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ABSTRACT

Pretrained on trillions of tokens, LLMs are known for their ability to store a
large amount of factual knowledge in their parametric memory. However, re-
calling facts from this memory is known to be unreliable, particularly for long-
tail knowledge—obscure facts infrequently mentioned in training data. Although
retrieval-augmented generation (RAG) is the standard solution, it introduces over-
heads such as increased inference costs due to longer input contexts and additional
engineering complexity from preprocessing and indexing extensive document col-
lections. In this work, we propose a novel approach to improve the factuality
of LLMs on long-tail knowledge. We begin by identifying atomic facts—short
statements detailing relationships of some entities—that are not present in a pre-
trained LLM’s parametric memory. These facts are then stored in an external,
non-parametric memory. Subsequently, the model undergoes continuous pretrain-
ing, enabling it to learn when to consult this external memory at inference time.
Compared with existing approaches, our approach uses a compact external mem-
ory that selectively stores only the facts not clearly present in the LLM’s para-
metric memory, resulting in minimal additional inference-time costs in terms of
both time and space. Furthermore, our method outperforms fully trained models
of comparable size on knowledge-intensive benchmarks and achieves competitive
results against larger models.

1 INTRODUCTION

Large language models (LLMs) have demonstrated an outstanding ability to learn a substantial
amount of world language from their training corpus, storing this knowledge in their parameters
and excelling in a wide range of applications. However, despite these advanced capabilities, LLMs
frequently encounter the problem of hallucination, particularly when dealing with long-tail knowl-
edge that is less represented in their training data (Mallen et al., 2023; Asai et al., 2023; Kandpal
et al., 2023; Wei et al., 2024).

Recent work has explored integrating external memory into language models to improve factuality
and reduce memorization at inference time (Li et al., 2025) (Mallen et al., 2023) (Li et al., 2024)
(He et al., 2023). However, a key limitation of this training-free approach is the need for a complex
proposal procedure to decide between generating or retrieving from memory. Another line of work
augments language model training with retrieval-based memory (Guu et al., 2020)(Borgeaud et al.,
2021). This type of methods force all retrived knowledge into model parameters, which adds sig-
nificant overhead during training and inference. Memory3Yang et al. (2024) integrates externalized
knowledge into attention layers by compressing key value representations. More recently, Large
Memory Language Model (LMLM) (Zhao et al., 2025) introduced a pretraining recipe that stores
factual knowledge both in model weights and in an external database. While effective, LMLM
does not differentiate long-tail knowledge from sufficiently learned knowledge, which can lead to
unnecessary retrievals and even degrade downstream performance.

A central challenge still remains: when and how to decouple long-tail knowledge during pre-training
to improve factuality without sacrificing other capabilities. Offloading knowledge too early may
limit the model’s ability to form long-range associations between knowledge entities, while offload-
ing too late may fail to sufficiently remove long-tail knowledge from the model parameters.
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We address this with continual pretraining and selective memory, which uses partially trained mod-
els to detect knowledge gaps and adaptively externalize them. Our method begins by employing
model-based or frequency-based methods to score long-tail knowledge within the training corpus.
We preprocess the corpus into interleaved sequences of standard text and extracted knowledge seg-
ments, where the long-tail knowledge are stored in an external non-parametric memory. During
continued pretraining, we implement an adaptive masking strategy: when the cross-entropy loss for
a knowledge segment exceeds a predefined threshold, indicating potential memorization difficulty
or long-tail knowledge, we masks these segments from the next-token prediction objective. To en-
able effective retrieval from this external memory during inference, we also finetune a lightweight
query adapter that learns to generate appropriate query representations and maintains the separation
between parametric knowledge (encoded in model weights) and non-parametric knowledge (stored
in external memory).

Our method demonstrates superior performance on memory-intensive benchmarks compared to fully
trained models of equivalent size, and even achieves competitive results compared to larger models.
Compared to full offloading,this approach achieves a favorable trade-off: it preserves performance
on general and reasoning-heavy benchmarks while shows clear improvements on long-tail knowl-
edge tasks.

2 SEMI-PARAMETRIC LANGUAGE MODELS (SPLM)

2.1 IDENTIFY LONG-TAIL KNOWLEDGE

Common knowledge—frequent facts and patterns—are best captured in the model’s parametric
weights, allowing for fast, generalizable inference. Offloading these to external memory can force
the model to rely on retrieval for even simple knowledge, increasing inference time and reducing
generalizability. On the other hand, long-tail knowledge is difficult to internalize, requires repeated
exposures, and offers little generalization benefit, yet it consumes disproportionate model capac-
ity. Similar to Zhao et al. (2025), We preprocess the training corpus into interleaved free text and
memory segments. Each memory segment contains a query–answer pair wrapped in special tokens:
m start [query text] m retrieve [answer text] m end , where m start marks the beginning of a

memory segment, and the m retrieve token indicates the start of the answer which should be looked
up from external memory. For example, the sentence “Sugeno received the IEEE Frank Rosenblatt
Award in 2010 for his contributions to the field of fuzzy systems.” is preprocessed as follows:

Sugeno received the m start Michio Sugeno Award Received m retrieve IEEE Frank Rosen-
blatt Award m end in m start Michio Sugeno Year of Award m retrieve 2010 m end 2010
for his contributions to the field of fuzzy systems.

In addition, we score each memory segments in terms of how rare or hard the knowledge segments.
We experiment with a few variants for proxy of long tail knowledge, and leave the discussion on this
part to section 3.5.2.

2.2 TRAINING WITH SELECTIVE MEMORY

To prevent the model from inefficiently memorizing these rare or difficult knowledge pieces, we
selectively delegate them to an external memory. In practice, this is achieved by masking out the
answer tokens for hard knowledge segments during continued pre-training, so the model is trained
to intermix free text generation with knowledge retrieval calls. This selective masking ensures that
the model’s parametric capacity is focused on common knowledge, while long-tail knowledge is
handled via retrieval.

Selective Memory Offloading all knowledge to memory can bloat the retrieval store with trivial
facts, slow down inference, and make the system brittle when retrieval fails. Prior work has shown
that pretrained models’ loss is a reliable proxy for knowledge gaps, where persistent high loss usually
indicates unreliable memorization. For a given memory segment si, let Ai denote the set of token
positions corresponding to its answer text. We compute the average answer loss ℓi as a proxy for
the difficulty of the memory segment. We define hard memory segments as those with average loss
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Figure 1: Training with selective memory and query adapter. Easy memory segments are trained
directly with the standard next-token prediction loss, while hard segments are routed through a
lightweight query adapter.The query adapter is optimized with a contrastive loss: it is pulled closer
to the correct answer embedding (positive) and pushed away from incorrect answers (negatives)
drawn from other segments within the same document.

above a threshold SH = {si : ℓi > τ}. If the model finds a particular memory segment consistently
difficult (loss beyond τ ), we mark that segment as a candidate for externalization. In practice, we
experiment with either a fixed threshold or an adaptive threshold based on the quantile of average
losses across all memory segments. With selective memory delegation, we introduce a binary mask
M = [m1,m2, . . . ,mT ] where:

mt =

{
1 if si ∈ {SH} and xt is between m start and m retrieve
0 otherwise

(1)

We apply this mask to the language modeling objective, so that the model is trained only on un-
masked tokens. Lmasked = − 1∑T

t=1 mt

∑T
t=1 mt · logP (xt | x<t; θ). This effectively removes the

loss contributions from the answers of hard memory segments, discouraging the model from at-
tempting to memorize them and instead encouraging reliance on external memory for factual recall.
This adaptive masking mechanism enables the model to allocate its parametric capacity to com-
mon knowledge and compositional reasoning, while selectively offloading long-tail or hard-to-learn
knowledge to a non-parametric memory.

Finetuning adapter While the above mechanism teaches the model when to retrieve, we also
need to train how to retrieve the correct information from the external memory. To enable effi-
cient and robust retrieval at inference time, we introduce a lightweight, contextualized query adapter
that projects both query context and answer text into a shared embedding space where relevant
query–answer pairs are close. During finetuning, only the adapter parameters are updated, while
the LLM backbone remains frozen for efficiency and to preserve previously learned knowledge.
The adapter is trained to map the high-dimensional contextual representation of a query (the LLM’s
hidden state at the m retrieve token position) to a lower-dimensional dense query embedding that
can be used to retrieve relevant answers. The final hidden representation at the position of the
m retrieve token is passed through the adapter to obtain a dense query embedding zqi . The adapter

thus Similarly, for each memory segment’s answer, we obtain a dense answer embedding by ap-
plying a pooling function over the LLM’s final hidden states for the answer text to obtain zai

. We
finetune the adapter using a contrastive InfoNCE loss: For a batch of N memory segments (i.e. N
query–answer pairs (qi, ai)), we treat each (qi, ai) as a positive pair and all other N − 1 answers in
the batch as negatives for qi:

LInfoNCE = − 1

N

N∑
i=1

log
exp (sim(zqi , zai

)/τ)∑N
j=1 exp

(
sim(zqi , zaj )/τ

) , (2)

where sim(u, v) = u⊤v
∥u∥∥v∥ denotes the cosine similarity between vectors and τ > 0 is a temperature

hyperparameter controlling the sharpness of the distribution. We leverage in-batch negatives during
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training, since each batch typically contains multiple memory segments extracted from the same
document or entity, naturally serving as hard negative examples.

Inference At inference time, if the model outputs the special m retrieve token, this signals that
a knowledge retrieval is needed for the current query. At that point, we take the model’s current
hidden state at the m retrieve position (which encodes the context of the query) and feed it through
the adapter to get a contextualized query embedding zq . This embedding is then used to perform a
nearest-neighbor search in the external memory store for the most relevant stored answer.

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Training details We pretrained a baseline LLAMA-3-1B model for 240k steps on the DCLM
corpus (220B tokens). We then continued pretraining on the Wikipedia subset of the Dolmino corpus
(3.7B tokens) for an additional 30k steps, using a learning rate of 4 × 10−4, batch size of 4, and
sequence length of 4096. Subsequently, we finetuned the adapter as a two layer MLP with 764
output dimension on the same corpus for 5k steps with a learning rate of 1× 10−3.

Inference details For generation, we compare using a off-the-shelf sentence embedding model
(all-MiniLM-L6-v2(Reimers & Gurevych, 2019; Wang et al., 2020)) to embed queries against
using a finetuned adapter. For the sentence embedding model, we use a retrieval threshold of 0.6,
and for the finetuned query adapter we apply a higher threshold of 0.7. To support efficient ap-
proximate nearest-neighbor search, we employ a FAISS dense index (Johnson et al., 2019), which
clusters vectors into 16,384 centroids, and we set nprobe= 64 during retrieval to balance recall
and efficiency.

3.2 EVALUATIONS

We evaluate our models on a set of benchmarks designed to test general or long-tail factual
knowledge in language models. For general-purpose QA, we adopt widely used benchmarks
that serve as guardrails for assessing open-domain question answering: NATURALQUESTION
(NQ) (Kwiatkowski et al., 2019), ENTITYQ (Sciavolino et al., 2021) and HOTPOTQA (HQA) (Yang
et al., 2018). These datasets emphasize broad coverage of knowledge and multi-hop reasoning, mak-
ing them representative tests of general QA ability.

To specifically target long-tail factual knowledge, we use a suite of benchmarks including
POPQA (Mallen et al., 2023), HEAD-TO-TAIL (Sun et al., 2024), and SIMPLEQA (Wei et al., 2024).
POPQA is curated to cover questions on widely recognized entities and facts, while also incorporat-
ing a substantial proportion of less common, long-tail items. HEAD-TO-TAIL explicitly measures
the popularity of entities: it consists of 18K question–answer pairs categorized into head (frequent),
torso (moderately frequent), and tail (rare) entities. SIMPLEQA is a fact-seeking benchmark of
short, unambiguous questions designed to challenge SOTA models.

3.3 BASELINES

Vanilla training As a baseline, we continued pretraining the model on the original Wikipedia sub-
set of Dolmino for the same number of steps, without introducing any external memory or selective
masking. This setup measures the effect of additional domain-adapted pretraining alone, isolating
gains that come purely from further exposure to the corpus.

Full Memory Following the setup in the LMLM framework (Zhao et al., 2025), we construct a
memory-only baseline in which all factual tokens are offloaded to external memory. In this setting,
the model never learns to parametrize knowledge internally; instead, retrieval is performed at every
m retrieve call using a separate embedding model and fuzzy string matching against the memory

index.
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NQ HQA EntityQ PopQA Head-to-Tail SimpleQA
All All Tail

LLaMA3 8B 32.05 26.16 31.16 22.65 14.77 10.74 4.76
LLaMA3 1B 18.48 21.01 14.12 14.30 7.78 6.22 2.27
LLaMA3 1B - 240k 17.37 18.10 17.34 14.54 7.51 5.30 2.87

+Vanilla training 9.39 13.45 12.43 11.13 6.26 4.49 2.36
+Memory 13.85 13.86 24.7 20.31 11.44 11.52 7.35
+SM 14.85 13.53 24.82 23.91 11.45 10.84 9.96
+SPLM 17.65 16.24 25.86 26.3 12.24 11.3 10.28

Table 1: Answer-level recall (ALR) on open-domain QA benchmarks. The baselines include
LLaMA3 8B, LLaMA3.2 1B, and a partially trained LLaMA3 1B (240k steps). For selective mem-
ory (SM), we report the result with an adaptive threshold of 0.6 on quantile of average answer token
losses (40% of hard segments are included in memory).

3.4 MAIN RESULTS

In Table 1 we show the results on the answer-level recall (ALR) of a LLaMA-3 1B trained under
different paradigms: continual pretraining on regular corpus (vanilla training), continual pretraining
with fully offloaded memory (Memory), continual pretraining with selective memory (SM), and our
full approach with selective memory combined with a query adapter (SPLM).

Continual pretraining with memory outperforms fully trained models on knowledge intensive
tasks Compared to a fully trained Llama 1B model, training with memory demonstrates superior
performance particularly on benchmarks that emphasize long-tail or entity-centric knowledge, such
as EntityQ, PopQA, and the tail subset of head-to-tail. It also achieves comparable results compared
to a much bigger model (Llama 8B), indicating that externalizing long-tail knowledge can enhance
factual recall without increasing model size.

Selective memory outperforms full knowledge offloading We also observe clearly improve-
ments when using selective memory compared to fully offloading memory. While offloading all
memory improves recall on certain long-tail benchmarks such as PopQA, head-to-tail and sim-
pleQA, it leads to degradation on general QA dataset (NQ) or those require multi-hop reasoning
(HotpotQA). In contrast, selective memory achieves a better balance: it maintains competitive per-
formance on general QA datasets while further improves the performance on long-tail benchmarks.
This shows that adaptively masking only the hardest segments allows the model to preserve its
parametric capacity for common knowledge and reasoning, while only relying on external memory
for rare knowledge. Finally, incorporating a lightweight query adapter on top of selective memory
(SPLM) recovers much of the degradation observed on general QA benchmarks while further im-
proving long-tail factual recall. We observe the degradation on certain benchmarks is a result of
the model generating imperfect and unnecessary retrieval. The query adapter mitigates this issue by
learning to produce contextualized, discriminative, and richer query embeddings that are naturally
aligned with the model’s internal representation.

3.5 ABLATIONS

3.5.1 WHEN SHOULD WE DECOUPLE LONG-TAIL KNOWLEDGE?

LMs are inefficient in memorizing long-tail knowledge in parametric memory Figure 2 plots
the answer-level recall (ALR) of a Llama3 1B model trained on DCLM corpus as training pro-
gresses. We observe that some benchmarks exhibit clear improvements with additional training,
while others remain stagnant. For example, NQ and HotpotQA continue to benefit from longer
training, showing steady gains up to 24k steps. By contrast, simpleQA and popQA plateau quickly,
indicating that continued training on the same corpus does little to improve performance on long-tail
benchmarks.

pretraining vs continual pretraining Decoupling long-tail facts to external memory can be done
during pre-training or during continuous pre-training time. However, it’s hard to separate “factual
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Figure 2: Answer-level recall (ALR) across training steps when the model is trained on regular
corpus.
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Figure 3: Model based and model agnostic scoring for long-tail knowledge.

memory” from “reasoning” in a clean way. Many reasoning capabilities are scaffolded and inter-
leaved with factual text. For example, solving multi-step questions in math often relies on domain-
specific facts or theorems embedded in the training data. If large spans of such text are masked, the
model may undertrain on certain compositional patterns, hurting downstream reasoning.

3.5.2 DIFFERENT PROXIES FOR LONG-TAIL KNOWLEDGE

In this section, we compare model-based proxies and model-agnostic proxies for detecting long-tail
knowledge in a corpus.

Model agnostic scoring Model-agnostic approaches estimate rarity directly from corpus statis-
tics. One effective tool is Infinigram (Liu et al., 2024), which computes exact n-gram frequency
distributions in a given corpus. We count the frequency if either the objective or the subjective entity
in the memory segment appear in the corpus. While Infinigram provides an exact measure of n-gram
frequencies, its distribution is extremely skewed (Figure 3), making it challenging to draw a clear
boundary between head and long-tail knowledge.

Model based scoring Training loss provides a natural model-based signal of difficulty and has
been widely used for curriculum learning. Figure 3 shows the distribution of memory segment losses
at the start of continual pretraining: most losses concentrate around moderate values, while the long
tail represents knowledge the model struggle to internalize. Alternatively, we also experimented with
model based scoring, where we prompt the Llama3-70B model (see Appendix for prompt details)
to assign a popularity score to each knowledge segment on a scale from 1 to 10, with higher scores
corresponding to more frequently occurring knowledge and lower scores marking long-tail or rare
facts.
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3.5.3 DIFFERENT MEMORY THRESHOLD

Fixed vs adaptive threshold In the simplest variant, we apply a fixed threshold τ , masking any
answer segment with average loss above τ . This provides a straightforward knob on how aggres-
sively long-tail knowledge is offloaded: the higher τ is, the fewer segments are delegated to external
memory. Alternatively, we experiment with an adaptive threshold, where at each step we compute
the distribution of average losses across all answer segments and mask those falling in the top τ%
(e.g., 80th percentile). The adaptive strategy dynamically adjusts to training progress and corpus
difficulty: early in training, more segments are masked, while later only the most challenging seg-
ments are delegated to memory. We report answer-level recall (ALR) under different fixed thresholds
shown in figure 4. For fixed threshold, as the memory threshold increases, ALR generally decreases
for the entity-centric and longtail benchmarks benchmarks such as EntityQ and PopQA, but in-
creases for the common knowledge QA datsets such as NQ and HotpotQA. This aligns with our
assumption that aggressive memory offloading (lower threshold) could hurt performances on gen-
eral benchmarks. For adaptive threshold, we observe a non-monotonic trend, where an intermediate
threshold leads to better performance. We hypothesize that this arises from how adaptive thresholds
interact with the distribution of segment losses during model’s training dynamics. If the percentile is
too low, only the hardest segments are kept in memory and the performance improvement is limited.
If the percentile is too high, segments that the model could have learned parametrically are masked
and this could displaces useful training signal.
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Figure 4: Answer level recall (ALR) for different memory threshold. The higher the threshold is,
the fewer segments are delegated to external memory.

Trade-off between accuracy and latency Figure 5 compares the average number of retrieval calls
per question across benchmarks as a function of the memory threshold. Long-tail datasets such as
POPQA and SIMPLEQA trigger retrieval far more frequently than other benchmarks, indicating the
model are more reliant on external memory for long tail questions. While one might expect retrieval
frequency to increase linearly with more aggressive thresholds, this is not observed in practice. The
reason is that segment losses are highly skewed and clustered as shown in previous histogram, so
adjusting thresholds often has non-linear effects: small changes may have little impact or trigger
sudden jumps in retrieval.

4 RELATED WORK

Non-parametric lanaguge modeling One recent line research has explored integrating non-
parametric memory with language models generation to reduce memorization and improve fac-
tuality. The earliest work includes kNN-LM, which interpolates language model generation and
retrieved nearest neighbors at inference time to adjust output distribution (Khandelwal et al., 2019).
More recent inference-time only approaches include Chunk-Distilled LM (Li et al., 2025), which
speculates multi-token chunks using a retrieval datastore to accelerate generation, as well as REST
(He et al., 2023) and NEST (Li et al., 2024), which combine speculative decoding with retrieval to
improve efficiency and factuality.
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Figure 5: Average number of retrieval calls for different memory threshold. The higher the threshold
is, the fewer segments are delegated to external memory.

Retrieval-augmented pretraining Several recent approaches have explored incorporating re-
trieval directly into the pretraining process. RETRO (Borgeaud et al., 2021) demonstrated that in-
tegrating retrieved context during pretraining improves generalization and reduces undesired mem-
orization by allowing smaller models to match the performance of much larger purely parametric
LMs. More recently and most relevant to us, Zhao et al. (Zhao et al., 2025) introduced Large Mem-
ory Language Models (LMLM), which explicitly separates factual knowledge storage from model
weights by offloading specific factual details to an external database during pre-training. Our ap-
proach shares a similar motivation, but instead of we leverage signals from a partially trained model
to adaptively decide what knowledge to offload.

5 CONCLUSION

We introduced semi-parametric language models with selective memory (SPLM), a framework that
improves factuality on long-tail knowledge without sacrificing general capabilities. By masking
high-loss segments and delegating them to external memory, SPLM preserves parametric capacity
for common knowledge and reasoning while offloading rare facts. A lightweight query adapter
enables contextualized retrieval aligned with the model’s representations. Experiments demonstrate
that SPLM achieves a favorable trade-off, outperforming memory-only baselines and rivaling larger
models. This highlights selective memory as a promising direction for scaling factuality in LLMs
efficiently.

There are several interesting directions for future research. We primarily targeted factual recall on
short QA benchmarks, but the framework could naturally extend to other domains such as math-
ematical theorems or code snippets that occur in training data. An interesting question for future
work is whether decoupling knowledge in this way could also improve performance on reasoning-
intensive benchmarks. By externalizing rare factual content, the model could dedicate more of its
parametric capacity and compute to learning reasoning strategies rather than memorizing infrequent
facts. Another interesting direction would be to explore joint training of the adapter and the language
model, which may further improve performance by enabling integration of external knowledge dur-
ing inference.
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A APPENDIX

A ADDITIONAL IMPLEMENTATION DETAILS

B SAMPLE GENERATIONS

C PROMPT USED FOR SCORING

You are a capable model that can determine, based on the atomic factual knowledge query,
whether the atomic factual knowledge belongs to a long-tailed (niche or less commonly refer-
enced) domain. To assess the entities popularity, use the following rules:
1) The number of times the atomic factual knowledge potentially can referenced or cited by other
documents on internet. 2) The number of times the atomic factual knowledge potentially can be
linked to or duplicated on internet.
Please rate the atomic factual knowledge with a score between 1 and 10, where 10 indicates low
popularity (long-tailed knowledge) and 1 indicates high popularity (widely referenced knowl-
edge). Return the score in JSON format, for example: {”quality score”: predicted score } text:
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