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Abstract

Evaluating generated text received new atten-001
tion with the introduction of model-based met-002
rics in recent years. These new metrics have003
a higher correlation with human judgments004
and seemingly overcome many issues of pre-005
vious n-gram based metrics from the symbolic006
age. In this work, we examine the recently in-007
troduced metrics BERTScore, BLEURT, NU-008
BIA, MoverScore, and Mark-Evaluate (Pe-009
tersen). We examined their sensitivity to dif-010
ferent types of semantic deterioration (part of011
speech drop and negation), word order pertur-012
bations, word drop, and the common problem013
of repetition. No metric showed appropriate014
behaviour for negation, and further no metric015
was overall sensitive to the other issues men-016
tioned above.017

1 Introduction018

Alongside with the current developments in Nat-019

ural Language Generation (NLG), evaluating the020

quality of artificially generated text is an equally021

important (and ever harder) task in the field. N-022

gram based metrics, like BLEU (Papineni et al.,023

2002) or ROUGE (Lin, 2004), come with severe024

drawbacks (Belz and Reiter, 2006; Reiter and Belz,025

2009) and given the the increasing versatility of026

modern NLG systems, they are assumed to strug-027

gle even more (Zhang et al., 2020; Sellam et al.,028

2020). Architectures based on the Transformer029

(Vaswani et al., 2017), like BERT (Devlin et al.,030

2019) or the complete GPT series (Radford et al.,031

2018, 2019; Brown et al., 2020), have increased the032

quality of artificially generated text to an extent that033

even humans tend to struggle distinguishing natural034

from artificial texts (Clark et al., 2021). Based on035

these models, new metrics have been introduced,036

such as BERTScore (Zhang et al., 2020), BLEURT037

(Sellam et al., 2020), NUBIA (Kane et al., 2020),038

MoverScore (Zhao et al., 2019), or Mark-Evaluate039

(Mordido and Meinel, 2020), claiming to increase040

correlation with human judgment. We examine the 041

latter introduced metrics using synthetic data. The 042

examination will include several practical problems 043

commonly observed in NLG systems. The code of 044

our experiments is publicly available on GitHub1 045

2 Related work 046

Caglayan et al. (2020) compared different metrics, 047

including BERTScore regarding their sensitivity to 048

specific impairments. Their experiment (related, 049

but not similar to ours) indicated that BERTScore 050

is more sensitive to the semantic integrity than n- 051

gram based metrics. Another analysis by Kaster 052

et al. (2021) provides an evaluation of model-based 053

metrics based on linguistic properties of their input. 054

They showed that even model-based metrics tend to 055

behave differently regarding specific modifications 056

to their input. Some metrics showed a higher sensi- 057

tivity to semantics, while others showed higher sen- 058

sitivity to syntactic issues. Eventually, ensembling 059

methods were proposed to combine the strengths of 060

metrics. Based on the CheckList library (Ribeiro 061

et al., 2020), Sai et al. (2021) introduced a library 062

for assessing NLG metrics via different perturba- 063

tions to the input data. Multiple metrics, including 064

model-based ones, were assessed, and neither of 065

them did show a proper overall sensitivity to all 066

modifications. The most severe issue was found in 067

an overall insensitivity to negation. Contrary to our 068

work, Sai et al. (2021) did not examine different 069

degrees of perturbations. Sai et al. (2021) further 070

underline the criticism of evaluating metrics ac- 071

cording to their correlation with human judgments, 072

which was already criticized in an in-depth analysis 073

by Mathur et al. (2020) about applying correlation 074

as an evaluation measure. 075

1See appended zip-file.
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3 Materials and Methods076

Additionally to describing the respective metric, an077

exact specification of the setup and model-specific078

details are reported in Appendix A.079

BERTScore is a cosine-similarity based metric080

for which the input is encoded using RoBERTa081

embeddings (Liu et al., 2019). Recall and Preci-082

sion are computed by summing over tokens and083

computing maximum similarity to each token from084

the other sentence. The result is averaged by085

the sentence length. For Precision, the sentence086

summed over is the reference sentence, and vice087

versa for Recall. F1 measure is the harmonic088

mean of the former two. Furthermore, inverse-089

document-frequency (idf) weighting can be applied090

to each maximal similarity in reference and preci-091

sion, which is computed from the reference corpus.092

MoverScore (MS) is based on the Word Mover’s093

Distance (Kusner et al., 2015), an instance of Earth094

Mover’s Distance (Rubner et al., 2000). It com-095

putes the minimal transportation cost necessary to096

transform one sentence into the other based on the097

distance between n-gram representations, addition-098

ally considering relative idf-weights. Representa-099

tions are extracted from the last five layers of a100

DistilBERT model (Sanh et al., 2020).101

Mark-Evaluate Petersen (ME-P, Mordido and102

Meinel, 2020) utilizes population estimators103

(Ricker, 1975) to score the quality of candidate-104

reference pairs. Since the population size is known105

prior to the estimate, the capture mechanism is106

based on whether a vector is inside the k-nearest-107

neighborhood of the opposite embedding set. The108

assumption that each sample is uniformly likely to109

be captured is intentionally violated. The deviation110

between known and estimated population size is111

computed to obtain the final score of the metric.112

BLEURT (Sellam et al., 2020), in contrast to113

previous models, is a BERT model (RemBERT ,114

Chung et al., 2020) specifically trained for evalua-115

tion. For adapting the model to the evaluation task,116

an additional training step is introduced in which117

artificially altered sentences are fed to the model118

alongside with the original ones to augment the119

evaluation process. Modification include dropping120

words from sentences, back-translating them or re-121

placing random words with BERT predictions. A122

quality score can be computed based on different123

signals stemming from these alterations. These124

signals include metrics like BLEU, BERTScore 125

and ROUGE, back-translation likelihood, a binary 126

back-translation flag as well as entailment-flags. 127

Further, the model is also fine-tuned on human 128

ratings. 129

NUBIA (NeUral Based InterchangeAbility, 130

Kane et al., 2020) is an ensemble metric consisting 131

of three transformer-based models focussing on 132

different aspects of the assessment: A pre-trained 133

RoBERTa model, finetuned on STS-B (Cer et al., 134

2017), another pre-trained RoBERTa model, 135

finetuned on MNLI (Williams et al., 2017), and a 136

pre-trained GPT-2 model (Radford et al., 2019). 137

The results are combined in an aggregator module 138

and subsequently calibrated to fit in [0, 1]. 139

4 Experiments 140

For all our experiments we used the CNN/Daily 141

Mail data set (Hermann et al., 2015) from 142

huggingface.datasets as a reference cor- 143

pus. Since it represents a corpus of high-quality 144

news articles, it is ideally suited to use the scores 145

of its original sentences as an upper bound for the 146

evaluated metrics. We randomly sampled 2000 147

texts from this corpus for all of the models, ex- 148

cept for NUBIA and ME-P.2 Resulting scores from 149

artificial impairments of different degrees can sub- 150

sequently be compared to this upper bound. The 151

modifications include the following different com- 152

monly observed flaws in NLG systems and the 153

underlying language models: 154

Word Drop A random drop of words mimics 155

general quality deterioration. The larger the inten- 156

sity, the larger the drop probability gets. At the 157

highest level, only a few tokens are left. This ap- 158

proach was inspired by Mordido and Meinel (2020) 159

and Semeniuta et al. (2019). 160

Word Swap Random word pairs are chosen and 161

swapped. The higher the intensity, the more ran- 162

dom the sequence of tokens becomes. Similar to 163

word drop, this task was inspired by Mordido and 164

Meinel (2020) and Semeniuta et al. (2019). 165

Repetition As shown by Fu et al. (2021), repeti- 166

tion remains a problem in text generated by NLG 167

systems. A sequence at the end of the sentence 168

2NUBIA and ME-P are not optimized for use with GPUs,
which is why we resorted to only using 50 of the 2000 texts.

2Examples for each of the different modifications are pro-
vided in Appendix B.
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Figure 1: Development of the different metrics with increasing degrees of impairment

is chosen and repeatedly added to the sentence to169

mimic this issue. With increasing intensity, the cho-170

sen sequence is repeated more often and the overall171

sentence becomes longer.172

Negation Sentences were negated to shift the se-173

mantics of the sentence into an entirely different174

direction. Negation is a minor sentence modifica-175

tion on a syntactic level, however, the sentence’s176

semantics change entirely. For this modification,177

the CheckList library (Ribeiro et al., 2020) was178

utilized. This approach is analogous to the work of179

Sai et al. (2021).180

POS-Drop Words with different part-of-speech181

(POS) tags were dropped to examine how the met-182

rics behave, since some tokens are assumed to183

influence the degradation of overall semantic in-184

tegrity more than others. SpaCy (Honnibal et al.,185

2020) and NLTK (Bird et al., 2009) were used to186

execute the different POS drops. As a baseline,187

the BLEU score is computed for each impairment188

which we then use for displaying the changes rela-189

tive to BLEU (cf. Fig. 2).190

5 Results191

We expected to see a strict monotonous decrease for192

the impairments with increasing degree of severity.193

For Negation a sharp drop due to the deterioration194

of semantic meaning, while for POS-Drop the loss195

of rather unimportant POS (DET, ADJ) should in-196

tuitively not lead to more damage to the semantic197

integrity than the drop of important POS (NOUN,198

VERB).199

Results for continuous impairments (word drop,200

word swap and repetition) are displayed in Figure 1,201

while negation and POS drop are shown in Figure202

2. For each type of impairment, we will report the203

most striking observations. 204

Swapped Words While BLEU exhibits, as ex- 205

pected, a steady drop to almost zero, some metrics 206

tend to report higher values even when all words 207

are swapped and the order is essentially random. 208

NUBIA and BLEURT both have minimum values 209

above 0.4, while MoverScore and BERTScore yield 210

values above 0.2 for the highest degree of impair- 211

ment. In contrast to this behavior, ME Petersen 212

is most sensitive to word order perturbation and 213

shows a sharp decline. It already drops to 0.47 at 214

the first level of word order perturbation and reports 215

a score of 0.01 for the random permutation. 216

Dropped Words In this task, BLEU, Mover- 217

Score, BERTScore, and ME-Petersen drop contin- 218

uously until they eventually all (nearly) reach zero. 219

ME-Petersen again drops the fastest, similar to the 220

Word Swap but stops at 0.05. A different behavior, 221

however, can be observed for BLEURT and NU- 222

BIA, which again exhibit higher values compared 223

to the rest. BLEURT eventually drops to 0.14, and 224

NUBIA even increases from its lowest value at the 225

third level of impairment of 0.24 to 0.36 at the last 226

level. 227

Repetition A less uniform behavior is observed 228

for the repetition impairment, where the val- 229

ues strongly diverge at the highest level. Both 230

BERTScore metrics monotonically decrease un- 231

til they eventually reach zero, ME-Petersen also 232

finally drops to a value near zero (0.06). How- 233

ever, it does not monotonically decrease, but drops 234

sharply after the first level. BLEU and MoverScore 235

both monotonically decrease strictly but end up 236

way above zero at around 0.2. BLEURT and NU- 237

BIA behave entirely different, such that BLEURT 238

seems to converge to 0.76 from the second level 239
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Figure 2: Average Deviations (incl. Standard deviations) for all metrics relative to BLEU (for POS-Drop) and
Boxplots for the impact of Negation on all metrics.

onward and does not show proper sensitivity to this240

issue, while NUBIA again increases after the third241

level from 0.5 to 0.52.242

POS-Drop The most exceptional deviation from243

BLEU is observed in the removal of determiners.244

Most metrics (BERTScore, ME-P, BLEURT, and245

NUBIA) deviate positively from the reference, im-246

plying that the loss of determiner is less critical247

for the score, as expected. Adjectives, nouns, and248

verbs did affect metrics in different directions. Fur-249

thermore, BERTScore consistently reported higher250

values than BLEU.251

Negation Since negation is a severe impairment252

to semantics, a significant drop in reported values253

was expected. However, the lowest reported score254

was observed in NUBIA, which dropped to an av-255

erage of 0.65. BLEURT scores the second-lowest256

at an average of 0.77. All other metrics report an257

average between 0.81 and 0.86, including BLEU.258

6 Discussion259

Regarding word order perturbation, repetition,260

and word drop, it was expected to see a strict261

monotonous decline in the reported scores, which262

was not met by a single metric in every task (Al-263

though ME-P came close to meeting the expecta-264

tions). However, for every task, at least one met-265

ric dropped to a value of zero or close to zero.266

However, one crucial aspect here is the metric-267

dependent sensitivity to word order perturbations268

and repetition, where especially the behavior of269

NUBIA and BLEURT is alarming. A further in-270

vestigation of why both architectures behave differ-271

ently from other representation-only-based metrics272

is thus needed in the future.273

Our POS-drop task showed that some tokens274

influence scores more than others. Notably, the 275

removal of determiners, which was expected not 276

to influence the semantic integrity, did not lower 277

the scores of most metrics. However, the syntac- 278

tic integrity is affected, which must be considered 279

when interpreting respective metrics. Behavior like 280

this was also shown in Kaster et al. (2021) and 281

was indicated by Caglayan et al. (2020) regarding 282

BERTScore. No uniform behavior in most metrics 283

was seen for removing verbs, nouns, and adjectives. 284

Nonetheless, for nouns and verbs, the tendency to 285

report a higher score is lower, which indicates a 286

stronger emphasis on semantic integrity. However, 287

sensitivity to semantic integrity is bound by the 288

underlying model’s capabilities, as observed in our 289

negation task. No metric reported a proper value for 290

the deterioration of semantic integrity, which aligns 291

with Sai et al. (2021). The work of Kassner and 292

Schütze (2020) and Ettinger (2020) already exam- 293

ined BERT regarding its understanding of negation, 294

and they showed a general lack of understanding 295

of the concept of negation. 296

7 Conclusion & Future work 297

Our results additionally underline that model-based 298

metrics should be used with caution. The most se- 299

vere drawback is the lack of sensitivity to negation, 300

for which no metric reported a proper value. Hence 301

further research in natural language understanding 302

is necessary to overcome this issue. Furthermore, 303

state-of-the-art metrics like BLEURT and NUBIA 304

lacked sensitivity to repetition, which is a severe is- 305

sue in NLG. Although many metrics deviated from 306

the expected behavior, some others did not. Thus, 307

we endorse the proposal of Kaster et al. (2021) to 308

ensemble metrics and validate against the perturba- 309

tion checklist package Sai et al. (2021). 310
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Appendix473

A Technical Setup474

Metric Underlying Model Remarks
BERTScore (+ idf) microsoft/deberta-xlarge-mnli rescaled, hug_trns = 4.14.1, vers. = 0.3.11
BLEURT BLEURT-20 finetuned RemBERT
Mark-Evaluate BERT-Base-MNLI♥ k = 1 (kNN)
MoverScore distilbert-base-uncased♦ n = 1 (n-gram)

NUBIA
roberta-sts
roberta-mnli
gpt-2 sequences are clipped to max 1024 tokens

♥ Available on GitHub
♦ As recommended in the official implementation

B Perturbation Examples475

476
Output

Original He’s quick, he’s a very complete player and in
great form.

Negation
He’s quick, he’s not a very complete player and in
great form.

Repetition

He ’s quick, he ’s a very complete player and in
great form and in great form and in great form and in
great form and in great form and in great form and in
great form and in great form and in great form and in
great form and in great form and in great form and in
great form and in great form and in great form and in
great form and in great form.

Word Swap
very complete a, he ’s quick He ’s and player great
in form.

Word Drop , player.
Part of Speech Drop (ADJ) He’s he’s a very player and in form.

477
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