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Abstract

Leveraging large language models for machine001
translation has demonstrated promising results.002
However, it does require the large language003
models to possess the capability of handling004
both the source and target languages in ma-005
chine translation. When it is challenging to006
find large models that support the desired lan-007
guages, resorting to continuous learning meth-008
ods becomes a costly endeavor. To mitigate009
these expenses, we propose an innovative ap-010
proach called RD (Relay Decoding), which011
entails concatenating two distinct large models012
that individually support the source and tar-013
get languages. By incorporating a simple map-014
ping layer to facilitate the connection between015
these two models and utilizing a limited amount016
of parallel data for training, we successfully017
achieve superior results in the machine trans-018
lation task. Experimental results conducted on019
the Multi30k and WikiMatrix datasets validate020
the effectiveness of our proposed method.1021

1 Introduction022

The remarkable capabilities of large language023

models (LLMs) with billions of parameters have024

been demonstrated across various tasks. Sev-025

eral studies have leveraged these LLMs to ac-026

complish and enhance machine translation tasks027

(Zhang, 2023; Li, 2023; Garcia et al., 2023; Jiao028

et al., 2023; Lyu et al., 2023; Huang et al., 2024).029

Through techniques such as In-Context Learn-030

ing(ICL), Chain-of-Thought(COT) and Instruc-031

tions Finetuning, these LLMs have been able to032

achieve translation abilities comparable to state-of-033

the-art machine translation systems.034

However, the use of LLMs for translation is still035

limited by the languages supported by these models.036

Frequently, it is challenging to find LLMs that can037

effectively support both the source language La and038

1The dataset and associated codes will be publicly avail-
able.
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Figure 1: LLaMA’s supported languages include En-
glish and French while Aquila mainly support English
and Chinese. Both Aquila2 and LLaMA are not profi-
cient in handling the Chinese to French translation task
individually. In such cases, we can concatenate the two
models to accomplish the translation task.

target languages Lb simultaneously, which poses a 039

significant limitation. In such a scenario, one direct 040

approach is to further train the existing LLM, which 041

primarily supports one language, to incorporate the 042

capabilities of another language(Cui et al., 2023). 043

However, this requires an enormous amount of pre- 044

trained data and poses significant challenges due 045

to the large framework of the model. Additionally, 046

it is crucial to ensure that catastrophic forgetting 047

does not occur, preserving the proficiency of the 048

model in its original language. 049

Are there any strategies to mitigate the costly na- 050

ture of continuous learning? We have observed that, 051

in practice, it is relatively straightforward to acquire 052

LLMs that excel exclusively in either the source or 053

target languages. As shown in Figure 1, by con- 054

catenating these specialized language models, it 055

becomes conceivable to achieve translation with- 056

out incurring the exorbitant expenses associated 057

with continuous learning. In exceptional scenar- 058
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ios, when confronted with languages that lack pre-059

existing LLMs, a viable approach involves training060

a monolingual large model from scratch for the spe-061

cific language. Subsequently, employing a concate-062

nation technique enables us to accomplish machine063

translation, while also circumventing the issue of064

catastrophic forgetting in continuous learning.065

Drawing on these insights, we propose a sim-066

ple yet effective method RD (Relay Decoding)067

for large model concatenation to achieve machine068

translation, where each large model specifically069

supports the source and target languages of the070

translation task. RD utilizes a simple mapping071

layer to connect two LLMs, leveraging a small por-072

tion of parallel corpora to train this mapping layer.073

In our experiments conducted on datasets such as074

Multi30k and WikiMatrix, utilizing the LLaMA075

and Aquila2 models, we find that our approach076

surpasses the method of fine-tuning with a single077

large model. Furthermore, we observed significant078

improvements of over 3 BLEU points in certain079

language pairs.080

2 Approach081

2.1 Task Description082

For a translation task from Language La to Lan-083

guage Lb, when it is not possible to find a single084

large model that performs well for both languages085

simultaneously, we focus on finding a separate086

large model for each language that excels in that087

specific language. Let Ma denote a large language088

model that excels in language La, and Mb denote089

another large language model that excels in lan-090

guage Lb. RD aims to concatenate Ma and Mb to091

achieve the translation task from La to Lb.092

2.2 Concatenate Method093

As illustrated in Figure 2, for a given sentence094

X = {x1, x2, ..., xK} in language La containing095

K tokens, we utilize Ma to decode and gener-096

ate its corresponding representation, denoted as097

H ∈ RK∗Dh . Dh is the hidden states size of098

Ma. Subsequently, we utilize a mapping function099

Wp ∈ RDh∗De to project the obtained hidden rep-100

resentation H into the input space of Mb. De is101

the embedding layer size of Mb. For the sake of102

simplicity and efficiency, we employ a linear layer103

as the mapping layer2, similar to the connection104

2We also attempt alternative methods of connecting the
structures, which are documented in Appendix A.

Figure 2: Using Chinese-French translation as a case in
point for the process of Relay Decoding.

methods used in many multi-modal large models 105

(Koh et al., 2023; Zhang et al., 2023c,a). 106

107

Next, we introduce a prompt to facilitate better
generation by Mb. When the source language is
Chinese and the target is English, the prompt would
be as follows:

###[Chinese] : X ###[English] :

The pattern ###[⋆] is employed to denote the 108

name of the specific language. In our case, we use 109

the target language to replace these patterns. 110

After tokenizing the prompt and passing it 111

through the embedding layer of Mb, we obtain the 112

prompt input representation Ep. Finally, we con- 113

catenate the mapped representations H with the 114

prompt representations Ep and feed them into Mb 115

for further decoding and generation. 116

2.3 Training Strategy 117

We formulate translation task as generating target
text tokens conditioned on a source text tokens and
prompt prefix. The log likelihood of target sentence
Y (tokenized as {y1, y2, .., yT }) conditioned on its
source sentence X is:

l(X,Y ) =

T∑
t=1

logPθ(yt|H,Ep, y1, y2, ..., yt−1)

The loss L is then the negative log likelihood of 118

all samples in a batch of N bilingual parallel pairs: 119

L = − 1

N

N∑
i=1

l(Xi, Yi)
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Method Zh-Fr Zh-De Zh-Cs

BLEU chrF BLEU chrF BLEU chrF

Bilingual 20.70 47.5 10.82 38.3 7.52 27.7
Aquila2 19.65 49.0 10.32 43.0 8.75 36.1
LLaMA 25.76 53.3 15.00 49.3 10.08 38.6

RD (Aquila2+LLaMA) 27.36 55.1 17.87 49.8 13.44 39.1

Table 1: The result of RD Method for Zh-Fr, Zh-De, Zh-Cs translation tasks on Multi30k dataset.

When utilizing only one LLM for translation,120

finetuning has been shown to yield optimal results.121

Therefore, in our approach, we also experiment122

with incorporating finetuning, which involves si-123

multaneously adjusting the parameters of the large124

model during the training process. To prevent125

the occurrence of catastrophic forgetting, we in-126

troduced LORA(Hu et al., 2021) as a mechanism127

to mitigate this challenge.128

3 Experiment129

In this section, we provide a description of the130

datasets, experimental setup employed in our study131

and an in-depth analysis of the results obtained.132

3.1 Experimental Details133

Large Language Models The LLMs utilized in134

our experiments include the Aquila2-7B model 3135

and the LLaMA-7B model (Touvron et al., 2023).136

In our experiments, we primarily focus on transla-137

tion from Chinese to French, German, and Czech.138

The Aquila2 model primarily focuses on English139

and Chinese proficiency and performs remarkably140

well in tasks involving these languages. On the141

other hand, the LLaMA model has been pretrained142

on datasets encompassing twenty languages, such143

as English, French, German, and Czech, but its144

Chinese proficiency is relatively lower.145

Datasets The datasets used in our experiments146

are Multi30k dataset (Elliott et al., 2016, 2017; Bar-147

rault et al., 2018) and WikiMatrix dataset (Schwenk148

et al., 2019). Multi30k dataset contains images149

and their captions in four languages: English(En),150

French(Fr), Germany(De), and Czech(Cs). For Chi-151

nese translation task, we have annotated a Chinese152

version of the Multi30k dataset4. Initially, we em-153

ploy ChatGPT5 to translate the English content of154

3https://github.com/FlagAI-Open/Aquila2.
4The Chinese version of multi30k will be available.
5https://chat.openai.com/.

the dataset into Chinese. Subsequently, we con- 155

duct manual revisions to address any inaccuracies 156

or lack of fluency in the translation. As for test 157

set, we use Flickr2017 for Zh-Fr and Zh-De and 158

Flickr2018 for Zh-Cs. Regarding WikiMatrix, we 159

specifically choose the Simplified Chinese portion 160

of the dataset. From this subset, we select the top 161

1000 highest-scoring pairs as our test set, while the 162

remaining pairs are used for training. 163

Baselines We compared our method with the fol- 164

lowing approaches: (1) Transformer-based bilin- 165

gual translation model. (2) Results of instruction 166

fine-tuning large models, including LLaMA and 167

Aquila2. That’s an important point to note that 168

while LLaMA may have lower proficiency in Chi- 169

nese, it still has some capability in handling and 170

generating Chinese due to the presence of a por- 171

tion of Chinese data in its training set. Similarly, 172

Aquila2 model’s training corpus may also include a 173

small amount of French, German, and Czech data. 174

As a result, fine-tuning directly on these models 175

can still achieve some level of performance in trans- 176

lation tasks for the respective languages. 177

3.2 Main Results 178

The experimental results on Multi30k dataset for 179

Zh-Fr, Zh-De, and Zh-Cs are presented in Table 1. 180

From the table, we observe that our RD method 181

achieves the best results. When comparing the 182

last three rows with the first row, which represents 183

the bilingual transformer approach, we find that 184

utilizing large models with the same parallel cor- 185

pus outperforms training from scratch. This indi- 186

cates that the language alignment capability of the 187

large models is indeed utilized during training, even 188

though they were pretrained only on monolingual 189

data. The results of fine-tuning large models spe- 190

cialized in one language (rows 2 and 3) show that 191

these models still have some limitations in com- 192

pleting translation tasks. Additionally, we have 193

also discovered that LLMs specialized in the target 194
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Aquila2 (ZH) LLaMA (FR) Zh-Fr

Not Finetune Not Finetune 25.94
Not Finetune Finetune 27.36

Finetune Not Finetune 23.37
Finetune Finetune 26.88

Table 2: The BLEU scores of different finetune settings
on Multi30k dataset.

language tend to exhibit superior performance in195

translation tasks. Our concatenation method also196

surpasses the performance of fine-tuning with a197

single large model, demonstrating the need for pre-198

training large models on both the source and target199

languages to achieve better translation performance200

and this further validates the effectiveness of our201

proposed concatenation method.202

3.3 Analysis203

Is it necessary to finetune the LLMs during204

training? Our approach involves training a map-205

ping layer to connect two large models, but during206

training, we also need to consider whether to adjust207

the parameters of the large models. As shown in Ta-208

ble 2, we test the translation performance of Zh-Fr209

under different finetuning conditions on Multi30K210

datasets and find that simultaneously finetuning the211

parameters of the second large model (i.e., the one212

specialized in the target language) yield better re-213

sults. On the other hand, fine-tuning the parameters214

of the first large model has a less significant im-215

pact. For finetuning, we utilized the efficient fine-216

tuning method known as LORA due to its higher217

efficiency.218

How much data is required to complete the219

training of the mapping layer? As presented220

in Table 3, we conducted Zh-Fr translation ex-221

periments using training sets of different sizes222

on WikiMatrix datasets. The findings reveal that223

on the WikiMatrix dataset, training with approxi-224

mately 60,000 data points is adequate for training225

the mapping layer. This requirement is consider-226

ably smaller compared to the dataset size typically227

needed by traditional bilingual methods. More-228

over, our method surpasses these methods in per-229

formance.230

4 Related Work231

LLMs for Machine Translation. With the re-232

markable advancements of LLMs, researchers have233

#Dataset 2W 3W 4W

RD 11.79 12.98 13.64

#Dataset 5W 6W 7W

RD 14.26 15.44 15.52

Table 3: The BLEU scores associated with varying
WikiMatrix dataset sizes.

extensively evaluated their translation capabilities 234

using various methodologies. Vilar et al. (2023); 235

Zhang et al. (2023b); Bawden and Yvon (2023) de- 236

vise different prompts to facilitate translation and 237

also examine the translation performance in various 238

few-shot scenarios. Peng et al. (2023); Huang et al. 239

(2024) utilize Chain-of-thought or difficulty anal- 240

ysis techniques to address translation challenges. 241

In order to achieve better performance, Li et al. 242

(2023); Jiao et al. (2023); Chen et al. (2023); Alves 243

et al. (2023); Xu et al. (2023) have explored the 244

approach of finetuning LLMs using parallel data. 245

All of the aforementioned methods require full sup- 246

port from the LLMs for the languages involved in 247

translation. Our approach, on the other hand, is 248

primarily designed for situations where a single 249

large language model cannot handle all of these 250

languages simultaneously. 251

Concatenation of LLMs. Bansal et al. (2024) 252

leverages the concatenation of a smaller model and 253

a larger model to augment the capabilities of the 254

larger one, such as enhancing low-resource lan- 255

guage comprehension and mathematical computa- 256

tion abilities. In comparison, our concatenation 257

method is specifically tailored for machine transla- 258

tion tasks. Furthermore, unlike our method, they 259

do indeed require both models to be capable of 260

handling vocabulary from both languages involved 261

in the translation task. 262

5 Conclusion and Future Work 263

In this paper, we propose an approach that in- 264

volves concatenating two LLMs, each specialized 265

in the source and target languages, to achieve ma- 266

chine translation. This method circumvents the 267

higher costs associated with continuous learning 268

approaches. In the future, we plan to delve deeper 269

into this concatenation method and investigate how 270

to accomplish the connection solely with monolin- 271

gual data as the finetuning approach for LLMs does 272

not necessitate the use of bilingual data. 273
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Limitations274

In our concatenation approach, we require a cer-275

tain amount of parallel data to train the parameters276

of the concatenation module. Acquiring parallel277

data can be costly, so in the future, we plan to ex-278

plore methods that rely on monolingual data and279

back-translation to train the parameters of the con-280

catenation module.281
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430

A Mapping Layers431

We explored three different approaches for achiev-432

ing the mapping as shown in Figure3:433

(1) Linear: Directly employing a linear layer, as434

previously mentioned, denoted by FC.435

Mapping Method FC CA CA-Q

Zh-Fr 27.36 11.80 17.92

Table 4: The BLEU score of different mapping method
on Multi30k dataset.

(2) Cross-attention: Employing a cross-attention 436

structure with the source language input X , passed 437

through the embedding layer of Mb, serving as the 438

query, denoted by CA. (3) Cross-attention with 439

query embedding: Utilizing a cross-attention struc- 440

ture with randomly initialized query embeddings, 441

denoted by CA−Q. 442

We also conducted Zh-Fr translation experi- 443

ments on the Multi30k dataset, and the experimen- 444

tal results are presented in Table 4. 445

We observe that the Linear mapping method 446

achieved the best results on the Multi30k dataset, 447

while the cross-attention series method yield lower 448

results, even lower than the baseline methods. This 449

could be attributed to the larger number of parame- 450

ters introduced by these methods, which may not 451

be effectively learned due to the relatively small 452

scale of the Multi30k dataset. 453

B Experiments System Settings and 454

Evaluation Metric 455

We use Adam optimizer and 2000 warm-up updates. 456

The learning rate is 1e-5. For evaluation, we use 4- 457

gram BLEU (Papineni et al., 2002) and chrF scores 458

by multi-bleu.pl in Moses6. We train all models on 459

NVIDIA 80GB A100 GPUs. 460

6https://github.com/moses-smt/mosesdecoder
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