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ABSTRACT

Image matching serves as a core component for UAV localization guided by
satellite imagery. However, this task remains highly challenging due to the extreme
viewpoint discrepancies between low-altitude UAV images and nadir-view satellite
maps. Existing datasets primarily focus on ground-level or high-altitude UAV
imagery, lacking sufficient coverage of the geometric variations typical of real aerial
scenarios. To address these limitations, we introduce AerialExtreMatch, a large-
scale, high-fidelity dataset tailored for extreme-view image matching and UAV
localization. It consists of approximately 1.5 million synthetic image pairs rendered
from high-quality 3D scenes, simulating diverse UAV and satellite viewpoints
to enable robust training of image matching models. To support fine-grained
evaluation, we construct a hierarchical benchmark with 32 difficulty levels. These
are defined using three geometric criteria: overlap ratio, scale variation, and pitch
difference. In addition, we collect a real-world UAV localization dataset with geo-
aligned reference maps of varying visual quality. Extensive experiments involving
16 representative detector-based and detector-free methods demonstrate that models
trained on AerialExtreMatch achieve substantial performance gains in both image
matching and real-world localization under extreme-view conditions. The dataset
and code will be released upon acceptance.

1 INTRODUCTION

Image matching has become a pivotal technique for satellite-guided visual localization of low-
altitude unmanned aerial vehicles (UAVs). Accurate pose estimation is particularly critical for
mission-oriented applications such as field rescue [Bejiga et al.|(2017); [Silvagni et al.|(2017) and
large-scale scene reconstruction Maboudi et al.|(2023)). While UAV-based reconstruction models have
been commonly employed for these tasks, satellite-based reconstructions offer distinct advantages,
including rapid updatability and scalability over vast geographic regions. Nevertheless, a fundamental
challenge arises from the inherent disparity in imaging perspectives: satellite imagery is acquired
from high-altitude orbits with top-down orthographic views, whereas low-altitude UAVs typically
capture oblique images. This pronounced viewpoint difference greatly hinders the establishment
of accurate feature correspondences, thus limiting the robustness and reliability of existing image
matching methods.

Contemporary image matching methods |Shen et al.| (2024); Leroy et al.|(2024) are predominantly
trained and evaluated on ground-level datasets, which inherently lack the angular variations present
in aerial scenarios. This dataset bias substantially limits its generalizability and effectiveness in aerial
image matching tasks. Although the rapid growth of the low-altitude UAV has motivated recent
efforts to construct aerial localization benchmarks from reconstructed real-world scenes |Wu et al.
(2024); |Chen et al.| (2025)); |Ye et al.| (2025)), the high cost of data acquisition remains a significant
barrier to the large-scale deployment of these approaches.

To overcome the performance limitations caused by the scarcity of aerial datasets and to establish a
fair benchmark for algorithm evaluation, we propose a method for generating realistic synthetic data
by leveraging high-fidelity 3D models and advanced rendering techniques. Our approach not only
substantially reduces the cost of data collection but also inherently preserves privacy. Specifically, we
employ a diverse set of 3D scene models provided by |Cesium for Unreal, in combination with Unreal
Engine |S|and |AirSim) to systematically simulate both UAV aerial viewpoints and satellite overhead
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Figure 1: Overview of the proposed AerialExtreMatch, which consists of three components: Train
Pair, Evaluation Pair, and Localization. The Train Pair set include approximately 1.5M pairs with
variations in flight altitude and pitch for supporting model train. The Evaluation Pair set defines 32
difficulty levels, ranging from easy to hard, to enable fine-grained performance analysis. Invisibility
is occluded with a black mask. The Localization component evaluates pose accuracy using real UAV
query images and two geo-aligned reference maps with varying visual quality: a high-quality map
reconstructed from UAV imagery (HQ) and a low-quality map derived from satellite data (LQ).

perspectives. This framework allows us to construct a comprehensive training dataset tailored for
extreme-view image matching tasks. To effectively capture multi-scale geometric transformations,
we generate multiple images at varying altitudes for each viewpoint within a given scene.

Compared to real-world data, synthetic data provides greater flexibility in simulating diverse view-
points and offers precise control over the conditions of data generation. Leveraging these advantages,
we introduce a fine-grained evaluation framework that facilitates comprehensive analysis of image
matching robustness under varying geometric configurations. Specifically, we propose the Evaluation
Fair, a structured 32-level hierarchy of matching difficulty defined by three key geometric criteria:
overlap ratio, pitch difference, and scale.

Table 1: Overview of existing image matching benchmark and UAYV localization datasets.

Dataset Type Depth Viewpoint Variation Graded Evaluation ~ Supports Match Training
MegaDepth|Li & Snavel; l d v yaw X v
AerialMegaDepth|Vuong et al.|(2025 7 v pitch X v
ScanNet|Dai et al. (12017 g 4 yaw X v
ScanNet++|Yeshwanth et 3123 0 4 yaw X v
HPatches |m g X yaw X v
BlendedMVS (2020 Or v yaw-+pitch x v
Waymo |Sun et al. (2020 R 4 yaw X v
RUBIK |[Loiseau & Bourmaud (2025 ) X yaw v X
UAVDA4L [Wu et al.[(2024} - X pitch X X
AnyVisLoc|Ye et al. (2025 7 X yaw X X
UAVVisLoc|Xu et al. (2024 4 X pitch X X
AerialExtreMatch (ours) 4 v pitch v v

To further validate performance under real-world conditions, we compile geographically aligned
reference maps with varying visual quality. These include digital surface models (DSMs) and digital
orthophoto maps (DOMs) rendered from high-quality textured 3D models, as well as reconstructions
derived from satellite imagery. The query set comprises real UAV-captured images acquired at low
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altitudes, each paired with noisy prior poses and accurate ground-truth camera parameters. Together,
these components constitute a comprehensive benchmark dataset for UAV-based visual localization.
The complete pipeline for image matching and localization defines our proposed AerialExtreMatch,
as illustrated in Figure[I]

We adopt RoMa |Edstedt et al.[(2024b)), a state-of-the-art image matching method, as the baseline for
training. Experimental results demonstrate that training on AerialExtreMatch significantly enhances
its robustness to large viewpoint variations. In addition, we conduct a comprehensive evaluation
involving 16 representative approaches, spanning both detector-based and detector-free methods. The
results show that under favorable conditions—characterized by high overlap, small scale differences,
and minimal pitch variation—all evaluated methods perform reliably. However, under extreme-
view conditions with low overlap and large pitch differences, the performance of existing methods
degrades significantly. Notably, the RoMa variant trained on our dataset achieves the best overall
matching accuracy. In the real-world localization benchmark, it similarly attains superior performance,
achieving recall rates on high-quality reference maps that are more than twice those on low-quality
maps under the same evaluation protocol.

The contributions of this work can be summarized in three aspects:

* We construct a synthetic dataset for supporting aerial-view image matching. The evaluation
pair is further organized into difficulty levels based on geometric variations.

* We collect a real-world dataset for low-altitude UAV localization, consisting of geo-aligned
high-quality and low-quality reference maps.

* We provide a comprehensive benchmark involving 17 representative methods, demonstrating
the effectiveness of the proposed dataset.

2 RELATED WORK

2.1 IMAGE MATCHING BENCHMARKS

Training Data. Large-scale RGB-depth training, exemplified by DUSt3R [Wang et al.[(2024b));
Leroy et al.| (2024); Wang et al.| (2024a; 2025)), has proven effective for depth estimation, pose
regression, and scene reconstruction, with clear scalability benefits. Recent works such as MatchAny-
thing He et al.| (2025)) and MINIMA [Ren et al.| (2025) extend this paradigm to image matching, where
both data diversity and scale are critical. However, existing datasets [Li & Snavely| (2018); Dai et al.
(2017) mainly cover ground-level scenes with limited viewpoint variation, lacking aerial-specific
transformations.

Evaluation Data. HPatches Balntas et al.| (2017) lacks depth and focuses on homography.
MegaDepth [Li & Snavely| (2018)) and ScanNet|Dai et al.|(2017) are widely used but do not stratify
difficulty, limiting failure analysis. RUBIK [Loiseau & Bourmaud| (2025) quantifies difficulty via
geometric transformations using nuScenes (Caesar et al.|(2020)), but lacks ground-truth depth and is
restricted to vehicle-centric urban scenes. In contrast, we design a benchmark for aerial viewpoint
variation and introduce three geometric metrics to stratify difficulty.

2.2  SATELLITE-GUIDED UAV LOCALIZATION DATASET

Localizing low-altitude UAVs with satellite imagery is difficult due to extreme viewpoint gaps. Exist-
ing datasets focus on high-altitude nadir views He et al.|(2024); [Keetha et al.| (2023). UAVDA4L |Wu
et al.| (2024)) includes multi-view low-altitude data but relies on costly oblique reconstructions. Other
works [Ye et al| (2025) use satellite-reconstructed maps, but with limited quality. These datasets
remain small and based on real UAV data, thus unsuitable for training large models. We contribute a
real-world localization dataset with multi-quality reference maps, and further synthesize large-scale
aerial imagery from photorealistic 3D models. As shown in Table[T] no prior dataset jointly supports
large-scale image matching and realistic UAV localization.
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Figure 2: Left: Training data generation. |Cesium for Unreal provides high-quality 3D models,
enabling the rendering of RGB and depth images from diverse aerial viewpoints by sampling camera
poses with varying altitudes and angles. Right: Co-visibility estimation. Given intrinsics K,
extrinsics P, and RGB-depth image pairs (I1, D;) and (I3, D5), the co-visible masks C1o and Co;
are computed by warping 3D points from one view to the other via geometric reprojection.

3 AERIALEXTREMATCH

AerialExtreMatch is a large-scale dataset tailored for training image matching, conducting hi-
erarchical evaluations, and supporting real-world UAV localization tasks. Figure [2] presents the
overall pipeline for collecting RGB-depth pairs and estimating the co-visibility mask. The dataset
is constructed using high-quality 3D models and a photorealistic simulation engine. It comprises:
(1) the generation of training data (Section@); (2) the categorization protocol for match evaluation
(Section @); and (3) the design of the localization benchmark (Section@).

3.1 TRAINING DATA COLLECTION

Most existing image matching datasets|Li & Snavely|(2018);Dai et al.|(2017) are collected using hand-
held devices, resulting in limited geometric diversity, particularly in variations in aerial viewpoints.

This constraint significantly hampers the generalization ability of matching models. To address
this limitation, we construct a dataset that incorporates diverse aerial viewpoint transformations to
enhance model robustness.

Specifically, we employ Unreal Engine 5 with the [AirSim| plugin, in conjunction with 1|Cesium for
which provides high-quality 3D models, to generate paired RGB-depth images. From various
urban and natural scenes available in Cesium for Unreal, we select 63 distinct regions and simulate
both oblique UAV perspectives and nadir satellite views, yielding a training dataset of approximately
1.5M image pairs.

To better emulate real-world low-altitude UAV flight conditions, simulated UAV views are rendered
at altitudes ranging from 50 m to 200 m, with pitch angles between 50° and 75°. To introduce multi-
scale geometric variation, we generate satellite-view at three heights—300 m, 400 m, and 500 m—at
the same geographic location. Each RGB-depth pair is rendered at a resolution of 1280 x 1024 pixels.
More details are provided in the appendix [A-1]

3.2 GRADED EVALUATION GENERATION

The Train Pair and Evaluation Pair are both synthesized, where each image is associated with an
RGB image I, a depth map D, and the corresponding intrinsics K and extrinsics P. For evaluation,
we compute geometric criteria between image pairs, including overlap ratio, pitch difference, and
scale, to establish graded difficulty.

Given an image pair (1, I2) with known camera intrinsics (K7, K), extrinsics (P;, P), and depth
maps (D1, Ds), we estimate co-visibility masks C12 and Cs;. For each pixel p; € I, the corre-
sponding location in I5 is obtained via:
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O 1 )

Where Ro; and to; denote the relative rotation and translation from camera 1 to camera 2, and 7 (-)
represents the perspective projection that normalizes by the depth coordinate.

The reprojected depth D/ (p2) is defined as the z-coordinate of the transformed 3D point:

Dy(p2) = <R21 (Dl(Pl) Kt {pr +t21>(2)v ()

Where (-)(z) denotes extracting the third (depth) component of a 3D vector.
The visibility mask C12(p1) is computed as:

1, if [D5(p2) — D2(p2)| < € D2(p2),
0, otherwise,

Ciz(p1) = { ()

Where € is empirically set to 0.05.
Criteria. Building upon the co-visibility masks, we introduce three geometric metrics to quantita-

tively assess the matching difficulty of each image pair.

(1) Overlap Ratio: Defined as the ratio of co-visible pixels between the two images to the average
number of total pixels, and computed as:

> p, Cr2(pP1) + 225, Ca1(p2)

Overlap =
P Ip1] + |p2]

; “

where |p; | and |p2| denote the total number of pixels in I; and I, respectively. The visibility masks
C12 and Cs; represent pixel-level co-visibility from I to I5 and vice versa.

(2) Pitch Difference: Measures the absolute difference in pitch angles between the two cameras. One
image simulates a nadir-view satellite perspective, while the other represents an oblique UAV view.
(3) Scale: Captures the scale difference between the two views based on the 2D coverage of 3D-

projected corner points onto the zy-plane. Given the 3D corner points {xgl)}le and {XEQ)}le for
1 and I5, the projected areas A; and A, are computed as:

Ag = (maxxgk’m) — minxgk’w)) X (maxxgk’y) — mjnx(k’y)) . ke{l,2}, (5)

)

(k

%

(

where x'***) and Xik’y) denote the x- and y-coordinates of the i-th corner point in image k.

The scale ratio is then defined as:

Scale = max (Al A2> .

A" Ay

Benchmark Organization. Based on the three criteria defined above, we construct the Evaluation
Pair by categorizing image pairs into discrete difficulty levels. Examples are shown in Figure [3] For
each pair with a co-visibility mask C, we compute the corresponding metrics and discretize them
into the following bins:

* Overlap Ratio (four bins): <20, 20-40, 40-60, and >60;
* Pitch Difference (four bins): 50-55, 55-60, 60-65, and 65-70 degrees;
¢ Scale Variation (two bins): 1-2, and >2;
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Figure 3: Visualization examples pairs under different difficulties.

We select up to 1k image pairs for each valid combination of difficulty bins. If fewer than 1k
pairs are available, all available pairs are included. This sampling yields approximately 30k image
pairs, broadly covering the geometric challenges commonly encountered in aerial image matching
scenarios.

3.3 LOCALIZATION BENCHMARK

Query Image Collection. We collect query images using a DJI M300 RTK drone [DJI300 equipped
with a DJT H20T camera [H20T, To simulate low-altitude, oblique flight conditions, both the drone’s
altitude and the camera’s pitch angle are carefully controlled during data acquisition. Leveraging
GPS priors, accurate camera poses are estimated using the Render2Loc localization method [Yan et al.|
(2023). Details of the ground truth generation process are provided in the supplementary material.

Reference Data Preparation. Reference images are captured using a DJI M300 RTK drone
equipped with a professional five-lens camera, the SHARE PSDK 102S The aerial imagery is
processed using modern 3D reconstruction techniques to generate a digital orthophoto map (DOM)
and a digital surface model (DSM). In addition, satellite-derived DSM and DOM data covering the
same geographic region are acquired from commercial providers and spatially aligned.

Pair Construction. Given the prior information of each query image, including camera intrinsics
and noisy extrinsics, we project each reference 3D point onto the query image plane to determine the
corresponding pixel location. Based on this projection, we extract a cropped patch from the reference
DSM/DOM to form a localization image pair. The projection is defined by the following equation:

x
u=m (K (RaeriaIXsale + taerial)) , Wwhere = (;, g) , 2>0,0 <u < Waergal, 0 <0 < Hierial-

(6)

4 EXPERIMENT

Training Details. We generate a total of ~1.5M image pairs in AerialExtreMatch, comprising
nadir-view and oblique-view images captured at varying altitudes. For training the matching model,
we adopt the official implementation of RoMa [Edstedt et al] (2024b), using a combination of
MegaDepth[Li & Snavely| (2018)) and AerialExtreMatch as the training data. The learning rates are
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set to 6.25 x 10~ for the encoder and 1.25 x 102 for the decoder, and we use AdamW [Loshchilov
& Hutter| (2017)) as the optimizer. Training is conducted on 8 NVIDIA 3090 GPUs (24GB) with a
batchsize of 32, taking approximately two days to complete.

Evaluation Methods. We compare our trained model against a total of 16 representative methods,
including detector-based and detector-free approaches.

For detector-based methods, we select SuperPoint DeTone et al.[(2018)), DISK [Tyszkiewicz et al.
(2020), and ALIKED [Zhao et al.[|(2023)) as keypoint detectors, and employ LightGlue Lindenberger
et al.| (2023) and XFeat [Potje et al.| (2024) for feature matching. Additionally, the recent large
geometry model VGGT Wang et al.| (2025) provides image matching results by using ALIKED [Zhao
et al.| (2023)) for keypoint extraction and a tracking head for matching, as described in the original
paper.

For detector-free methods, we evaluate LoFTR |Sun et al.| (2021)), ELoFTR |Wang et al.| (2024c),
ASpanFormer Chen et al.[(2022), the official RoMa Edstedt et al.| (2024b)), RoMa trained with the
GIM |Shen et al.|(2024) paradigm (denoted as GIM), RoMa trained in a cross-modal manner He et al.
(2025) (denoted as MA), as well as DUSt3R [Wang et al.| (2024b)) and MASt3R |Leroy et al.| (2024),
which perform image matching via pointmap correspondence.

To ensure fair comparison, all experiments are conducted on the same hardware configuration:
NVIDIA 3090 GPUs. For RoMa-based methods, all training and evaluation settings are kept identical
except for the model checkpoint. Other methods are used with their default hyperparameters, and the
maximum input image size is set such that the longer side does not exceed 1024.

4.1 MATCH BENCHMARK RESULTS

Evaluation Protocol. Following [Sun et al.| (2021)); [DeTone et al.| (2018)), we report the AUC of
pose errors at a threshold of 5°, where the pose error is defined as the maximum of the rotation
and translation errors. Camera poses are estimated by computing the fundamental matrix from the
predicted correspondences using the RANSAC.

Results. We present in Figure [d] the image matching results of RoMa-based methods, two detector-
based, and one pointmap-based approach. The difficulty is structured cyclically every four levels:
within each cycle, the overlap ratio remains constant, while increasing the level index corresponds to
larger pitch angle differences. Across cycles, a higher level index indicates decreasing overlap.

Level 1 represents large overlap, small scale variation, and minimal pitch difference, both detector-
based and detector-free methods achieve satisfactory performance. However, as the pitch difference
increases within the same overlap setting, the performance of most methods deteriorates. Notably, in
the most challenging condition (pitch difference of 70°-75°), our trained RoMa consistently achieves
the best results, outperforming the second-best method by a margin of 20% in the hardest level. As
shown in the qualitative results, our trained RoMa-based model is the only one that predicts correct
correspondences within co-visible regions. Other training paradigms produce numerous incorrect
matches. Detector-based methods fail under such extreme conditions and generate error matches.
MASIt3R |[Leroy et al.|(2024) benefits from training on aerial data and produces a few sparse matches
in co-visible areas. More results are provided in the supplementary material.

4.2 LOCALIZATION BENCHMARK RESULTS

Evaluation Protocol. We follow the standard visual localization evaluation protocol Sattler et al.
(2018)); Wu et al|(2024) and report the results under three commonly used thresholds: (5m, 1°),
(10m, 1°), and (20 m, 2°).

Results. Table 2]reports the visual localization results of 17 methods on both the high-quality (HQ)
and low-quality (LQ) reference maps. On the HQ map, most methods perform well. Among detector-
based methods, the combination of ALIKED Zhao et al.|(2023)) and LightGlue |Lindenberger et al.
(2023)) achieves the best performance. For detector-free approaches, our trained RoMa outperforms
all other methods, achieving a recall of 97.35% at the (5m, 1°) threshold, 6.0% points higher than
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Figure 4: Evaluation on AerialExtreMatch for image matching. RoMa-based methods exhibit
strong performance across various conditions, with our trained RoMa achieving the best results under
challenging scenarios, including low overlap and large pitch differences. Each group of four levels
shares the same overlap ratio, while the pitch difference gradually increases within each group as the
level increases. Every 16 levels form a complete cycle across different scales. The right panel shows
qualitative matching results under extreme conditions, where invisible regions are masked in black.
(Zoom in for details; matching correspondences are indicated by same-colored points.)

Table 2: Visual localization results on different quality maps. The left panel shows results on
the high-quality (HQ) map, while the right panel presents results on the low-quality (LQ) map. Our
trained RoMa achieves superior performance across both settings, with the best results highlighted in
bold.

Method (Gm, 191  (10m,1°71 (20m,2°)7 || (Gm,1°)1 (10m,1°)1 (20m,2°) 1
ALIKED 2023)+LG[Lindenberger et al.|(2023] 86.74 86.74 87.12 3.03 5.68 14.39
DISK [Tyszkiewicz et al.|(2020}+LG|Lindenberger et al.|(2023] 82.58 82.58 83.71 0.00 0.00 0.00
SP[DeTone ct al.|(2018}+ 79.92 79.92 84.85 6.82 9.47 17.42
Edstedt et al. 37.50 37.88 68.94 0.00 0.00 0.00
54.92 54.92 74.62 0.38 0.38 1.14
56.06 56.44 73.49 0.76 0.00 379
77.27 7727 81.44 0.00 0.00 0.38
265 455 30.30 0.00 0.00 0.00
66.67 66.67 84.47 1.89 6.06 17.05
81.82 81.82 85.61 455 7.20 21.97
80.30 81.06 85.61 10.23 10.23 2046
1.52 3.78 16.29 0.00 0.00 0.00
76.14 76.52 87.50 0.38 2.65 7.96
95.83 95.83 96.59 3437 44.32 62.12
94.32 94.32 97.35 28.79 43.56 63.26
90.15 90.15 91.29 22.73 42.05 64.39
97.35 97.35 98.11 45.46 53.41 73.11

RoMa (MA) (2025). Due to the large resolution gap between query and reference images,
both VGGT Wang et al.| (2025) and DUSt3R |Wang et al.|(2024b) fail to produce satisfactory results.

On the LQ map, in addition to geometric viewpoint changes, degraded image quality and long-term
appearance variations further challenge image matching algorithms. As a result, most detector-based
methods fail to find sufficient reliable correspondences and do not yield successful pose estimations.
Similarly, the success rate of detector-free methods also drops significantly. Nevertheless, our trained
RoMa remains the top-performing approach, clearly outperforming all other RoMa-based variants.
This demonstrates the effectiveness of our synthetic dataset in modeling the geometric variations
between UAV and nadir-view imagery, thereby substantially improving localization robustness.

It is important to emphasize that all results are obtained in a zero-shot setting: the training data
comprises MegaDepth |Li & Snavely| (2018)) and our proposed AerialExtreMatch, with no overlap
with the localization test set. Qualitative localization results of RoMa-based methods on both HQ and
LQ maps are shown in Figures [5|and [6]
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(d) Rot. Error: 0.6 Trans. Error: 1.24

Figure 5: Qualitative results on the high-quality map. Subfigures (a)—(d) show the results of the
original RoMa, RoMa (MA), RoMa (GIM), and our trained RoMa, respectively.

&,

(c) Rot. Error: .9 Trans. Error: 5.9 (d) Rot. Error: 0.9 Trans. Error: 3.9
Figure 6: Qualitative results on the low-quality map. Subfigures (a)—(d) show the results of the

original RoMa, RoMa (MA), RoMa (GIM), and our trained RoMa, respectively.

5 CONCLUSION

We propose AerialExtreMatch, a large-scale synthetic dataset constructed from high-fidelity 3D
models to simulate geometric transformations between aerial and nadir viewpoints, thereby enriching
the training data for image matching tasks. In addition, we introduce the Evaluation Pair, a fine-
grained benchmarking suite that categorizes image pairs into 32 difficulty levels based on overlap
ratio, scale variation, and pitch difference, enabling a systematic evaluation of model robustness under
diverse geometric configurations. To promote research in UAV localization with satellite guidance,
we also provide two geo-aligned reference maps of varying reconstruction quality, supporting fair
and realistic assessment of existing matching approaches. Extensive experiments show that training
on AerialExtreMatch substantially improves model resilience to extreme viewpoint changes in aerial
scenarios.

Despite these strengths, AerialExtreMatch has certain limitations. As it is rendered synthetically, it
lacks variations in illumination and weather conditions. Additionally, challenges such as foreground
occlusion are not yet considered in the current benchmark. We leave these directions for future
exploration.
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ETHICS STATEMENT

Our proposed synthetic dataset is generated from open-source 3D models that are licensed for
academic research use. The collected real-world UAV data does not contain personally identifiable
information such as faces or license plates, and the real-world maps are restricted to academic
research purposes only. We adhere to the ICLR Code of Ethics and ensure that the datasets and
experiments presented in this work comply with privacy, legal, and research integrity considerations.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. Details regarding dataset distribution and
the collection process of the real UAV data are provided in the Appendix. The paper describes the
training settings, evaluation protocols, and metrics in the main text, while additional implementation
details are included in the supplementary material. Together, these resources enable the community
to reliably reproduce our results.

LLM USAGE

We used a large language model (LLM) solely for proofreading and language refinement of the
manuscript. The LLM was not involved in research ideation, methodology design, experimental
execution, or analysis of results.
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A APPENDIX

The following section provides additional details of AerialExtreMatch (Section [A-T)) and reports
comprehensive experimental results on our proposed dataset (Section[A2)). In addition, we present
results from mixed training on other datasets, evaluations on standard ground-level benchmarks
(Section[A3), and further experiments on additional UAV localization datasets (Section[A.4).

A.1 AERIALEXTREMATCH DETAILS

We introduce the sampling distribution of Train Pair in AerialExtreMatch in Section[A.T.T] Sec-
tion[A-T.2]presents the criteria for defining difficulty levels, along with corresponding visual examples.
Section[A.T.3|describes the process of generating ground-truth poses for query images and illustrates
the differences between reference maps of varying quality.

A.1.1 TRAINING DATA DETAILS

Figure [7]illustrates the distribution of sampled regions across continents, the spatial layout within
Europe, and the sampling patterns of nadir and oblique viewpoints. Nadir views are obtained at
uniform spatial intervals, with three images rendered at different altitudes for each location. In
contrast, oblique views are stochastically sampled to emulate low-altitude UAV perspectives within
each region. Our sampling procedure adopts a three-level hierarchy: continent — country — region.
For each continent, we select multiple urban areas from different countries and synthesize data using
3D assets provided by |Cesium for Unreall Since the platform offers substantially more 3D models
for Europe than for other continents, European samples naturally constitute the largest portion of our
dataset.
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Figure 7: Histogram and sampling examples of region distribution. The left shows the histogram
of sampling locations across continents. The middle visualizes the sampled regions within Europe,
where each star denotes one sampled area. The right illustrates the viewpoint distribution within each
region: points represent oblique views, and points indicate simulated nadir views.

A.1.2 EVALUATION PAIR DETAILS

Table 3| summarizes the number of image pairs per difficulty level across different geometric variables.
The evaluation set is divided into 32 levels, forming two cycles of 16 levels each. Levels 1-16 corre-
spond to scale variations in the range of [1.0, 2.0], while levels 17-32 follow the same configuration
of overlap and pitch differences but with scale values exceeding 2.0. Except for levels 17 and 20,
which contain 665 and 387 pairs, respectively, all other levels from 17 to 32 contain 1000 image pairs.
Figure [§] presents a visualization example for each difficulty level. The top panel shows examples
with scale in [1.0, 2.0], and the bottom panel corresponds to examples with scale greater than 2.0.
Within each panel, rows represent levels with the same overlap ratio but increasing pitch differences,
while columns represent levels with the same pitch difference but decreasing overlap ratios.

A.1.3 LOCALIZATION DETAILS

Query Image Collect. We collect the query images I,using a DJI M300 drone equipped with the
H20T camera, which integrates three types of lenses. For our localization experiments, we utilize the
wide-angle images. The wide-angle lens is calibrated indoors, and distortion-corrected images are
used for all evaluations. Figure [0]shows the image acquisition device, and Table A lists the detailed
camera parameters.
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Table 3: Difficulty level definitions. The 32 levels are divided into two cycles of 16 levels each. Levels 17-32
follow the same variation patterns as Levels 1-16 in terms of overlap and pitch difference, but with a higher
scale range.

Level Overlap Pitch Difference Scale Variation Num.

1 >60 55-60 1.0-2.0 1000
2 >60 60-65 1.0-2.0 1000
3 >60 65-70 1.0-2.0 1000
4 >60 70-75 1.0-2.0 505
5 40-60 55-60 1.0-2.0 1000
6 40-60 60-65 1.0-2.0 1000
7 40-60 65-70 1.0-2.0 1000
8 40-60 70-75 1.0-2.0 1000
9 20-40 55-60 1.0-2.0 1000
10 20-40 60-65 1.0-2.0 1000
11 20-40 65-70 1.0-2.0 1000
12 20-40 70-75 1.0-2.0 1000
13 <20 55-60 1.0-2.0 1000
14 <20 60-65 1.0-2.0 1000
15 <20 65-70 1.0-2.0 1000
16 <20 70-75 1.0-2.0 1000

Query Image GT Pose. We adopt the Render2Loc|Yan et al.[(2023) strategy to obtain ground-truth
poses &4¢. Specifically, for each query image I, with a known pose &,ior, Wwe render an RGB-D
image from a high-fidelity 3D model at the given pose. A state-of-the-art image matching method is
then applied to establish 2D-2D correspondences between the query and the rendered images. With
the rendered depth Ip, we further derive 2D-3D correspondences. Finally, a precise camera pose
is estimated using a PnP solver with RANSAC. Figure [I0]illustrates the matching process on two
scenes with four image pairs, along with comparisons between real images and the corresponding
renderings.

Reference Map. We provide two types of reference maps: a high-quality DOM and DSM generated
from textured 3D models, and a low-quality version reconstructed from satellite imagery. Figure[TT]
visualizes the differences between the two map qualities. The high-quality map exhibits clear RGB
textures, no long-term environmental changes, high geometric accuracy, and detailed depth maps. In
contrast, the low-quality map suffers from blurry textures, long-term changes, and blocky depth maps
with limited detail.

A.2 MORE RESULTS ON OUR BENCHMARK

In the main paper, we selectively report the performance of several matching methods on the
Evaluation Pair subset. Comprehensive results for all methods across different difficulty levels will
be presented in Section[A.2.1] Additionally, while the main paper includes localization benchmark
results for all methods, more qualitative visualizations will be provided in Section[A.2.7]

A.2.1 MATCH BENCHMARK

Tables SHg| report detailed AUC@5° results for all 16 evaluated methods. Across all difficulty levels,
ALIKED Zhao et al.[(2023)+LG|Lindenberger et al.|(2023) consistently achieves the best performance
among detector-based methods. For detector-free approaches, LoFTR [Sun et al.| (2021)) performs best
under high-overlap and low-pitch-difference conditions (i.e., Levels 1 and 17), while our fine-tuned
RoMa achieves superior performance across the remaining levels. DUST3R |Wang et al.[(2024b) is
not originally designed for image matching, consistently underperforms compared to other methods.
Apart from DUST3R [Wang et al.[(2024b), detector-free methods generally outperform detector-based
ones across most difficulty settings.
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Figure 8: Visualization of evaluation pairs across different difficulty levels. The top panel shows
levels 1-16 with scale in [1.0, 2.0], while the bottom panel shows levels 17-32 with scale greater
than 2.0. Each row shares the same overlap level with increasing pitch differences, and each column
shares the same pitch level with decreasing overlap ratios.

Camera Types Camera Parameters
Sensor Width: 6.29
Sensor Height: 4.71
Focal Length: 4.5

Image Resolution: 4056 x 3040

Wide-angle Lens

Figure 9: The capture device DJI M300 RTK  Taple 4: The wide-angle lens camera parameters.
mounted H20T.

Within each 4-level cycle, the overlap ratio remains fixed while the pitch difference increases,
leading to a consistent performance drop for all methods. Under easy conditions (high overlap, low
pitch difference), both detector-based and detector-free methods perform well. However, as the
overlap decreases and pitch difference grows, detector-based methods degrade significantly. In the

hardest cases (Levels 16 and 32), the best-performing detector-free method outperforms the best
detector-based counterpart by a factor of three.

A.2.2 LOCALIZATION BENCHARK

We report the localization performance of all methods in the main paper. Figure[T2]and Figure[T3]
further present qualitative visualizations of different methods. All methods perform well on the high-
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Figure 10: Qualitative matching results and ground-truth quality visualization. We present four
comparison results from rural and urban scenes. In each panel, the left side shows matching results
between the query image and the rendering from the prior pose, while the right side shows a visual
comparison between the query image and the rendering from the ground-truth pose. The query image

is shown on the left in both views.

Figure 11: Visualization of reference maps with different quality levels. The left shows the
query image, the middle displays the RGB-Depth pair rendered from the high-quality map, and the
right shows the RGB-Depth pair from the low-quality map. Although the maps are geo-aligned, the
low-quality version exhibits degraded appearance and reduced geometric accuracy.

quality reference map, while detector-free approaches exhibit greater robustness, with RoMa-based
methods achieving the best results.

A.3 IMPACT OF TRAINING DATA COMPOSITION

BlendedMVS (2020) is an open-source dataset that provides both ground-level and
aerial views. To evaluate its impact, we retrain RoMa on BlendedMVS while keeping all other
configurations identical, and report results on both our UAV localization benchmark and the standard
MegaDepth-1500 dataset. As shown in Table 9] the left and right columns correspond to high- and
low-quality maps, respectively. Entries where our dataset outperforms the BlendedMVS-trained
counterpart are highlighted in bold.

Table further shows that the perfor-
mance drops by only 2% compared to the  Taple 10: Performance of different RoMa variants
model trained solely on MegaDepth, which  on MegaDepth-1500.

is comparable to joint training with Blend-
edMVS.

Method 524 10°1 20°1

To further analyze the role of real and syn- RoMa (only MegaDepth) 62.6 76.7  86.3
thetic data, we compare RoMa trained on: RoMa ( +Blye N degMVg) 60.9 7 5' 5 85.7
RoMa (+our data) 60.6 753 854

1. real-world MegaDepth only,
2. synthetic AerialExtreMatch only,

3. their combination.
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Table 5: AUC@S5 results of different methods on Levels 1-8.

Method Lv.l Lv.2 Lv3 Lv4 Lv.5 Lv6 Lv.7 Lv8
ALIKED Zhao et al | (2023)+LG[L (2023] 8597 8120 7481 7181 7972 6226 40.82 25.84
DISK [Tyszkiewicz et al.|(2020}+ (2023) 8482 71.53 61.02 57.67 7291 5027 31.74 18.56
DeDoDe WKW 61.06 5798 51.60 46.87 4258 3215 2197 1171
XFeat[Potje ct al.|(2024] 65.03 5353 4121 3299 4465 2805 1603 827
XFeat [m 62.10 5140 39.19 30.64 4384 2893 1665 7.48
XFeat[Potje et al.|(20241+LG[Lindenberger et al.|(2023 75.12 6437 4948 47.19 5853 3885 2181 1247
ALIKED{Zhao et al. nm + ang et al.|(2025) 3498 2672 19.63 1998 2272 1557 1025 7.90
LoFTR[S 90.10 87.63 84.89 83.08 84.64 7447 5499 39.97
ELOFT 87.58 83.85 7831 7655 8092 66.78 4735 31.52
ASpanFormer en et al.|(2( 86.79 80.80 70.10 64.93 75.16 5636 34.94 20.65
DUST3RIM 1559 1525 10.89 10.88 839 658 454  3.69
MAS®3R [Ceroy et al.|(2024 83.82 80.17 7725 7495 7643 6572 48.74 36.04
[ 89.50 87.56 86.81 8691 87.43 80.03 64.09 53.45
89.55 8772 8634 87.19 87.79 8059 64.21 53.47
88.24 84.63 8226 83.82 83.08 6944 5094 37.28
89.88 88.22 87.61 88.69 88.28 83.10 74.80 68.67
Table 6: AUC@S5 results of different methods on Levels 9-16.

Method Lv.9 Lv10 Lv.11 Lv12 Lv.13 Lv.14 Lv.15 Lv.16
ALIKED [Zhao et al. ' +LG 6333 4660 3392 2494 2699 2317 2233 2277
DISK + 'B‘E 5525 3688 24.09 1550 2091 1749  14.18  14.29
DeDoDe[Edstedt et al. 1922 1316 902 7.0 353 279 251 362
XFeat[Potjc ct al.|(20 1783 1318 921 618 255 257 233 358
XFeat 20241 2075 1306 956 554 340 258 201 343
XFeat[Potje et al.|(20241+LG ]2023] 31.83 2229 1486 1093 749 603 620 638
ALIKED|Zhao et al. 1@ \% dng Wang et al. @E 8.42 5.80 4.75 5.02 0.47 0.61 0.73 0.79
7130 5808 4365 3285 39.16 3362 3323 3447

6132 4691 3694 2501 3091 2548 2452 2675

5001 34.02 24.16 1798 1571 1251 1240 11.84

245 226 188 276 029 023 026  0.60

MASGR |Ceroy ot al. (2024 57.16 4661 3471 2852 2058 19.14 18.05 19.41
RoMa|Edstedt et al.|(2024b 7952 7069 59.84 5270 5651 5478 5545  52.17
RoMaf en et al.[(2024 8024 68.53 57.04 4990 5346 5146 50.19 5113
RoMa(MA)|He et al. 68.17 5573 4214 3544 3697 3400 33.63 34.18
RoMa(ours 8357 7813 7147 7056 67.03 6742 67.85 6843

Table 7: AUC@S5 results of different methods on Levels 17-24.

Method Lv.17 Lv.18 Lv.19 Lv.20 Lv.21 Lv.22 Lv.23 Lv.24
+LG 112023} 8492 7656 7087 7315 71.04 4480 25.10 24.32

+ al[(2023) 8379 6672 5659 6404 6471 3708 1928  18.64

5758 59.18 5401 5328 3338 2324 1365 1215

56.64 4997 4143 4703 3095 2023 1094 995

5769 5106 4312 4512 3610 2192 1102  9.39

7159 5694 4856 5257 4664 2527 13.07  12.96

3370 2230 18.03 2232 2072 1000 547 7.4

88.64 8439 8125 8323 7443 5633 3991  39.08

86.52 7890 7550 7856 7230 5175 3337 3113

8632 7634 6640 67.88 6949 4107 22.65 21.54

1201 1157 926 1026 315 218 089  1.68

MASGR|Ceroy ot al (2074 8285 7889 74.87 7580 7243 5232 3615 34.13
RoMa[Edstedt et al. [(2024b 88.00 8434 8235 8455 8593 6671 5130  50.60
RoMa en et al.|(2024 88.55 84.86 8255 8457 8659 6602 49.16 4727
RoMa(MA) He et al. 86.58 80.60 7645 7950 7846 52.65 34.65 33.81
RoMa(ours 8825 8516 8332 8582 8697 7209 63.03 63.40
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Table 8: AUC@S5 results of different methods on Levels 25-32.

Method Lv.25 Lv.26 Lv.27 Lv.28 Lv.29 Lv.30 Lv.31 Lv.32
ALIKED|Zhao et al.|(2023 +LG|Lindenberger et al.|(2023) 56.42 3850 3222 30.31 2749  27.84 24.67 23.38
DISK |[Tyszkiewicz et al.[(2020)+LG|Lindenberger et al.|(2023)  47.22  31.14 2498 2244 2083 2399 18.27 13.58
DeDoDe Edstedt et al.|[(2024a} 1632  11.05 10.52 8.82 4.00 391 442 3.79
XFeat Potje et al.|(2024) 18.13 13.74 1413  10.79 4.05 434 4.94 3.20
XFeat*|Potje et al.|(2024) 19.89  14.11 14.67 9.87 4.42 5.30 4.86 3.48
XFeat|Potje et al.[(2024)+LG [Lindenberger et al.|(2023) 25.88 18.88 18.51 14.81 7.79 9.33 8.14 7.88
ALIKED |Zhao et al.|[(2023}+VGGT|Wang et al.|(2025) 8.09 5.08 5.82 6.94 0.64 1.11 0.82 1.06
LoFTR|Sun et al. |(2021) 62.81 4996  44.67 4199 3847 4101 3849  34.07
ELoFTR|Wang et al.|(2024c¢) 57.64 4180 3473  33.61 33.03 32.04 29.19 2692
ASpanFormer|Chen et al.|(2022) 4562 2853 2533 2132 1756 16.80  14.65 12.88
DUST3R [Wang et al. [(2024b) 0.84 1.96 2.70 2.39 0.16 0.37 0.53 0.54
MASt3r|Leroy et al.|(2024) 54.16 3993 3439 33.13 21.06 20.12 19.55 19.99
RoMa Edstedt et al. |(2024b) 7497  63.08 56.57 5733 5512 5522 5339 5453
RoMa(GIM)|Shen et al.|(2024) 7555 6049 5294  53.12 5295 5251 5026 4893
RoMa(MA)|He et al.|(2025} 62.42 4655 41.07 3852 37.03 36.17 3547 3278
RoMa(ours) 7986 69.61 6743 70.83 6409 6546 67.14 68.48

Table 9: Performance comparison on AerialExtreLocalization with different training datasets. .

Method High-quality map Low-quality map

(5m, 1°)  (10m, 1°)  (20m,2°) (Sm, 1°) (10m, 1°)  (20m, 2°)
RoMa (MegaDepth + BlendedMVS) 91.67 91.67 94.32 25.76 32.96 53.03
RoMa (MegaDepth + AerialExtreMatch) 97.35 97.35 98.11 45.46 53.41 73.11

Table 11: Performance comparison on AerialExtreLocalization with different training data
compositions.

Method High-quality map Low-quality map

(5m, 1°)  (10m, 1°)  (20m,2°) (Sm, 1°) (10m, 1°)  (20m, 2°)
RoMa (only MegaDepth) 95.83 95.83 96.59 34.37 44.32 62.12
RoMa (AerialExtreMatch) 89.77 89.77 90.53 9.09 10.61 27.65
RoMa (MegaDepth + AerialExtreMatch) 97.35 97.35 98.11 45.46 53.41 73.11
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Figure 12: Qualitative results of detector-based methods on reference maps of different quality.
Left: results on the high-quality map. Right: results on the low-quality map.
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Trans. Error: NaN
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RoMa(our): Rot. Error: 2.9 Trans. Error:2.3

Figure 13: Qualitative results of detector-free methods on reference maps of different quality.
Left: results on the high-quality map. Right: results on the low-quality map.
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Table [[T]reports results on real-world localization maps of different quality. The findings suggest that
real data is essential for strong generalization, while synthetic data contributes complementary scale
and diversity.

A.4 MORE RESULTS ON OTHER LOCALIZATION DATASETS

Both UAVD4L Wu et al.| (2024) and UAV VisLoc | Xu et al.|(2024) are real-world UAV localization
datasets. We evaluate our trained RoMa against its variants and other competing methods. RoMa
trained with our proposed dataset consistently outperforms other RoMa variants, as reported in
Table [[2] UAVDAL provides full 6DoF UAV poses, and we report recall with respect to both
translation and rotation. In contrast, UAV VisLoc only provides ground-truth translation, and thus,
evaluation is limited to translation recall.

Table 12: Visual localization results on UAVD4L and UAV VisLoc. RoMa trained with our proposed
dataset achieves slightly higher performance compared to the original RoMa.

M UAVD4L | UAV VisLoc
ethod
(5m, 1°)  (10m, 1°)  (20m, 2°) ‘ median | acc@S5m acc@10m acc@20m

ELoFTR [Wang et al.|(2024c) 64.00 64.67 97.33 2.92 60 84 92
DUSt3R [Wang et al.|(2024b) 54.67 54.67 94.00 7.31 28 64 84
MASt3R [Leroy et al.|(2024) 60.67 60.67 97.33 4.29 56 68 76
RoMa [Edstedt et al.|(2024b) 65.33 65.33 97.33 2.55 84 92 100
RoMa (GIM) |Shen et al.|(2024) 68.67 68.67 97.33 2.47 84 92 100
RoMa (MA) He et al. |(2025) 68.00 68.00 97.33 2.53 84 88 96
RoMa (our) 68.67 68.67 97.33 2.28 84 92 100
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