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Abstract

Model stitching is used in the literature to assess the extent to which models capture
similar information. The intuition is that if two models classify samples in the
same way, they must be capturing the same information. We construct a series of
experiments to show that two models can make the same predictions but represent
very different information. We therefore argue that unlike previously claimed,
stitching cannot reflect the extent to which models represent or capture similar
information. This paper draws the community’s attention to the need to correctly
interpret the results of such functional similarity measures and highlights the need
for similarity measures that capture informational similarity.

1 Motivation

Despite the success of Deep Learning, the community is still missing fundamental tools for analysing
models. A useful such tool would be one that allows for model comparison. When trying to compare
models, the functional perspective is gaining increasing attention [2, 7, 9]. This perspective argues that
two models should be considered similar if they have matching outputs. Similarly, the argument is
that two intermediate layers should be considered similar if they lead to matching outputs. While this
perspective seems useful, especially in a classification setting, we argue that there is one fundamental
problem with deep learning models which raises questions about its utility: shortcut learning [5].

Shortcut learning is an umbrella term for learning decision rules that rely on spurious correlations,
causing the model not to perform well outside of the setting it was trained on. Geirhos et al. [5] make
the point that many challenges in deep learning boil down to this issue. Moreover, the Simplicity Bias
literature argues that SGD-trained models have a tendency for learning simpler rules [13, 4] (often
shortcuts) over more complex rules that capture some of the true, salient, or intended information.
Therefore, there is an increasing consensus that models are prone to picking up shortcuts in the
data, whether we are aware of their existence or not.

In this paper we look at model comparison starting from the understanding that the models we compare
have a propensity for learning shortcuts. We argue that in this context, the functional perspective
does not lead to a meaningful comparison. In particular, we focus on Model Stitching [2], which
is an increasingly popular method for comparing models’ functional similarity. Informally, model
stitching compares models A and B by “stitching” together the first part of model A with the last
part of model B using a linear transformation referred to as a “stitch”. The stitch is trained such that
it learns a mapping between representations of models A and B. Model A is considered similar to
model B if their stitched combination achieves a performance comparable to that of model B. In
other words, model stitching assesses how compatible two models are from a functional perspective
by comparing how the function represented by their stitched combination behaves compared to the B
function when evaluated at the same input points. Functional compatibility is often taken to indicate
that models capture similar information [e.g. 10, 2, 7].
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In this paper we design experiments which demonstrate that the functional compatibility of models is
inappropriate for evaluating the extent to which two networks capture similar information. Importantly,
a model that learns a spurious correlation can appear to be fully compatible with one that learns the
intended information. Given the prevalence of shortcut learning, we argue that a meaningful model
comparison should distinguish between models that capture different information.

To do this, we first show that models which learn to use different information can easily be stitched
together. We bias models towards learning to use either colour or shape information and achieve
perfect stitching compatibility. We then consider a more challenging setting where we ensure that
the sender not only does not use the same information as the receiver but its representations do not
contain information relevant for the original receiver network. We do this by removing all shape
information from the input data to be represented, leaving only colour information. We then stitch into
a model that was trained on shape information alone and that is unable to make correct predictions
based on colour information. We achieve full stitching compatibility in this case as well. Lastly, we
show that we can successfully stitch clustered random noise into the models we train. We therefore
show that we can easily construct cases where models’ stitching compatibility does not reflect their
informational similarity.

Our contributions are:

• We show that we can construct problems where stitching cannot distinguish between models
known to have learned different shortcuts (i.e. learn to use different information) (Sec-
tion 4.1);

• We show that representations which depict entirely different information or even clustered,
random noise can be stitched into a trained model, raising further questions about the
usefulness of stitching as a measure of model similarity (Section 4.2);

• Model stitching was also used to compare the “quality” of representations. We show
that stitching provides conflicting evidence and we therefore argue it is inappropriate for
comparing the quality of representations (Section 4.3).

2 Model stitching

Model stitching has seen many variants [e.g. 2, 3, 7] since it was first proposed [10]. For simplicity,
in this paper we only consider stitching between identical architectures and at matching points in the
network. Let A≤l denote the composition of all layers in the trained network A up to and including
layer l. Following Bansal et al. [2], we choose the stitching layer s to be a randomly initialised
1× 1 convolutional layer preceded and followed by batch normalisation [8]. Bansal et al. [2] use a
convolutional layer as it has restricted expressivity compared to a fully-connected layer. The untrained
stitched model is therefore given by B>l ◦ s ◦A≤l. We then train the stitched model by freezing the
parts taken from the models A (the sender) and B (the receiver) and only optimising the stitching
layer s. We then report the performance of the stitched model on the test data. If the test performance
of the stitched model is greater or equal to that of the receiver (which becomes the baseline), it is
considered that models A and B are compatible at layer l.

In this paper we focus on ResNet-18 [6] models, but include results for VGG19 [12] in Appendix C.2.
Note that we stitch ResNet-18 models before residual blocks and before the linear classifier. Therefore
we refer to stitching before the first residual block as stitching at “Layer 1”; before the second residual
block as “Layer 2”; and stitching before the classifier as “Linear”.

Current stitching interpretation This work is inspired by Hernandez et al. [7] who find that
stitching can reach high accuracy even when stitching from later layers in Model A to much earlier
layers in a Model B. They believe that this could either be because the common intuition about
how models process input is wrong, or because model stitching is able to match representations
which are “different from what is expected”. Nonetheless, they conclude that functional similarity
provides a meaningful way of comparing models. Their intuition is that “if two representations can
be used for similar purposes then in some sense they encode similar information” [7]. This agrees
with Bansal et al. [2] who argue “two networks with identical architectures, but very different internal
representations, would fail to be stitching connected”.

We argue that no meaningful conclusion can be drawn from analysing the stitch connectivity. When
stitching is not successful, this could simply be because a good enough mapping between the
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representations was not found [3]. We claim that when stitching is successful, one cannot conclude
that this is necessarily because the representations capture the same information. The next section
shows the latter empirically.

3 Inducing a learning bias through the data

We choose to compare models on a typical shortcut learning problem: a variant of colour MNIST [1].
In essence, colour MNIST adds colour as an additional correlation between the input variable and the
target variable. We chose to add colour as a fully-correlated background. For example, all instances
of digit “0” have a red background, all instances of “1” have a green background, etc. We refer to this
data set as “Correlated”.

We use this problem to show that stitching is unable to distinguish between models that use different
features to make the prediction. To do so, we want to simulate a scenario where training a model
leads to learning different shortcuts. One possible way of biasing the model towards picking up
different rules is to modify the architecture. However, modifying the architecture means that we
can’t perform a one-to-one model comparison. For this reason, we choose to modify the training
data instead as a way of biasing the models. We therefore create different variants of the data set that
lead to the model classifying based on either colour information alone, shape information alone, or
different levels of relying on the combination between colour and shape.

Importantly, note that we modify the data in such a way that each model would still perform well
(over 98% test accuracy) on the original Correlated data set. This means that the models could
have been trained on the original Correlated data if we had an appropriate way of biasing them in a
controlled way through the training procedure alone. Below we provide a brief description of the data
set versions created (see Figure 1a for visual examples). For full details, see Appendix A. Source
code is provided to assist in reproducing and extending this work at https://git.soton.ac.uk/
ds5n23/msc_similarity/-/tree/NeurIPSPaper?ref_type=heads.

Colour MNIST (Correlated): The colour of the background and class of the digit are correlated.

Digit with Uncorrelated Colour (Digit): Images containing random combinations of background
colour and digit. Target is given by the digit’s class.

Colour with Uncorrelated Digits (Colour): Images containing random combinations of back-
ground colour and digit. Target is given by the colour’s class. Importantly, the model
could learn to represent shape information, but this cannot help the model classify.

We refer to the models by the name of the data set they were trained on. Unless otherwise stated, the
results are reported on ResNet-18 models. For full experimental details see Appendix B.

4 Experiments

4.1 Stitching cannot distinguish between different biases

In this section we want to verify if stitching can help distinguish between models that learn to classify
using different information. We start by stitching various senders into the Digit model. Note that
the stitching training and evaluation are performed on the Correlated data set, as this is the data we
assume we have access to. All other data sets were created simply to train senders and receivers
with different biases. We find that at all layers, all models we consider can easily be stitched into
the Digit model, obtaining a higher accuracy than that of the original Digit model (see Figure 1b).
That is, even the Colour with Uncorrelated Digits model, which learned to classify based on colour
information (ignoring shape), appears compatible with the model that learned to classify based on
shape information only.

Taking this further, we train a model on patches of colour with no digit (‘Colour-only’). As opposed
to Colour (which includes an uncorrelated digit), the model can only learn to represent solid colour
information. Nonetheless, we obtain a stitching test accuracy higher than that of the receiver alone,
indicating stitching compatibility (see Figure C5a).
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Figure 1: (a) Example images for classes 0 and 1 from each of the data sets. (b) Test accuracy on
Correlated data when each of the trained models is stitched into the Digit receiver (baseline is the
accuracy of the original Digit model on test Correlated data). At all layers, all models achieve higher
average accuracy compared to the baseline, indicating compatibility. Shaded areas cover 100% of
results to highlight the variability. (c) Rank analysis of the stitched models’ representations. The
representations are extracted from the receiver’s first layer after the stitch. For layers 2 and 3, Colour
and Correlated have a significantly different rank compared to Digit. Shaded areas mark 1 standard
deviation.

Numerical rank We analyse the rank of the feature maps after the first layer of the receiving
network. This is a way of gauging the linear dependence of the sender’s feature maps as seen through
the lens of the receiver’s representation. Note that equal rank does not necessarily mean similar
information, it just indicates a similar level of linear dependence. On the other hand, if two stitched
senders lead to a different rank of the receiver, we take that as additional evidence that the senders
have learned different information according to the receiver. If two sender representations have
similar rank when processed by the receiver network, we cannot necessarily claim that they are
perceived in a similar way. However, if they do not have the same rank, we take that as additional
evidence that there exists a difference in how the receiver perceives them. Details of the numerical
rank estimation are provided in Appendix B.2.1.

In Figure 1c we show the rank computed when stitching at each of the 5 layers we consider. We find
that for stitching at layers 2 and 3 (before the 2nd and 3rd residual blocks) there is a clear gap between
the rank of the processed representations of Digit with Uncorrelated Colour and those of Correlated,
for example. This indicates that when fed into the receiving network, the representations of Digit with
Uncorrelated Colour have a different degree of linear dependence compared to those of Correlated
and therefore are not perceived as equivalent by the receiver despite both being stitch-compatible.

Arguably, colour information can still “leak” through a model that did not learn to use colour
information for classification. Although less likely, the same argument holds for structured shape
information leaking. We next perform two follow-up experiments: with a receiver model trained only
on shape information, we obtain full stitch compatibility on Colour-only images (no digit is depicted),
despite no shape information being present in the data; and stitching clustered, random noise into
the receiving network. These experiments strengthen our findings that models can be easily stitched
together even when they have very different internal representations.

4.2 Representations of very different information can be stitched together

To check whether stitching between dissimilar models is due to the sender model "leaking" infor-
mation expected by the receiver, we remove all information that could be expected by the receiver
from the images we train and evaluate the stitch on. Concretely, we stitch Colour-only models
into receivers trained on Greyscale MNIST data using Colour-only data to train the stitch. There
is no digit-like structure in the Colour-only data which (if leaked) could be used by the MNIST
receiver. The un-stitched MNIST models have a baseline accuracy (when tested with MNIST data)
of 0.990± 0.001; at every stitching layer, the Colour-only sender increases this to 1.0, resulting in
stitching compatibility. I.e., despite the sender representations not containing any digit information at
all as the input does not contain that information in the first place we are able to successfully stitch
those representations into a Greyscale MNIST model.

Taking this further, we try stitching clustered, random noise into the receiver network. We create
10 random vectors to represent the mean of each of the 10 classes. The vectors have the same
dimensionality as the representations that would normally be expected by the stitching layer. For
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each class we create 6K samples by adding random noise to the mean class vector, obtaining a
data set of the same size as the original Correlated data set (see Appendix A). We then stitch these
representations onto the Digit receiver. We can achieve full stitching compatibility when using
randomly generated representations. As expected, the rank of these representations when fed into
the receiver network is different from than that of the learned representations (see Figure C5b). We
found similar results with VGG19 models and provide the details in Appendix C.2.

In light of these results, we argue that models that capture significantly different information can,
in at least some cases, be easily stitched together. While it may be argued that the datasets chosen
are too simple, it is known that SGD-trained models find shortcuts [e.g. 13, 4], and there is not an
algorithm to decide when stitching is applicable. Therefore, models’ stitching compatibility should
not be taken to mean that they learn similar rules or that they capture similar information.

4.3 Reverse stitching and stitching onto the same network

We then challenge the understanding that achieving higher stitching accuracy than the baseline
(receiver’s own accuracy) means the representation of the sender network is “better” than that of
the receiver. To this end, we simply swap the receivers and the senders considered in the previous
experiments. In Figure 1b we observed a higher test accuracy for Colour and Correlated compared
to the Digit baseline, which would be taken to indicate that their representations are “better” for
discriminating samples on the problem we consider. However, stitching Digit (as sender) into Colour
or Correlated (as receivers) also leads to higher accuracy for particular layers compared to the baseline
(see Table C1), which is a contradiction. Therefore, we do not think stitching accuracy is suitable
for comparing the quality of models’ representations. Finally, we stitch a model with itself (Digit
vs Baseline) and obtain an increase in accuracy (see Figure C5a) as well as a change in the rank of
representations (see Figure C5b). This further indicates that although the stitching layer has reduced
expressivity compared to a fully-connected stitch, it still cannot be claimed that it simply aligns the
representations of the sender and receiver without any additional processing.

5 Conclusions

In this paper we showed that networks can use or represent very different information, yet classify
samples with similar accuracy. Importantly, the different representations can easily be stitched
together. This leads us to question the usefulness of studying models’ functional similarity, and in
particular their stitching compatibility, to determine whether or not they capture similar information.
We hope that our work encourages the community to more carefully interpret the results of model
stitching, in particular to understand what it is actually responding to. We also hope our work
will encourage researchers to focus on creating model comparison tools that can reliably capture
informational similarity. We propose artificial shortcut learning problems as a good starting point for
starting to reason about this in a controlled way.
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Figure A1: Colour swatches for the base colour_map

A Data sets

Training used variants of MNIST data

• handwritten digits, label is digit represented

• greyscale

• 28x28 pixels

• trainset: 60 000 images

• testset: 10 000 images

The following variants were created:

MNIST This is simply MNIST data (monochrome handwritten digits) expanded to 3 channels and
normalised.
There is no target-dependent colour information for the model to learn, so we expect it to
recognise the digits based on features such as shape, or the amount of white, or the texture
of the white-grey-black edges. It cannot learn to use colours to recognise classes as these
are never present.
It is possible that kernel weights will learn to rely on the three colour channels always being
equal.

Colour MNIST (Correlated) We wanted to provide an opportunity for some semantically different
representations to be learned. In this case, having the background colour correlate with the
target digit being displayed.
We expect that the models trained on Correlated data will mostly learn to rely on the colour.
However, they may learn the shapes of the digits, or the amount of white caused by the digit.
They may rely on pixels always being at one of two rgb values (white/colour) in any one
image, never at an intermediate value. They may learn to rely entirely on a small number of
pixels that are never white - e.g. corner pixels.
To generate the ‘bias’ dataset, we used the colour_MNIST package [1] which uses MNIST
data, but changes the colour of the background depending on the digit being represented
(Figure A1). The package snaps any non-zero pixels to white ([255,255,255]). This
could be thought of as changing the greyscale information to binary, and indeed reducing the
information content as a result. The background colour is changed from black ([0,0,0]) to
one of 10 values, always matching the data label.
For all of these datasets, to avoid the model learning something as simple as specific RGB
values, the base RGB background values are modified by a random 10% per image (such
that the colour is always flat, but will vary slightly from image to image within a class). The
same variation is injected into the test datasets. This is analagous to requiring that colour is
learned in a generalised way.

Digit with Uncorrelated Colour (Digit) To encourage models to learn representations which recog-
nise digits, but cope with different background colours, we created a dataset with digits over
laid on backgrounds whose base colours were randomly selected. i.e. the digit does not
correlate with the colour.
We expect models trained on Digit to learn features like shape. Assuming the randomisation
is sufficient, they cannot learn to rely on colour. The choice of base colours and inclusion of
colour variation mean that the Digit models cannot learn to rely on a single colour channel or
pair of colour channels, and must learn to tolerate a range of colours being used. Nonetheless,
they may learn to rely on any or all pixels in an image being one of two colours.
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Figure A2: Simulated “Clustered Noise” data sample for ResNet-18 at Layer 2, showing 64 7x7
feature maps. If this represented Class 0, all other Class 0 data instances would be noisy versions of
this.

Colour with Uncorrelated Digits (Colour) To encourage representations of colour information,
but which are able to tolerate the presence of digits, we generate a dataset in the same way
as for Digit but in which the background colour (not the uncorrelated digit) is the target.
Models trained on Colour cannot use the digits to classify because they are uncorrelated
with the background colours. Successful Colour models may rely on colour being sampled
in specific locations which never contain digit pixels (e.g. a corner), or might learn to
average across the image. They may learn to rely on the presence of some white pixels as
the dataset does not contain any solid-colour images. But they may not be generally immune
to non-digit-like patterns of white pixels.

Background Colour Only (Colour-only) To force the learning of different representations which
cannot be related to shape, size, or edge-effects of digits (and which may not be able to
tolerate those features), the ‘Colour-only’ dataset was created in which no digit image is
present, only a solid background colour (plus 10% variation). As in ‘Colour’ (see Figure 1a),
the base colour is the target.
The model may learn to rely on the colour in only one region of the image, or to assume the
colour is constant everywhere.

Clustered Noise (Noise) To produce a high-quality representation, without relying on specific,
image-related features, we generate synthetic datasets in the form of clustered noise.
Passing an image through the first layers of a sender model produces a set of activations
specific to the final layer before the cut. For example, with ResNet-18 cutting just before
Layer 2 of the receiver, the sender output will be 64 channels of size 7x7 (Figure A2.) The
synthetic dataset must be matched in shape to the layer it is being stitched at. As such, it
has to be regenerated depending on the layer in question. It does not produce images, rather
synthetic activations. Each data instance is represented by a point in activation space based
on its class, plus a random offset vector. Thus each class is located in a cloud or ϵ-ball. For
example, in the Layer 2 example, each of the ten classes will be centred around a different
random point in 3136-dimensions.
There is no attempt to create structure within or between the feature maps, and it is not
derived from actual activation data. The high-dimensionality means it is likely that the
clusters of data points will be highly separable, though this is not enforced and has not been
verified.
To ensure the same base representations are used for train and test datasets for a given
layer or test, a genearate_activations() function was created (Alg 1). A train and test
dataset can then be generated (Alg 2) and accessed via a dataloader.
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Algorithm 1 Generate Base Activations

Procedure GENERATE_ACTIVATIONS(num_classes, representation_shape)
for c← 0 to num_classes− 1 do
activations[c]← rand(representation_shape)

end for
return activations
End Procedure

Algorithm 2 Generate a dataset (unshuffled)

Procedure SYNTHETICDATASET(train, activations, noise)
if train then
SamplesPerClass← 6000

else
SamplesPerClass← 1000

end if
for c← 0 to num_classes− 1 do
data[c ∗ SamplesPerClass : ((c+ 1) ∗ SamplesPerClass)]← activations[c]
targets[c ∗ SamplesPerClass : ((c+ 1) ∗ SamplesPerClass)]← c

end for
data← data+ noise ∗ randn
data← clamp(data, 0, 1)
End Procedure

B Experimental details

B.1 Stitching between models

In an extension of the experiments by [2], we train models on different special datasets (Section A)
and then stitch between them, assessing the change in accuracy.

Hyperparameters for Model Training batch_size=128, 4 Epochs, SGD, lr=1e-1, momentum=0.9,
weight_decay=1e-4.

Hyperparameters for Model Stitching batch_size=128, 10 Epochs, SGD, lr=1e-4, momen-
tum=0.9, weight_decay=1e-2

Hyperparameters for Noise Stitching batch_size=64, 4 Epochs, SGD, lr=1e-4, momentum=0.9,
weight_decay=1e-2

Two versions of this are performed, one stitching from each different model into the Digit with
Uncorrelated Colour receiver model, and the other stitching from that model as sender into each of
the others. This will allow us to assess the symmetry of the stitching process. Recall that models
trained on each of the datasets represents a model that could have arisen naturally by training on
Correlated data, but with the advantage that we know something about features that may (or cannot)
be learned.

In this experiment, all image datasets are used to train models. Each of the models (including Digit)
is then stitched into the Digit model at each of 5 points: (e.g. see Figure B3).

• Cut before ResNet Layer 1
• Cut before ResNet Layer 2
• Cut before ResNet Layer 3
• Cut before ResNet Layer 4
• Cut before Linear Layer

The accuracy and rank are then measured using the Correlated test dataset. Accuracy and rank are also
measured for the whole, unstitched ‘Digit’ model using the Correlated test dataset for comparison.
This test configuration is different from that used by [2] and [7]. They used the same dataset for
training and testing their models. We wanted to examine the case where:
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Figure B3: An example model to model stitch test setup. Correlated dataset is always used. Digit
model is always the receiver. In this example, the Colour model is the sender and the cut is before
ResNet Layer 2. Note that the Rank is measured at the first conv layer of the Digit receiver model

1. The dataset for training and testing the stitch is correlated (biased) - i.e. it contains class-
correlated features other than the intended learning target (the written digit): in general this
will be the case, even if unintentionally. Recall that the bias is that the background colour is
correlated with the labelled digit.

2. The sender models are likely to have learned different features from the receiver.

B.2 Stitching from noise

We train ResNet-18 models for each of the image-based datasets described. For each model, the
accuracy is recorded for the associated test dataset. The model is cut before the first ResNet block,
and prepended with the stitch to create a stitch + receiver model. The stitch (only) is then trained on
the noise dataset.

The stitch + receiver model (Figure B4) is then tested against the synthetic test dataset. This is
repeated, cutting before each ResNet layer (a layer comprises 2 Basic Blocks. The skip connections
are preserved), and before the final fully-connected linear layer. We also record the rank of the
activations for the Noise test dataset at the first convolutional layer in the receiver model after the
stitch. This is to provide insight into how the stitched data is “perceived” by the different models.
Also how that compares to when dataset images are processed by the model. For each test at each
stitch point the synthetic dataset was regenerated to reduce the likelihood that results are due to one
randomly selected set of points having a significant structure.

B.2.1 Examining the rank

To gain further insight into how the representations being sent are "perceived" by the receiver, we
analyse the rank at the first receiver layer. Note, however, that generally analysing the rank of two
sets of representations cannot tell us anything meaningful about their informational similarity. We
are simply arguing that the receiver cannot map the various sender representations in an entirely
equivalent way if the rank in the first receiving layer is different.

1. Train several models each on a different, but related dataset. For example, Colour MNIST
can create different dataloaders of MNIST digits on coloured backgrounds where the colours
correlate or do not correlate with the digit class.
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Figure B4: In this example, the Digit model is the receiver and the cut is before ResNet Layer 2. Note
that the Rank is measured at the first conv layer of the Digit receiver model. The shape of the ‘Noise’
data must match the receiving layer.

Table C1: Accuracy of trained ResNet-18 models against ‘Correlated’ dataset (average of 5 initialisa-
tions).

Acc. with stitch at Layer 1

Model Base Accuracy ‘Digit’ is Receiver ‘Digit’ is Sender

Correlated 0.999 0.999 0.981
Digit 0.978 0.995 0.996
Colour 1.000 0.999 1.000
Colour-only 0.686 0.999 0.985

2. Stitch models to each other such that sender is from layer 1 to L, and receiver is from layer
L+1 to Classifier. Train the stitch.

3. Collect the representations at layer L+1 obtained using the test dataset. For estimating the
rank, we follow [11], who compute the singular values of the sample covariance matrix and
threshold these at 1e-3 of the largest singular value.

C Additional results

C.1 All ResNet-18 models stitched to Digit with Uncorrelated Colour

As mentioned in Section 4.3 and Appendix B we used the Digit model as both receiver and sender in
the stitch, and also used clustered noise as a synthetic sender model. Here we present those extended
results.

In Table C1 we can see that the base accuracy of the Digit network is 0.978. When stitching Colour-
only into this, accuracy improves to 0.999, indicating that Colour-only is “better than” Digit. However,
the base accuracy (against the same test set of Correlated) of the Colour-only network is 0.686, but
when stitching Digit into it as a sender, the accuracy improves to 0.985, indicating that Digit is “better
than” Colour-only. This contradiction constitutes a problem for the claim that model stitching can
be used to ascertain relative quality. Note also that stitching the Digit model into itself produces a
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Figure C5: (a) Test accuracy on Correlated data when the ‘Noise’, and each of the trained ResNet-18
models are stitched into the Digit receiver (baseline is the accuracy of the original Digit model on
test Correlated data). This extends Figure 1b by including Colour-only and Clustered-Noise. Shaded
areas cover 100% of results to highlight the variability. (b) Rank analysis of the stitched models’
representations. Shaded areas mark 1 standard deviation.

Table C2: Accuracy of trained models against same test dataset (average of 3 initialisations). Values
shown to aid reading of Figure C6a

Model Test Accuracy

‘Correlated’ 1.00
‘Digit’ 0.98
‘Colour’ 1.00
‘Colour-only’ 1.00

performance improvement from 0.978 to 0.995 which challenges the belief that the 1× 1 convolution
with batchnorms stitch [2] does not add capacity.

C.2 VGG19 results

There is a reasonable question about whether ResNet architectures may respond to model stitching
in a particular way because of the skip connections. To address this, we extended the testing with
clustered noise data to include VGG19 models. 3 initialisations were run. 50 Epochs for model and
stitch training: batch_size=64, SGD, lr=1e-2, momentum=0.9, weight_decay=1e-4.

Each trained model was cut and stitched at the following points. We decided to take a sample rather
than testing every convolutional layer to reduce experimental duration (Figure C6a):

• Whole Model (image data)
• Cut before features.2 (Noise data)
• Cut before features.10
• Cut before features.23
• Cut before features.30
• Cut before classifier.0

We record the rank of the activations for the synthetic test dataset at the first convolutional layer in
the receiver model after the stitch (Figure C6b).

Figure C6a and Table C2 show that ‘Digit’ has improved results with stitching in the ‘Noise’ dataset.
‘Correlated’ maintains accuracy. This is in accordance with the results for ResNet-18.

Most notably, ‘Colour’ and ‘Colour-only’ show very varied results with stitching. It is not clear from
this limited experiment whether that is due to the network not being stitching-compatible with the
synthetic data, or if it is a manifestation of the random variability shown by [3] (i.e. stitching from
different stitch initialisations can yield very different stitching-penalties.)

We carried out a small investigation using the model which performed worst at features.2 stitching.
Trying multiple stitch initialisations gave accuracies in the range ∼ 40% − 80%. Trying multiple
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Figure C6: (a) Accuracy of VGG19 models trained on the four dataset variants when cut with a stitch
at 5 different points in the model. The first sample shown (‘Whole’) is for the un-cut models tested
with their own test datasets. Shaded areas cover 100% of results to highlight the variability. (b) Ranks
of activations just after the stitch from synthetic Clustered-Noise test dataset. ‘Baseline’ shows ranks
at the same points of the uncut ‘Digit’ trained VGG19 models when presented with ‘Digit’ test data.
Shaded areas mark 1 standard deviation.

Noise dataset initialisations gave similar results. Lower and Higher learning rates were also tried with
no change. It may be that the training parameters are wrong as sometimes a good stitch-training loss
increases between epochs, and we did not optimise stitch training hyperparameters. However, it may
be that some models reach points in the loss landscape which it is hard to match when stitching from
‘Noise’ data.

This may represent a difference between ResNet-18 and VGG19 architectures. Two possible reasons
(which deserve to be investigated) are:

skip connections ResNet skip connections may make stitching easier.
dimensionality VGG19 at features.2 has 64 feature maps of size 32x32, whereas Layer 2 of ResNet-

18 has 64 feature maps of size 7x7. The 1x1 Convolutional stitch layer can only learn to
create linear combinations of its input feature maps and it may be harder to create necessary
patterns of activation when (in VGG19) the maps have ∼ 21 times as many units.

The most obvious feature of the rank information in Figure C6b is the difference between ranks in
the unstitched ‘Digit’ network (presented with ‘Digit’ data) and the stitched networks presented with
‘Noise’ data. This demonstrates that being stitched to a sender can produced similar functional results
in terms of overall accuracy, while internal information is different.

D Source code

For carrying out rank calculations the following repository (branch “NeurIPSPaper”) should be placed
next to the msc_similarity repository https://github.com/DHLSmith/jons-tunnel-effect/
tree/NeurIPSPaper
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