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ABSTRACT

Determining what kind of representations neural networks learn, and how this
may relate to generalization, remains a challenging problem. Previous work has
utilized a rich set of methods to invert layer representations of neural networks,
i.e. given some reference activation ®, and a layer function r, find x which min-
imizes ||®o — r¢(x)||> . We show that neural networks can preserve invertibility
across several iterations. That is, it is possible to interpret activations produced in
some later iteration in the context of the layer function of the current iteration. For
convolutional and fully connected networks, the lower layers maintain such a con-
sistent representation for several iterations, while in the higher layers invertibility
holds for fewer iterations. Adding skip connections such as those found in Resnet
allows even higher layers to preserve invertibility across several iterations. We be-
lieve the fact that higher layers may interpret weight changes made by lower layers
as changes to the data may produce implicit data augmentation. This implicit data
augmentation may eventually yield some insight into why neural networks can
generalize even with so many parameters.

1 INTRODUCTION

Determining what kind of representations neural networks learn, and how this may relate to general-
ization, remains a challenging problem. Previous work has utilized a rich set of methods to compare
representations learned by different networks . |[Lenc & Vedaldi| (2015) compared properties of rep-
resentations in terms of their equivariance, equivalence, and invariance. [Dosovitskiy & Brox|(2016)
reconstruct images by training neural networks to ’invert’ feature representations. Mahendran &
Vedaldi|(2015)) also invert such representations, but they use GD on a loss function with a prior to do
so. Raghu et al.|(2017) find the most important directions in representation space, which allows them
to compare representations produced by different networks. [Kornblith et al.|(2019) suggest using a
similarity index equivalent to central kernel alignment to compare neural network representations.

The works described above yielded fruitful ways to determine if two networks were learning equiv-
alent representations, to determine when in training network representations converge, and to deter-
mine the function of higher versus lower layers in a deep network.

We utilize some of the approaches above to explore whether the invertibility of image representations
could shed light on neural network generalization.

Consider a neural network. Suppose 74(x) : RY — R™¢ is the (th layer’s layer activation function,
which takes in some input z; € R? and the time ¢ weights, and applies a forward pass to compute
a vector of length m, where m, is the number of neurons in the ¢th layer. Suppose layer ¢ updates
its weights according to a GD update. We analyze the following: is it plausible that layer ¢ + 1
could believe that 7, has remained fixed, and interpret the change in layer ¢ activations from r}(z;)
to rz"’l(:ci) as a perturbation on the input z;, even when r, has changed? If so, this could increase

the effective size of the training set for layer ¢ + 1, and may tie to generalization.

We primarily use the inversion method of [Mahendran & Vedaldi| (2015). We invert some reference

activation, ®( produced by a layer function 7’;“’ at a time ¢ + p, but minimize the L2 norm
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||®o — r4(x)||, where z is the variable we are optimizing and we apply the time ¢ layer function to

1t.

We interpret this optimization as a way to determine if the time ¢ + p activations can be interpreted
as a perturbed image produced by the time ¢ layer ¢ function. Crucial to our intuition is the fact that
layer ¢ + 1 is trained on a stream of layer ¢’s activations, but does not need to know the specifics
of the layer function r,. This type of "encapsulation’ may allow layer ¢ + 1 to interpret the change
in the composite value 7,(x;) (at least partially) as a change in x;, even if z; has not changed. If
such an interpretation is possible, we reason that neural networks may experience a larger effective
set of training images than the size of the training set itself. Since generalization bounds tend to
decay with increased training set size, this may give us a hint as to why neural networks are able to
generalize well, even given overparametrization and a lack of explicit regularization.

Our findings are as follows:

e We show that neural network can preserve invertibility across several iterations. That is,
it is possible to interpret activations produced in some later iteration in the context of the
function of the current iteration

e For convolutional and fully connected networks, the lower layers maintain such a consistent
representation for several iterations, while in the higher layers invertibility holds for fewer
iterations

e Adding skip connections such as those found in Resnet allows even higher layers to pre-
serve invertibility across several iterations, and seems to affect the quality of the data aug-
mentation.

e We investigate the role of capacity in a simple setting.

2  METHODS AND DEFINITIONS

2.1 DATA AUGMENTATION

Many techniques have been proposed to augment data during training including interpolating across
deep feature space |[Upchurch et al.[(2017), GAN based methods |Denton et al.| (2015) Ratner et al.
(2017) Bowles et al.|(2018)). Whereas these methods intend to modify training to produce data aug-
mentation, we seek to determine what intrinsic properties of training neural networks may already
lead to data augmentation. We also seek to determine whether modifications to the architecture can
influence this implicit data augmentation.

2.2 LAYER REPRESENTATIONS

Layer representations have a variety of interpretations and intended uses. Some previous work has
found that the second to last layer of a neural network can be used as a representation for downstream
tasks. Other work has sought to determine whether two neural networks learn essentially the same
representations |Li et al.[| (2016). [Liao et al.[ (2016) introduce a regularizer that encourages layer
representations to cluster.

Instead of focusing on these aspects of representation, our work more closely follows [Mahendran
& Vedaldi| (2015) |Cohen et al.| (2020). We consider representations throughout training of a single
neural network, and seek to understand how these representations may influence the learning of
that single neural network during training. Let m, be the number of neurons in the ¢th layer in a
neural network. Let r} : R? — R™¢ be the function that takes an input 2 € R¢ and maps it to the
sequence of activations produced by the /th layer of a neural network using the weights at time ¢
during training, w;. We assume that data points x lie in some training set 7 that will be iterated
over many times during training. We consider batched training, where the training data are divided
into batches By, ..., Bys. The ¢ + 1th layer in the neural network observes the following sequence
of activations from the layer below:

{Tg(Bio)’ rl}(Bil)’r%(Biz)v }
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where B;, represents the batch stochastically drawn at time 0. Notice that when training layer £+ 1,
it observes the composition of 7 and B;;, i.e. it observes the £ layer activations, but may not know
the exact structure of the function ). We seek to answer the following question: is it plausible
that layer ¢ + 1 learns the distribution of layer ¢ in a lagged way? That is, is it plausible, from the
perspective of layer £ + 1 that some ¢ layer activation r}(B;,) was produced by function r{ in some
previous iteration ¢ < t? Is it possible to invert ré(Bi ,) to some reasonable (set of) input image(s)
assuming it was produced by some earlier function r}?

This last assumption is primarily where our work differs from previous approaches.
2.3  GRADIENTS OF NEURAL NETWORKS

Let w k+1 denote the kth neuron in the ¢ + 1th layer that is connected to the jth neuron in layer ¢.
We can write the gradient of the kth neuron in the ¢ + 1th layer as

Z fo  Oresa(w)
3wi+1 afp57“z+1 (x;) wﬁ“

)

where f), is the pth coordinate of the output layer. If the network is a ReLU network, the last partial

")”tiﬁr(f”) can be simplified to the pth coordinate of r¢(z;). In other words, we can see using the

calculatlon above that is the overall activations produced by layer ¢ that inform the training of layer
£+ 1. Layer £ 4 1 does not need to know the intricate details of 7.

The gradient of the neural network is proportional to the activations of the underlying layer, but does
not reflect the underlying structure which produced those activations.

2.4 SLOWLY CHANGING DISTRIBUTIONS

Early work Bartlett et al.|(2000) analyzed learning from a distribution that is changing slowly. Later
work Sugiyama et al.| (2007) analyzed covariate shift, which is the case that p(y|z) for training
and test follow the same distribution, but p(x) for training and test follow a different distribution.
The setting they consider is different from our setting, but we are also concerned with whether the
sequence {rY(B,),r}(Bi,),r7(Bi,), ...} is changing quickly. Since layer ¢ + 1 must learn from
the layer ¢ activations, we are interested in seeing if layer ¢ represents some given image, x, in a
consistent way across time. Traditional definitions of slowly changing distributions looked at the
difference in probability mass assigned to a particular input. Analogously, we look at the distance
between the representation vector for x( at time t versus now. However, we will find that taking
simple norms of the representations themselves does not directly correspond to invertibility of the
image.

2.5 IMAGE REPRESENTATION INVERSION

We give a brief overview of the method in Mahendran & Vedaldi| (2015). For an optimization
variable of the same shape as the input images, x, the inversion procedure takes in some reference
activation, @y produced e.g. by a layer function applied to an image, and a function, f. In their case,
f was the function used to produce ®(. Their loss function consists of three parts. The first is the L2
difference between ||®g — f(x)||2. The second is the norm of x. The third is the total variation of
the optimization variable x. They use gradient descent with momentum to minimize this objective.
The inversion of a layer representation is not unique, but when optimizing across different iterations,
we always hold the initialization fixed so that this is not the source of variability in the images.

2.6 RESNETS

Resnets |He et al.|(2016) are a subset of HighWay networks that utilize skip connections.

One traditional understanding of the success of these architectures is that they alleviate the vanishing
and exploding gradient problem discussed in/Bengio et al.|(1994). Huang et al.|(2018)) view Resnets
through the lens of boosting. |Balduzzi et al.[(2017) find that skip connections help because gradients.
across different data points in higher layers begin to resemble white noise. |Orhan & Pitkow| (2018)
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found that skip connections help eliminate singularities caused by linear dependence of the nodes
and the permutation symmetry of nodes in a layer. |Veit et al.| (2016)) find that much of the gradient
comes from short paths in the neural network. [Zaeemzadeh et al.| (2020) find that skip connections
preserve the norm of the gradient.

Many of the previous approaches to understand Resnets focused on the quality of the gradients, in
terms of the gradient norm, or the distribution of the gradient. We look at this problem in terms of the
representations produced by each layer. We find that Resnets allow activations from later iterations
to be inverted according to the current r, function even for higher layers. This property does not
seem to hold for fully connected or convolutional neural networks without skip connections.

A chief feature of data augmentation is that it should alter the image without accidentally altering its
true label. (For the implicit data augmentation we describe, an image’s label is constant throughout
training, so that each image must be perturbed to a different image in the same class. Therefore
we do not consider the case of label-mixup.) For example, mixing cat features into a car image
would likely harm generalization instead of improving it. In addition to preserving invertibility
across iterations, we will see in Figure [ that inverted representations of a car image for Resnet very
closely resemble a car. By contrast, those produced by Alexnet are harder to decipher, and may
even be mixing with different classes. We therefore believe the skip connection may allow Resnet
to perform ’smart’ data augmentation, which alters the input image without unintentionally mixing
in information from other classes.

3 EXPERIMENTS

For our experiments, we attempt to assess whether activations produced by a function rfp (z;) can
be interpreted as a perturbed image being passed through 7f. We do so by solving the optimization
problem

[l ™ (@) — ri(@)]? )

where z is the variable we are optimizing over and x; is an image (e.g. of a car). We use the same
TV prior as Mahendran & Vedaldi (2015)). We will use the notation j_k on the x axes of the graph to
indicate that the reference activations (corresponding to those produced by rfp in the optimization
above) were produced using the weights at epoch j iteration k.

3.1 MNIST

We will investigate networks that have convolutional layers throughout this paper. However, to
ensure that our results still hold for fully connected layers, we run experiments on a fully connected
network with architecture 2000 nodes followed by 1000 nodes followed by 100 nodes followed by
the output layer of size 10. Figure |l| shows our results using the weights at epoch 0 iteration 10 as
our function. We find that the bottom row which corresponds to the bottom layer of the network
preserves invertibility across more iterations than the row above it.

3.2 ALEXNET ON IMAGENET

We run the analogue of the MNIST experiment on Imagenet data with Alexnet. We use an initial
learning rate of .01 and train for 90 epochs decaying the learning rate by a factor of 10 every 30
epochs. Our results are shown in Figure[2] Again we find that for lower layers, the image may still
be inverted several iterations later. However, as we can see in the bottom row of Figure E], it cannot
be inverted after an epoch for the fifth convolutional layer.

3.3 RESNETS

We train a Resnet 18 model on Imagenet where we remove the batch normalization layers and add
biases to the convolutional layers to maintain expressivity. We use a starting learning rate of .01,
train for 90 epochs, and drop the learning rate by a factor of 10 every 30 epochs. Our results are
shown in Figure[3] The bottom row of Figure[3|labeled conv 2 corresponds to the fifth convolutional
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original image

Figure 1: We find that in lower layers, even an epoch later, the image can still be inverted. However,
even for the second layer, the later images are not invertible

Alexnet conv 1

1100
Alexnet conv 2

1.100

Alexnet conv 5

- Wi
original image

Figure 2: Layer inversions for Alexnet trained on Imagenet data. Original image shown in left hand
column. Row 1 corresponds to Alexnet conv 1 layer, Row 2 to Alexnet conv2 layer, and Row 3 to
the last Alexnet conv layer. Inversions are taken with the input function to the optimization being
the epoch O iteration 100 layer function. We use the notation j_k on the x axes to denote that the
activations used were from epoch j and iteration k. We find that in lower layers, even an epoch later,
the image can still be inverted. We find that for layer 5, the inversion fails after one epoch.

layer in the Resnet 18 architecture found at the end of Block 2. In comparison to the bottom row of
Figure 2] which corresponds to the fifth convolutional layer in Alexnet, we find that Resnet preserves
invertibility across more iterations than AlexNet.

In order to compare the inversions on the Resnet versus Alexnet, we invert the fifth convolutional
layer for both Resnet and Alexnet in the top row of Figure ] For the sake of visualization for the
top row we increase the contrast on the images. We use the 4.100 layer function and the 4_200
activations for both networks. An important aspect of data augmentation is that it modifies an
image of a particular class in a way that does not change the correct label of the resulting image.
For example, augmenting a dog with a cat would likely harm generalization error. We find that
Resnet preserves the underlying structure of the car, whereas Alexnet obfuscates it, and could even
potentially be mixing in features from different classes. We find that in addition to preserving
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the structure of the car, Resnet is also able to make interesting modifications to the image in the
bottom row of Figure ] like altering the shape of the wheel arch. We reason that perhaps the skip
connections in Resnet improve generalization performance because they allow Resnet to augment
the data in a way that preserves class membership.

Resnet conv 1

Resnet conv 2

original image

Figure 3: Layer inversions for Resnet18 trained on Imagenet data. Original image shown in left
hand column. Row 1 corresponds to Resnet18 conv 1 layer, Row 2 to the last conv layer in Block 2
of Resnet18. This is the fifth convolutional layer. Inversions are taken with the input function to the
optimization being the epoch 0 iteration 100 layer function. We use the notation j_k on the x axes to
denote that the activations used were from epoch j and iteration k. Comparing Row 2 of this figure
with Row 3 of Figure 2] we find that Resnet preserves invertibility for longer.

4 MEASURING THE DIFFERENCE IN ACTIVATION NORMS

Previous work defined the distance between two probability measure, P; and P, as

sup |PL(E) — P»(E)| 3)

where E are events. We might try to analogously check the difference in the representation produced
by layer ¢ at two different times, for example writing

i) — g™ (@)l )

We check whether invertibility corresponds merely to having a smaller difference in the L2 norm
of the current representation of a real input image x; and the later representation of a real input
image z;. In Figure |§| we plot the histograms of the norms of ||r}(x;) — ri(z;)|| where z; is
from a different class than x; as well as the scatter plot containing |57 (z;) — r%(x;)|| . We find
that amount that the representation of x; moves is actually more than ||r}(z;) — 75(z;)|| for the
nearest ;. Therefore, having a small norm difference in activations does not directly correlate to
invertibility, because if r,"”(x;) had been equal to 7, "”(x;), then the representation would have
moved a relatively shorter distance, but its inversion would have yielded an image from a different
class. This is possibly because there are two notions that the norm cannot capture. Firstly, it takes
into account the magnitude of the difference without taking into account direction. For example,
suppose a node has current activation of 5. Moving down to activation 3 and up to action 7 both
correspond to the same change in norm, but may represent different things in input space. Secondly,
it does not take into account the fact that some representations may never be picked by the gradient.
Previous work[Szegedy et al.|(2014) has also found that information about images may be contained
across many neurons, so the norm may not take into account subtleties in these activation directions.
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Alexnet 4 200 activations, 4_100 function =~ Resnet 4_200 activations, 4_100 function

original image

Figure 4: Top Row: On the left, we have the representation inversion for the fifth convolutional layer
of AlexNet using the epoch 4 iteration 100 function and the epoch 4 iteration 200 activations. On
the right, we have the analogous Resnet18 representation inversion. For the sake of visualization for
this figure we increase the contrast on the images. We find that while Resnet preserves a clear image
of the car, AlexNet does not. Bottom Row: Using the epoch 4 iteration 100 function. We find that
Resnet 18 is still able to make interesting modifications to the car, like altering its wheel shape.

original image

Figure 5: Image inversions for a larger MNIST network with 8000 nodes per fully connected layer.
We notice that the ability to invert the network representations persists for longer than for the smaller
MNIST network with 2000 nodes per fully connected layer.
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Figure 6: The histograms show the distance ||r}(z;) — r}(z;)||2 while the scatter plots show
|7 (;) — 7} P (2;)|| across iterations for which the representation of x; is invertible. We find that the

latter distance is generally larger than the former, indicating that small norm of ||} (x;) — 757 (x;)||
is not a good predictor of invertibility.

5 DISCUSSION

We have found that the capacity and architecture of the neural network is important to the
invertibility of the image representation across iterations, and the quality of this inversion.

Capacity: We run a simple experiment on MNIST where we increase the width of the smaller
MNIST network so that it has 8000 nodes per layer. Our results can be found in Figure 5] We see
that by comparison to Figure[I] that increasing the width of the network helps to preserve invertibility
across more iterations. Traditional learning theory dictates that over-parametrization should increase
generalization error. [Neyshabur et al| (2015) showed that weight norms are not the main form
of capacity control in neural networks, and a subsequent work [Zhang et al.|(2017) showed that
generalization error continues to fall even when model capacity exceeds that required to memorize
the training set. Since then, numerous works have provided explanations for this puzzling finding.
Brutzkus & Globerson| (2019) found that larger models may perform better because they are more
efficient at exploring feature space and are subject to a clustering effect. We believe the finding
that increasing width preserves invertibility has an interesting connection to the work of |Park et al.
(2019) who find that increasing capacity may help generalization because wider networks have an
increased optimal noise scale. In future work it would be interesting to examine if increased noise
scale corresponds to more varied data augmentation.

Other architecture changes: We found e.g. in Figure [4] that adding skip connections may im-
prove the quality of the implicit data augmentation for Resnets by perturbing images in a way that
does not accidentally alter their class. We believe in future work that it would be interesting to
examine the intersection of this idea with other techniques used during training such as batch nor-
malization. Batch normalization [loffe & Szegedy|(2015)) was originally proposed to combat internal
covariate shift, and has proved extremely effective in allowing the training of deep networks like
Resnet. Subsequent work found that batch normalization may not affect covariate shift, but aids in
training because it smooths the training loss as a function of the weight parameter w. Examining
whether batch normalization improves either invertibility across time or the quality of the implicit
data augmentation is an interesting problem for future study.

6 CONCLUSION

Traditional methods for data augmentation seek to modify training to produce an augmented set of
images for the neural network. We have found that neural networks experience an implicit form of
data augmentation. We have shown that activations produced by layer £ at a later timestep are still
interpretable in terms of the representation function of layer £ at the current time. We find that this
effect is more consistent across time for Resnets than for CNN architectures, and that adding skip
connections may encourage a form of data augmentation that does not unintentionally alter the class
label.
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A APPENDIX

You may include other additional sections here.
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