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ABSTRACT

Pretrained on trillions of tokens, LLMs are known for their ability to store a
large amount of factual knowledge in their parametric memory. However, re-
calling facts from this memory is known to be unreliable, particularly for long-
tail knowledge—obscure facts infrequently mentioned in training data. Although
retrieval-augmented generation (RAG) is the standard solution, it introduces over-
heads such as increased inference costs due to longer input contexts; preprocess-
ing and indexing extensive document collections also adds additional engineering
complexity. In this work, we propose a novel approach to improve the factuality
of LLMs on long-tail knowledge. We begin by identifying atomic facts—short
statements detailing relationships of some entities—that are not present in a pre-
trained LLM’s parametric memory. These facts are then stored in an external,
non-parametric memory. Subsequently, the model undergoes continuous pretrain-
ing, enabling it to learn when to consult this external memory at inference time.
Compared with existing approaches, our method uses a compact external mem-
ory that selectively stores only the atomic facts not known to the LLM, resulting
in minimal additional inference-time costs in terms of both time and space. Fur-
thermore, our method outperforms fully trained models of comparable size on
knowledge-intensive benchmarks by more than 10% on some benchmarks and
achieves competitive results against larger models.

1 INTRODUCTION

Large language models (LLMs) have demonstrated an outstanding ability to learn a substantial
amount of world language from their training corpus, storing this knowledge in their parameters
and excelling in a wide range of applications. However, despite these advanced capabilities, LLMs
frequently encounter the problem of hallucination, particularly when dealing with long-tail knowl-
edge that is less represented in their training data (Mallen et al., 2023; Asai et al., 2023; Kandpal
et al., 2023; Wei et al., 2024).

Recent work has explored integrating external memory into language models to improve factuality
and reduce memorization at inference time (Li et al., 2025; Mallen et al., 2023; Li et al., 2024;
He et al., 2023). However, a key limitation of this training-free approach is the need for a com-
plex proposal procedure to decide between generating or retrieving from memory. Another line of
work augments language model training with retrieval-based memory (Guu et al., 2020; Borgeaud
et al., 2021). This type of methods force all retrieved knowledge into model parameters, which adds
significant overhead during training and inference. Memory3 (Yang et al., 2024) integrates exter-
nalized knowledge into attention layers by compressing key value representations. More recently,
Large Memory Language Model (LMLM) (Zhao et al., 2025) introduced a pretraining recipe that
stores factual knowledge both in model weights and in an external database. While effective, LMLM
does not differentiate long-tail knowledge from sufficiently learned knowledge, which can lead to
unnecessary retrievals and even degrade downstream performance.

A central challenge still remains: when and how to decouple long-tail knowledge during pre-training
to improve factuality without sacrificing other capabilities. Offloading knowledge too early may
limit the model’s ability to form long-range associations between knowledge entities, while offload-
ing too late may fail to sufficiently remove long-tail knowledge from the model parameters.
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We address this with continual pretraining and selective memory, which uses partially trained mod-
els to detect knowledge gaps and adaptively externalize them. Our method begins by employing
model-based or frequency-based methods to score long-tail knowledge within the training corpus.
We preprocess the corpus into interleaved sequences of standard text and extracted knowledge seg-
ments, where the long-tail knowledge is stored in an external non-parametric memory. During
continued pretraining, we implement an adaptive masking strategy: when the cross-entropy loss for
a knowledge segment exceeds a predefined threshold, indicating potential memorization difficulty
or long-tail knowledge, we masks these segments from the next-token prediction objective. To en-
able effective retrieval from this external memory during inference, we also finetune a lightweight
query adapter that learns to generate appropriate query representations and maintains the separation
between parametric knowledge (encoded in model weights) and non-parametric knowledge (stored
in external memory).

Our method demonstrates superior performance on memory-intensive benchmarks compared to fully
trained models of equivalent size, and even achieves competitive results compared to larger models.
Compared to full offloading, this approach achieves a favorable trade-off: it preserves performance
on general and reasoning-heavy benchmarks while shows clear improvements on long-tail knowl-
edge tasks.

2 SEMI-PARAMETRIC LANGUAGE MODELS (SPLM)

2.1 IDENTIFY LONG-TAIL KNOWLEDGE

Common knowledge—frequent facts and patterns—are best captured in the model’s parametric
weights, allowing for fast, generalizable inference. Offloading these to external memory can force
the model to rely on retrieval for even simple knowledge, increasing inference time and reduc-
ing generalizability. On the other hand, long-tail knowledge is difficult to internalize, requires re-
peated exposures, and offers little generalization benefit, yet it consumes disproportionate model
capacity. Following Zhao et al. (2025), we pre-processed the training corpus into interleaved reg-
ular text and memory segments using a finetuned extraction model. Each memory segment con-
tains a query–answer pair wrapped in special tokens: m start [query text] m retrieve [answer
text] m end , where m start marks the beginning of a memory segment, and the m retrieve to-
ken indicates the start of the answer which should be looked up from external memory. For example,
the sentence “Sugeno received the IEEE Frank Rosenblatt Award in 2010 for his contributions to the
field of fuzzy systems.” is preprocessed as follows:

Sugeno received the m start Michio Sugeno Award Received m retrieve IEEE Frank Rosen-
blatt Award m end IEEE Frank Rosenblatt Award in m start Michio Sugeno Year of Award
m retrieve 2010 m end 2010 for his contributions to the field of fuzzy systems.

In addition, we score each memory segments in terms of how rare or hard the knowledge segments.
We experiment with a few variants for proxy of long tail knowledge, including model based (loss of
answer tokens) and model agnostic (frequency of entities). We leave the discussion on this part to
Section 4.2.

2.2 TRAINING WITH SELECTIVE MEMORY

To prevent the model from inefficiently memorizing these rare or difficult knowledge pieces, we
selectively delegate them to an external memory. In practice, this is achieved by masking out the
answer tokens for hard knowledge segments during continued pre-training, so the model is trained
to intermix free text generation with knowledge retrieval calls. This selective masking ensures that
the model’s parametric capacity is focused on common knowledge, while long-tail knowledge is
handled via retrieval.

Selective Memory Offloading all knowledge to memory can bloat the retrieval store with triv-
ial facts, slow down inference, and make the system brittle when retrieval fails. Prior work has
shown that pretrained models’ loss is a reliable proxy for knowledge gaps Feng et al. (2024),
where persistent high loss usually indicates unreliable memorization. For a given memory seg-
ment si, let Ai denote the set of token positions corresponding to its answer text. We compute
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Figure 1: Training with selective memory and query adapter. Easy memory segments are trained
directly with the standard next-token prediction loss, while hard segments are routed through a
lightweight query adapter. The query adapter is optimized with a contrastive loss: embeddings
for query span is pulled closer to the correct answer embedding (positive) and pushed away from
incorrect answers (negatives) drawn from other segments within the same document.

the average negative log-likelihood of the answer tokens ℓi as a proxy for the difficulty of the
memory segment. We define hard memory segments as those with average loss above a thresh-
old SH = {si : ℓi > τ}. If the model finds a particular memory segment consistently difficult
(loss beyond τ ), we mark that segment as a candidate for externalization. In practice, we experiment
with either a fixed threshold (only mask answer span when the loss is above a fixed threshold) or
an adaptive threshold (mask answer span when the loss is in the top p% of all the memory seg-
ments seen so far in training). For a memory segment of length T , we introduce a binary mask
M = [m1,m2, . . . ,mT ] where mt = 1 if si ∈ {SH} and xt is between m start . We apply this
mask to the language modeling objective, so that the model is trained only on unmasked tokens.
Lmasked = − 1∑T

t=1 mt

∑T
t=1 mt · logP (xt | x<t; θ). This effectively removes the loss contributions

from the answer spans of hard memory segments, discouraging the model from attempting to mem-
orize them and instead encouraging reliance on external memory for factual recall. This adaptive
masking mechanism enables the model to allocate its parametric capacity to common knowledge
and compositional reasoning, while selectively offloading long-tail or hard-to-learn knowledge to a
non-parametric memory.

Query adapter While the above mechanism teaches the model when to retrieve, we also need
to train how to retrieve the correct information from the external memory. To enable efficient and
robust retrieval at inference time, we introduce a lightweight, contextualized MLP query adapter
that projects both query context and answer text into a shared embedding space where vectors of
relevant pairs of query and answer are close to each other. The adapter is trained to map the high-
dimensional contextual representation of a query (the pooled embeddings over the query span) to
a lower-dimensional dense query embedding that can be used to retrieve relevant answers. The
final hidden representation at the position of the m retrieve token is passed through the adapter to
obtain a dense query embedding zqi . Similarly, for each memory segment’s answer, we obtain a
dense answer embedding by applying a pooling function over the LLM’s final hidden states for the
answer text to obtain zai . We train the adapter using a contrastive InfoNCE loss: For a batch of N
memory segments (i.e., N query–answer pairs (qi, ai)), we treat each (qi, ai) as a positive pair and
all other N − 1 answers in the batch as negatives for qi:

LInfoNCE = − 1

N

N∑
i=1

log
exp (sim(zqi , zai)/τ)∑N

j=1 exp
(
sim(zqi , zaj

)/τ
) , (1)

where sim(u, v) = u⊤v
∥u∥∥v∥ denotes the cosine similarity between vectors and τ > 0 is a temper-

ature hyperparameter controlling the sharpness of the distribution. We leverage in-batch negatives
during training, since each batch typically contains multiple memory segments extracted from the
same document or entity, naturally serving as hard negative examples. The full training process is
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described in Figure-1. Finally, the adapter loss is added on top of the training loss through:

L = Lmasked + αadapterLInfoNCE (2)

Inference At inference time, if the model outputs the special m retrieve token, this signals that
a memory retrieval is needed for the current query. At that point, we take the model’s current hidden
state over the query span and feed it through the adapter to get a contextualized query embedding
zq . This embedding is then used to perform a nearest-neighbor search in the external memory store
for the most relevant stored answer.

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Training details We pretrained a baseline LLAMA-3-1B model for 150k steps on the DCLM
corpus (220B tokens). We continued pretraining on the Wikipedia subset of the Dolmino corpus
(3.7B tokens) for an additional 20k steps, using a learning rate of 4 × 10−4, batch size of 4, and
sequence length of 4,096. For the query adapter, we use a two-layer bottleneck MLP where both the
hidden dim and output dim is set 384. The loss weight for the adapter (αadapter) is set to be 1.

Inference details For generation, we compare using an off-the-shelf sentence embedding
model (all-MiniLM-L6-v2 (Reimers & Gurevych, 2019; Wang et al., 2020)) to embed queries
against using a trained query adapter. For the query adapter, we build the retrieval store for each
memory segment in the corpus, where answer embedding generated by the adapter is used as re-
trieval key, and the answer tokens are used as retrieval value. For the sentence embedding model,
we use a retrieval threshold of 0.6, and for the query adapter we apply a higher threshold of 0.7.
To support efficient approximate nearest-neighbor search, we employ a FAISS IVF index (John-
son et al., 2019), which clusters vectors into 16,384 centroids, and we set nprobe= 64 during
retrieval to balance recall and efficiency. For all benchmarks, we use answer level recall (ALR) as
the evaluation metrics.

3.2 EVALUATIONS

We evaluate our models on a set of benchmarks designed to test general or long-tail factual knowl-
edge in language models. For general-purpose QA, we adopt widely used benchmarks that serve as
guardrails for assessing open-domain question answering: TRIVIAQA (TQA) (Joshi et al., 2017),
NATURALQUESTION (NQ) (Kwiatkowski et al., 2019), ENTITYQ (Sciavolino et al., 2021) and
HOTPOTQA (HQA) (Yang et al., 2018). These datasets emphasize broad coverage of knowledge
and multi-hop reasoning, making them representative tests of general QA ability.

To specifically target long-tail factual knowledge, we use a suite of benchmarks including
POPQA (Mallen et al., 2023), HEAD-TO-TAIL (Sun et al., 2024), and SIMPLEQA (Wei et al., 2024).
POPQA is curated to cover questions on widely recognized entities and facts, while also incorporat-
ing a substantial proportion of less common, long-tail items. HEAD-TO-TAIL explicitly measures
the popularity of entities: it consists of 18K question–answer pairs categorized into head (frequent),
torso (moderately frequent), and tail (rare) entities. SIMPLEQA is a fact-seeking benchmark of
short, unambiguous questions designed to challenge SOTA models.

3.3 BASELINES

Vanilla training As a baseline, we continued pretraining the model on the original Wikipedia sub-
set of Dolmino for the same number of steps, without introducing any external memory or selective
masking. This setup measures the effect of additional domain-adapted pretraining alone, isolating
gains that come purely from further exposure to the corpus.

Full Memory Following the setup in the LMLM framework (Zhao et al., 2025), we construct a
memory-only baseline in which all factual tokens are offloaded to external memory. In this setting,
the model never learns to parametrize knowledge internally; instead, retrieval is performed at every
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m retrieve call using a separate embedding model and fuzzy string matching against the memory
index.

3.4 MAIN RESULTS

Model TQA NQ HotpotQA EntityQ PopQA Head-to-Tail SimpleQA
All Tail

LLaMA3 8B 62.92 32.05 26.16 31.16 22.65 14.77 10.74 4.76
LLaMA3 1B 40.94 18.48 21.01 14.12 14.30 7.78 6.22 2.27
LLaMA3 1B - 150k 31.72 17.37 18.10 17.34 14.54 7.51 5.30 2.87

+Vanilla training 23.72 9.39 13.45 12.43 11.13 6.26 4.49 2.36
+Memory 24.64 14.71 13.06 23.95 23.04 10.29 10.09 8.58
+SM (75%) 26.79 16.04 15.72 25.84 21.81 11.37 10.58 8.97
+SPLM 28.65 16.24 16.86 26.38 25.37 11.3 10.28 11.35

Table 1: Answer-level recall (ALR) on open-domain QA benchmarks. The baselines include
LLaMA3 8B, LLaMA3.2 1B, and a partially trained LLaMA3 1B (150k steps). For selective mem-
ory (SM), we report the result with an adaptive threshold of 0.75 on quantile of average answer
token losses (25% of hard segments are included in memory).

In Table 1 we show the results on the answer-level recall (ALR) of a LLaMA-3 1B trained under
different paradigms: continual pretraining on regular corpus (vanilla training), continual pretraining
with fully offloaded memory (Memory), continual pretraining with selective memory (SM), and our
full approach with selective memory combined with a query adapter (SPLM).

Continual pretraining with memory outperforms fully trained models on knowledge intensive
tasks Compared to a fully trained Llama 1B model, training with memory demonstrates supe-
rior performance particularly on benchmarks that emphasize long-tail or entity-centric knowledge,
such as EntityQ (17.34% for fully trained model vs), PopQA (14.54% for fully trained model vs
23.04% with memory), and head-to-tail. It also achieves comparable results compared to a much
bigger model (Llama 8B), indicating that externalizing long-tail knowledge can enhance factual
recall without increasing model size.

Selective memory outperforms full knowledge offloading We also observe clearly improve-
ments when using selective memory compared to fully offloading memory. While offloading all
memory improves recall on certain long-tail benchmarks such as PopQA, Head-to-tail and Sim-
pleQA, it leads to degradation on general QA datasets (TQA, NQ) or those require multi-hop rea-
soning (HotpotQA). In contrast, selective memory achieves a better balance: it maintains com-
petitive performance on general QA datasets while further improves the performance on long-tail
benchmarks. This shows that adaptively masking only the hardest segments allows the model to pre-
serve its parametric capacity for common knowledge and reasoning, while only relying on external
memory for rare knowledge. Finally, incorporating a lightweight query adapter on top of selective
memory (SPLM) recovers much of the degradation observed on general QA benchmarks while fur-
ther improving long-tail factual recall. We observe the degradation on certain benchmarks is a result
of the model generating imperfect and unnecessary retrieval as shown in the sample generations
in Appendix C. Selective memory combined with query adapter mitigates this issue by learning to
produce contextualized, discriminative, and richer query embeddings that are naturally aligned with
the model’s internal representation.

4 ABLATIONS

4.1 WHEN SHOULD WE DECOUPLE FACTUAL KNOWLEDGE?

LMs are inefficient in memorizing factual knowledge in parametric memory In Figure 2 we
plot the answer-level recall (ALR) of a Llama3 1B and Llama 8B model trained on DCLM corpus as
training progresses. We observe that some benchmarks exhibit clear improvements with additional
training, while others remain stagnant. For example, NQ and HotpotQA continue to benefit from
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Figure 2: Left: Answer-level recall (ALR) across training steps when the model is trained on regular
corpus. Right: Continual pretraining (CPT) on memory corpus starting from an pretrained model at
intermediate checkpoints.
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Figure 3: Model based and model agnostic scoring for long-tail knowledge.

longer training, showing steady gains up to 240k steps. By contrast, simpleQA and popQA plateau
quickly, indicating that continued training on the same corpus does little to improve performance
on factual benchmarks. This is consistent with previous observation Chang et al. (2024) that factual
knowledge are prone to forgetting and pretraining on more data shows no significant improvement.

Pretraining vs. Continual Pretraining Decoupling long-tail facts to external memory can be
done during pre-training or during continuous pre-training time. However, it’s hard to separate
“factual memory” from “reasoning” in a clean way. Many reasoning capabilities are scaffolded
and interleaved with factual text. For example, solving multi-step questions in math often relies
on domain-specific facts or theorems embedded in the training data. If large spans of such text
are masked, the model may be under-trained on certain compositional patterns, hurting downstream
reasoning. In figure 2, we plot the performance of the final model when starting from an intermediate
model trained on regular corpus for x steps and then continual pretrain on memory corpus for 20k
steps. We observed that the final performances when training from an intermediate checkpoints are
better than training from memory corpus from scratch.

4.2 DIFFERENT PROXIES FOR LONG-TAIL KNOWLEDGE

In this section, we compare model-based proxies and model-agnostic proxies for detecting long-tail
knowledge in a corpus. Model-agnostic approaches estimate rarity directly from corpus statistics.
One effective tool is Infinigram (Liu et al., 2024), which computes exact n-gram frequency distri-
butions in a given corpus. We count the frequency if either the objective or the subjective entity
in the memory segment appear in the corpus. While Infinigram provides an exact measure of n-
gram frequencies, its distribution is extremely skewed (Figure 3), making it challenging to draw a
clear boundary between head and long-tail knowledge. Alternatively, we also experimented with
model based scoring, where we prompt the Llama3-70B model (see Appendix for prompt details)
to assign a popularity score to each knowledge segment on a scale from 1 to 10, with higher scores
corresponding to more frequently occurring knowledge and lower scores marking long-tail or rare
facts. We observe the same trend: the model assesses most of the knowledge segments as long-tail
knowledge.
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On the other hand, model based proxies such as training loss provides a natural signal of difficulty
and has been widely used for curriculum learning. Figure 3 shows the distribution of memory
segment losses at the start of continual pretraining: most losses concentrate around moderate values,
while the long tail represents knowledge the model struggle to internalize.

As shown in 3, knowledge frequency tend to display Zipf law, where most memory segments are rare
and low frequency. In contrast, the distribution under loss-based scoring is closer to normal, with
many segments falling into a moderate difficulty range rather than being pushed to the extremes.
This discrepancy suggests that, despite the frequency of appearing in the corpus, the model exhibits
heterogeneous difficulty in internalizing difficult factual knowledge. This motivates us to use model-
based proxies at continual pretraining time to distinguish hard knowledge that the model struggles
with.

4.3 DIFFERENT MEMORY THRESHOLD

Fixed vs adaptive threshold In the simplest variant, we apply a fixed threshold τ , masking any
answer segment with average loss above τ . This provides a straightforward knob on how aggres-
sively long-tail knowledge is offloaded: the higher τ is, the fewer segments are delegated to external
memory. Alternatively, we experiment with an adaptive threshold, where at each step we compute
the distribution of average losses across all answer segments seen so far and mask those falling in
the top τ% (e.g., 75th percentile). The adaptive strategy dynamically adjusts to training progress
and corpus difficulty: early in training, more segments are masked, while later only the most chal-
lenging segments are delegated to memory. We report answer-level recall (ALR) under different
fixed thresholds shown in Figure 4. For fixed threshold, as the memory threshold increases, ALR
generally decreases for the entity-centric and longtail benchmarks such as EntityQ and PopQA, but
increases for the common knowledge QA datsets such as NQ and HotpotQA. This aligns with our
assumption that aggressive memory offloading (lower threshold) could hurt performances on general
benchmarks. On general QA benchmarks such as TQA, NQ, and HotpotQA, we observe a positive
trend as the adaptive memory threshold increases, whereas performance on long-tail benchmarks is
comparatively stable. This pattern aligns with our hypothesis: by delegating only the hardest factual
segments to external memory, the model preserves parametric capacity for common knowledge and
improves generalizability, while maintaining strong recall on rare, entity-centric queries.
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Figure 4: Answer level recall (ALR) for different memory threshold. The higher the threshold is, the
fewer segments are delegated to external memory. Left: Fixed memory threshold. Right: Adaptive
memory threshold.

Trade-off between accuracy and latency Long-tail datasets such as POPQA and SIMPLEQA
trigger retrieval far more frequently than other benchmarks, indicating that the model is more reliant
on external memory for long tail questions. While one might expect retrieval frequency to increase
linearly with more higher thresholds, this is not observed in practice. The reason is that segment
losses are highly skewed and clustered as shown in previous histogram, so adjusting thresholds
often has non-linear effects: small changes may have little impact or may trigger sudden jumps in
retrieval.
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Figure 5: Average number of retrieval calls for different memory threshold, left is fixed threshold,
and right is adaptive threshold. The higher the threshold is, the fewer segments are delegated to
external memory.

5 RELATED WORK

Non-parametric language modeling One recent line of research has explored integrating non-
parametric memory with language models generation to reduce memorization and improve fac-
tuality. The earliest work includes kNN-LM, which interpolates language model generation and
retrieved nearest neighbors at inference time to adjust output distribution (Khandelwal et al., 2019).
More recent inference-time only approaches include Chunk-Distilled LM (Li et al., 2025), which
speculates multi-token chunks using a retrieval datastore to accelerate generation, as well as REST
(He et al., 2023) and NEST (Li et al., 2024), which combine speculative decoding with retrieval to
improve efficiency and factuality.

Retrieval-augmented pretraining Several recent approaches have explored incorporating re-
trieval directly into the pretraining process. RETRO (Borgeaud et al., 2021) demonstrated that in-
tegrating retrieved context during pretraining improves generalization and reduces undesired mem-
orization by allowing smaller models to match the performance of much larger purely parametric
LMs. More recently and most relevant to us, Zhao et al. (Zhao et al., 2025) introduced Large Mem-
ory Language Models (LMLM), which explicitly separates factual knowledge storage from model
weights by offloading specific factual details to an external database during pre-training. Our ap-
proach shares a similar motivation, but instead of we leverage signals from a partially trained model
to adaptively decide what knowledge to offload.

6 CONCLUSION

We introduced semi-parametric language models with selective memory (SPLM), a framework that
improves factuality on long-tail knowledge without sacrificing general capabilities. By masking
high-loss segments and delegating them to external memory, SPLM preserves parametric capacity
for common knowledge and reasoning while offloading rare facts. A lightweight query adapter
enables contextualized retrieval aligned with the model’s representations. Experiments demonstrate
that SPLM achieves a favorable trade-off, outperforming memory-only baselines and rivaling larger
models. This highlights selective memory as a promising direction for scaling factuality in LLMs
efficiently.

There are several interesting directions for future research. We primarily targeted factual recall on
short QA benchmarks, but the framework could naturally extend to other domains such as math-
ematical theorems or code snippets that occur in training data. An interesting question for future
work is whether decoupling knowledge in this way could also improve performance on reasoning-
intensive benchmarks. By externalizing rare factual content, the model could dedicate more of its
parametric capacity and compute to learning reasoning strategies rather than memorizing infrequent
facts. Another interesting direction would be to explore joint training of the adapter and the language
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model, which may further improve performance by enabling integration of external knowledge dur-
ing inference.
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Figure 6: Histogram of long tail scoring using Llama3-70B. 1 indicates low popularity and 10
indicates high popularity.

A APPENDIX

A ADDITIONAL IMPLEMENTATION DETAILS

B MODEL BASED SCORING

B.1 PROMPT USED FOR LLAMA3 70B

You are a capable model that can determine, based on the atomic factual knowledge query,
whether the atomic factual knowledge belongs to a long-tailed (niche or less commonly refer-
enced) domain. To assess the entities popularity, use the following rules: 1) The number of times
the atomic factual knowledge potentially can referenced or cited by other documents on internet.
2) The number of times the atomic factual knowledge potentially can be linked to or duplicated
on internet. Please rate the atomic factual knowledge with a score between 1 and 10, where 1
indicates low popularity (long-tailed knowledge) and 10 indicates high popularity (widely refer-
enced knowledge). Return the score in JSON format, for example: {”quality score”: predicted
score } text:

Interestingly, as shown in Figure 6, the model rates most extracted factual knowledge as long-tail,
which aligns closely with the skewed n-gram frequency distribution estimated by Infinigram (Fig-
ure 3). In contrast, the distribution under loss-based scoring is closer to normal, with many segments
falling into a moderate difficulty range rather than being pushed to the extremes. This discrepancy
suggests that, despite the frequency of appearing in the corpus, the model exhibits heterogeneous
difficulty in internalizing difficult factual knowledge.

C SAMPLE GENERATIONS FROM SIMPLEQA

Q1. When was the exact day, month, and year the fpt university was founded?
Gold Answer: september 8, 2006
Full Memory: The university was founded in m start University of California,
Berkeley Founded In m retrieve 1868 m end 1868.
Selective memory: m start FPT University Founded On m retrieve septem-
ber 8, 2006 m end september 8, 2006.

Q2. Q: What was the word of the decade (2010–2019) according to the american
dialect society?
Gold Answer: They.
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Full Memory: m start Q: What was the word of the decade (2010–2019)
Answer m retrieve web m end web
Selective memory: The word of the decade was m start Word of the Decade
2010-2019 m retrieve they m end they, according to the american dialect
society.

Q3. Q: What was the first name of the irish-born computer programmer kathleen
rita mcnulty mauchly antonelli’s father?
Gold Answer: james mccullough
Selective memory: He was called m start Kathleen Rita McNulty FatherName
m retrieve troy and claudette mcghee m end troy and claudette mcghee.

SPLM (ours): She was called m start Kathleen Rita Mcculty Mauchly
FatherName m retrieve james mccullough m end james mccullough

Q4. Q: Who was the 9th chief minister of jammu and kashmir?
Gold Answer: mehbooba mufti
Selective memory: m start 9th Chief Minister of Jammu and Kashmir Name
m retrieve mehbooba mufti m end mehbooba mufti

SPLM (ours): Bakhsh Singh, who was the 9th chief minister of jammu and
kashmir from m start Bakhsh Singh Term Start Date m retrieve 9 april 1964
m end 9 april 1964 to m start Bakhsh Singh Term End Date m retrieve 10

july 1970 m end 10 july 1970.
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