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Abstract

In recent years, the music research community has examined risks of AI models
for music, with generative AI models in particular, raised concerns about copyright,
deepfakes, and transparency. In our work, we raise concerns about cultural and
genre biases in Al for music systems (music-Al systems) which affect stakehold-
ers—including creators, distributors, and listeners—shaping representation in
Al for music. These biases can misrepresent marginalized traditions, especially
from the Global South, producing inauthentic outputs (e.g., distorted ragas) that
reduces creators’ trust on these systems. Such harms risk reinforcing biases, lim-
iting creativity, and contributing to cultural erasure. To address this, we offer
recommendations at dataset, model and interface level in music-Al systems.

1 Introduction

Al models are rapidly transforming the music landscape with generative AI models that generate
indistinguishable music compared to human-composed music[27]. State-of-the-art generative music
models have improved significantly in automatic evaluation metrics and human evaluations [1331];
further bringing the generated music samples closer to human-composed music. The increasing
capability of generative systems to produce music across diverse genres and perform strongly in
human evaluations has motivated the development of advanced composition tools that integrate
generative Al models. These advances enable new forms of expression, providing a new interface
that can lower access barriers, e.g., allowing a form of “vibe music composition” that allows people
to compose music without technical skills with instruments or in-depth knowledge of music [19].
Due to the ease of composition, researchers have recently raised concerns about the use of generative
Al models for music generation (generative music models) [e.g., Sl 134, [14} 28|36} 32|}, highlighting
risks such as copyright infringement, undetected deep-fakes, market saturation, legal compliance, and
nonadherence to human requests and preferences. Rising concerns among researchers and artists have
led to concerted efforts to strengthen the safety of generative music models, addressing issues such as
Al-generated music detection[[11} 33]], deepfake detection[1], and audio watermarking[ 15} 35} 226]].
However, from the perspective of fairness (as defined previously in NLP [10]), very limited research
has examined representational bias and cultural inclusion in music datasets and generative models.
Similar concerns arose earlier in NLP: Bender et al. [6] showed that larger datasets do not ensure
diversity, often overrepresenting harmful views such as misogyny and white supremacy, while Joshi
et al. [23]] highlighted disparities in language inclusion and resources. These findings led to the
creation of bias detection benchmarks [16] and responsible Al frameworks [4] to mitigate stereotypes
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and systemic inequities. Similarly, for music, Mehta et al. [29, [30] shows a huge skew in global
representatiorﬂ with a decreasing focus on Global South cultures, including South Asia, South
East Asia, Oceania, and the Middle East, as well as genres like country & folk music, based on
different definitions for fairness. Their analysis draws attention to the potential implications of such
systemic biases, including widening economic disparities, limited global creativity in music, and,
eventually, cultural erosion on a global scale. To fully address these implications, it is crucial to
recognize that such biases are not accidental or harmless; they arise from long-standing patterns of
cultural dominance, market-focused choices, and platforms that favor certain types of music while
leaving others out [39]. Adding to this complexity is the long-tailed and evolving nature of music
itself. Musical genres are fluid, hybrid, and constantly emerging in local, diaspora, and transnational
contexts [20, [12]. It is practically and epistemologically impossible for any Al system to equally
represent and capture the entirety of global musical expressions. Although these studies are crucial
in understanding the metalevel effects of biases in music-Al systems, they do not capture the direct
consequences of such biases on the diverse stakeholders in the music ecosystem, including creators,
distributors, platforms, and listeners. With the integration of Al into composition and distribution
pipelines, the roles and performance of each stakeholder are being reconfigured.

Thus, we examine the impact of biased representation of music in Al systems on different stakeholders
in the music-Al ecosystem and discuss potential interventions at the data and interface levels to
address misrepresentation and underrepresentation of musical traditions. Building on this, our goal is
to guide future research at the intersection of generative Al, creativity, and social responsibility by
addressing the following questions: (RQ1) Who are the stakeholders in the music-Al ecosystem and
what are implications of representational biases on the stakeholders? (RQ2) What design choices
and technical challenges in music-Al systems shape how representational biases emerge and affect
stakeholders? (RQ3) Given the long tail of genres and the evolving nature of music, what system-,
dataset- and model-level strategies can ensure fairness when equal representation is impractical?

We begin by identifying key stakeholders in the music-Al ecosystem, including composers, listeners,
distributors, teachers, and students. We conducted unstructured interviews [42] with researchers,
practitioners, and professionals in music and Al to understand risks associated with representational
bias and fairness, particularly around cultural inclusion, misrepresentation, and their implications for
stakeholders. Based on these discussions, we analyze each implication’s impact on every stakeholder.
In addition, to mitigate biases in music-Al systems, we propose a set of recommendations and open
research questions for music & Al community. We situate music-Al within broader discussions of Al
ethics and fairness, arguing that development must move beyond efficiency to support diverse and
equitable creative expression.

2 RQI1 (i): Who are the stakeholders?

Stakeholders in music have long shaped the way music is produced, distributed, and experienced.
Although their core roles remain, composers, listeners, distributors, educators, and students, their
practices and interactions continue to evolve with technological change. Even though a single person
in the music and Al ecosystem has the flexibility of performing multiple roles, we focus solely on
the core roles themselves assuming that each person performs a single role. Creators (composers
and performers) Creators (composers and performers) are the ones who write a musical piece in
any form. At the individual level, this includes bands, DJs, and singer-songwriters; at the group
level, cultural communities and traditions that preserve music as identity and heritage. To assist
composers in compositions, Al is integrated into Digital Audio Workstations (DAWSs), enabling
creative ideas, effectively editing music with minimal effort, and enhancing live performances by
providing accompaniment to artists in various forms, overall reducing the cost of music production.
Distributors and marketing professionals Distributors and marketing professionals bridge creators
and listeners (discussed in detail later). They can facilitate audience targeting for creators and
enhance listener experience through preference-based distribution and marketing. Individually, they
may be freelance promoters, curators, or bloggers; collectively, they include record labels, streaming
platforms (Spotify), and large promotion networks (SoundOn by TikTok)). Distributors and marketing
professionals make use of recommendation systems based on Non-generative Al algorithms enabling
listener-personalized recommendations, and market analysis, while generative models can create
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promotional materials such as short clips or videos tailored to the target market. Listeners Listeners
are those who listen to music, often with varying degrees of attention and engagement. Listeners
experience and evaluate music both individually (e.g., through apps, study playlists, or background
use) and collectively (fan communities, concert audiences). Non-generative Al recommendation
systems aim to personalize and improve music discovery such as Spotify’s Discover Weekly, helping
listeners with playlist generation and context-aware recommendations. Teachers and experts
Teachers and experts (music educators, scholars, and practitioners) play a vital role in preserving
and transmitting musical knowledge. Individually, they mentor students and guide practice; at the
group level, institutions and musicological communities curate archives, curricula, and research such
as The Royal Academy of Music. Al tools can improve pedagogy and analysis, facilitate genre
and music structure discovery and evolution, and provide new insights into human creativity and
artistic expression. Students Students are learners who engage with music through formal or informal
education, contributing to the preservation and evolution of cultural and creative traditions. At the
individual level, they may study instruments, practice specific genres, or experiment with new forms.
At the collective level, they form ensembles, learning communities, or cultural cohorts that sustain
musical knowledge across generations. Al systems can support students by providing feedback
on performance (eg, Tonara), generating accompaniment, offering interactive learning tools, and
simulating performance environments.

3 RQI1 (ii): Implications of representation bias on stakeholders

Now that we understand the different stakeholders in the music-Al ecosystem, we can examine the
social, cultural, and ethical issues that arise when these groups are overlooked [38) 21]. Misrep-
resentation Harms Misrepresentation of culturally specific or underrepresented music can distort
productions: creators face a mischaracterization that undermines authenticit and trust further
undermining artist performances; listeners intend to explore diversity, but the available content
misrepresents it, shaping their perception incorrectly; and teachers and students can unknowingly
propagate these distortions in education if they use such tools for creating educational content[e.g.,
7,124,141} 22/ [18]. Homogenization and Exposure Bias Homogenization and exposure bias com-
pound the problem. Probabilistic models produce uniform outputs shaped by dominant datasets, and
recommendation systems reinforce listener exposure to familiar music [40, 25]]. Creators struggle to
innovate or express cultural depth; small-scale distributors and labels who produce and distribute
underrepresented music are marginalized; listeners develop narrow preferences, limiting discovery;
and students, who need exposure to diverse musical genres, limit their creative discovery process.
Cultural Erosion & Widening Economic Disparities Generative models can erode cultural identity
by homogenizing traditional music, reducing access to distinctive regional forms [37, 9, 3]]. Due
to lack of music discovery often the under-represented genres and practitioners of such genres face
limited attention from listeners; distributors may prioritize popular genres over traditional ones,
further drawing these genres to a position of disadvantage; eventually widening the economic dis-
parity between creators composing popular and under-represented genres. This leads to a snowball
effect wherein lesser creators from the community pursue these genres as career due to lack of
financial resources, eventually which can lead to erosion of such genres. Listeners encounter barriers
to engaging with authentic musical cultures, leaving scarce options for music discovery, and students
risk learning culturally homogenized material. Opaque Training Processes and Datasets Closed
source models like [Udio/ and many open source models including MusicLM[2]], etc are trained on
closed datasets often not accessible to the community. This leads to training models on uncurated
datasets with unclear composition and intent [[17]. Opaque datasets and models make it impossible
to trace where music originates. As a result, Al-generated music can mimic styles or compositions
without proper attribution, and human creators lose recognition for their work. As a result, listeners,
teachers, and students may unknowingly treat Al-generated content as authentic, further eroding
appreciation of human creativity.

4 RQ2: Design choices & Technical Challenges

The ethical implications discussed above, such as cultural bias and misrepresentation, often stem
from technical gaps embedded in generative systems that stem from how data, representations, and
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interfaces are designed. Although these appear system-centered, they ultimately shape the socio-
cultural gaps as discussed in Section[3] shaping the kind of music people can generate, access, and
experience. First, genre labels in datasets and interfaces are often flattened into ambiguous categories
such as world or ethnic, collapsing rich traditions into catch-alls and reinforcing cultural erasure.
This reflects a Western preoccupation with classification, where hyperspecific microgenres (e.g.,
melodic house) coexist alongside the homogenization of non-Western forms, which are treated as
undifferentiated. Second, training data rarely retains regional or cultural metadata (e.g., place of
origin, instruments, performance context, or linguistic association), making it impossible for models
to distinguish between culturally rooted genres and generic patterns. Third, symbolic formats like
MIDI, while compact and portable, encode Western tonal and rhythmic defaults, marginalizing
microtonality, heterophony, and non-metric thythms that fall outside its representational frame.
Fourth, prompt interfaces often guide users through culturally narrow defaults, such as mood and
genre tags such as cinematic or relaxing, which, combined with overreliance on English metadata
and tags, further restrict exploratory access to underrepresented traditions. Together, these design
choices produce a structurally homogenized music space, where non-Western and fluid traditions are
not only underrepresented but actively constrained by the infrastructures of generation.

5 RQ3: Recommendations

To address technical shortcomings in trained music-Al systems, we propose recommendations
across three levels—datasets, models, and system/interfaces—aimed at improving transparency and
bridging the technical gaps that contribute to socio-cultural inequities in music-Al. Dataset level.
Music datasets should be better documented following practices like datasheets and data statements
[8,16] including origin, recording conditions, artists/creators involved (to account for attribution),
instruments, genres, regions, style of play and permissions. Data sets should be audited for all genres
to estimate the representation of different genres similar to Mehta et al. [29] or using entropy to
measure genre diversity and supported with richer labels rather than vague tags like "world music".
Where sensitive or sacred recordings are involved, communities should be consulted, consent obtained,
and material labeled to prevent casual misuse. Model level. Models should support traceability,
letting users see what data influenced an output, which aids transparency, credit, and user trust.
Training methods must reduce overfitting to dominant genres (e.g., reweighting, balanced sampling)
and include parameters to explore underrepresented styles. Evaluation should move beyond signal
quality to account for genre diversity, style preservation, and cultural variation, even if such measures
are still complex and emerging. System/interface level. Interfaces shape user access: genre and
region controls should be simple, visible, and not hidden under “advanced settings.” Systems should
avoid flattening labels like world music, instead surfacing specific terms (e.g., Gnawa, Taiko) and
presenting contextual information about style, region, or instruments. Tool tips or links can guide
users toward learning about traditions they generate, fostering awareness and inclusion. Governance
level. Fairness requires structural measures: involving musicians and cultural feachers and experts
in system design, defining guidelines for use of sensitive music, enabling opt-out mechanisms for
creators, and supporting compensation or licensing models where appropriate. Policymakers should
extend the regulation of Al to include cultural expression and creative labor.

6 Conclusion & Future Work

In this paper, we identified key stakeholders in the music-Al ecosystem and examined the implications
of representational bias for each group. We highlighted socio-cultural and technical gaps that
further enforce under-representation in music-Al systems and proposed recommendations across
datasets, models, and interfaces. Looking ahead, several directions of future research open up:
evaluating fairness and cultural representation in generated music; ensuring credit and consent for
creators (composers) and communities with appropriate policies and governance; supporting cultural
fidelity without reinforcing stereotypes; extending symbolic infrastructures like MIDI to non-Western
traditions; and addressing language-driven biases in prompts and metadata. Together, these directions
chart a path toward music-Al systems that are not only technically capable but also more inclusive
and culturally respectful.
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