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ABSTRACT

Image matching serves as a core component for UAV localization guided by
satellite imagery. However, this task remains highly challenging due to the extreme
viewpoint discrepancies between low-altitude UAV images and nadir-view satellite
maps. Existing datasets primarily focus on ground-level or high-altitude UAV
imagery, lacking sufficient coverage of the geometric variations typical of real aerial
scenarios. To address these limitations, we introduce AerialExtreMatch, a large-
scale, high-fidelity dataset tailored for extreme-view image matching and UAV
localization. It consists of approximately 1.5 million synthetic image pairs rendered
from high-quality 3D scenes, simulating diverse UAV and satellite viewpoints
to enable robust training of image matching models. To support fine-grained
evaluation, we construct a hierarchical benchmark with 32 difficulty levels. These
are defined using three geometric criteria: overlap ratio, scale variation, and pitch
difference. In addition, we collect a real-world UAV localization dataset with geo-
aligned reference maps of varying visual quality. Extensive experiments involving
16 representative detector-based and detector-free methods demonstrate that models
trained on AerialExtreMatch achieve substantial performance gains in both image
matching and real-world localization under extreme-view conditions. The dataset
and code will be released upon acceptance.

1 INTRODUCTION

Image matching has become a pivotal technique for satellite-guided visual localization of low-
altitude unmanned aerial vehicles (UAVs). Accurate pose estimation is particularly critical for
mission-oriented applications such as field rescue Bejiga et al. (2017); Silvagni et al. (2017) and
large-scale scene reconstruction Maboudi et al. (2023). While UAV-based reconstruction models have
been commonly employed for these tasks, satellite-based reconstructions offer distinct advantages,
including rapid updatability and scalability over vast geographic regions. Nevertheless, a fundamental
challenge arises from the inherent disparity in imaging perspectives: satellite imagery is acquired
from high-altitude orbits with top-down orthographic views, whereas low-altitude UAVs typically
capture oblique images. This pronounced viewpoint difference greatly hinders the establishment
of accurate feature correspondences, thus limiting the robustness and reliability of existing image
matching methods.

Contemporary image matching methods Shen et al. (2024); Leroy et al. (2024) are predominantly
trained and evaluated on ground-level datasets, which inherently lack the angular variations present
in aerial scenarios. This dataset bias substantially limits its generalizability and effectiveness in aerial
image matching tasks. Although the rapid growth of the low-altitude UAV has motivated recent
efforts to construct aerial localization benchmarks from reconstructed real-world scenes Wu et al.
(2024); Chen et al. (2025); Ye et al. (2025), the high cost of data acquisition remains a significant
barrier to the large-scale deployment of these approaches.

To overcome the performance limitations caused by the scarcity of aerial datasets and to establish a
fair benchmark for algorithm evaluation, we propose a method for generating realistic synthetic data
by leveraging high-fidelity 3D models and advanced rendering techniques. Our approach not only
substantially reduces the cost of data collection but also inherently preserves privacy. Specifically, we
employ a diverse set of 3D scene models provided by Cesium for Unreal, in combination with Unreal
Engine 5 and AirSim, to systematically simulate both UAV aerial viewpoints and satellite overhead
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Figure 1: Overview of the proposed AerialExtreMatch, which consists of three components: Train
Pair, Evaluation Pair, and Localization. The Train Pair set include approximately 1.5M pairs with
variations in flight altitude and pitch for supporting model train. The Evaluation Pair set defines 32
difficulty levels, ranging from easy to hard, to enable fine-grained performance analysis. Invisibility
is occluded with a black mask. The Localization component evaluates pose accuracy using real UAV
query images and two geo-aligned reference maps with varying visual quality: a high-quality map
reconstructed from UAV imagery (HQ) and a low-quality map derived from satellite data (LQ).

perspectives. This framework allows us to construct a comprehensive training dataset tailored for
extreme-view image matching tasks. To effectively capture multi-scale geometric transformations,
we generate multiple images at varying altitudes for each viewpoint within a given scene.

Compared to real-world data, synthetic data provides greater flexibility in simulating diverse view-
points and offers precise control over the conditions of data generation. Leveraging these advantages,
we introduce a fine-grained evaluation framework that facilitates comprehensive analysis of image
matching robustness under varying geometric configurations. Specifically, we propose the Evaluation
Pair, a structured 32-level hierarchy of matching difficulty defined by three key geometric criteria:
overlap ratio, pitch difference, and scale.

Table 1: Overview of existing image matching benchmark and UAV localization datasets.

Dataset Type Depth Viewpoint Variation Graded Evaluation Supports Match Training

MegaDepth Li & Snavely (2018) ✓ yaw ✗ ✓

AerialMegaDepth Vuong et al. (2025) ✓ pitch ✗ ✓

ScanNet Dai et al. (2017) ✓ yaw ✗ ✓

ScanNet++ Yeshwanth et al. (2023) ✓ yaw ✗ ✓

HPatches Balntas et al. (2017) ✗ yaw ✗ ✓

BlendedMVS Yao et al. (2020) ✓ yaw+pitch ✗ ✓

Waymo Sun et al. (2020) ✓ yaw ✗ ✓

RUBIK Loiseau & Bourmaud (2025) ✗ yaw ✓ ✗

UAVD4L Wu et al. (2024) ✗ pitch ✗ ✗

AnyVisLoc Ye et al. (2025) ✗ yaw ✗ ✗

UAVVisLoc Xu et al. (2024) ✗ pitch ✗ ✗

AerialExtreMatch (ours) ✓ pitch ✓ ✓

To further validate performance under real-world conditions, we compile geographically aligned
reference maps with varying visual quality. These include digital surface models (DSMs) and digital
orthophoto maps (DOMs) rendered from high-quality textured 3D models, as well as reconstructions
derived from satellite imagery. The query set comprises real UAV-captured images acquired at low
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altitudes, each paired with noisy prior poses and accurate ground-truth camera parameters. Together,
these components constitute a comprehensive benchmark dataset for UAV-based visual localization.
The complete pipeline for image matching and localization defines our proposed AerialExtreMatch,
as illustrated in Figure 1.

We adopt RoMa Edstedt et al. (2024b), a state-of-the-art image matching method, as the baseline for
training. Experimental results demonstrate that training on AerialExtreMatch significantly enhances
its robustness to large viewpoint variations. In addition, we conduct a comprehensive evaluation
involving 16 representative approaches, spanning both detector-based and detector-free methods. The
results show that under favorable conditions—characterized by high overlap, small scale differences,
and minimal pitch variation—all evaluated methods perform reliably. However, under extreme-
view conditions with low overlap and large pitch differences, the performance of existing methods
degrades significantly. Notably, the RoMa variant trained on our dataset achieves the best overall
matching accuracy. In the real-world localization benchmark, it similarly attains superior performance,
achieving recall rates on high-quality reference maps that are more than twice those on low-quality
maps under the same evaluation protocol.

The contributions of this work can be summarized in three aspects:

• We construct a synthetic dataset for supporting aerial-view image matching. The evaluation
pair is further organized into difficulty levels based on geometric variations.

• We collect a real-world dataset for low-altitude UAV localization, consisting of geo-aligned
high-quality and low-quality reference maps.

• We provide a comprehensive benchmark involving 17 representative methods, demonstrating
the effectiveness of the proposed dataset.

2 RELATED WORK

2.1 IMAGE MATCHING BENCHMARKS

Training Data. Large-scale RGB-depth training, exemplified by DUSt3R Wang et al. (2024b);
Leroy et al. (2024); Wang et al. (2024a; 2025), has proven effective for depth estimation, pose
regression, and scene reconstruction, with clear scalability benefits. Recent works such as MatchAny-
thing He et al. (2025) and MINIMA Ren et al. (2025) extend this paradigm to image matching, where
both data diversity and scale are critical. However, existing datasets Li & Snavely (2018); Dai et al.
(2017) mainly cover ground-level scenes with limited viewpoint variation, lacking aerial-specific
transformations.

Evaluation Data. HPatches Balntas et al. (2017) lacks depth and focuses on homography.
MegaDepth Li & Snavely (2018) and ScanNet Dai et al. (2017) are widely used but do not stratify
difficulty, limiting failure analysis. RUBIK Loiseau & Bourmaud (2025) quantifies difficulty via
geometric transformations using nuScenes Caesar et al. (2020), but lacks ground-truth depth and is
restricted to vehicle-centric urban scenes. In contrast, we design a benchmark for aerial viewpoint
variation and introduce three geometric metrics to stratify difficulty.

2.2 SATELLITE-GUIDED UAV LOCALIZATION DATASET

Localizing low-altitude UAVs with satellite imagery is difficult due to extreme viewpoint gaps. Exist-
ing datasets focus on high-altitude nadir views He et al. (2024); Keetha et al. (2023). UAVD4L Wu
et al. (2024) includes multi-view low-altitude data but relies on costly oblique reconstructions. Other
works Ye et al. (2025) use satellite-reconstructed maps, but with limited quality. These datasets
remain small and based on real UAV data, thus unsuitable for training large models. We contribute a
real-world localization dataset with multi-quality reference maps, and further synthesize large-scale
aerial imagery from photorealistic 3D models. As shown in Table 1, no prior dataset jointly supports
large-scale image matching and realistic UAV localization.
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: 3D Model from Cesium for Unreal

Render based on sample posesRGB & Depth

Warp

Figure 2: Left: Training data generation. Cesium for Unreal provides high-quality 3D models,
enabling the rendering of RGB and depth images from diverse aerial viewpoints by sampling camera
poses with varying altitudes and angles. Right: Co-visibility estimation. Given intrinsics K,
extrinsics P , and RGB-depth image pairs (I1, D1) and (I2, D2), the co-visible masks C12 and C21

are computed by warping 3D points from one view to the other via geometric reprojection.

3 AERIALEXTREMATCH

AerialExtreMatch is a large-scale dataset tailored for training image matching, conducting hi-
erarchical evaluations, and supporting real-world UAV localization tasks. Figure 2 presents the
overall pipeline for collecting RGB-depth pairs and estimating the co-visibility mask. The dataset
is constructed using high-quality 3D models and a photorealistic simulation engine. It comprises:
(1) the generation of training data (Section 3.1); (2) the categorization protocol for match evaluation
(Section 3.2); and (3) the design of the localization benchmark (Section 3.3).

3.1 TRAINING DATA COLLECTION

Most existing image matching datasets Li & Snavely (2018); Dai et al. (2017) are collected using hand-
held devices, resulting in limited geometric diversity, particularly in variations in aerial viewpoints.
This constraint significantly hampers the generalization ability of matching models. To address
this limitation, we construct a dataset that incorporates diverse aerial viewpoint transformations to
enhance model robustness.

Specifically, we employ Unreal Engine 5 with the AirSim plugin, in conjunction with l Cesium for
Unreal, which provides high-quality 3D models, to generate paired RGB-depth images. From various
urban and natural scenes available in Cesium for Unreal, we select 63 distinct regions and simulate
both oblique UAV perspectives and nadir satellite views, yielding a training dataset of approximately
1.5M image pairs.

To better emulate real-world low-altitude UAV flight conditions, simulated UAV views are rendered
at altitudes ranging from 50 m to 200 m, with pitch angles between 50◦ and 75◦. To introduce multi-
scale geometric variation, we generate satellite-view at three heights—300 m, 400 m, and 500 m—at
the same geographic location. Each RGB-depth pair is rendered at a resolution of 1280× 1024 pixels.
More details are provided in the appendix A.1.

3.2 GRADED EVALUATION GENERATION

The Train Pair and Evaluation Pair are both synthesized, where each image is associated with an
RGB image I , a depth map D, and the corresponding intrinsics K and extrinsics P . For evaluation,
we compute geometric criteria between image pairs, including overlap ratio, pitch difference, and
scale, to establish graded difficulty.

Given an image pair (I1, I2) with known camera intrinsics (K1,K2), extrinsics (P1, P2), and depth
maps (D1, D2), we estimate co-visibility masks C12 and C21. For each pixel p1 ∈ I1, the corre-
sponding location in I2 is obtained via:
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p2 = π

(
K2

(
R21

(
D1(p1) ·K−1

1

[
p1

1

])
+ t21

))
, (1)

Where R21 and t21 denote the relative rotation and translation from camera 1 to camera 2, and π(·)
represents the perspective projection that normalizes by the depth coordinate.

The reprojected depth D′
2(p2) is defined as the z-coordinate of the transformed 3D point:

D′
2(p2) =

(
R21

(
D1(p1) ·K−1

1

[
p1

1

])
+ t21

)(z)

, (2)

Where (·)(z) denotes extracting the third (depth) component of a 3D vector.

The visibility mask C12(p1) is computed as:

C12(p1) =

{
1, if |D′

2(p2)−D2(p2)| < ϵ ·D2(p2),

0, otherwise,
(3)

Where ϵ is empirically set to 0.05.

Criteria. Building upon the co-visibility masks, we introduce three geometric metrics to quantita-
tively assess the matching difficulty of each image pair.

(1) Overlap Ratio: Defined as the ratio of co-visible pixels between the two images to the average
number of total pixels, and computed as:

Overlap =

∑
p1

C12(p1) +
∑

p2
C21(p2)

|p1|+ |p2|
, (4)

where |p1| and |p2| denote the total number of pixels in I1 and I2, respectively. The visibility masks
C12 and C21 represent pixel-level co-visibility from I1 to I2 and vice versa.

(2) Pitch Difference: Measures the absolute difference in pitch angles between the two cameras. One
image simulates a nadir-view satellite perspective, while the other represents an oblique UAV view.

(3) Scale: Captures the scale difference between the two views based on the 2D coverage of 3D-
projected corner points onto the xy-plane. Given the 3D corner points {x(1)

i }4i=1 and {x(2)
i }4i=1 for

I1 and I2, the projected areas A1 and A2 are computed as:

Ak =
(
max

i
x
(k,x)
i −min

i
x
(k,x)
i

)
×

(
max

i
x
(k,y)
i −min

i
x
(k,y)
i

)
, k ∈ {1, 2}, (5)

where x
(k,x)
i and x

(k,y)
i denote the x- and y-coordinates of the i-th corner point in image k.

The scale ratio is then defined as:

Scale = max

(
A1

A2
,
A2

A1

)
.

Benchmark Organization. Based on the three criteria defined above, we construct the Evaluation
Pair by categorizing image pairs into discrete difficulty levels. Examples are shown in Figure 3. For
each pair with a co-visibility mask C, we compute the corresponding metrics and discretize them
into the following bins:

• Overlap Ratio (four bins): <20, 20–40, 40–60, and >60;
• Pitch Difference (four bins): 50–55, 55–60, 60–65, and 65–70 degrees;
• Scale Variation (two bins): 1–2, and >2;
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Overlap: Easy Hard

HardPitch difference: Easy
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Figure 3: Visualization examples pairs under different difficulties.

We select up to 1k image pairs for each valid combination of difficulty bins. If fewer than 1k
pairs are available, all available pairs are included. This sampling yields approximately 30k image
pairs, broadly covering the geometric challenges commonly encountered in aerial image matching
scenarios.

3.3 LOCALIZATION BENCHMARK

Query Image Collection. We collect query images using a DJI M300 RTK drone DJI300 equipped
with a DJI H20T camera H20T. To simulate low-altitude, oblique flight conditions, both the drone’s
altitude and the camera’s pitch angle are carefully controlled during data acquisition. Leveraging
GPS priors, accurate camera poses are estimated using the Render2Loc localization method Yan et al.
(2023). Details of the ground truth generation process are provided in the supplementary material.

Reference Data Preparation. Reference images are captured using a DJI M300 RTK drone DJI300
equipped with a professional five-lens camera, the SHARE PSDK 102S 102s. The aerial imagery is
processed using modern 3D reconstruction techniques to generate a digital orthophoto map (DOM)
and a digital surface model (DSM). In addition, satellite-derived DSM and DOM data covering the
same geographic region are acquired from commercial providers and spatially aligned.

Pair Construction. Given the prior information of each query image, including camera intrinsics
and noisy extrinsics, we project each reference 3D point onto the query image plane to determine the
corresponding pixel location. Based on this projection, we extract a cropped patch from the reference
DSM/DOM to form a localization image pair. The projection is defined by the following equation:

u = π (K (RaerialXsate + taerial)) , where π =
(x
z
,
y

z

)
, z > 0, 0 ≤ u ≤ Waerial, 0 ≤ v ≤ Haerial.

(6)

4 EXPERIMENT

Training Details. We generate a total of ∼1.5M image pairs in AerialExtreMatch, comprising
nadir-view and oblique-view images captured at varying altitudes. For training the matching model,
we adopt the official implementation of RoMa Edstedt et al. (2024b), using a combination of
MegaDepth Li & Snavely (2018) and AerialExtreMatch as the training data. The learning rates are
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set to 6.25× 10−7 for the encoder and 1.25× 10−5 for the decoder, and we use AdamW Loshchilov
& Hutter (2017) as the optimizer. Training is conducted on 8 NVIDIA 3090 GPUs (24GB) with a
batchsize of 32, taking approximately two days to complete.

Evaluation Methods. We compare our trained model against a total of 16 representative methods,
including detector-based and detector-free approaches.

For detector-based methods, we select SuperPoint DeTone et al. (2018), DISK Tyszkiewicz et al.
(2020), and ALIKED Zhao et al. (2023) as keypoint detectors, and employ LightGlue Lindenberger
et al. (2023) and XFeat Potje et al. (2024) for feature matching. Additionally, the recent large
geometry model VGGT Wang et al. (2025) provides image matching results by using ALIKED Zhao
et al. (2023) for keypoint extraction and a tracking head for matching, as described in the original
paper.

For detector-free methods, we evaluate LoFTR Sun et al. (2021), ELoFTR Wang et al. (2024c),
ASpanFormer Chen et al. (2022), the official RoMa Edstedt et al. (2024b), RoMa trained with the
GIM Shen et al. (2024) paradigm (denoted as GIM), RoMa trained in a cross-modal manner He et al.
(2025) (denoted as MA), as well as DUSt3R Wang et al. (2024b) and MASt3R Leroy et al. (2024),
which perform image matching via pointmap correspondence.

To ensure fair comparison, all experiments are conducted on the same hardware configuration:
NVIDIA 3090 GPUs. For RoMa-based methods, all training and evaluation settings are kept identical
except for the model checkpoint. Other methods are used with their default hyperparameters, and the
maximum input image size is set such that the longer side does not exceed 1024.

4.1 MATCH BENCHMARK RESULTS

Evaluation Protocol. Following Sun et al. (2021); DeTone et al. (2018), we report the AUC of
pose errors at a threshold of 5◦, where the pose error is defined as the maximum of the rotation
and translation errors. Camera poses are estimated by computing the fundamental matrix from the
predicted correspondences using the RANSAC.

Results. We present in Figure 4 the image matching results of RoMa-based methods, two detector-
based, and one pointmap-based approach. The difficulty is structured cyclically every four levels:
within each cycle, the overlap ratio remains constant, while increasing the level index corresponds to
larger pitch angle differences. Across cycles, a higher level index indicates decreasing overlap.

Level 1 represents large overlap, small scale variation, and minimal pitch difference, both detector-
based and detector-free methods achieve satisfactory performance. However, as the pitch difference
increases within the same overlap setting, the performance of most methods deteriorates. Notably, in
the most challenging condition (pitch difference of 70◦–75◦), our trained RoMa consistently achieves
the best results, outperforming the second-best method by a margin of 20% in the hardest level. As
shown in the qualitative results, our trained RoMa-based model is the only one that predicts correct
correspondences within co-visible regions. Other training paradigms produce numerous incorrect
matches. Detector-based methods fail under such extreme conditions and generate error matches.
MASt3R Leroy et al. (2024) benefits from training on aerial data and produces a few sparse matches
in co-visible areas. More results are provided in the supplementary material.

4.2 LOCALIZATION BENCHMARK RESULTS

Evaluation Protocol. We follow the standard visual localization evaluation protocol Sattler et al.
(2018); Wu et al. (2024) and report the results under three commonly used thresholds: (5m, 1◦),
(10m, 1◦), and (20m, 2◦).

Results. Table 2 reports the visual localization results of 17 methods on both the high-quality (HQ)
and low-quality (LQ) reference maps. On the HQ map, most methods perform well. Among detector-
based methods, the combination of ALIKED Zhao et al. (2023) and LightGlue Lindenberger et al.
(2023) achieves the best performance. For detector-free approaches, our trained RoMa outperforms
all other methods, achieving a recall of 97.35% at the (5m, 1◦) threshold, 6.0% points higher than
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Figure 4: Evaluation on AerialExtreMatch for image matching. RoMa-based methods exhibit
strong performance across various conditions, with our trained RoMa achieving the best results under
challenging scenarios, including low overlap and large pitch differences. Each group of four levels
shares the same overlap ratio, while the pitch difference gradually increases within each group as the
level increases. Every 16 levels form a complete cycle across different scales. The right panel shows
qualitative matching results under extreme conditions, where invisible regions are masked in black.
(Zoom in for details; matching correspondences are indicated by same-colored points.)

Table 2: Visual localization results on different quality maps. The left panel shows results on
the high-quality (HQ) map, while the right panel presents results on the low-quality (LQ) map. Our
trained RoMa achieves superior performance across both settings, with the best results highlighted in
bold.

Method (5m, 1◦) ↑ (10m, 1◦) ↑ (20m, 2◦) ↑ (5m, 1◦) ↑ (10m, 1◦) ↑ (20m, 2◦) ↑
ALIKED Zhao et al. (2023)+LG Lindenberger et al. (2023) 86.74 86.74 87.12 3.03 5.68 14.39
DISK Tyszkiewicz et al. (2020)+LG Lindenberger et al. (2023) 82.58 82.58 83.71 0.00 0.00 0.00
SP DeTone et al. (2018)+LG 79.92 79.92 84.85 6.82 9.47 17.42
DeDoDe Edstedt et al. (2024a) 37.50 37.88 68.94 0.00 0.00 0.00
XFeat Potje et al. (2024) 54.92 54.92 74.62 0.38 0.38 1.14
XFeat* Potje et al. (2024) 56.06 56.44 73.49 0.76 0.00 3.79
XFeat Potje et al. (2024) +LG Lindenberger et al. (2023) 77.27 77.27 81.44 0.00 0.00 0.38
ALIKED Zhao et al. (2023)+VGGT Wang et al. (2025) 2.65 4.55 30.30 0.00 0.00 0.00

LoFTR Sun et al. (2021) 66.67 66.67 84.47 1.89 6.06 17.05
ELoFTR Wang et al. (2024c) 81.82 81.82 85.61 4.55 7.20 21.97
ASpanFormer Chen et al. (2022) 80.30 81.06 85.61 10.23 10.23 20.46
DUSt3R Wang et al. (2024b) 1.52 3.78 16.29 0.00 0.00 0.00
MASt3R Leroy et al. (2024) 76.14 76.52 87.50 0.38 2.65 7.96
RoMa Edstedt et al. (2024b) 95.83 95.83 96.59 34.37 44.32 62.12
RoMa (GIM) Shen et al. (2024) 94.32 94.32 97.35 28.79 43.56 63.26
RoMa (MA) He et al. (2025) 90.15 90.15 91.29 22.73 42.05 64.39
RoMa (ours) 97.35 97.35 98.11 45.46 53.41 73.11

RoMa (MA) He et al. (2025). Due to the large resolution gap between query and reference images,
both VGGT Wang et al. (2025) and DUSt3R Wang et al. (2024b) fail to produce satisfactory results.

On the LQ map, in addition to geometric viewpoint changes, degraded image quality and long-term
appearance variations further challenge image matching algorithms. As a result, most detector-based
methods fail to find sufficient reliable correspondences and do not yield successful pose estimations.
Similarly, the success rate of detector-free methods also drops significantly. Nevertheless, our trained
RoMa remains the top-performing approach, clearly outperforming all other RoMa-based variants.
This demonstrates the effectiveness of our synthetic dataset in modeling the geometric variations
between UAV and nadir-view imagery, thereby substantially improving localization robustness.

It is important to emphasize that all results are obtained in a zero-shot setting: the training data
comprises MegaDepth Li & Snavely (2018) and our proposed AerialExtreMatch, with no overlap
with the localization test set. Qualitative localization results of RoMa-based methods on both HQ and
LQ maps are shown in Figures 5 and 6.
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(a) Rot. Error: 77.4 Trans. Error: 7412.7 (b) Rot. Error: 17.7  Trans. Error: 94.8

(c) Rot. Error: 1.4  Trans. Error: 3.3 (d) Rot. Error: 0.6  Trans. Error: 1.24

Figure 5: Qualitative results on the high-quality map. Subfigures (a)–(d) show the results of the
original RoMa, RoMa (MA), RoMa (GIM), and our trained RoMa, respectively.

(a) Rot. Error: 102.9  Trans. Error: 2031.3 (b) Rot. Error: 3.2  Trans. Error: 67.1

(c) Rot. Error: 1.9  Trans. Error: 5.9 (d) Rot. Error: 0.9  Trans. Error: 3.9

Figure 6: Qualitative results on the low-quality map. Subfigures (a)–(d) show the results of the
original RoMa, RoMa (MA), RoMa (GIM), and our trained RoMa, respectively.

5 CONCLUSION

We propose AerialExtreMatch, a large-scale synthetic dataset constructed from high-fidelity 3D
models to simulate geometric transformations between aerial and nadir viewpoints, thereby enriching
the training data for image matching tasks. In addition, we introduce the Evaluation Pair, a fine-
grained benchmarking suite that categorizes image pairs into 32 difficulty levels based on overlap
ratio, scale variation, and pitch difference, enabling a systematic evaluation of model robustness under
diverse geometric configurations. To promote research in UAV localization with satellite guidance,
we also provide two geo-aligned reference maps of varying reconstruction quality, supporting fair
and realistic assessment of existing matching approaches. Extensive experiments show that training
on AerialExtreMatch substantially improves model resilience to extreme viewpoint changes in aerial
scenarios.

Despite these strengths, AerialExtreMatch has certain limitations. As it is rendered synthetically, it
lacks variations in illumination and weather conditions. Additionally, challenges such as foreground
occlusion are not yet considered in the current benchmark. We leave these directions for future
exploration.

9
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Our proposed synthetic dataset is generated from open-source 3D models that are licensed for
academic research use. The collected real-world UAV data does not contain personally identifiable
information such as faces or license plates, and the real-world maps are restricted to academic
research purposes only. We adhere to the ICLR Code of Ethics and ensure that the datasets and
experiments presented in this work comply with privacy, legal, and research integrity considerations.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. Details regarding dataset distribution and
the collection process of the real UAV data are provided in the Appendix. The paper describes the
training settings, evaluation protocols, and metrics in the main text, while additional implementation
details are included in the supplementary material. Together, these resources enable the community
to reliably reproduce our results.

LLM USAGE

We used a large language model (LLM) solely for proofreading and language refinement of the
manuscript. The LLM was not involved in research ideation, methodology design, experimental
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A APPENDIX

The following section provides additional details of AerialExtreMatch (Section A.1) and reports
comprehensive experimental results on our proposed dataset (Section A.2). In addition, we present
results from mixed training on other datasets, evaluations on standard ground-level benchmarks
(Section A.3), and further experiments on additional UAV localization datasets (Section A.4).

A.1 AERIALEXTREMATCH DETAILS

We introduce the sampling distribution of Train Pair in AerialExtreMatch in Section A.1.1. Sec-
tion A.1.2 presents the criteria for defining difficulty levels, along with corresponding visual examples.
Section A.1.3 describes the process of generating ground-truth poses for query images and illustrates
the differences between reference maps of varying quality.

A.1.1 TRAINING DATA DETAILS

Figure 7 illustrates the distribution of sampled regions across continents, the spatial layout within
Europe, and the sampling patterns of nadir and oblique viewpoints. Nadir views are obtained at
uniform spatial intervals, with three images rendered at different altitudes for each location. In
contrast, oblique views are stochastically sampled to emulate low-altitude UAV perspectives within
each region. Our sampling procedure adopts a three-level hierarchy: continent → country → region.
For each continent, we select multiple urban areas from different countries and synthesize data using
3D assets provided by Cesium for Unreal. Since the platform offers substantially more 3D models
for Europe than for other continents, European samples naturally constitute the largest portion of our
dataset.

Europe North America Asia
0

10

20

30

40

50

Figure 7: Histogram and sampling examples of region distribution. The left shows the histogram
of sampling locations across continents. The middle visualizes the sampled regions within Europe,
where each star denotes one sampled area. The right illustrates the viewpoint distribution within each
region: points represent oblique views, and points indicate simulated nadir views.

A.1.2 EVALUATION PAIR DETAILS

Table 3 summarizes the number of image pairs per difficulty level across different geometric variables.
The evaluation set is divided into 32 levels, forming two cycles of 16 levels each. Levels 1–16 corre-
spond to scale variations in the range of [1.0, 2.0], while levels 17–32 follow the same configuration
of overlap and pitch differences but with scale values exceeding 2.0. Except for levels 17 and 20,
which contain 665 and 387 pairs, respectively, all other levels from 17 to 32 contain 1000 image pairs.
Figure 8 presents a visualization example for each difficulty level. The top panel shows examples
with scale in [1.0, 2.0], and the bottom panel corresponds to examples with scale greater than 2.0.
Within each panel, rows represent levels with the same overlap ratio but increasing pitch differences,
while columns represent levels with the same pitch difference but decreasing overlap ratios.

A.1.3 LOCALIZATION DETAILS

Query Image Collect. We collect the query images Iqusing a DJI M300 drone equipped with the
H20T camera, which integrates three types of lenses. For our localization experiments, we utilize the
wide-angle images. The wide-angle lens is calibrated indoors, and distortion-corrected images are
used for all evaluations. Figure 9 shows the image acquisition device, and Table 4 lists the detailed
camera parameters.
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Table 3: Difficulty level definitions. The 32 levels are divided into two cycles of 16 levels each. Levels 17–32
follow the same variation patterns as Levels 1–16 in terms of overlap and pitch difference, but with a higher
scale range.

Level Overlap Pitch Difference Scale Variation Num.
1 >60 55–60 1.0 – 2.0 1000
2 >60 60–65 1.0 – 2.0 1000
3 >60 65–70 1.0 – 2.0 1000
4 >60 70–75 1.0 – 2.0 505
5 40–60 55–60 1.0 – 2.0 1000
6 40–60 60–65 1.0 – 2.0 1000
7 40–60 65–70 1.0 – 2.0 1000
8 40–60 70–75 1.0 – 2.0 1000
9 20–40 55–60 1.0 – 2.0 1000
10 20–40 60–65 1.0 – 2.0 1000
11 20–40 65–70 1.0 – 2.0 1000
12 20–40 70–75 1.0 – 2.0 1000
13 <20 55–60 1.0 – 2.0 1000
14 <20 60–65 1.0 – 2.0 1000
15 <20 65–70 1.0 – 2.0 1000
16 <20 70–75 1.0 – 2.0 1000

Query Image GT Pose. We adopt the Render2Loc Yan et al. (2023) strategy to obtain ground-truth
poses ξgt. Specifically, for each query image Iq with a known pose ξprior, we render an RGB-D
image from a high-fidelity 3D model at the given pose. A state-of-the-art image matching method is
then applied to establish 2D-2D correspondences between the query and the rendered images. With
the rendered depth ID, we further derive 2D-3D correspondences. Finally, a precise camera pose
is estimated using a PnP solver with RANSAC. Figure 10 illustrates the matching process on two
scenes with four image pairs, along with comparisons between real images and the corresponding
renderings.

Reference Map. We provide two types of reference maps: a high-quality DOM and DSM generated
from textured 3D models, and a low-quality version reconstructed from satellite imagery. Figure 11
visualizes the differences between the two map qualities. The high-quality map exhibits clear RGB
textures, no long-term environmental changes, high geometric accuracy, and detailed depth maps. In
contrast, the low-quality map suffers from blurry textures, long-term changes, and blocky depth maps
with limited detail.

A.2 MORE RESULTS ON OUR BENCHMARK

In the main paper, we selectively report the performance of several matching methods on the
Evaluation Pair subset. Comprehensive results for all methods across different difficulty levels will
be presented in Section A.2.1. Additionally, while the main paper includes localization benchmark
results for all methods, more qualitative visualizations will be provided in Section A.2.2.

A.2.1 MATCH BENCHMARK

Tables 5–8 report detailed AUC@5◦ results for all 16 evaluated methods. Across all difficulty levels,
ALIKED Zhao et al. (2023)+LG Lindenberger et al. (2023) consistently achieves the best performance
among detector-based methods. For detector-free approaches, LoFTR Sun et al. (2021) performs best
under high-overlap and low-pitch-difference conditions (i.e., Levels 1 and 17), while our fine-tuned
RoMa achieves superior performance across the remaining levels. DUST3R Wang et al. (2024b) is
not originally designed for image matching, consistently underperforms compared to other methods.
Apart from DUST3R Wang et al. (2024b), detector-free methods generally outperform detector-based
ones across most difficulty settings.
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Figure 8: Visualization of evaluation pairs across different difficulty levels. The top panel shows
levels 1–16 with scale in [1.0, 2.0], while the bottom panel shows levels 17–32 with scale greater
than 2.0. Each row shares the same overlap level with increasing pitch differences, and each column
shares the same pitch level with decreasing overlap ratios.

Figure 9: The capture device DJI M300 RTK
mounted H20T.

Camera Types Camera Parameters

Wide-angle Lens

Sensor Width: 6.29

Sensor Height: 4.71

Focal Length: 4.5

Image Resolution: 4056 × 3040

Table 4: The wide-angle lens camera parameters.

Within each 4-level cycle, the overlap ratio remains fixed while the pitch difference increases,
leading to a consistent performance drop for all methods. Under easy conditions (high overlap, low
pitch difference), both detector-based and detector-free methods perform well. However, as the
overlap decreases and pitch difference grows, detector-based methods degrade significantly. In the
hardest cases (Levels 16 and 32), the best-performing detector-free method outperforms the best
detector-based counterpart by a factor of three.

A.2.2 LOCALIZATION BENCHARK

We report the localization performance of all methods in the main paper. Figure 12 and Figure 13
further present qualitative visualizations of different methods. All methods perform well on the high-
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Figure 10: Qualitative matching results and ground-truth quality visualization. We present four
comparison results from rural and urban scenes. In each panel, the left side shows matching results
between the query image and the rendering from the prior pose, while the right side shows a visual
comparison between the query image and the rendering from the ground-truth pose. The query image
is shown on the left in both views.

Figure 11: Visualization of reference maps with different quality levels. The left shows the
query image, the middle displays the RGB-Depth pair rendered from the high-quality map, and the
right shows the RGB-Depth pair from the low-quality map. Although the maps are geo-aligned, the
low-quality version exhibits degraded appearance and reduced geometric accuracy.

quality reference map, while detector-free approaches exhibit greater robustness, with RoMa-based
methods achieving the best results.

A.3 IMPACT OF TRAINING DATA COMPOSITION

BlendedMVS Yao et al. (2020) is an open-source dataset that provides both ground-level and
aerial views. To evaluate its impact, we retrain RoMa on BlendedMVS while keeping all other
configurations identical, and report results on both our UAV localization benchmark and the standard
MegaDepth-1500 dataset. As shown in Table 9, the left and right columns correspond to high- and
low-quality maps, respectively. Entries where our dataset outperforms the BlendedMVS-trained
counterpart are highlighted in bold.

Table 10: Performance of different RoMa variants
on MegaDepth-1500.

Method 5° ↑ 10° ↑ 20° ↑
RoMa (only MegaDepth) 62.6 76.7 86.3
RoMa (+BlendedMVS) 60.9 75.5 85.7
RoMa (+our data) 60.6 75.3 85.4

Table 10 further shows that the perfor-
mance drops by only 2% compared to the
model trained solely on MegaDepth, which
is comparable to joint training with Blend-
edMVS.

To further analyze the role of real and syn-
thetic data, we compare RoMa trained on:

1. real-world MegaDepth only,
2. synthetic AerialExtreMatch only,
3. their combination.
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Table 5: AUC@5 results of different methods on Levels 1–8.

Method Lv. 1 Lv. 2 Lv. 3 Lv. 4 Lv. 5 Lv. 6 Lv. 7 Lv. 8

ALIKED Zhao et al. (2023)+LG Lindenberger et al. (2023) 85.97 81.20 74.81 71.81 79.72 62.26 40.82 25.84
DISK Tyszkiewicz et al. (2020)+LG Lindenberger et al. (2023) 84.82 71.53 61.02 57.67 72.91 50.27 31.74 18.56
DeDoDe Edstedt et al. (2024a) 61.06 57.98 51.60 46.87 42.58 32.15 21.97 11.71
XFeat Potje et al. (2024) 65.03 53.53 41.21 32.99 44.65 28.05 16.03 8.27
XFeat* Potje et al. (2024) 62.10 51.40 39.19 30.64 43.84 28.93 16.65 7.48
XFeat Potje et al. (2024)+LG Lindenberger et al. (2023) 75.12 64.37 49.48 47.19 58.53 38.85 21.81 12.47
ALIKED Zhao et al. (2023)+VGGT Wang et al. (2025) 34.98 26.72 19.63 19.98 22.72 15.57 10.25 7.90

LoFTR Sun et al. (2021) 90.10 87.63 84.89 83.08 84.64 74.47 54.99 39.97
ELoFTR Wang et al. (2024c) 87.58 83.85 78.31 76.55 80.92 66.78 47.35 31.52
ASpanFormer Chen et al. (2022) 86.79 80.80 70.10 64.93 75.16 56.36 34.94 20.65
DUST3R Wang et al. (2024b) 15.59 15.25 10.89 10.88 8.39 6.58 4.54 3.69
MASt3R Leroy et al. (2024) 83.82 80.17 77.25 74.95 76.43 65.72 48.74 36.04
RoMa Edstedt et al. (2024b) 89.50 87.56 86.81 86.91 87.43 80.03 64.09 53.45
RoMa(GIM) Shen et al. (2024) 89.55 87.72 86.34 87.19 87.79 80.59 64.21 53.47
RoMa(MA) He et al. (2025) 88.24 84.63 82.26 83.82 83.08 69.44 50.94 37.28
RoMa(ours) 89.88 88.22 87.61 88.69 88.28 83.10 74.80 68.67

Table 6: AUC@5 results of different methods on Levels 9–16.

Method Lv. 9 Lv. 10 Lv. 11 Lv. 12 Lv. 13 Lv. 14 Lv. 15 Lv. 16

ALIKED Zhao et al. (2023)+LG Lindenberger et al. (2023) 63.33 46.60 33.92 24.94 26.99 23.17 22.33 22.77
DISK Tyszkiewicz et al. (2020)+LG Lindenberger et al. (2023) 55.25 36.88 24.09 15.50 20.91 17.49 14.18 14.29
DeDoDe Edstedt et al. (2024a) 19.22 13.16 9.02 7.10 3.53 2.79 2.51 3.62
XFeat Potje et al. (2024) 17.83 13.18 9.21 6.18 2.55 2.57 2.33 3.58
XFeat* Potje et al. (2024) 20.75 13.06 9.56 5.54 3.40 2.58 2.01 3.43
XFeat Potje et al. (2024)+LG Lindenberger et al. (2023) 31.83 22.29 14.86 10.93 7.49 6.03 6.20 6.38
ALIKED Zhao et al. (2023)+VGGT Wang et al. (2025) 8.42 5.80 4.75 5.02 0.47 0.61 0.73 0.79

LoFTR Sun et al. (2021) 71.30 58.08 43.65 32.85 39.16 33.62 33.23 34.47
ELoFTR Wang et al. (2024c) 61.32 46.91 36.94 25.01 30.91 25.48 24.52 26.75
ASpanFormer Chen et al. (2022) 50.01 34.02 24.16 17.98 15.71 12.51 12.40 11.84
DUST3R Wang et al. (2024b) 2.45 2.26 1.88 2.76 0.29 0.23 0.26 0.60
MASt3R Leroy et al. (2024) 57.16 46.61 34.71 28.52 20.58 19.14 18.05 19.41
RoMa Edstedt et al. (2024b) 79.52 70.69 59.84 52.70 56.51 54.78 55.45 52.17
RoMa(GIM) Shen et al. (2024) 80.24 68.53 57.04 49.90 53.46 51.46 50.19 51.13
RoMa(MA) He et al. (2025) 68.17 55.73 42.14 35.44 36.97 34.00 33.63 34.18
RoMa(ours) 83.57 78.13 71.47 70.56 67.03 67.42 67.85 68.43

Table 7: AUC@5 results of different methods on Levels 17–24.

Method Lv. 17 Lv. 18 Lv. 19 Lv. 20 Lv. 21 Lv. 22 Lv. 23 Lv. 24

ALIKED Zhao et al. (2023)+LG Lindenberger et al. (2023) 84.92 76.56 70.87 73.15 71.04 44.80 25.10 24.32
DISK Tyszkiewicz et al. (2020)+LG Lindenberger et al. (2023) 83.79 66.72 56.59 64.04 64.71 37.08 19.28 18.64
DeDoDe Edstedt et al. (2024a) 57.58 59.18 54.01 53.28 33.38 23.24 13.65 12.15
XFeat Potje et al. (2024) 56.64 49.97 41.43 47.03 30.95 20.23 10.94 9.95
XFeat* Potje et al. (2024) 57.69 51.06 43.12 45.12 36.10 21.92 11.02 9.39
XFeat Potje et al. (2024)+LG Lindenberger et al. (2023) 71.59 56.94 48.56 52.57 46.64 25.27 13.07 12.96
ALIKED Zhao et al. (2023)+VGGT Wang et al. (2025) 33.70 22.30 18.03 22.32 20.72 10.00 5.47 7.24

LoFTR Sun et al. (2021) 88.64 84.39 81.25 83.23 74.43 56.33 39.91 39.08
ELoFTR Wang et al. (2024c) 86.52 78.90 75.50 78.56 72.30 51.75 33.37 31.13
ASpanFormer Chen et al. (2022) 86.32 76.34 66.40 67.88 69.49 41.07 22.65 21.54
DUST3R Wang et al. (2024b) 12.01 11.57 9.26 10.26 3.15 2.18 0.89 1.68
MASt3R Leroy et al. (2024) 82.85 78.89 74.87 75.80 72.43 52.32 36.15 34.13
RoMa Edstedt et al. (2024b) 88.00 84.34 82.35 84.55 85.93 66.71 51.30 50.60
RoMa(GIM) Shen et al. (2024) 88.55 84.86 82.55 84.57 86.59 66.02 49.16 47.27
RoMa(MA) He et al. (2025) 86.58 80.60 76.45 79.50 78.46 52.65 34.65 33.81
RoMa(ours) 88.25 85.16 83.32 85.82 86.97 72.09 63.03 63.40
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Table 8: AUC@5 results of different methods on Levels 25–32.

Method Lv. 25 Lv. 26 Lv. 27 Lv. 28 Lv. 29 Lv. 30 Lv. 31 Lv. 32

ALIKED Zhao et al. (2023)+LG Lindenberger et al. (2023) 56.42 38.50 32.22 30.31 27.49 27.84 24.67 23.38
DISK Tyszkiewicz et al. (2020)+LG Lindenberger et al. (2023) 47.22 31.14 24.98 22.44 20.83 23.99 18.27 13.58
DeDoDe Edstedt et al. (2024a) 16.32 11.05 10.52 8.82 4.00 3.91 4.42 3.79
XFeat Potje et al. (2024) 18.13 13.74 14.13 10.79 4.05 4.34 4.94 3.20
XFeat* Potje et al. (2024) 19.89 14.11 14.67 9.87 4.42 5.30 4.86 3.48
XFeat Potje et al. (2024)+LG Lindenberger et al. (2023) 25.88 18.88 18.51 14.81 7.79 9.33 8.14 7.88
ALIKED Zhao et al. (2023)+VGGT Wang et al. (2025) 8.09 5.08 5.82 6.94 0.64 1.11 0.82 1.06

LoFTR Sun et al. (2021) 62.81 49.96 44.67 41.99 38.47 41.01 38.49 34.07
ELoFTR Wang et al. (2024c) 57.64 41.80 34.73 33.61 33.03 32.04 29.19 26.92
ASpanFormer Chen et al. (2022) 45.62 28.53 25.33 21.32 17.56 16.80 14.65 12.88
DUST3R Wang et al. (2024b) 0.84 1.96 2.70 2.39 0.16 0.37 0.53 0.54
MASt3r Leroy et al. (2024) 54.16 39.93 34.39 33.13 21.06 20.12 19.55 19.99
RoMa Edstedt et al. (2024b) 74.97 63.08 56.57 57.33 55.12 55.22 53.39 54.53
RoMa(GIM) Shen et al. (2024) 75.55 60.49 52.94 53.12 52.95 52.51 50.26 48.93
RoMa(MA) He et al. (2025) 62.42 46.55 41.07 38.52 37.03 36.17 35.47 32.78
RoMa(ours) 79.86 69.61 67.43 70.83 64.09 65.46 67.14 68.48

Table 9: Performance comparison on AerialExtreLocalization with different training datasets. .

Method High-quality map Low-quality map

(5m, 1°) (10m, 1°) (20m, 2°) (5m, 1°) (10m, 1°) (20m, 2°)

RoMa (MegaDepth + BlendedMVS) 91.67 91.67 94.32 25.76 32.96 53.03
RoMa (MegaDepth + AerialExtreMatch) 97.35 97.35 98.11 45.46 53.41 73.11

Table 11: Performance comparison on AerialExtreLocalization with different training data
compositions.

Method High-quality map Low-quality map

(5m, 1°) (10m, 1°) (20m, 2°) (5m, 1°) (10m, 1°) (20m, 2°)

RoMa (only MegaDepth) 95.83 95.83 96.59 34.37 44.32 62.12
RoMa (AerialExtreMatch) 89.77 89.77 90.53 9.09 10.61 27.65
RoMa (MegaDepth + AerialExtreMatch) 97.35 97.35 98.11 45.46 53.41 73.11
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ALIKED+LG: Rot. Error:161.1 Trans. Error:134.3

DISK+LG: Rot. Error: 167.9 Trans. Error:325.9

DeDoDe: Rot. Error: 98.8 Trans. Error:184.1

Xfeat: Rot. Error: 111.0 Trans. Error:138.3

Xfeat*: Rot. Error: 108.6 Trans. Error:607.0

Xfeat+LG: Rot. Error: 20.9 Trans. Error:37.1

ALIKED+VGGT: Rot. Error: 19.6 Trans. Error:41.8

ALIKED+LG: Rot. Error:131.6 Trans. Error:417.8

DISK+LG: Rot. Error: 180.0 Trans. Error:NaN

DeDoDe: Rot. Error: 129.5 Trans. Error:288.9

Xfeat: Rot. Error: 103.1 Trans. Error:302.2

Xfeat*: Rot. Error: 57.8 Trans. Error:390.1

Xfeat+LG: Rot. Error: 180 Trans. Error:NaN

ALIKED+VGGT: Rot. Error: 140.6 Trans. Error:109.1

Figure 12: Qualitative results of detector-based methods on reference maps of different quality.
Left: results on the high-quality map. Right: results on the low-quality map.
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LoFTR: Rot. Error:0.7 Trans. Error:0.4

ELoFTR: Rot. Error: 2.6 Trans. Error:7.4

ASpanFormer: Rot. Error: 3.2 Trans. Error:3.2

RoMa: Rot. Error: 0.4 Trans. Error:0.4

RoMa(GIM): Rot. Error: 0.3 Trans. Error:0.5

RoMa(MA): Rot. Error: 1.5 Trans. Error:0.6

RoMa(our): Rot. Error: 0.3 Trans. Error:0.5

DUST3R: Rot. Error: 180 Trans. Error: NaN

MASt3R: Rot. Error: 1.6 Trans. Error:1.0

RoMa: Rot. Error: 150.2 Trans. Error:936.5

RoMa(MA): Rot. Error: 3.0 Trans. Error:7.2

RoMa(GIM): Rot. Error: 115.3 Trans. Error:164.3

RoMa(our): Rot. Error: 2.9 Trans. Error:2.3

LoFTR: Rot. Error:49.0 Trans. Error:333.6

ELoFTR: Rot. Error: 108.8 Trans. Error:307.1

ASpanFormer: Rot. Error: 6.5 Trans. Error:10.8

DUST3R: Rot. Error: 180 Trans. Error: NaN

MASt3R: Rot. Error: 129.6 Trans. Error:316.8

Figure 13: Qualitative results of detector-free methods on reference maps of different quality.
Left: results on the high-quality map. Right: results on the low-quality map.
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Table 11 reports results on real-world localization maps of different quality. The findings suggest that
real data is essential for strong generalization, while synthetic data contributes complementary scale
and diversity.

A.4 MORE RESULTS ON OTHER LOCALIZATION DATASETS

Both UAVD4L Wu et al. (2024) and UAVVisLoc Xu et al. (2024) are real-world UAV localization
datasets. We evaluate our trained RoMa against its variants and other competing methods. RoMa
trained with our proposed dataset consistently outperforms other RoMa variants, as reported in
Table 12. UAVD4L provides full 6DoF UAV poses, and we report recall with respect to both
translation and rotation. In contrast, UAVVisLoc only provides ground-truth translation, and thus,
evaluation is limited to translation recall.

Table 12: Visual localization results on UAVD4L and UAVVisLoc. RoMa trained with our proposed
dataset achieves slightly higher performance compared to the original RoMa.

Method UAVD4L UAVVisLoc

(5m, 1°) (10m, 1°) (20m, 2°) median ↓ acc@5m acc@10m acc@20m

ELoFTR Wang et al. (2024c) 64.00 64.67 97.33 2.92 60 84 92
DUSt3R Wang et al. (2024b) 54.67 54.67 94.00 7.31 28 64 84
MASt3R Leroy et al. (2024) 60.67 60.67 97.33 4.29 56 68 76
RoMa Edstedt et al. (2024b) 65.33 65.33 97.33 2.55 84 92 100
RoMa (GIM) Shen et al. (2024) 68.67 68.67 97.33 2.47 84 92 100
RoMa (MA) He et al. (2025) 68.00 68.00 97.33 2.53 84 88 96
RoMa (our) 68.67 68.67 97.33 2.28 84 92 100
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