goal-swapping augmentation can effectively cover as much state-goal-action space as
possible, allowing the Q-function to be trained appropriately.

6 CONCLUSIONS

In this paper, we proposed a novel and innovative approach to offline goal-conditioned reinforcement
learning using a prioritized goal-swapping technique. Our method employs a pre-trained agent to
generate meaningful and effective data augmentations that can help the agent acquire general skills
from the offline dataset. Compared to random goal-swapping data augmentation, our method has
proven more robust and successful in improving performance.

One limitation of this work is its focus on goal-conditioned reinforcement learning (RL) problems.
Although the idea of using pre-trained value functions to assign sampling weights could be applied to
more traditional offline RL tasks, training an additional value function is still necessary, which can be
time-consuming. To address this, future work should focus on developing more general and efficient
techniques in terms of training.
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