
Fix Bugs with Transformer through a Neural-Symbolic Edit Grammar

Anonymous ACL submission

Abstract

We introduce NSEdit (neural-symbolic edit), a001
novel Transformer-based code repair method.002
Given only the source code that contains bugs,003
NSEdit predicts an editing sequence that can004
fix the bugs. The edit grammar is formulated as005
a regular language, and the Transformer uses006
it as a neural-symbolic scripting interface to007
generate editing programs. We modify the008
Transformer and add a pointer network to select009
the edit locations. An ensemble of rerankers010
are trained to re-rank the editing sequences011
generated by beam search. We fine-tune the012
rerankers on the validation set to reduce over-013
fitting. NSEdit is evaluated on various code re-014
pair datasets and achieved a new state-of-the-art015
accuracy (24.04%) on the Tufano small dataset016
of the CodeXGLUE benchmark. NSEdit per-017
forms robustly when programs vary from pack-018
ages to packages and when buggy programs are019
concrete. We conduct detailed analysis on our020
methods and demonstrate the effectiveness of021
each component.022

1 Introduction023

Neural networks pretrained on source code (Feng024

et al., 2020; Kanade et al., 2020; Guo et al., 2020;025

Ahmad et al., 2021) are bringing substantial gains026

on many code understanding tasks such as code027

classification, code search, and code completion028

(Lu et al., 2021). However, code repair remains029

challenging because it requires the model to have030

robust syntactic and semantic understanding of a031

given program even when it contains bugs. The032

difference between a buggy program and its fixed033

version often lies in small details that must be fixed034

exactly, which further requires the model to have035

precise knowledge about programming.036

Code repair with large language models often037

formulate the problem as a Neural Machine Trans-038

lation problem (NMT), where the input buggy code039

is “translated” into its fixed version as the output.040

We categorize existing work based on two design041

factors: the translation target and the buggy code 042

representation. For the translation target, the model 043

can predict the fixed code directly (Tufano et al., 044

2019; Phan et al., 2021; Yasunaga and Liang, 2021) 045

or generate some form of edit that can be applied 046

to the buggy code to fix it (Yao et al., 2021; Chen 047

et al., 2019; Zhu et al., 2021; Yin et al., 2018). 048

For the buggy code representation, we can use a 049

tokenized sequence of buggy code for sequence-to- 050

sequence (Seq2Seq) prediction (Chen et al., 2019; 051

Bhatia et al., 2018) or program analysis representa- 052

tions such as abstract syntax tree (AST), data-flow 053

graph (DFG), and error messages (Yao et al., 2021; 054

Allamanis et al., 2021; Berabi et al., 2021). 055

We propose NSEdit, a Transformer-based 056

(Vaswani et al., 2017) model that predicts the edit- 057

ing sequence given only the source code. We use 058

both encoder and decoder of the Transformer: the 059

encoder processes the buggy code, and the decoder 060

predicts the editing sequence given an edit gram- 061

mar. We design the edit grammar as a regular lan- 062

guage, and the Transformer uses it as a domain- 063

specific language (DSL) to write scripts that can 064

fix the bugs when executed. The grammar consists 065

of two actions, delete and insert, which are added 066

to the vocabulary of the language model as new 067

tokens. The decoder has two modes: word/action 068

mode predicts the two action tokens along with 069

word tokens, and location mode selects the loca- 070

tion of the edit. A pointer network implements the 071

location selection mode, and we slice the encoder 072

memory as the embedding of the edit location to en- 073

able content-based retrieval, instead of representing 074

a location as a static word embedding in the vocab- 075

ulary. We use beam search to generate predictions 076

at inference time. Given diversity-versus-quality 077

problem encountered in all beam-search-based se- 078

quence generation methods (Kool et al., 2019), we 079

train rerankers to improve the quality of sequences 080

generated (Ng et al., 2019; Lee et al., 2021; Ramesh 081

et al., 2021). An overview of the architecture is pro- 082

1

vided in Figure 1. We will publish our source code.083

We now introduce our decisions and hypotheses084

with respect to the two design factors of translation085

target and buggy code representations in the context086

of existing literature.087

Translation target Using the fixed code as trans-088

lation target is straight-forward to implement, with089

the added benefit that input and target are both code090

sequences, which can be easier to model and, com-091

pared to edits, more similar to the code corpus that092

large language models are pre-trained on. How-093

ever, as our results show, predicting the fixed code094

directly may encourage the model to learn the copy-095

ing behavior which causes overfitting and does not096

reflect the goal of editing the code to make changes.097

Existing edit prediction approaches often rely on a098

graph representation of the buggy code (Yao et al.,099

2021). This implicitly assumes that there exists a100

graph representation for the buggy code in the first101

place, which may not be true if the bug causes syn-102

tactical errors. Existing edit prediction approaches103

may also require significant architecture design104

and involve multiple stages of edit prediction (Zhu105

et al., 2021; Hashimoto et al., 2018; Yin et al.,106

2018). Instead, we design an edit grammar and107

rely on Transformer to do what it does best as a108

language model: learn the edit grammar and output109

editing instructions with this grammar. As to the110

architectural changes, we add a pointer network to111

predict the location of an edit, which is an essential112

modification. Our use of rerankers is an orthogonal113

change that adds to the performance significantly114

but not the complexity of the main Transformer115

model. The edit grammar can be seen as a DSL116

for edits, given which the Transformer generates117

a short program to edit the input sequence. This118

places our work alongside the burgeoning neural-119

symbolic literature to use neural networks to write120

executable scripts (Chen et al., 2021; Mao et al.,121

2019), vastly expanding the algorithmic capacity122

of deep learning systems.123

Buggy code representation We decide to train124

the model end-to-end given only the buggy code125

and fixed code without any auxiliary program anal-126

ysis information. In light of recent finding that127

Transformers are universal sequence-to-sequence128

function approximators (Yun et al., 2020), we want129

to prove that Transformers are powerful enough to130

learn the syntax and data flow through pre-training131

on large code corpus and can do so robustly even132

when bugs are present in the input. When syn- 133

tactical structures are not given, the Transformer 134

model has to learn the syntax, which may provide 135

additional signal that helps the model learn the se- 136

mantics of the code corpus (Manning et al., 2020). 137

When human programmers debug, they look at the 138

code directly and only use AST/DFG as a mental 139

model, and, as our results show, Transformer can 140

learn to edit the code directly as well. Represent- 141

ing buggy code with program analysis graphs can 142

incorporate important static and dynamic analysis 143

information. However, for code repair in particu- 144

lar, bugs may cause syntactical errors that prevent 145

extraction of program analysis graphs. Program 146

analysis tools may impose restrictions on the in- 147

putted programs (e.g. language-dependent tools), 148

while our problem formulation is more general and 149

portable. Lastly, it is a known challenge that neu- 150

ral program models encounter generalizability is- 151

sues when semantic-preserving program transfor- 152

mations are encountered (Rabin et al., 2021). 153

The main contributions of our paper are: (1) Our 154

proposed method NSEdit achieves the state-of-the- 155

art performance on the CodeXGLUE code repair 156

benchmark (Lu et al., 2021). We show that pre- 157

trained Transformer, given only the buggy code 158

without program analysis representation or auxil- 159

iary information, can reach SOTA performance in 160

code repair formulated as a sequence-to-sequence 161

neural machine translation problem. (2) We for- 162

mulate NSEdit grammar that is a regular language 163

and one of the simplest edit representation in the 164

literature. The two-mode decoder and finite state 165

machine together ensure that the model follows the 166

grammar. The Transformer uses the grammar as a 167

neural-symbolic API to generate executable scripts 168

that edit the code. We show that predicting edit- 169

ing sequences leads to superior performance, even 170

when programs vary from packages to packages. 171

(3) We use a pointer network to achieve content- 172

based edit location selection. We slice the encoder 173

memory to obtain the latent representation of a po- 174

tential edit location. (4) We use an ensemble of 175

rerankers to re-order the top-K editing sequences 176

produced by beam search and significantly improve 177

all exact match accuracy. We apply a novel tech- 178

nique to fine-tune the rerankers on validation set 179

which effectively reduces over-fitting of rerankers. 180

(5) We show that the reranking score can be used 181

to improve the precision of editing sequences with 182

efficient trade-off of recall. 183

2

2 Related work184

Code repair with deep learning In addition to185

the code repair methods we discussed in the In-186

troduction, we see a diverse array of methods pro-187

posed in recent years. Getafix (Johannes et al.,188

2019) presents a novel hierarchical clustering algo-189

rithm that summarizes fix patterns into a hierarchy190

and uses a simple ranking technique based on the191

context of a code change to select the most ap-192

propriate fix for a given bug. Vasic et al. (2019a)193

presents multi-headed pointer networks to localize194

and fix the variable misuse bugs. Recently, Dinella195

et al. (2020) learns a sequence of graph transfor-196

mations to detect and fix a broad range of bugs in197

Javascript: given a buggy program modeled by a198

graph structure, the model makes a sequence of199

predictions including the position of bug nodes and200

corresponding graph edits to produce a fix. Deep-201

Debug (Drain et al., 2021) trains a backtranslation202

Transformer model and uses various program anal-203

ysis information obtained from test suites to fine-204

tune the model.205

Neural machine translation with Transformer206

Transformer and its derivative models such as207

BERT (Devlin et al., 2018) and GPT (Radford et al.,208

2018) form a family of large language models that209

dominate neural machine translation and deep nat-210

ural language processing. The models consists211

of many parameters, and the performance of the212

model scales with the size of the model (Brown213

et al., 2020). Recently, Transformer has been214

adapted to domains other than natural language215

processing, such as image classification (Dosovit-216

skiy et al., 2020) and protein structure modeling217

(Rao et al., 2021), demonstrating Transformer as a218

general-purpose architecture.219

3 Methods220

Problem setup Our code repair dataset contains221

pairs (x, y) of strings, where x is the source code222

that contains bugs (buggy code), and y is the fixed223

code. Given the buggy code as the input sequence224

x, the goal of NSEdit is to generate the correct225

sequence of edits e that can transform x into y.226

For notations, we use variables such as x to de-227

note strings or constants. We use bold variables228

such as x to denote tokens and tensors. We use229

hatted variables such as x̂ or x̂ to denote model230

predictions. We use uppercase bold variables such231

as X to denote a probability distribution.232

Figure 1: An illustration of the main NSEdit model ar-
chitecture. There are two modes in the decoder. One
mode predicts words and actions, and the other mode
selects locations with a pointer network. The pointer
network takes the penultimate layer output of the de-
coder and compares it with the encoder memory by dot
product in order to select edit location.

Overview of NSEdit Training Training NSEdit 233

consists of a pipeline of stages. We tokenize 234

the buggy-fixed pair (x, y) with pre-trained Code- 235

BERT tokenizer before obtaining ground truth ed- 236

its e. We load the pre-trained CodeBERT encoder 237

(Feng et al., 2020) and CodeGPT decoder (Lu et al., 238

2021). We fine-tune the NSEdit model f to pre- 239

dict editing sequences with teacher forcing. After 240

training the model, we use beam search to gener- 241

ate the top-5 editing sequences (hypotheses). We 242

train two rerankers with different architectures to 243

classify which editing sequence is correct among 244

the beam search hypotheses. The two rerankers 245

and the original beam search score are combined 246

with an ensemble model to produce the final rerank- 247

ing. Lastly, we fine-tune the rerankers on the beam 248

search hypotheses on the validation set to reduce 249

over-fitting. The beam search hypotheses reranked 250

by the fine-tuned ensemble are the final predictions. 251

3.1 Tokenization and editing sequence 252

generation 253

We tokenize the both buggy code and fixed code 254

with a Byte Pair Encoding (BPE) (Sennrich et al., 255

2015) tokenizer that is pre-trained on CodeBERT 256

code corpus. To compute the editing sequences, 257

we use a variation of Ratcliff-Obershelp algo- 258

rithm (Ratcliff and Metzener, 1988) implemented 259

in Python’s difflib library. The editing sequences 260

are computed on tokenized sequences instead of 261

raw strings. 262

To formulate the NSEdit grammar formally, an 263

editing sequence consists of two types of actions: 264

delete(i, j) and insert(i, s). The delete(i, j) action 265

deletes the subsequence in [i, j) from the buggy 266

3

sequence x. The insert(i, s) action inserts a267

sequence of tokens s before location i in the buggy268

sequence x. As a result, NSEdit grammar contains269

three types of tokens in an editing sequence:270

action, word and location tokens. The finite271

state machine that describes NSEdit grammar is272

provided in Figure 2. An example editing sequence273

can be [DELETE] [LOC_1] [LOC_2]274

[INSERT] [LOC_2] @Override public.275

More example editing sequences are provided in276

Appendix E.277

ACTIONBOS INS AT

EOS

DEL FROM

WORD

DEL TO

<bos>

<eo
s>

<insert>

<delete>

<loc l>

<loc l>

<loc l>

<de
let

e>

<insert>

<eos>

<w>

Figure 2: The transition diagram of the finite state ma-
chine for the NSEdit grammar used to generate editing
sequences. The start state is the state BOS. The accept
state is the state EOS.

3.2 Training Transformer to predict bug fix278

editing sequences with teacher forcing279

We use the Transformer model (Vaswani et al.,280

2017) to perform sequence-to-sequence prediction.281

The NSEdit model computes f(x) = ê, where282

x is the buggy token sequence and ê is the pre-283

dicted editing sequence. The encoder processes284

buggy code x and outputs the encoder memory285

m, formally shown in Equation 1. For input x286

with L tokens and model with h hidden units, the287

encoder memory has shape (L, h), omitting the288

batch dimension. The decoder takes m and the289

current editing sequence token ei as the input and290

autoregressively predicts the next token êi+1 by291

maximum likelihood, as shown in Equation 2 and292

3, where [·] denotes the slicing operator.293

m = encoder(x) (1)294

Êi+1 = decoder(m, ei) (2)295

êi+1 = arg max
w∈W

Êi+1[w] (3)296

We use teacher forcing as the training procedure297

(Williams and Zipser, 1989; Lamb et al., 2016).298

This means that in Equation 2, the ground truth edit299

token ei is inputted into the decoder, but not the300

predicted token êi. For Seq2Seq models, teacher 301

forcing decouples prediction êi from êi+1 during 302

back propagation, thus it is more robust against 303

vanish/exploding gradient problems common in 304

recurrent neural networks. 305

We fine-tune pre-trained CodeBERT (Feng et al., 306

2020) and CodeGPT (Lu et al., 2021). We modify 307

the decoder to have two modes, a word/action mode 308

that predicts edit actions and inserted words, and a 309

location mode that predicts edit locations. 310

The original CodeBERT tokenizer has 50265 311

word tokens in the vocabulary, and we add 312

<delete> and <insert> tokens to the vocabulary. 313

When predicting words or actions, the decoder out- 314

puts a probability vector ŵ over a set W of 50267 315

elements by passing the logits output c into the 316

softmax function, shown in Equation 4. 317

Ŵ =
exp(c)∑

j∈W exp(ci)
(4) 318

When predicting locations, instead of further ex- 319

panding the vocabulary to add 513 location tokens 320

and predict them along with words and actions, the 321

decoder uses a pointer network in place of the last 322

layer of the decoder (Figure 1). 323

The pointer network is a feed forward neural net- 324

work. It transforms the output from the penultimate 325

layer of the decoder into a latent representation v 326

(Vinyals et al., 2015; Vasic et al., 2019b). In order 327

to determine the location of the edit, we compute 328

the dot product between v and m before a softmax 329

function over all edit locations, as shown in equa- 330

tion 5. As the result, the pointer network outputs a 331

probability vector L̂ over all edit locations at index 332

0, 1, 2...L for a buggy code with L tokens. 333

L̂ =
exp(vTm)∑L

j=0 exp(vTmj)
(5) 334

Since ground truth is available with teacher forcing, 335

we determine which decoder mode to use given the 336

type of ground truth token ei+1. 337

We slice the encoder memory as the embedding 338

m[l] to replace the embedding of a location token 339

<loc l> as the input to the decoder in Equation 2. 340

As the result, the input m[l] and output v of the 341

decoder for locations are both content-based repre- 342

sentations, rather than a fixed location embedding 343

that does not change when location context changes 344

with the input program. We use cross entropy loss 345

for both word/action prediction and location predic- 346

tion and add them together with equal coefficients. 347

4

3.3 Generating beam search hypotheses348

during inference349

During inference, when ground truth is not avail-350

able, we generate sequence predictions with beam351

search (Reddy et al., 1977; Graves, 2012; Sutskever352

et al., 2014). Every partially generated sequence353

is assigned a probability Π that is the product of354

every token probability, and the Top-K most prob-355

able editing sequences (hypotheses) are outputted,356

where K = 5. Formal definitions of our beam357

search procedure is provided in Appendix A.358

The finite state machine can uniquely determine359

the next token type based on the previous token360

given the transition function in Figure 2. Formally,361

we modify Equation 2 to use fsm to determine the362

token type as an input to the decoder363

Êi+1 = decoder
(
m, êi, fsm(êi)

)
(6)364

We mask the probability of an invalid token to be365

zero, thereby ensuring valid NSEdit grammar syn-366

tax. We slice the encoder memory based on the367

predicted edit location êi during inference. For-368

mally, when the current input is an edit location,369

êi = arg maxj=0,1,2..L Êi[j] = <loc l> = m[l] in370

Equation 6.371

3.4 Reranking the beam search hypotheses372

Our results show that top-5 accuracy is significantly373

higher than top-1 accuracy (Table 6), meaning that374

the correct edit can be produced among the 5 beam375

search hypotheses but not ranked the most proba-376

ble by the original beam search probability Π in377

Equation 11. Beam search with models trained378

with teacher-forcing can produce a diverse set of379

hypotheses, and the quality of the hypotheses may380

be improved (Kool et al., 2019). To do so, we381

rerank the beam search hypotheses with rerankers382

(Ng et al., 2019; Lee et al., 2021). We formulate383

this problem as a classification problem: given K384

hypotheses produced by the beam search that have385

a correct prediction, the objective of the reranker is386

to classify which of the K hypotheses is the correct387

one. The reranking score for a hypothesis êk is388

computed as389

score(êk) = log
exp(reranker(êk)/T)∑

i=1,2,..K exp(reranker(êi)/T)

(7)

390

where T = 0.5 is a temperature term that controls391

the smoothness of the probability distribution (Lee392

et al., 2021). Note that each hypothesis êk goes 393

through the same reranker function where each 394

reranker(êk) has a scalar output. This model can 395

be seen as a special case of Siamese model (Koch 396

et al., 2015). We use cross entropy loss to train 397

rerankers on the beam search hypotheses that are 398

produced on the training set by the main NSEdit 399

model. 400

We train two rerankers with different architec- 401

tures: one with both Transformer encoder and de- 402

coder, the same architecture as the main NSEdit 403

model, and the other with encoder only. The Trans- 404

former reranker outputs reranking score at the end 405

of the sequence, and the encoder-only reranker out- 406

puts at the <cls> token. Formally, for a beam hy- 407

potheses ê of length L, we compute the reranking 408

scores 409

rerankerTransformer(ê) = ff1(ÊL−1) (8) 410

rerankerEncoder(ê) = ff2(m[<cls>]) (9) 411

where ÊL−1 is computed given by Equation 6 and 412

m by Equation 1. The ff function is a simple one- 413

layer feed-forward neural network. 414

For every beam search hypotheses ê, we have 415

three ranking scores: the original beam search log 416

probability score Π (Equation 11) and two rerank- 417

ing scores. We use a linear ensemble model to 418

blend the ranking scores: 419

s = log Π + c1scoreTransformer + c2scoreEncoder

(10)
420

where c1, c2 are hyperparameters to be tuned 421

(Jahrer et al., 2010; Breiman, 1996). To search 422

for the best hyperparameters, we train the rerankers 423

on the training set, and we pick the configuration 424

with the highest validation accuracy. 425

Results show that rerankers tend to overfit on 426

the training set. To mitigate reranker’s overfitting 427

issue, we fine-tune the rerankers on the validation 428

set for b epochs (Tennenholtz et al., 2018). To tune 429

hyperparameter b, we re-split the validation set by 430

75:25, fine-tune the reranker on the 75% split for 431

b epochs, and pick the b with the highest accuracy 432

on the 25% split. We see that tuning for one epoch 433

(b = 1) performs the best. To produce the final 434

fine-tuned ensemble reranker, we fine-tune both 435

rerankers on 100% of the validation set for one 436

epoch, and combine them with the same ensemble 437

hyperparameters c1, c2 found before fine-tuning. 438

5

Length Normalization NSEdit (ours) Baseline CodeBERT† GraphCodeBERT† PLBART† CoTexT†

Small Abstract 24.04 16.30 16.40 17.3 19.21 22.64
Small Concrete 23.86 17.75 - - - -

Medium Abstract 13.87 8.91 5.16 9.1 8.98 15.36
Medium Concrete 13.46 9.59 - - - -

Table 1: Top-1 exact match accuracy of NSEdit and other code repair models, evaluated on the Tufano et al. (2019)
datasets. NSEdit achieved the state-of-the-art result on Tufano small abstract dataset, a part of CodeXGLUE
benchmark. The results from CodeXGLUE benchmark or original papers are marked with †. Tufano abstract dataset
normalizes variable names, method names and type names. The best and second best results are bold and underlined.

4 Experiments and Results439

4.1 NSEdit achieves SOTA performance on440

CodeXGLUE code repair benchmark441

NSEdit achieved the state-of-the-art (SOTA) perfor-442

mance (24.04%) on the Tufano et al. (2019) code443

repair dataset as a part of the CodeXGLUE bench-444

mark (Lu et al., 2021). We report our results on445

Tufano datasets in comparison with other code re-446

pair methods (Feng et al., 2020; Guo et al., 2020;447

Ahmad et al., 2021; Phan et al., 2021) currently on448

the CodeXGLUE benchmark in Table 1. Compared449

to other methods, our method NSEdit is the only450

one that predicts any form of edits, while all others451

predict fixed programs directly. Some example bug452

fixes correctly produced by our NSEdit model are453

provided in Appendix E.454

In Table 1, the Baseline model is a Transformer455

with the CodeBERT encoder and a randomly ini-456

tialized six-layer Transformer decoder. Compared457

to the complete NSEdit model, Baseline has four458

differences: (1) the prediction target is fixed code459

by default. (2) the decoder does not have a pointer460

network for location mode. (3) CodeGPT is not461

used to initialize the decoder. (4) rerankers are not462

used. We will reuse this Baseline model in the463

following experiments.464

4.2 Predicting editing sequences performs465

better than predicting fixed code466

We formulate a novel NSEdit grammar to predict467

editing sequences as the target, rather than the fixed468

code. To confirm that predicting editing sequences469

yields better performance, we initialize two Base-470

line models without CodeGPT and rerankers, the471

same as in Section 4.1. One Baseline model pre-472

dicts editing sequences and the other predicts fixed473

code. The only difference in the architecture is474

the pointer network needed to predict locations in475

editing sequences. We report the results on Tu-476

fano abstract datasets in Table 2. Predicting edits477

Translation target Length Top-1 Top-5

Editing sequences Small 21.17 37.93
Medium 13.20 19.17

Fixed code
Small 16.30 30.42

Medium 8.91 17.14

Table 2: Exact match accuracy of two Baseline models
when predicting editing sequences and fixed code on
Tufano abstract dataset. The Baseline model is the main
NSEdit model without CodeGPT and rerankers in order
to isolate the effect of translation target.

has better performance, possibly because editing 478

sequence is shorter than fixed code, and it discour- 479

ages copying behavior by focusing on the changes. 480

4.3 NSEdit performs robustly against 481

package-to-package variations 482

We note that the Tufano et al. (2019) training, vali- 483

dation and test sets have overlapping Java packages. 484

To investigate the effect of package-to-package 485

variations, we curate an in-house dataset from the 486

publicly available 10K Github Java packages (Al- 487

lamanis and Sutton, 2013), which will be pub- 488

lic. Our dataset generation process resembles Tu- 489

fano et al. (2019): we partition the dataset given 490

the buggy program length and normalize variable 491

names, method names and type names in abstract 492

code, while retaining the original names in concrete 493

code. We implement a strict policy to separate 494

training, validation and test set packages. Other 495

than the same packages, closely related packages 496

that share same naming prefix, e.g. “spring-cloud- 497

stream-samples” and “spring-cloud-stream”, are 498

considered related and also separated in either train- 499

ing, validation or test set. The dataset consists of 500

138575/12983/9282 train/valid/test samples. We 501

report the accuracy of Baseline models in Table 3. 502

Recall that we hypothesize previously that pre- 503

dicting fixed code directly encourages the model to 504

learn the copying behavior. We see that when pack- 505

6

Packages Norm. Target Top-1 Top-5
Val. Test Val. Test

Mixed
Abs.

Code 26.38 9.78 41.67 21.99
Edit 26.14 9.07 38.63 18.51

Conc.
Code 27.61 3.45 37.45 8.77
Edit 30.91 7.11 38.52 12.11

Separate
Abs.

Code 12.72 10.82 27.50 26.45
Edit 12.51 11.46 27.03 27.05

Conc.
Code 4.94 3.98 11.93 11.15
Edit 9.10 9.04 16.30 18.42

Table 3: Exact match accuracy of Baseline models that
predict on editing sequences and fixed code on our in-
house dataset (small). Mixed dataset mixes the training
and validation set packages and leave the test set sepa-
rate, and otherwise all three sets have separate packages.
We see that when packages are separate or when input
programs have original variable names, it overfits less
to predict editing sequences than fixed code directly.
CodeGPT and rerankers are not used.

ages are mixed, all models overfit with large gap506

between validation and test accuracy. Furthermore,507

mixing packages causes all models to have reduced508

accuracy, likely because overfitting is a significant509

performance bottleneck. When predicting code, ac-510

curacy on concrete code (27.61%, row 3) is slightly511

better than accuracy on abstract code (26.38%, row512

1) on validation set with mixed training/validation513

packages, but only half at test time with unseen514

packages (3.45% v.s. 9.78%), possibly because for515

concrete code, the model is given more context and516

it is easier to copy from similar programs, which517

makes overfitting more severe. Predicting edits518

does not suffer the same performance drop at test519

time for concrete code (7.11%, row 4) compared to520

abstract code (9.07%, row 2), which supports our521

hypothesis that predicting edits discourages copy-522

ing behavior. When packages are separate and code523

is concrete, predicting editing sequences (9.04%,524

row 8) doubles the test time top-1 accuracy of pre-525

dicting fixed code directly (3.98%, row 7). This526

is the most valuable use case in applications, and527

predicting edits has even greater advantage than528

predicting fixed code.529

4.4 NSEdit is a general bug fix method in530

different languages and settings531

The NSEdit grammar is language agnostic. To532

confirm that NSEdit works on languages other533

than Java, we evaluate our NSEdit model on ETH534

Py150 dataset (Kanade et al., 2020; Raychev et al.,535

Task Top-1 Top-5

Variable-misuse classification 83.08 87.14
Wrong binary operator 58.44 75.32

Swapped operand 67.38 69.23

Table 4: Exact match accuracy of NSEdit on three code
repair tasks of the ETH Py150 dataset. NSEdit can
repair programs in different languages and settings.

2016). The Python dataset contains five classifica- 536

tion tasks, and we experiment on three of them that 537

are related to code repair: variable-misuse clas- 538

sification, wrong binary operator, and swapped 539

operand. We process ETH Py150 according to 540

our problem setup and report the performance of 541

NSEdit in Table 4. We confirm that NSEdit is a gen- 542

eral method can edit buggy programs in different 543

languages and settings. 544

4.5 Pre-trained encoder and decoder can be 545

fine-tuned together on editing sequences 546

Fine-tuning pre-trained models on code repair con- 547

tributes to the performance of our model. To inves- 548

tigate the effect of different backbone models, we 549

change the pre-trained backbones used to initialize 550

the weights of the Transformer before fine-tuning. 551

We report accuracy on Tufano datasets in Table 5. 552

Length Pre-trained backbone Top-1 Top-3 Top-5

Small
No backbone 15.89 25.00 27.66
CodeBERT 21.17 33.40 37.93

CodeBERT+CodeGPT 22.35 33.20 36.35

Medium
No backbone 7.32 10.89 11.81
CodeBERT 13.20 17.68 19.17

CodeBERT+CodeGPT 13.72 18.87 20.17

Table 5: Exact match accuracy of NSEdit when different
pre-trained backbone models are used to initialize the
weights before fine-tuning on Tufano abstract dataset.
The pre-trained encoder and decoder can be fine-tuned
together in the same model. The decoder, despite not
pre-trained on editing sequences, can be fine-tuned to
predict edits. Reranking is not performed to isolate the
effect. All models predict editing sequences.

The CodeBERT encoder backbone is trained on 553

multiple programming languages, including Java. 554

Even when the input sequences contain bugs and 555

program analysis auxiliary information is not pro- 556

vided, CodeBERT can robustly extract program in- 557

formation and improve the performance of NSEdit 558

after fine-tuning. The CodeGPT decoder backbone 559

also improves the performance of NSEdit. Code- 560

BERT and CodeGPT are two independently pub- 561

7

lished models pre-trained on different datasets, and562

our results confirm that even when large language563

models are pre-trained in different settings, they564

can be integrated into the same Transformer model.565

Notably, CodeGPT is pre-trained on code, and the566

model can effectively transfer knowledge to predict567

editing sequences.568

4.6 Rerankers bring significant performance569

improvements570

The use of rerankers significantly improves the per-571

formance of NSEdit to the state-of-the-art level.572

We investigate the effect of different settings of573

rerankers in Table 6.574

Reranker settings Top-1 Top-2 Top-3 Top-4 Top-5

NSEdit without rerankers 22.35 29.19 33.20 35.22 36.35
Transformer 18.47 26.80 31.55 34.62 36.35

Ensemble 22.76 29.07 32.63 35.08 36.35
Fine-tuned Transformer 21.17 28.67 32.84 35.34 36.35
Fine-tuned ensemble 24.04 30.54 34.10 35.70 36.35

Table 6: Top-5 exact match accuracy of incremental
ablations in reranker settings on Tufano small abstract
dataset. Ensemble improves all accuracies compared to
a single Transformer reranker. Fine-tuning on validation
set improves all accuracies as well. The combination of
both achieves the highest accuracy.

The final reranker ablation Fine-tuned ensemble575

achieves the best accuracy among all settings and is576

presented in the Methods section. Notably, we see577

that the use of Transformer reranker has lower ac-578

curacy than without reranker. Ensemble rerankers579

and validation-set fine-tuning both improved per-580

formance separately and in combination. Further581

details about reranker ablation experiment settings582

are provided in Appendix B.583

4.7 Ensemble reranker efficiently trades off584

precision and recall585

Rerankers rerank the beam search hypotheses as586

discussed in Section 3.4. A beam search hypothesis587

has higher reranking score if it is predicted to be588

more likely. Therefore, we can use the reranking589

score computed in Equation 10 as a confidence met-590

ric to trade off precision and recall of the editing591

sequence generated by beam search. If the rerank-592

ing score is lower than a threshold, we discard the593

editing sequence predicted (negative), and other-594

wise we use it (positive). We sweep the threshold595

parameter and generate the precision-recall trade-596

off plot for Tufano small abstract dataset in Figure597

3. Note that for accuracy reported previously, the598

Figure 3: Precision versus recall plot on Tufano small
abstract dataset using reranking score and original beam
search score as the confidence metric. Among the two,
reranking score trades off precision and recall more effi-
ciently, reaching the same precision with higher recall.

model makes a prediction every time (always posi- 599

tive) and recall is 100%. 600

When the model is not required to make a predic- 601

tion for every buggy sequence, precision can be im- 602

proved with trade-off of recall by using the rerank- 603

ing score as a confidence metric. This trade-off is 604

usually desirable in bug fix applications. Specifi- 605

cally, when recall is lowered from 100% to 38.4%, 606

precision can be increased from 24.04% to 50%. 607

In comparison, we also use beam search’s original 608

sum of log probability score computed in Appendix 609

Equation 11 as the confidence metric, and we see 610

that reranking score is more efficient because its re- 611

call is higher at every precision level. Specifically, 612

the original score’s recall needs to be lowered to 613

22.4% in order to reach the same precision level of 614

50%, which is almost half of the reranking score’s 615

recall. This result additionally confirms that our 616

rerankers learn an extrinsic signal that differs from 617

the main model’s intrinsic confidence. 618

5 Discussions 619

NSEdit has achieved a new state-of-the-art perfor- 620

mance on the code repair task of the CodeXGLUE 621

benchmark (Lu et al., 2021; Tufano et al., 2019). 622

For code repair, it is more effective to predict edit- 623

ing sequences than fixed code. 624

As closing thoughts, we want to draw attention 625

that our edit grammar generates a neural-symbolic 626

interface that is a special case of a general paradigm. 627

Integration of deep learning systems with tradi- 628

tional symbolic systems can be achieved by for- 629

mulating a domain-specific language (DSL) and 630

training a Transformer to use the DSL as a pro- 631

grammable interface. 632

8

References633

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi634
Ray, and Kai-Wei Chang. 2021. Unified pre-training635
for program understanding and generation. arXiv636
preprint arXiv:2103.06333.637

Miltiadis Allamanis, Henry Jackson-Flux, and Marc638
Brockschmidt. 2021. Self-supervised bug detection639
and repair. arXiv preprint arXiv:2105.12787.640

Miltiadis Allamanis and Charles Sutton. 2013. Min-641
ing Source Code Repositories at Massive Scale using642
Language Modeling. In The 10th Working Confer-643
ence on Mining Software Repositories, pages 207–644
216. IEEE.645

Berkay Berabi, Jingxuan He, Veselin Raychev, and Mar-646
tin Vechev. 2021. Tfix: Learning to fix coding er-647
rors with a text-to-text transformer. In International648
Conference on Machine Learning, pages 780–791.649
PMLR.650

Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018.651
Neuro-symbolic program corrector for introductory652
programming assignments. In 2018 IEEE/ACM 40th653
International Conference on Software Engineering654
(ICSE), pages 60–70. IEEE.655

Leo Breiman. 1996. Bagging predictors. Machine656
learning, 24(2):123–140.657

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie658
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind659
Neelakantan, Pranav Shyam, Girish Sastry, Amanda660
Askell, et al. 2020. Language models are few-shot661
learners. arXiv preprint arXiv:2005.14165.662

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,663
Henrique Ponde, Jared Kaplan, Harri Edwards, Yura664
Burda, Nicholas Joseph, Greg Brockman, et al. 2021.665
Evaluating large language models trained on code.666
arXiv preprint arXiv:2107.03374.667

Zimin Chen, Steve James Kommrusch, Michele Tufano,668
Louis-Noël Pouchet, Denys Poshyvanyk, and Martin669
Monperrus. 2019. Sequencer: Sequence-to-sequence670
learning for end-to-end program repair. IEEE Trans-671
actions on Software Engineering.672

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and673
Kristina Toutanova. 2018. Bert: Pre-training of deep674
bidirectional transformers for language understand-675
ing. arXiv preprint arXiv:1810.04805.676

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik,677
Le Song, and Ke Wang. 2020. Hoppity: Learning678
graph transformations to detect and fix bugs in pro-679
grams. In International Conference on Learning680
Representations.681

Alexey Dosovitskiy, Lucas Beyer, Alexander682
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,683
Thomas Unterthiner, Mostafa Dehghani, Matthias684
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.685
An image is worth 16x16 words: Transformers686

for image recognition at scale. arXiv preprint 687
arXiv:2010.11929. 688

Dawn Drain, Colin B Clement, Guillermo Serrato, and 689
Neel Sundaresan. 2021. Deepdebug: Fixing python 690
bugs using stack traces, backtranslation, and code 691
skeletons. arXiv preprint arXiv:2105.09352. 692

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 693
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 694
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A 695
pre-trained model for programming and natural lan- 696
guages. arXiv preprint arXiv:2002.08155. 697

Alex Graves. 2012. Sequence transduction with 698
recurrent neural networks. arXiv preprint 699
arXiv:1211.3711. 700

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 701
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey 702
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode- 703
bert: Pre-training code representations with data flow. 704
arXiv preprint arXiv:2009.08366. 705

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, 706
and Percy Liang. 2018. A retrieve-and-edit frame- 707
work for predicting structured outputs. arXiv preprint 708
arXiv:1812.01194. 709

Michael Jahrer, Andreas Töscher, and Robert Legen- 710
stein. 2010. Combining predictions for accurate rec- 711
ommender systems. In Proceedings of the 16th ACM 712
SIGKDD international conference on Knowledge dis- 713
covery and data mining, pages 693–702. 714

Bader Johannes, Scott Andrew, Pradel Michael, and 715
Chandra Satish. 2019. Getafix: learning to fix bugs 716
automatically. Proceedings of ACM on Programming 717
Languages, (10). 718

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, 719
and Kensen Shi. 2020. Learning and evaluating con- 720
textual embedding of source code. In International 721
Conference on Machine Learning, pages 5110–5121. 722
PMLR. 723

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, 724
et al. 2015. Siamese neural networks for one-shot 725
image recognition. In ICML deep learning workshop, 726
volume 2. Lille. 727

Wouter Kool, Herke Van Hoof, and Max Welling. 2019. 728
Stochastic beams and where to find them: The 729
gumbel-top-k trick for sampling sequences without 730
replacement. In International Conference on Ma- 731
chine Learning, pages 3499–3508. PMLR. 732

Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying 733
Zhang, Saizheng Zhang, Aaron C Courville, and 734
Yoshua Bengio. 2016. Professor forcing: A new algo- 735
rithm for training recurrent networks. In Advances in 736
neural information processing systems, pages 4601– 737
4609. 738

9

Ann Lee, Michael Auli, and Marc’Aurelio Ranzato.739
2021. Discriminative reranking for neural machine740
translation. In Proceedings of the 59th Annual Meet-741
ing of the Association for Computational Linguistics742
and the 11th International Joint Conference on Natu-743
ral Language Processing (Volume 1: Long Papers),744
pages 7250–7264.745

Richard Liaw, Eric Liang, Robert Nishihara, Philipp746
Moritz, Joseph E Gonzalez, and Ion Stoica.747
2018. Tune: A research platform for distributed748
model selection and training. arXiv preprint749
arXiv:1807.05118.750

Ilya Loshchilov and Frank Hutter. 2017. Decou-751
pled weight decay regularization. arXiv preprint752
arXiv:1711.05101.753

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey754
Svyatkovskiy, Ambrosio Blanco, Colin Clement,755
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.756
Codexglue: A machine learning benchmark dataset757
for code understanding and generation. arXiv758
preprint arXiv:2102.04664.759

Christopher D Manning, Kevin Clark, John Hewitt, Ur-760
vashi Khandelwal, and Omer Levy. 2020. Emer-761
gent linguistic structure in artificial neural networks762
trained by self-supervision. Proceedings of the Na-763
tional Academy of Sciences, 117(48):30046–30054.764

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B765
Tenenbaum, and Jiajun Wu. 2019. The neuro-766
symbolic concept learner: Interpreting scenes, words,767
and sentences from natural supervision. arXiv768
preprint arXiv:1904.12584.769

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,770
Michael Auli, and Sergey Edunov. 2019. Facebook771
fair’s wmt19 news translation task submission. arXiv772
preprint arXiv:1907.06616.773

Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James774
Anibal, Alec Peltekian, and Yanfang Ye. 2021. Co-775
text: Multi-task learning with code-text transformer.776
arXiv preprint arXiv:2105.08645.777

Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun778
Yu, Lingxiao Jiang, and Mohammad Amin Alipour.779
2021. On the generalizability of neural program780
models with respect to semantic-preserving program781
transformations. Information and Software Technol-782
ogy, 135:106552.783

Alec Radford, Karthik Narasimhan, Tim Salimans, and784
Ilya Sutskever. 2018. Improving language under-785
standing by generative pre-training.786

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott787
Gray, Chelsea Voss, Alec Radford, Mark Chen, and788
Ilya Sutskever. 2021. Zero-shot text-to-image gener-789
ation. arXiv preprint arXiv:2102.12092.790

Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier,791
John F Canny, Pieter Abbeel, Tom Sercu, and Alexan-792
der Rives. 2021. Msa transformer. bioRxiv.793

John W Ratcliff and David E Metzener. 1988. Pattern- 794
matching-the gestalt approach. Dr Dobbs Journal, 795
13(7):46. 796

Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. 797
Probabilistic model for code with decision trees. 798
ACM SIGPLAN Notices, 51(10):731–747. 799

D Raj Reddy et al. 1977. Speech understanding sys- 800
tems: A summary of results of the five-year research 801
effort. Department of Computer Science. Camegie- 802
Mell University, Pittsburgh, PA, 17:138. 803

Rico Sennrich, Barry Haddow, and Alexandra Birch. 804
2015. Neural machine translation of rare words with 805
subword units. arXiv preprint arXiv:1508.07909. 806

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se- 807
quence to sequence learning with neural networks. In 808
Advances in neural information processing systems, 809
pages 3104–3112. 810

Guy Tennenholtz, Tom Zahavy, and Shie Mannor. 2018. 811
Train on validation: squeezing the data lemon. arXiv 812
preprint arXiv:1802.05846. 813

Michele Tufano, Cody Watson, Gabriele Bavota, Massi- 814
miliano Di Penta, Martin White, and Denys Poshy- 815
vanyk. 2019. An empirical study on learning bug- 816
fixing patches in the wild via neural machine trans- 817
lation. ACM Transactions on Software Engineering 818
and Methodology (TOSEM), 28(4):1–29. 819

Marko Vasic, Aditya Kanade, Petros Maniatis, David 820
Bieber, and Rishabh Singh. 2019a. Neural program 821
repair by jointly learning to localize and repair. In In- 822
ternational Conference on Learning Representations. 823

Marko Vasic, Aditya Kanade, Petros Maniatis, David 824
Bieber, and Rishabh Singh. 2019b. Neural program 825
repair by jointly learning to localize and repair. arXiv 826
preprint arXiv:1904.01720. 827

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 828
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 829
Kaiser, and Illia Polosukhin. 2017. Attention is all 830
you need. In Advances in neural information pro- 831
cessing systems, pages 5998–6008. 832

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 833
2015. Pointer networks. arXiv preprint 834
arXiv:1506.03134. 835

Ronald J Williams and David Zipser. 1989. A learn- 836
ing algorithm for continually running fully recurrent 837
neural networks. Neural computation, 1(2):270–280. 838

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 839
Chaumond, Clement Delangue, Anthony Moi, Pier- 840
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 841
et al. 2019. Huggingface’s transformers: State-of- 842
the-art natural language processing. arXiv preprint 843
arXiv:1910.03771. 844

10

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,845
Mohammad Norouzi, Wolfgang Macherey, Maxim846
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.847
2016. Google’s neural machine translation system:848
Bridging the gap between human and machine trans-849
lation. arXiv preprint arXiv:1609.08144.850

Ziyu Yao, Frank F Xu, Pengcheng Yin, Huan Sun, and851
Graham Neubig. 2021. Learning structural edits852
via incremental tree transformations. arXiv preprint853
arXiv:2101.12087.854

Michihiro Yasunaga and Percy Liang. 2021. Break-855
it-fix-it: Unsupervised learning for program repair.856
arXiv preprint arXiv:2106.06600.857

Pengcheng Yin, Graham Neubig, Miltiadis Allama-858
nis, Marc Brockschmidt, and Alexander L Gaunt.859
2018. Learning to represent edits. arXiv preprint860
arXiv:1810.13337.861

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat,862
Sashank J Reddi, and Sanjiv Kumar. 2020. Are863
transformers universal approximators of sequence-to-864
sequence functions? In 8th International Conference865
on Learning Representations, 2020.866

Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang,867
Kang Yuan, Yingfei Xiong, and Lu Zhang. 2021. A868
syntax-guided edit decoder for neural program repair.869
arXiv preprint arXiv:2106.08253.870

A Beam search formal definition871

During beam search, we maintain K incom-872

plete subsequences (i.e. beams) Bi,k, where873

B0,k = [<bos>] for all k = 1, 2...K.874

For any Bi,k, we compute the probability875

Pr(êi+1,k|ê1,k, ê2,k, ...êi,k) = Êi+1,k[êi+1,k]876

given Equation 6. The probability of the con-877

catenated sequence Bi+1,k = Bi,k + [êi+1,k] =878

[ê1,k, ê2,k, ...êi,k, êi+1,k] is the product of the prob-879

abilities of all tokens as they are generated. For-880

mally,881

Pr(ê1, ê2...êi+1) =

i+1∏
j=1

Pr(êj |ê1, ...êj−1) (11)882

We denote this product as Π in Equation 10. Taking883

logarithm on both sides, we have884

log Pr(Bi,k + [êi+1,k]) = log Pr(Bi,k)+

log Êi+1,k[êi+1,k]

(12)

885

We take the top-K most probable tokens886

êi+1,k ∈W for all beam k = 1, 2, ...K, given887

arg topK
(k,êi+1,k)∈{1,2,...K}×W

log Pr(Bi,k + [êi+1,k])

(13)

888

where any previous step beam may have multiple 889

concatenated beams in top-K with different tokens. 890

The selected top-K tokens êi+1,k form a new set 891

of K beams for the next iteration, until <eos> is 892

predicted or maximum length is reached. Note that 893

since arg topK is applied to {1, 2, ...K}×W , it is 894

possible for different tokens to append to the same 895

previous beam and are all included in the top-k 896

beams for the next step. Also note that beam Bi+1,k 897

may not contain beam Bi,k as a subsequence. 898

B Reranker ablation experiments details 899

In this section, we provide more details on the set- 900

tings of the reranker ablation experiments presented 901

in Table 6. 902

The NSEdit without rerankers version does not 903

use rerankers and directly reports beam search ac- 904

curacy based on the original beam search score Π 905

in Equation 11. We compare the reranked accuracy 906

with this baseline. 907

The Transformer version trains a single Trans- 908

former reranker to rerank the beam search hypothe- 909

ses, ignoring the original beam search score. We 910

see that the accuracy is lower than the accuracy of 911

NSEdit without rerankers. 912

The Ensemble version trains both rerankers and 913

blends the three ranking scores by optimizing vali- 914

dation accuracy. We see that the ensemble reranker 915

improves over Transformer reranker but not better 916

than NSEdit without rerankers. 917

The Fine-tuned Transformer version trains a sin- 918

gle Transformer reranker and tunes it on valida- 919

tion set for one epoch. We see that it significantly 920

outperforms the Transformer version without fine- 921

tuning, which suggests that fine-tuning on valida- 922

tion prevents the reranker from overfitting. The 923

accuracy of this ablation outperforms NSEdit with- 924

out rerankers. 925

The final version Fine-tuned ensemble uses a 926

blended ensemble of two rerankers fine-tuned on 927

the entire validation set, as described in the Meth- 928

ods section. 929

C Training and model hyperparameters 930

We implement our Transformer architecture in 931

PyTorch, except the pre-trained CodeBERT and 932

CodeGPT models, which we load from Hugging- 933

Face (Wolf et al., 2019) . The learning rate is set to 934

be 1e-4 multiplied by the number of GPUs. When 935

CodeGPT weights are loaded, we halve the learn- 936

ing rate of pre-trained parameters and quadruple 937

11

the learning rate of randomly initialized parameters.938

AdamW optimizer (Loshchilov and Hutter, 2017)939

with triangular learning rate scheduler is used in all940

experiments. The NSEdit main model is trained for941

at most 60 epochs and early stopping is applied if942

the accuracy does not improve. Automatic mixed943

precision (AMP) is enabled. Training of the model944

together with rerankers on Tufano datasets takes945

around a day on a machine with 4 V100 Nvidia946

GPUs.947

In beam search, a length penalized score is com-948

puted for the partially generated sequences at every949

step according to Wu et al. (2016). After the scores950

are computed, the finite state machine set the in-951

valid tokens to have zero probability according to952

the edit grammar as described in Section 3.3.953

Rerankers are trained on buggy programs for954

which the beam search produces at least one cor-955

rect editing sequence. We train rerankers for 12956

epochs, with the same learning rate setup as the957

main NSEdit model. We fine-tune the reranker on958

validation set for 1 epoch with 1 GPU.959

We find the best hyperparameters with Ray960

tune (Liaw et al., 2018) or grid search. The en-961

semble reranker on Tufano datasets have coeffi-962

cients reported in Table 7. Each coefficient is963

searched among 10 candidates in logarithmic in-964

terval [0.01, 100], then another 20 candidates in a965

narrower linear interval [0.1, 2].966

Length Normalization Transformer c1 Encoder c2

Small
Abstract 0.4 0.4
Concrete 1.0 0.7

Medium
Abstract 0.2 0.3
Concrete 0.3 0.1

Table 7: The ensemble reranker hyper-parameters found
through grid search for Tufano datasets. The ensemble
reranker is a linear model with Equation 10.

D Tufano dataset editing sequence967

statistics968

In Table 8, we summarize statistics about the969

ground truth editing sequences in Tufano et al.970

(2019) datasets. We see that the editing sequences971

in Tufano medium, compared to Tufano small972

dataset, have more number of edits, longer insertion973

length and longer overall editing sequence length974

by mean and median. This suggests that the bug975

fixes in Tufano medium dataset are overall more976

difficult to predict correctly.977

Tufano Mean Median

Number of
edits

small 2.02 2
medium 2.45 2

combined 2.24 2

Insertion
length

small 3.60 1
medium 6.22 2

combined 4.99 1

Editing
sequence
length

small 10.8 8
medium 14.4 10

combined 12.7 8

Table 8: The statistics of the ground truth editing se-
quences on Tufano datasets. We see that the editing
sequences from Tufano medium, compared to Tufano
small dataset, have more number of edits, longer inser-
tion length and longer overall editing sequence length
by mean and median.

E Example bug fixes 978

We provide some examples of bug fix that are cor- 979

rectly produced by NSEdit in Figures 4 to 12. 980

981

12

- public void write(byte b[]) throws IOException {
? --
+ public void write(byte[] b) throws IOException {
? ++

assertOpen();
super.write(b);

}

Figure 4: Example bug fix. Coding style improvement. The predicted editing sequence is
[INSERT][LOC_6][][DELETE][LOC_7][LOC_9][INSERT][LOC_9])

@Override public Iterator<?> downstreams(){
WindowGroupedFlux<T> g=window;

+ if (g == null) {
- if (g == null) return Collections.emptyList().iterator();
? ---------------
+ return Collections.emptyList().iterator();
+ }

return Collections.singletonList(g).iterator();
}

Figure 5: Example bug fix. Coding style improvement. The predicted editing sequence is
[DELETE][LOC_31][LOC_34][INSERT][LOC_34] {return[INSERT][LOC_41]}

public void addPoint(Point2D point){
ArcPoint newPoint=new ArcPoint(point,false);

- HistoryItem historyItem=new AddArcPathPoint<S,T>(arc,newPoint);
? ---
+ HistoryItem historyItem=new AddArcPathPoint<>(arc,newPoint);

historyItem.redo();
historyManager.addNewEdit(historyItem);

}

Figure 6: Example bug fix. Coding style improvement. The predicted editing sequence is
[DELETE][LOC_37][LOC_40][DELETE][LOC_64][LOC_66]

public long getConsoleReportingInterval(){
- System.out.println(reportingIntervalConsole.getValue());

return reportingIntervalConsole.getValue();
}

Figure 7: Example bug fix. Remove unnecessary logging statement. The predicted editing sequence is
[DELETE][LOC_9][LOC_24]

- public String getName(){
+ @Override public String getName(){
? ++++++++++

return CypherPsiImplUtil.getName(this);
}

Figure 8: Example bug fix. Missing annotation. The predicted editing sequence is
[DELETE][LOC_1][LOC_2][INSERT][LOC_2]@Override public

13

@Override public boolean apply(PickleEvent pickleEvent){
String picklePath=pickleEvent.uri;
if (!lineFilters.containsKey(picklePath)) {

- return true;
? ^^^
+ return false;
? ^^^^

}
for (Long line : lineFilters.get(picklePath)) {
for (PickleLocation location : pickleEvent.pickle.getLocations()) {
if (line == location.getLine()) {
return true;

}
}

}
return false;

}

Figure 9: Example bug fix. Logical error. The predicted editing sequence is
[DELETE][LOC_44][LOC_45][INSERT][LOC_45] false

/**
* Returns the preferred fragment size.
* @param format target format
* @return the preferred fragment size
* @throws IOException if failed to compute size by I/O error
* @throws InterruptedException if interrupted
* @throws IllegalArgumentException if some parameters were {@code null}
*/

public long getPreferredFragmentSize(FragmentableDataFormat<?> format) throws
↪→ IOException, InterruptedException {

if (format == null) {
throw new IllegalArgumentException("format must not be null");

}
long min=getMinimumFragmentSize(format);

- if (min <= 0) {
? -
+ if (min < 0) {

return -1;
}
long formatPref=format.getPreferredFragmentSize();
if (formatPref > 0) {
return Math.max(formatPref,min);

}
return Math.max(preferredFragmentSize,min);

}

Figure 10: Example bug fix. Logical error. The predicted editing sequence is
[DELETE][LOC_140][LOC_141][INSERT][LOC_141] <

public boolean equals(AudioQuality quality){
if (quality == null) return false;

- return (quality.samplingRate == this.samplingRate & quality.bitRate ==
↪→ this.bitRate);

+ return (quality.samplingRate == this.samplingRate && quality.bitRate ==
↪→ this.bitRate);

? +
}

Figure 11: Example bug fix. Wrong operator. The predicted editing sequence is
[DELETE][LOC_35][LOC_36][INSERT][LOC_36] &&

14

@Override public void run(){
this.ownerThread=Thread.currentThread();
Log.debug("Starting event loop","name",name);
setStatus(LoopStatus.BEFORE_LOOP);
try {
beforeLoop();

}
catch (Throwable e) {

- Log.error("Error occured before loop is started","name",name,"error",e);
+ Log.error("Error occurred before loop is started","name",name,"error",e);
? +

setStatus(LoopStatus.FAILED);
return;

}
setStatus(LoopStatus.LOOP);
while (status == LoopStatus.LOOP) {
if (Thread.currentThread().isInterrupted()) {

break;
}
try {

insideLoop();
}

catch (Throwable e) {
Log.error("Event loop exception in " + name,e);

}
}
setStatus(LoopStatus.AFTER_LOOP);
afterLoop();
setStatus(LoopStatus.STOPPED);
Log.debug("Stopped event loop","name",name);

}

Figure 12: Example bug fix. Spelling error. The predicted editing sequence is
[DELETE][LOC_68][LOC_70][INSERT][LOC_70] occurred

15

