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ABSTRACT

Large language models (LLMs) demonstrate impressive reasoning abilities, but
translating reasoning into actions in the real world remains challenging. In partic-
ular, it is unclear how to complete a given task provably within a minimum number
of interactions with the external environment, e.g., through an internal mechanism
of reasoning. To this end, we propose the first framework with provable regret
guarantees to orchestrate reasoning and acting, which we call “reason for future,
act for now” (RAFA). Specifically, we design a prompt template for reasoning that
learns from the memory buffer and plans a future trajectory over a long horizon
(“reason for future”). At each step, the LLM agent takes the initial action of the
planned trajectory (“act for now”), stores the collected feedback in the memory
buffer, and reinvokes the reasoning routine to replan the future trajectory from the
new state. The key idea is to cast reasoning in LLMs as learning and planning
in Bayesian adaptive Markov decision processes (MDPs). Correspondingly, we
prompt LLMs to form an updated posterior of the unknown environment from
the memory buffer (learning) and generate an optimal trajectory for multiple fu-
ture steps that maximizes a value function (planning). The learning and planning
subroutines are performed in an “in-context” manner to emulate the actor-critic
update for MDPs. Our theoretical analysis establishes a

√
T regret, while our

experimental validation demonstrates superior empirical performance.

1 INTRODUCTION

Large language models (LLMs) exhibit remarkable reasoning abilities, which open a new avenue for
agents to interact with the real world autonomously. However, turning reasoning into actions remains
challenging. Specifically, although LLMs are equipped with the prior knowledge obtained through
pretraining, it is stateless in nature and ungrounded in the real world, which makes the resulting
action suboptimal. To bridge the reasoning-acting gap, we aim to design an internal mechanism of
reasoning on top of LLMs, which optimizes actions iteratively by incorporating feedbacks from the
external environment. In particular, we focus on the sample efficiency of autonomous LLM agents
in interactive decision-making tasks, which plays a key role in their practical adoption, especially
when interactions are costly and risky. Our primary goal is to enable agents to complete a given
task in a guaranteed manner through reasoning within a minimum number of interactions with the
external environment.
Reinforcement learning (RL) is a well-studied paradigm for improving actions by collecting feed-
backs. However, to tailor existing RL techniques for autonomous LLM agents, we lack a rigorous
mapping between RL and LLMs, which leads to various conceptual discrepancies. For example, RL
operates in a numerical system, where rewards and transitions are defined by scalars and probabili-
ties. In comparison, the inputs and outputs of LLMs are described by tokens in a linguistic system.
As another example, LLMs are trained on a general-purpose corpus and remain fixed throughout
the interactive process. In contrast, RL trains actors and critics on the collected feedback iteratively.
Thus, it appears inappropriate to treat LLMs as actors or critics under the RL framework, although
all of them are parameterized by deep neural networks. Moreover, it remains unclear what reasoning
with LLMs means under the RL framework, e.g., what are the inputs and outputs of a reasoning rou-
tine and how reasoning should be coordinated with acting. Such conceptual discrepancies prevent
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us from establishing a principled framework beyond borrowing the “trial and error” concept from
RL straightforwardly and make it difficult to achieve provable sample efficiency guarantees. For in-
stance, it is known in RL that an improper design of agents may induce an exponential dependency
on horizons in the sample complexity. Without the RL-LLM correspondence, it is hard to avoid the
same flaw in autonomous LLM agents.
To address such conceptual discrepancies, we formalize reasoning and acting with LLMs under a
Bayesian adaptive Markov decision process (MDP) framework, where the latent variable of interest
is the unknown environment. The starting point is to cast the full history of states (of the external
environment), actions, rewards, and their linguistic summaries in the memory buffer as the infor-
mation state of Bayesian adaptive MDPs. Throughout the interactive process, the information state
accumulates a growing collection of feedbacks from the external environment, which is mapped to
an optimized action at each step by an internal mechanism of reasoning. As detailed below, we
construct the reasoning routine through two key subroutines, namely learning and planning, which
are instantiated by LLMs with specially designed prompts. (a) The learning subroutine forms an
updated posterior of the unknown environment from the memory buffer. Depending on whether we
emulate the model-based or model-free approach of RL, the learning subroutine infers the transition
and reward models (model) or/and the value function (critic). (b) The planning subroutine generates
an optimal policy (actor) or trajectory for multiple future steps, which maximizes the value function
(up to a certain error). Depending on the specific configuration of the state and action spaces (con-
tinuous versus discrete) and the transition and reward models (stochastic versus deterministic), the
planning subroutine emulates the value iteration algorithm, the random shooting algorithm, or the
Monte-Carlo tree-search algorithm.
Although LLMs remain fixed throughout the interactive process, they are prompted to utilize the
growing collection of feedbacks from the external environment as contexts. Through the learning
subroutine, the collected feedback reduces the posterior uncertainty in models or values, which
allows the planning subroutine to obtain an improved policy at each step. In other words, we emulate
the actor-model or actor-critic update for Bayesian adaptive MDPs in an in-context manner, where
LLMs function as an internal mechanism that improves models, values, and policies iteratively.
Specifically, existing RL methods use deep neural networks to parameterize models, values, and
policies, which map states (of the external environment) and actions to scalars and probabilities.
In comparison, we use LLMs to represent the learning and planning algorithms in RL, which are
composed to map data in the memory buffer to actions. Here, data and actions are allowed to be
tokens in a linguistic system.
We conclude our contributions in this paper from two perspectives. (a) Our theoretical analysis
proves that RAFA achieves a

√
T regret. In particular, the regret bound highlights an intriguing

interplay between the prior knowledge obtained through pretraining and the uncertainty reduction
achieved by reasoning and acting. (b) Our empirical validation shows that RAFA outperforms var-
ious existing frameworks in interactive decision-making tasks, including ALFWorld, BlocksWorld,
Game of 24, and a new benchmark based on Tic-Tac-Toe.

1.1 LITERATURE

Due to the page limit, we defer the detailed discussion on large language model (LLM), in-context
learning (ICL), and reinforcement learning (RL) under a Bayesian framework to Appendix A.
Reasoning with LLM. We build on a recent line of work that develops various prompting schemes
to improve the reasoning performance of LLMs. “Chain of thoughts” (“CoT”) [67] decomposes

2



Under review as a conference paper at ICLR 2024

a challenging problem into several reasoning stages and guides LLMs to solve them one by one.
As generalizations, “tree of thoughts” [73], “graph of thoughts” [74], “algorithm of thoughts” [50],
and “cumulative reasoning” [76] provide different graph-search schemes to guide LLMs. See also
[63, 16, 15]. Also, “reasoning via planning” (“RAP”) [23] emulates the Monte-Carlo tree-search
(MCTS) algorithm to reduce the search complexity. For embodied LLM agents, [25] propose to
decompose a complex task into multiple executable steps. Most of them focus on general reasoning
tasks, e.g., solving a mathematical or logic puzzle, where LLMs generate a detailed trace (trajectory)
of arguments through an internal mechanism to reach a final answer. Here, LLMs play the same
role as the planning subroutine in RAFA. In contrast, we focus on interactive decision-making tasks,
where autonomous LLM agents collect feedbacks from the external environment to optimize actions
iteratively. In particular, we aim to complete a given task within a minimum number of interactions
with the external environment. To this end, it is essential to operate three interleaved modules,
namely learning, planning, and acting, in a closed loop. While it is feasible to incorporate existing
graph-search or MCTS schemes as the planning subroutine for generating trajectories, our core
contribution is a principled framework that executes a selected subset of the planned trajectory to
collect feedbacks (“act for now”) and replans an improved trajectory from the new state by learning
from feedbacks (“reason for future”). From an RL perspective, existing graph-search or MCTS
schemes are analogous to an open-loop method, e.g., motion planning or trajectory optimization
[8], which does not involve interactions with the external environment. To integrate them into a
closed-loop approach, e.g., model predictive control [43], one has to specify how to act given the
planned trajectory and when to reinvoke the reasoning (learning and planning) routine, which is
the key technique of RAFA. Another recent line of work tackles more complex tasks by allowing
LLMs to access various additional modules, e.g., tools, programs, and other learning algorithms
[4, 51, 35, 34, 11], or by finetuning LLMs on the collected feedback [75, 31, 41]. Integrating them
with RAFA is left as a future direction of research.
Acting (and Reasoning) with LLM. We build on a recent line of work that develops various closed-
loop frameworks for interacting with the external environment. “Inner monologue” [26] and “Re-
Act” [72] combine reasoning and acting to refine each other for the first time. In comparison, RAFA
provides a specific schedule for orchestrating reasoning and acting (as discussed above). As gen-
eralizations, “Reflexion” [53] enables autonomous LLM agents to revise the current action of a
pregenerated trajectory by learning from feedbacks, especially when they make mistakes. See also
[28]. However, making a local revision to the pregenerated trajectory is myopic because it fails to
consider the long-term consequence of actions. Consequently, the obtained policy may get trapped
by a local optimum. From an RL perspective, “Reflexion” [53] is an oversimplified version of RAFA,
where the planning subroutine revises the current action to maximize the reward function (“reason
for now”) instead of planning multiple future steps to maximize the value function (“reason for fu-
ture”), which measures the expected cumulative future reward. To remedy this issue, “AdaPlanner”
[58] regenerates the whole trajectory at each step, which yields a global improvement. See also
[64]. However, the reasoning routine of “AdaPlanner” requires a handcrafted set of programs to
reject suboptimal candidate trajectories. Without the domain knowledge of a specific task, the re-
generated trajectory is not necessarily optimal, i.e., maximizing the value function (up to a certain
error). In contrast, the reasoning routine of RAFA is designed following the principled approach
in RL. In particular, the learning subroutine infers the transition and reward models (model) or/and
the value function (critic), while the planning subroutine emulates the value iteration algorithm, the
random shooting algorithm, or the MCTS algorithm, none of which use any domain knowledge. As
a result, RAFA achieves provable sample efficiency guarantees for the first time and outperforms
those existing frameworks empirically.

2 BRIDGING LLM AND RL
Interaction Protocol. We use Markov decision processes (MDPs) to model how autonomous
LLM agents interact with the external environment. We consider an infinite-horizon MDP M =
(S,A, P, r, ρ, γ), where S is the state space, A is the action space, P : S × A 7→ ∆(S) is the
transition kernel, r : S × A 7→ [0, 1] is the reward function, ρ is the initial distribution of states,
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and γ ∈ (0, 1) is the discount factor. Here, P gives the probability distribution of the next state
given the current state and action, while r is assumed to be deterministic without loss of generality.
For notational simplicity, we parameterize P and r by a shared parameter θ⋆ ∈ Θ and denote them
as Pθ⋆ and rθ⋆ . At the t-th step, the LLM agent receives a state st ∈ S , takes an action at ∈ A
following the current policy πt : S 7→ A, and receives a reward rt = rθ⋆(st, at). Subsequently, the
external environment transits to the next state st+1 ∼ Pθ⋆(·|st, at), while the LLM agent computes
the updated policy πt+1 through an internal mechanism of reasoning (as discussed below). Note that
S and A are represented by tokens in a linguistic system. Here, π ∈ Π is assumed to be deterministic
without loss of generality, where Π is the feasible set of policies.
Value Function. For a policy π and a parameter θ of the transition and reward models, we define
the state-value and action-value functions

V π
θ (s) = E

[ ∞∑
t=0

γtrθ(st, at)
∣∣∣ s0 = s

]
, Qπ

θ (s, a) = E
[ ∞∑
t=0

γtrθ(st, at)
∣∣∣ s0 = s, a0 = a

]
, (2.1)

where E is taken with respect to at = π(st) and st+1 ∼ Pθ(·|st, at) for all t ≥ 0. In other words,
V π
θ (and Qπ

θ ) gives the expected cumulative future reward from the current state s (and action a). To
define the optimal policy π⋆

θ with respect to a given parameter θ, we define the Bellman optimality
equation as

Q⋆
θ (s, a) = rθ (s, a) + γ (PθV

⋆
θ ) (s, a) , V ⋆

θ (s) = max
a∈A

Q⋆
θ(s, a), (2.2)

where Q⋆
θ and V ⋆

θ are the fixed-point solutions Here, we define (PθV
⋆
θ )(s, a) = E[V ⋆

θ (s
′)], where E

is taken with respect to s′ ∼ Pθ(·|s, a). Let π⋆
θ(s) = argmaxa∈AQ

⋆
θ(s, a). We define PL⋆ : Θ 7→

Π as the planning oracle that maps θ to π⋆
θ . See [59] for the existence and uniqueness guarantees for

Q⋆
θ , V ⋆

θ , and π⋆
θ .

Sample Efficiency. Let θ⋆ be the underlying parameter that generates states and rewards. As the
performance metric, we define the Bayesian regret

R(T ) = E
[T−1∑
t=0

V π⋆

θ⋆ (st)− V πt

θ⋆ (st)
]
, where π⋆ = PL⋆(θ⋆). (2.3)

Here, E is taken with respect to the prior distribution p0 of θ⋆, the stochastic outcome of st, and
the iterative update of πt, which involves states, actions, and rewards until the t-th step, i.e., the
full history Dt = {(si, ai, si+1, ri)}t−1

i=0 . We aim to design a sample-efficient agent that satisfies
R(T ) = o(T ), i.e., the Bayesian regret is sublinear in the total number of interactions T .
What Reasoning Means and Role of LLM. We formalize reasoning and acting with LLMs under a
Bayesian adaptive MDP framework [19], where the underlying parameter θ⋆ is the latent variable of
interest and the full history Dt (and its linguistic summary) is the information state. In particular, we
aim to design an internal mechanism on top of LLMs that maps Dt to an optimized action at or the
corresponding policy πt (reasoning), which is executed in the external environment (acting). To this
end, we construct the reasoning routine through two key subroutines, which emulate the learning and
planning algorithms in RL. Specifically, the learning subroutine maps Dt to the posterior distribution
pt of θ⋆, while the planning subroutine maps pt or a sampled parameter θ ∼ pt to πt. In other words,
the learning subroutine forms an updated posterior of the unknown environment from the memory
buffer, while the planning subroutine approximates the planning oracle PL⋆. As shown in Section 3,
we invoke the ICL ability of LLMs to achieve the former goal (implicitly), while we design a prompt
template for LLMs to achieve the latter goal (explicitly). Following the principled approach in RL,
we develop a specific schedule for orchestrating reasoning (learning and planning) and acting, which
is proven as sample-efficient in Section 4.

3 ALGORITHM

Architecture of RAFA. By leveraging the LLM-RL correspondence in Section 2, we provide a
principled framework for orchestrating reasoning and acting, namely “reason for future, act for
now” (RAFA), in Algorithms 1 and 2. In Section 4, we present the RL counterpart of RAFA in
Algorithm 3 to illustrate the design rationale and establish the theoretical foundation. At the t-th
step of Algorithm 1, the LLM agent invokes the reasoning routine, which learns from the memory
buffer and plans a future trajectory over a long horizon (“reason for future” in Line 6), takes the
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Algorithm 1 Reason for future, act for now (RAFA): The LLM version.
1: input: An LLM learner-planner LLM-LR-PL, which aims at generating an optimal trajectory given an

initial state and returns the initial action (e.g., Algorithm 2), and a switching condition If-Switch.
2: initialization: Sample the initial state s0 ∼ ρ, set t = 0, and initialize the memory buffer D0 = ∅.
3: for k = 0, 1, . . . , do
4: Set tk ← t.
5: repeat
6: Learn and plan given memory Dtk to get action at ← LLM-LR-PL(Dtk , st). (“reason for future”)
7: Execute action at to receive reward rt and state st+1 from environment. (“act for now”)
8: Update memory Dt+1 ← Dt ∪ {(st, at, st+1, rt)}.
9: Set t← t+ 1.

10: until If-Switch(Dt) is True. (the switching condition is satisfied)
11: end for

initial action of the planned trajectory (“act for now” in Line 7), and stores the collected feedback
(state, action, and reward) in the memory buffer (Line 8). Upon the state transition of the external
environment, the LLM agent reinvokes the reasoning routine to replan another future trajectory from
the new state (Line 6 following Line 9). To ensure the learning and planning stability, we impose
the switching condition (Line 10) to decide whether to incorporate the newest chunk of history, i.e.,
the set difference Dt − Dtk , into the information state, which is used in the reasoning routine as
contexts. In other words, the reasoning routine uses the same history Dtk for all tk ≤ t < tk+1 until
the (k + 1)-th switch at the (tk+1 − 1)-th step, which guarantees that the posterior distribution and
the optimized action or the corresponding policy are updated in a conservative manner. We specify
the switching condition in Sections 4 and 5.
“Reason for Future” (Line 6 in Algorithm 1 and Lines 3-11 in Algorithm 2). As detailed below,
the reasoning routine composes the learning and planning subroutines to map the full history Dtk

(until the tk-th step) to an optimized action at. Note that the reasoning routine does not interact with
the external environment throughout the learning and planning subroutines.
• The learning subroutine (Lines 3-4 in Algorithm 2) maps Dtk to a transition kernel (Model)
and a value function (Critic), which are used in the planning subroutine. Intuitively, we prompt
LLMs to form an updated posterior of the unknown environment from the memory buffer. Here,
the updated posterior is instantiated by Model and Critic, which estimate their ground-truth
counterparts in association with the data-generating parameter. From an RL perspective (Sections 2
and 4), the learning subroutine maps Dtk to the posterior distribution pt of the underlying parameter
θ⋆, which generates states and rewards, and returns the transition kernel Pθ and the value function
V πt

θ , where θ ∼ pt is the sampled parameter and πt is the current policy. On the other hand, the ICL
ability of LLMs allows us to bypass the posterior update of pt, sampling θ from pt, and the explicit
parameterization of Pθ and V πt

θ in RL. Instead, we represent Pθ and V πt

θ using two LLM instances
with specially designed prompts, which instruct them to use Dtk as contexts to generate the next
state and evaluate a given trajectory or the corresponding policy. As Dtk accumulates a growing
collection of feedbacks from the external environment, it reduces the posterior uncertainty about the
unknown environment, which yields more accurate versions of Model and Critic. Consequently,
the planning subroutine is able to use them to assess the long-term outcome of actions with a higher
accuracy. Depending on whether we emulate the model-based or model-free approach of RL, we
may choose to emulate Model or Critic individually. For illustration, we consider a deterministic
setting of transitions and rewards with discrete state and action spaces, where we emulate both of
them in a tree-search example.
• The planning subroutine (Lines 5-11 in Algorithm 2) maps Model and Critic to a future tra-
jectory (s†0, a

†
0, . . . , s

†
U , a

†
U ), where s†0 is the current state st and a†0 is executed in the external envi-

ronment as the current action at during the acting phase. Intuitively, we prompt LLMs to generate
an optimal policy (actor) for multiple future steps, which maximizes the value function (Critic).
From an RL perspective (Sections 2 and 4), the planning subroutine approximates the planning or-
acle PL⋆, which maps a given parameter θ to the optimal policy π⋆

θ or the corresponding action
at = π⋆

θ(st). As two LLM instances from the learning subroutine, Model and Critic instanti-
ate the transition kernel Pθ and the value function V πt

θ in association with the sampled parameter
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Algorithm 2 The LLM learner-planner (LLM-LR-PL): A tree-search example. (the deterministic case)

1: input: The memory buffer D, the initial state s, the search breadth B, and the search depth U .
2: initialization: Initialize the state array S0 ← {s} and the action array A0 ← ∅.

———————————————— (the learning subroutine) ———————————–
3: Set Model as an LLM instance prompted to use D as contexts to generate the next state.
4: Set Critic as an LLM instance prompted to use D as contexts to estimate the value function.

———————————————— (the planning subroutine) ———————————–
5: Set Elite as an LLM instance prompted to use D as contexts to generate multiple candidate actions.
6: for u = 0, . . . , U do
7: For each current state in Su, invoke Elite to generate B candidate actions and store them in Au.
8: For each candidate action in Au, invoke Model to generate the next state and store it in Su+1.
9: end for

10: For all resulting rollouts in S0×A0×· · ·×SU×AU , invoke Critic to evaluate the expected cumulative
future reward and select the best one (s†0, a

†
0, . . . , s

†
U , a

†
U ), where s†0 = s.

11: output: The initial action a†
0 of the selected rollout.

θ ∼ pt (as discussed above). Hence, we are able to simulate a given number of trajectories with
Model, evaluate them with Critic, and obtain an improved policy, which is achieved by specially
designed prompts instead of a numerical algorithm. By maximizing the expected cumulative future
reward (instead of the immediate reward), the planning subroutine returns an optimized action that
improves the long-term outcome. In Section 4, we identify two error sources that affect the planning
subroutine, namely the posterior uncertainty, which is inherited from Model and Critic due to
the finite size of Dtk , and the planning suboptimality, which is induced by the limited capacity for
computation, e.g., the bounded width and depth of tree-search (Lines 6-9 in Algorithm 2). Depend-
ing on the specific configuration of the state and action spaces (continuous versus discrete) and the
transition and reward models (stochastic versus deterministic), we may choose to emulate the value
iteration algorithm, the random shooting algorithm, or the Monte-Carlo tree-search algorithm. All of
them allow RAFA to achieve provable sample efficiency guarantees as long as they satisfy a specific
requirement of optimality (Definition 4.2). For illustration, we emulate the tree-search algorithm
and defer its stochastic variant to Appendix B.
“Act for Now” (Lines 7-10 in Algorithm 1). At the current state st, the LLM agent executes
the optimized action at in the external environment, which is obtained from the reasoning routine.
Specifically, we take the initial action a†0 of the planned trajectory (s†0, a

†
0, . . . , s

†
U , a

†
U ), where s†0 =

st and a†0 = at, and discard the remaining subset. At the next state st+1, the LLM agent replans
another future trajectory (s†0, a

†
0, . . . , s

†
U , a

†
U ) with s†0 = st+1 and a†0 = at+1. In other words,

the acting phase follows a short-term subset of the long-term plan, which is regenerated at every
new state. The LLM agent stores the collected feedback (st, at, rt, st+1) in the memory buffer
Dt and queries a switching condition If-Switch to decide when to update the information state
Dtk ⊆ Dt, which is used in the reasoning routine as contexts for learning and planning. Intuitively,
we incorporate the newest chunk of history Dt − Dtk to improve the current policy only in the
case that it carries significant novel information, e.g., when the LLM agent loses for the first time
following a winning streak. In Section 4, we provide a principled implementation of the switching
condition, which measures the posterior uncertainty given Dt with entropy and compares it against
that given Dtk . From an RL perspective, the lazy update ensures the learning and planning stability
and plays a pivotal role in the regret analysis. In Section 5, we develop several practical variants that
achieve superior empirical performance.

4 THEORY

We establish provable sample efficiency guarantees for RAFA (Algorithms 1 and 2) through its RL
counterpart (Algorithm 3 in Appendix B). In Line 6 of Algorithm 3, the reasoning routine forms an
updated posterior of the unknown environment (learning) and generates an optimized action from
an improved policy (planning), mirroring RAFA. Here, we emulate the model-based approach of RL
and cast RAFA as a Thompson sampling (TS) method. The following assumption and definition
formalize the learning and planning subroutines of RAFA (Lines 3-4 and 5-11 in Algorithm 2).
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Learning. Let LLMD,g be an LLM instance with D as contexts and g as instructions to perform
a specific task. Specifically, g† prompts LLMs to predict the next state s′ and the received reward
r from the current state s and the current action a, i.e., LLMD,g† : S × A → S × [0, 1], where
the generated state is stochastic. We denote the Markov kernel in association with LLMD,g† as
PLLMD,g†

(s′, r|s, a). Also, we denote the posterior distribution of the transition and reward models
as Pmodel(Pθ, rθ|D).

Assumption 4.1 (LLMs Perform Implicit Bayesian Inference). The Markov kernel PLLMD,g†
follows

the posterior distribution Pmodel(·|D).
Assumption 4.1 states that LLMs perform implicit Bayesian inference, which is verified both the-
oretically and empirically as the underlying mechanism of ICL [69, 77, 78, 62, 68, 27, 30]. In
particular, [69, 62] validate it in a general setting for generating texts, while [30] prove it in the imi-
tation setting of RL to develop a new framework for pretrained decision transformers. We consider
a related setting for predicting states and rewards that are described by texts. Here, the pretrain-
ing dataset is a general-purpose corpus covering a wide variety of D and g, whereas (Pθ, rθ) or θ
is the latent concept of interest. In comparison, [30] consider the imitation setting for predicting
the optimal action without an explicit planner, where the pretraining dataset contains the numerical
trajectory labeled by experts. In Appendix D, we prove that Assumption 4.1 holds for a specific
parameterization of (Pθ, rθ) under three regularity conditions, namely (a) LLMs are trained to repli-
cate the pretraining distribution, which is assumed in [48, 66, 69] to simplify the statistical analysis,
(b) the pretraining dataset is generated through a Bayesian mechanism with a latent concept, which
is a simplified version of the latent variable model in [69] and resembles that in [62], and (c) LLMs
are able to parameterize an implicit Bayesian inference mechanism, which is proved in [77, 78] for
the attention architecture. Note that, if Assumption 4.1 holds approximately, the regret analysis can
be relaxed to accommodate the additional error in the posterior distribution.
Planning. Assumption 4.1 allows us to bridge RAFA and TS. In the learning subroutine of RAFA,
we emulate Pθ with Model (Line 3 in Algorithm 2) and V π

θ with Critic (Line 4 in Algorithm
2), which is determined by Pθ, rθ, and π. At the t-th step, θ is sampled from pt, i.e., the updated
posterior given the full history Dtk (until the tk-th step). To formalize the planning subroutine of
RAFA, we define the planning suboptimality. Recall that Θ is the parameter space, Π is the policy
space, and PL⋆ is the planning oracle, which is defined in Section 2.

Definition 4.2 (ϵ-Optimality of Planner). A planning algorithm PLϵ : Θ 7→ Π is an ϵ-optimal
planner if maxs∈S [V

PL⋆(θ)
θ (s)− V

PLϵ(θ)
θ (s)] ≤ ϵ for all θ ∈ Θ.

As a special case of Definition 4.2, we present the value iteration algorithm in Appendix F, where
we use a truncated horizon U , i.e., a finite length of the lookahead window. Here, ϵ decreases as U
increases. See a detailed discussion in Appendix C.1.
Switching. We consider an implementation of the switching condition (Line 10 in Algorithms 1 and
3). Let H(p) be the differential entropy of p. We define the posterior entropy given Dt as

Ht = H(pt) = −
∫
Θ

pt(θ) · log pt(θ)dθ. (4.1)

As long as Htk − Ht > log 2, i.e., the memory buffer accumulates one extra bit of information,
we incorporate Dt − Dtk into the information state and use it to improve the current policy. The
switching condition ensures that πt is switched for a logarithmic number of times, which is a key
step in establishing the sublinear regret. Intuitively, the lazy update of policies ensures the learning
and planning stability. On the other hand, calculating the posterior entropy is challenging in practice.
In Section 5, we develop several practical variants that achieve superior empirical performance.
Regret. We define the information ratio to characterize the tail behavior of the posterior distribution
[1, 40, 46, 45, 47, 36]. Let δ ∈ (0, 1) be the confidence level, DT = {(st, at, st+1, rt)}T−1

t=0 be
an arbitrary dataset collected in the underlying MDP, and {Vt}T−1

t=0 be a value function sequence
adapted to {σ(Dt)}T−1

t=0 , where σ(Dt) is the sigma-algebra of Dt ⊆ DT . We define the information
gain as I(θ; ξt+1|Dt) = Ht −Ht+1. Here, ξt+1 denotes (st, at, st+1, rt) and Ht is defined in (4.1),
where pt is the posterior distribution given Dt.
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Figure 2: RAFA for
Game of 24. Actions
are proposed (dotted)
and selected (green).
Hallucinations that the
same number can be
reused are mitigated
through interactions.

Definition 4.3 (Information Ratio). The information ratio Γt†(δ) is the smallest number for which,
if Ht† −Ht ≤ log 2, then it holds for all t ∈ {t†, . . . , T − 1} with probability at least 1− δ that∣∣(rθ⋆ − rθ

t†
)(st, at) +

(
(Pθ⋆ − Pθ

t†
)Vt

)
(st, at)

∣∣ ≤ Γt†(δ) ·
√
I(θ; ξt+1|Dt), (4.2)

where θ⋆ is the data-generating parameter and θt† ∼ pt† is a sampled parameter.

Definition 4.3 quantifies the estimation error of the sampled parameter θt† in terms of approximating
the data-generating parameter θ⋆. To achieve this, we use the information gain I(θ; ξt+1|Dt) as
a benchmarking quantity. Intuitively, the information ratio Γt†(δ) characterizes how exploration
reduces uncertainty. See a detailed discussion in Appendix C.2.
We characterize the Bayesian regret of Algorithm 1 by connecting it to Algorithm 3. Recall that the
Bayesian regret is defined in (2.3) and γ ∈ (0, 1) is the discount factor.

Theorem 4.4 (Bayesian Regret). Under Assumption 4.1, the Bayesian regret of RAFA satisfies

R(T ) = O
(
γ · supt†<T Γt†(δ) · E[

√
H0 −HT ]

1− γ
·
√
T +

γδ

(1− γ)2
· T + ϵ · T +

γ · E[H0 −HT ]

(1− γ)2

)
.

We provide the proof in Appendix E. Theorem 4.4 establishes the
√
T regret of RAFA (Algorithms

1 and 3) for a proper choice of the confidence level δ and the planning suboptimality ϵ, e.g., δ =
O(1/

√
T ) and ϵ = O(1/

√
T ). Here, the first term in the upper bound in Theorem 4.4 is the

leading term and involves several multiplicative factors, namely the effective horizon 1/(1 − γ),
the information ratio Γt†(δ), and the information gain H0 −HT throughout the T steps, which are
common in the RL literature [1, 40, 46, 45, 47, 36]. In particular, H0 highlights the prior knowledge
obtained through pretraining, as H0 quantifies the prior uncertainty of LLMs before incorporating
any collected feedback. Hence,H0−HT highlights the uncertainty reduction achieved by reasoning
and acting, as HT quantifies the posterior uncertainty of LLMs after incorporating the collected
feedback. In Appendix F, we prove that H0 − HT = O(d · log T ) for linear kernel MDPs, which
implies R(T ) = Õ(

√
T ). Here Õ hides the logarithmic factor.

5 EXPERIMENT

We evaluate RAFA in several text-based benchmarks, e.g., Game of 24, ALFWorld, BlocksWorld,
and Tic-Tac-Toe. The detailed setups, results, and ablations are provided in Appendix G, while the
detailed prompts are found in Appendix H.

5.1 GAME OF 24
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Figure 3: Sample efficiency on Game of 24.

Game of 24 [73] is a mathematical puzzle to ob-
tain 24 from four natural numbers through basic
arithmetic operations. The state is the (possibly
unfinished) current formula and the action is the
next formula (or the modified part).
Setup. We emulate the tree-search algorithm to plan (B ∈ {1, 2}). At the t-th step, RAFA learns
from the memory buffer and switches to a new policy upon receiving an unexpected reward, which
is the switching condition. After the t-th step, RAFA digests the collected feedback and generates a
linguistic summary, which is saved into the memory buffer to avoid similar previous mistakes.
Result. RAFA attains SOTA performances as shown in Table 1. RAFA achieves superior sample
efficiency by mitigating hallucinations and avoid careless trials (Figures 2 and 3).
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gpt-4 gpt-3.5

RAFA (B = 1) 89% 29%
RAFA (B = 2) 93% 46%
ToT (B = 1) 73% 10%
ToT (B = 2) 81% 17%
Reflexion 21% 16%

Table 1: Game of 24 results.

Pick Clean Heat Cool Exam Pick2 Total

BUTLER 46.00 39.00 74.00 100.00 22.00 24.00 37.00
ReAct 66.67 41.94 91.03 80.95 55.56 35.29 61.94
AdaPlanner 100.00 96.77 95.65 100.00 100.00 47.06 91.79
Reflexion 100.00 90.32 82.61 90.48 100.00 94.12 92.54
RAFA 100.00 96.77 100.00 100.00 100.00 100.00 99.25

Table 2: ALFWorld results (success rates %).

5.2 ALFWORLD

ALFWorld [54] is an interactive environment for embodied agent simulations, which encompasses
134 household tasks in six overall categories (Table 2). We use gpt-3 (text-davinci-003).
Setup. We emulate the tree-search algorithm to plan (B = 2). RAFA invokes Critic to evaluate
the completed portion of the desired goal and switches to a new policy after 20 consecutive failures.
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Result. RAFA outperforms various existing frameworks (right figure).
The better performance of AdaPlanner at the initial episode is at-
tributed to a handcrafted set of programs for rejecting suboptimal can-
didate trajectories, which is challenging to construct without the domain
knowledge of a specific task. One such example is the PickTwo category.

5.3 BLOCKSWORLD

BlocksWorld [23] is a rearrangement puzzle. For the RAFA algorithm, we use the Vicuna [79]
model and emulate the MCTS algorithm to plan (see Figure 16 in Appendix). RAFA achieves su-
perior success rates across multiple Vicuna versions (Figure 4). Comparisons with CoT and RAP
demonstrate how the learning subroutine improves the planning optimality.

0 15 30 45 60
Step

0

20

40

60

80

100

S
u

cc
es

s
R

at
e

(%
)

BlocksWorld (4-step), Vicuna-13B

RAFA

RAP(trial=10)

RAP(trial=20)

0 15 30 45 60
Step

0

20

40

60

80

100

S
u

cc
es

s
R

at
e

(%
)

BlocksWorld (4-step), Vicuna-33B

RAFA

CoT(gpt-4)

CoT(LLaMA-33B)

RAP(trial=10)

RAP(trial=20)

0 15 30 45 60
Step

0

20

40

60

80

100

S
u

cc
es

s
R

at
e

(%
)

BlocksWorld (6-step), Vicuna-13B

RAFA

CoT(gpt-4)

RAP(trial=10)

RAP(trial=20)

CoT(LLaMA-33B)

0 15 30 45 60
Step

0

20

40

60

80

100

S
u

cc
es

s
R

at
e

(%
)

BlocksWorld (6-step), Vicuna-33B

RAFA

CoT(gpt-4)

CoT(LLaMA-33B)

Figure 4: Sample efficiency on BlocksWorld (4 and 6 are the minimum numbers of steps for solving a specific
task). CoT is prompted by four in-context examples.

5.4 TIC-TAC-TOE

Tic-Tac-Toe [7] is a competitive game where the X and O sides take turns to place marks. RAFA
invokes Model to simulate the transition and opponent dynamics (see Figure 17 in Appendix).
Setup. We use gpt-4 and emulate the tree-search algorithm to plan (B ∈ {3, 4}). RAFA switches
to a new policy when (a) the predicted state differs from the observed one, (2) the predicted action
of opponents differs from the observed one, or (3) Critic gives the wrong prediction of the game
status. Here, X has an asymmetric advantage (winning surely if played properly).

O X gpt-4

gpt-4 90%, 0%, 10%
RAFA(T =1) 90%, 0%, 10%
RAFA(T =5) 50%, 0%, 50%
RAFA(T =7) 0%, 0%, 100%

Table 3: Tic-Tac-Toe Results. We
set B = 4 and report the winning
rate of X, the tie rate, and the win-
ning rate of O.
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Figure 5: Sample effi-
ciency on Tic-Tac-Toe (0
means tie).

Result. RAFA (playing O) matches
and beats gpt-4 for T = 5 and T =
7 (Table 3), although O is destined to
lose. The ablation study (B = 3 ver-
sus B = 4) illustrates how the plan-
ning suboptimality affects the sample
efficiency (Figure 5).

6 CONCLUSIONS

In this paper, we establish the LLM-RL correspondence and propose a principled framework RAFA
for orchestrating reasoning and acting, which achieves provable sample efficiency guarantees in
autonomous LLM agents for the first time. RAFA’s outstanding empirical performance underscores
its potential for autonomous and adaptive decision-making in various complex environments, which
we remain for future work.
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Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning. arXiv preprint arXiv:2010.03768, 2020.

[55] Le Song, Kenji Fukumizu, and Arthur Gretton. Kernel embeddings of conditional distributions:
A unified kernel framework for nonparametric inference in graphical models. IEEE Signal
Processing Magazine, 30(4):98–111, 2013.

[56] Malcolm Strens. A Bayesian framework for reinforcement learning. In International Confer-
ence on Machine Learning, 2000.

[57] Hao Sun. Reinforcement learning in the era of llms: What is essential? what is needed? an rl
perspective on rlhf, prompting, and beyond, 2023.

[58] Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. AdaPlanner: Adaptive
planning from feedback with language models. arXiv preprint arXiv:2305.16653, 2023.

[59] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

[60] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMa:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[61] Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by
gradient descent. In International Conference on Machine Learning, 2023.

[62] Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implic-
itly topic models: Explaining and finding good demonstrations for in-context learning. arXiv
preprint arXiv:2301.11916, 2023.

[63] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in lan-
guage models. arXiv preprint arXiv:2203.11171, 2022.

[64] Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and
select: Interactive planning with large language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023.

[65] Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, Hiteshi Sharma, and Rahul Jain. Model-
free reinforcement learning in infinite-horizon average-reward Markov decision processes. In
International Conference on Machine Learning, 2020.

[66] Colin Wei, Sang Michael Xie, and Tengyu Ma. Why do pretrained language models help in
downstream tasks? An analysis of head and prompt tuning. arXiv preprint arXiv:2106.09226,
2021.

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, 2022.

13



Under review as a conference paper at ICLR 2024

[68] Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. arXiv
preprint arXiv:2303.07895, 2023.

[69] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-
context learning as implicit Bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

[70] Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive
features. In International Conference on Machine Learning, 2019.

[71] Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels,
and regret bound. In International Conference on Machine Learning, 2020.

[72] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. ReAct: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629, 2022.

[73] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

[74] Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought
reasoning in large language models. arXiv preprint arXiv:2305.16582, 2023.

[75] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping reasoning
with reasoning. In Advances in Neural Information Processing Systems, 2022.

[76] Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning
with large language models. arXiv preprint arXiv:2308.04371, 2023.

[77] Yufeng Zhang, Boyi Liu, Qi Cai, Lingxiao Wang, and Zhaoran Wang. An analysis of attention
via the lens of exchangeability and latent variable models. arXiv preprint arXiv:2212.14852,
2022.

[78] Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-
context learning learn? Bayesian model averaging, parameterization, and generalization. arXiv
preprint arXiv:2305.19420, 2023.

[79] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-judge with
MT-bench and chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

[80] Dongruo Zhou, Quanquan Gu, and Csaba Szepesvári. Nearly minimax optimal reinforcement
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APPENDIX A MORE LITERATURE

Large Language Model (LLM) and In-Context Learning (ICL). LLMs [42, 9, 24, 13, 39, 60]
display notable reasoning abilities. A pivotal aspect of reasoning is the ICL ability [33, 44, 52,
38, 5, 29, 18, 61, 32, 3], which allows LLMs to solve a broad range of tasks with only a few in-
context examples instead of finetuning parameters on a specific dataset. We focus on harnessing
the ICL ability of LLMs to optimize actions in the real world, which is crucial to autonomous
LLM agents. In particular, we build on a recent line of work [69, 77, 78, 62, 68, 27, 30, 57] that
attributes the ICL ability to implicit Bayesian inference, i.e., an implicit mechanism that enables
LLMs to infer a latent concept from those in-context examples, which is verified both theoretically
and empirically. In RAFA, the latent concept is the transition and reward models (model) of the
unknown environment or/and the value function (critic), which is inferred from the memory buffer
in the learning subroutine.
Reinforcement Learning (RL) under a Bayesian Framework. We build on a recent line of work
on the infinite-horizon [1, 17, 65, 80, 81, 12, 14, 22, 49] and Bayesian [56, 40, 46, 45, 47, 36]
settings of RL. The infinite-horizon setting allows RAFA to interact with the external environment
continuously without resetting to an initial state, while the Bayesian setting allows RAFA to invoke
the ICL ability of LLMs to form an updated posterior of the unknown environment. RL operates
in a numerical system, where rewards and transitions are defined by scalars and probabilities, and
trains actors and critics on the collected feedback iteratively. We focus on emulating the actor-
model or actor-critic update in RL through an internal mechanism of reasoning on top of LLMs,
which allows data and actions to be tokens in a linguistic system while bypassing the explicit update
of parameters in model-based RL [14, 22, 49]. In particular, the learning and planning subroutines
of RAFA emulate the posterior update and various planning algorithms in RL. Moreover, RAFA
orchestrates reasoning (learning and planning) and acting following the principled approach in RL,
i.e., (re)planning a future trajectory over a long horizon (“reason for future”) at the new state and
taking the initial action of the planned trajectory (“act for now”). As a result, RAFA inherits provable
sample efficiency guarantees from RL.
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APPENDIX B MORE ALGORITHMS

We present the RL counterpart of RAFA in Section 4 in the following algorithm.

Algorithm 3 Reason for future, act for now (RAFA): The RL counterpart.
1: input: An ϵ-optimal planner PLϵ, which returns an ϵ-optimal policy that maximizes the value function up

to an ϵ accuracy (Definition 4.2), and the prior distribution p0 of the parameter θ.
2: initialization: Sample the initial state s0 ∼ ρ, set t = 0, and initialize the memory buffer D0 = ∅.
3: for k = 0, 1, . . . , do
4: Set tk ← t.
5: repeat
6: Update posterior ptk given memory Dtk , sample parameter θt ∼ ptk ,

obtain policy πt ← PLϵ(θt), and sample action at ← πt(st). (“reason for future”)
7: Execute action at to receive reward rt and state st+1 from environment. (“act for now”)
8: Update memory Dt+1 ← Dt ∪ {(st, at, st+1, rt)}.
9: Set t← t+ 1.

10: until Htk −Ht > log 2. (the switching condition is satisfied, where Htk and Ht are defined in (4.1))
11: end for

Depending on the specific configuration of the state and action spaces (continuous versus discrete)
and the transition and reward models (stochastic versus deterministic), we may choose to emulate the
tree-search algorithm, the value iteration algorithm, the random shooting algorithm, or the MCTS
algorithm. All of them allow RAFA to achieve provable sample efficiency guarantees as long as they
satisfy a specific requirement of optimality (Definition 4.2). For illustration, we emulate the beam-
search algorithm (an advanced version of the tree-search algorithm) in Algorithm 4 and the MCTS
algorithm in Algorithm 5. For the theoretical discussion, we present the value iteration algorithm in
Algorithm 6.

Algorithm 4 The LLM learner-planner (LLM-LR-PL): A beam-search example (for the determin-
istic case).
1: input: The memory bufferD, the initial state s, the proposal width L, the search breadth B, and the search

depth U .
2: initialization: Initialize the state array S0 ← {s} and the action array A0 ← ∅.

———————————————— (the learning subroutine) ———————————–
3: Set Model as an LLM instance prompted to use D as contexts to generate the next state.
4: Set Critic as an LLM instance prompted to use D as contexts to estimate the value function.

———————————————— (the planning subroutine) ———————————–
5: Set Elite as an LLM instance prompted to use D as contexts to generate multiple candidate actions.
6: for u = 0, . . . , U do
7: For each current state su in Su, invoke Elite to generate L candidate actions.
8: For each candidate action a

(ℓ)
u , invoke Model to generate the next state s

(ℓ)
u+1 and the received reward

r
(ℓ)
u .

9: For each resulting tuple (su, a
(ℓ)
u , s

(ℓ)
u+1, r

(ℓ)
u ), invoke Critic to evaluate the expected cumulative fu-

ture reward Q̂(su, a
(ℓ)
u )← r

(ℓ)
u + γV̂ (s

(ℓ)
u+1), where V̂ is given by Critic.

10: Select B best tuples (su, a
(ℓ)
u , s

(ℓ)
u+1) with the highest value Q̂(su, a

(ℓ)
u ) and write them to Su ×Au ×

Su+1.
11: end for
12: For B preserved rollouts in S0×A0×· · ·×SU×AU×SU+1, invoke Critic to evaluate the expected cu-

mulative future reward
∑U

u=0 γ
ur

(b)
u +γU+1V̂ (s

(b)
U+1) and select the best one (s†0, a

†
0, . . . , s

†
U , a

†
U , s

†
U+1),

where V̂ is given by Critic and s†0 = s.
13: output: The initial action a†

0 of the selected rollout.
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Algorithm 5 LLM learner-planner (LLM-PL) for RAFA: A Monte-Carlo tree-search example (for
the stochastic case).

1: input: The memory buffer D, the initial state s, the proposal width L, L′, and the expansion budget E.
2: initialization: Initialize the root node n← s and the child function c(·)← ∅.

———————————————— (the learning subroutine) ———————————–
3: Set Model as an LLM instance prompted to use D as contexts to generate the next state.
4: Set Critic as an LLM instance prompted to use D as contexts to estimate the value function.

———————————————— (the planning subroutine) ———————————–
5: Set Elite as an LLM instance prompted to use D as contexts to generate multiple candidate actions.
6: for e = 0, . . . , E do
7: Set se ← n.
8: while se is not a leaf node, i.e., c(se) ̸= ∅, do
9: Invoke Critic to evaluate the expected cumulative future reward and select the child node ae in

c(se) with the highest value Q̂(se, ae).
10: Set se as a child node in c(ae).
11: end while
12: For the current state se, invoke Elite to generate L candidate actions.
13: Write each candidate action a

(ℓ)
e to c(se), i.e., c(se)← {a(ℓ)

e }Lℓ=1.
14: For each candidate action a

(ℓ)
e , invoke Model to sample L′ next states.

15: Write each next state s
(ℓ,ℓ′)
e to c(a

(ℓ)
e ), i.e., c(a(ℓ)

e )← {s(ℓ,ℓ
′)

e }L
′

ℓ′=1.
16: For each generated state s

(ℓ,ℓ′)
e , invoke Critic to evaluate the expected cumulative future reward and

update the estimated value V̂ for all ancestor nodes. (Optional)
17: end for
18: Set s†0 ← n and i← 0.
19: while s†i is not a leaf node, i.e., c(s†i ) ̸= ∅, do
20: Invoke Critic to evaluate the expected cumulative future reward and select the child node a†

i+1 in
c(s†i ) with the highest value Q̂(s†i , a

†
i ).

21: Set s†i+1 as a child node in c(a†
i ) and i← i+ 1.

22: end while
23: output: The initial action a†

0 of the selected rollout (s†0, a
†
0, . . . , s

†
i , a

†
i ).

We also present the value iteration algorithm (Algorithm 6) with a truncated horizon U , i.e., a finite
length of the lookahead window as the ϵ-optimal planner in Algorithm 3. The following proposition
ensures that Algorithm 6 satisfies Definition 4.2.

Proposition B.1. Algorithm 6 is an ϵ-optimal planner as long as we set U ≥ ⌈log((2L/(ϵ(1 −
γ))))/ log(1/γ)⌉+ 1 and any value function is upper bounded by L ≥ 0.

Proof. See Appendix B.1 for a detailed proof.

Algorithm 6 ϵ-Optimal planner: The value iteration algorithm with a truncated horizon.
1: input: The model parameter θ and the truncated horizon U .
2: initialization: Set the value function V

(U)
θ (·)← 0.

3: for u = U − 1, . . . , 1 do
4: Set the value function V

(u)
θ (·)← maxa∈A Q

(u)
θ (·, a), where Q(u)

θ (·, ·)← rθ(·, ·)+γ(PθV
(u+1)
θ )(·, ·).

5: end for
6: output: The greedy policy π(·) = argmaxa∈A Q

(1)
θ (·, a).

B.1 PROOF OF PROPOSITION B.1

Proof of Proposition B.1. We prove that Algorithm 6 satisfies Definition 4.2, where U is dependent

on ϵ. Let πθ(θ) be the output policy of Algorithm 6 for the given θ. For notational simplicity, we
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denote maxs∈S and maxa∈A as maxs and maxa. Then we have

max
s

[
V
PL⋆(θ)
θ (s)− V πθ

θ (s)
]
≤ max

s

[
V
PL⋆(θ)
θ (s)−max

a
Q

(1)
θ (s, a)

]
︸ ︷︷ ︸

term (A)

+max
s

[
max

a
Q

(1)
θ (s, a)− V πθ

θ (s)
]

︸ ︷︷ ︸
term (B)

, (B.1)

where Q(1)
θ is defined in Algorithm 6.

Analysis of Term (A). For any 1 ≤ u < U and s ∈ S, we have

V
PL⋆(θ)
θ (s)−max

a
Q

(u)
θ (s, a) = max

a
Q
PL⋆(θ)
θ (s, a)−max

a
Q

(u)
θ (s, a)

≤ max
a

∣∣QPL⋆(θ)
θ (s)−Q

(u)
θ (s, a)

∣∣
≤ γ ·max

a

∣∣Es′∼Pθ(· | s,a)
[
V
PL⋆(θ)
θ (s′)−max

a′
Q

(u+1)
θ (s′, a′)

]∣∣
≤ γ ·max

s′

∣∣V PL⋆(θ)
θ (s′)−max

a′
Q

(u+1)
θ (s′, a′)

∣∣, (B.2)

where the first equality uses the definition of PL⋆ in Section 2, the first inequality uses the contrac-

tion property of the max operator, and the second equality uses the Bellman equation in (E.7) and

Algorithm 6. By induction, we have

term (A) ≤ γU−1 max
s

·
∣∣V PL⋆(θ)

θ (s)−max
a

Q
(U)
θ (s, a)

∣∣
≤ γU−1L, (B.3)

where the last equality uses Q(U)
θ = 0 and the fact that any value function is upper bounded by L.

Analysis of Term (B). Recall that πθ(s) = argmaxaQ
(1)
θ (s, a) in Algorithm 6. We have

term (B) = max
s

[
Q

(1)
θ (s, πθ(s))−Qπθ

θ (s, πθ(s))
]
. (B.4)

Let

ϵ† = max
s

[
Q

(1)
θ (s, πθ(s))− rθ(s, πθ(s))− γ(PθV

(1)
θ )(s, πθ(s))

]
. (B.5)

We have

Q
(1)
θ (s, πθ(s))−Qπθ

θ (s, πθ(s)) ≤ ϵ† + rθ(s, πθ(s)) + γ(PθV
(1)
θ )(s, πθ(s))

− rθ(s, πθ(s))− γ(PθV
πθ

θ )(s, πθ(s))

= ϵ† + γ · Es′∼Pθ(· | s,πθ(s))

[
Q

(1)
θ (s′, πθ(s

′))−Qπθ

θ (s′, πθ(s
′))

]
≤ ϵ† + γ ·max

s

∣∣Q(1)
θ (s, πθ(s))−Qπθ

θ (s, πθ(s))
∣∣. (B.6)
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Here, the first inequality is based on the definition of ϵ† and the Bellman equation in (E.7) in the proof

of Theorem 4.4, where the first equality uses fact that Q(1)
θ (s, πθ(s)) = maxaQ

(1)
θ (s, a) = V

(1)
θ (s)

for all s ∈ S. Taking the sups∈S in the left-hand side of (B.6), we obtain

max
s

∣∣Q(1)
θ (s, πθ(s))−Qπθ

θ (s, πθ(s))
∣∣ ≤ ϵ† + γ ·max

s

∣∣Q(1)
θ (s, πθ(s))−Qπθ

θ (s, πθ(s))
∣∣,

which implies

term (B) ≤ max
s

∣∣Q(1)
θ (s, πθ(s))−Qπθ

θ (s, πθ(s))
∣∣

≤ ϵ†/(1− γ). (B.7)

Meanwhile, the convergence analysis of the value iteration algorithm in [59] gives

max
s,a

∣∣Q(1)
θ (s, a)−Q

(2)
θ (s, a)

∣∣ ≤ γU−2 max
s,a

∣∣Q(U−1)
θ (s, a)−Q

(U)
θ (s, a)

∣∣,
which implies

max
s,a

∣∣Q(1)
θ (s, a)−Q

(2)
θ (s, a)

∣∣ ≤ γU−1L.

We have

ϵ† = max
s

[
Q

(1)
θ (s, πθ(s))− rθ(s, πθ(s))− γ(PθV

(2)
θ )(s, πθ(s))

+ γEs′∼Pθ(· | s,πθ(s))

[
V

(1)
θ (s′)− V

(2)
θ (s′)

]]
= γ · Es′∼Pθ(· | s,πθ(s))

[
V

(1)
θ (s′)− V

(2)
θ (s′)

]
= γ · Es′∼Pθ(· | s,πθ(s))

[
max

a
Q

(1)
θ (s′, a)−max

a
Q

(2)
θ (s′, a)

]
≤ γ · Es′∼Pθ(· | s,πθ(s))

[
max

a

∣∣Q(1)
θ (s′, a)−Q

(2)
θ (s′, a)

∣∣]
≤ γU−1L, (B.8)

where the first and third equalities are based on Algorithm 6, the second last inequality uses the

contraction property of the max operator.

Plugging (B.3), (B.7), and (B.8) into (B.1), we obtain

max
s

[
V
PL⋆(θ)
θ (s)− V πθ

θ (s)
]
≤ γU−1L+ γU−1L/(1− γ) ≤ ϵ,

for U ≥ ⌈log((2L/(ϵ(1− γ))))/ log(1/γ)⌉+ 1. Thus, we prove Proposition B.1.
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APPENDIX C DISCUSSION ON DEFINITIONS

C.1 DISCUSSION ON DEFINITION 4.2

Definition 4.2 (ϵ-Optimality of Planner).A planning algorithm PLϵ : Θ 7→ Π is an ϵ-optimal planner

if maxs∈S [V
PL⋆(θ)
θ (s)− V

PLϵ(θ)
θ (s)] ≤ ϵ for all θ ∈ Θ.

As a special case of Definition 4.2, we present the value iteration algorithm (Algorithm 6) in Ap-
pendix B, where we use a truncated horizon U , i.e., a finite length of the lookahead window. Al-
ternatively, we may choose to emulate the tree-search algorithm, the random shooting algorithm,
or the Monte-Carlo tree-search algorithm. In the tree-search example (Lines 5-11 in Algorithm 2),
ϵ decreases as the search breadth B and depth U increase. Note that, as long as we emulate an
ϵ-optimal planner, we are able to establish provable sample efficiency guarantees.

C.2 DISCUSSION ON DEFINITION 4.3

Definition 4.3 (Information Ratio).The information ratio Γt†(δ) is the smallest number for which,

if we have Ht† −Ht ≤ log 2, then it holds for all t ∈ {t†, . . . , T} with probability at least 1− δ that

∣∣(rθ⋆ − rθ
t†
)(st, at) +

(
(Pθ⋆ − Pθ

t†
)Vt

)
(st, at)

∣∣ ≤ Γt†(δ) ·
√
I(θ; ξt+1|Dt), (C.1)

where θ⋆ is the data-generating parameter and θt† ∼ pt† is a sampled parameter.

Definition 4.3 quantifies the estimation error of the sampled parameter θt† in terms of approximating
the data-generating parameter θ⋆. To achieve this, we use the information gain I(θ; ξt+1|Dt) as
a benchmarking quantity. Intuitively, the information ratio Γt†(δ) characterizes how exploration
reduces uncertainty. As long as Γt†(δ) is finite, collecting a better dataset Dt† reduces the estimation
error of θt† by decreasing I(θ; ξt+1|Dt). To see this, we consider the limiting case that Dt† ⊆ Dt is
already sufficiently informative. As the collected feedback ξt+1 provides little new information, we
know that I(θ; ξt+1|Dt) is small, which implies that the estimation error of θt† is small. Note that
Γt†(δ) is an intrinsic property of the underlying MDP, which is independent of the agent design. In
Appendix F, we study a general class of MDPs, namely linear kernel MDPs [6, 10, 81], and prove
that the information ratio is O(d · log(dT/δ)), where d is the feature dimension.
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APPENDIX D LLM SAMPLES POSTERIOR

Verification of Assumption 4.1. We prove that Assumption 4.1 holds for a specific parameterization

of (Pθ, rθ) under three regularity conditions, namely (a) LLMs are trained to replicate the pretraining

distribution, which is assumed in [48, 66, 69] to simplify the statistical analysis, (b) the pretraining

dataset is generated through a Bayesian mechanism with a latent concept, which is a simplified

version of the latent variable model in [69] and resembles that in [62], and (c) LLMs are able to

parameterize an implicit Bayesian inference mechanism, which is proved in [77, 78] for the attention

architecture. Note that, if Assumption 4.1 holds approximately, the regret analysis can be relaxed to

accommodate the additional error in the posterior distribution.

Assumption D.1 (Model Class). We assume that (Pθ, rθ) is parameterized under the following

conditions.

Factorization: For any (s′, s, a, g) ∈ S × S ×A× G, it holds that

Pθ(s
′ | s, a; g) = ϕg(s

′, s, a)⊤fg(θ),

where ϕg : S × S × A 7→ Rdg is the feature mapping, fg : Θ 7→ Rdg is the parameter

transformation, and dg is the feature dimension.

No Redundant Feature: For any g ∈ G, there exists a set {(s′(i), s(i), a(i))}
dg

i=1 ⊆ S × S × A such

that the set {ϕg(s′(i), s(i), a(i))}
dg

i=1 forms a basis of Rdg .

Identification: For two probability distributions q1 and q2 over Θ, if it holds for all g ∈ G that

Eθ∼q1 [fg(θ)] = Eθ∼q2 [fg(θ)],

then we have q1 = q2.

The factorization condition in Assumption D.1 is common in the RL literature [71, 10, 81]. As long

as ϕg has sufficient expressive power, (Pθ, rθ) is able to represent a broad range of models.

The redundancy condition states that ϕg does not have any redundant dimension. In other words,

we are able to construct a basis of Rdg by choosing dg different tuples (s′, s, a). We provide the

following example. Let G be {1, . . . , |G|} and dg = d for all g ∈ G. We assume that there exists a

surjective mapping k : S × S × A 7→ B|G|d, where B|G|d is the unit ball under the Euclidean norm

in R|G|d. Let pg : R|G|d 7→ Rd be a projection operator, which outputs the ((g− 1)d+1)-th to gd-th

entries of the input vector. We define ϕg as pg ◦ k. Since k is surjective, we are able to construct

{(s′(i), s(i)a(i))}
|G|d
i=1 as the tuple set in association with the canonical basis of R|G|d. As a result,

{ϕg(s′(i), s(i), a(i))}
gd
i=(g−1)d+1 forms the canonical basis of Rdg .

The identification condition ensures that the parameter distribution has a one-to-one correspondence

to its mean embedding [55, 37]. For example, the Gaussian distribution is determined by its first-

order and second-order moments.

22



Under review as a conference paper at ICLR 2024

The following assumption specifies the data-generating process, which is a simplified version of the

latent variable model in [69] and resembles that in [62].

Assumption D.2 (Data Generation). We assume that each individual rollout {(st, at, rt)}∞t=0 in the

pretraining dataset D is generated through the following process.

Instruct: Choose a specific instruction g ∈ G and sample an underlying parameter θ⋆ from the prior

distribution p0. Store g in D.

Initialize: Sample the initial state s0 from the initial distribution ρ.

Interact: At the t-th step, take an action at given the history {(si, ai, si+1, ri)}ti=0 and receive the

reward rt and the next state st+1, where rt = rgθ⋆(st, at) and st+1 ∼ P g
θ⋆(· | st, at).

The following assumption states that LLMs parameterize an implicit Bayesian inference mechanism,

which is proved in [77, 78] for the attention architecture.

Assumption D.3 (Parameterization of Implicit Bayesian Inference). We assume that LLMs

parameterize the following mechanism, which is summarized by the conditional distribution

PLLM(s′ | s, a,D, g).

Infer: Sample a latent concept θ ∼ PLLM(· | D), where PLLM is the conditional distribution in

association with the given LLM.

Generate: Generate the next state s′ and the received reward r via s′ ∼ Pθ(· | s, a; g) and r =

rθ(s, a; g) given a specific instruction g and the current state s and action a.

The following assumption states that LLMs are trained to replicate the pretraining distribution,

which covers a wide variety of D and g. The same assumption is employed by [48, 66, 69, 30]

to simplify the statistical analysis. Let PData be the pretraining distribution.

Assumption D.4 (Pretraining Consistency). We assume that

PLLM(s′ | s, a,D, g) = PData(s
′ | s, a,D, g)

for all D and (s′, s, a, g) ∈ S × S ×A× G.

In the following, we prove that Assumption 4.1 holds. By the implicit Bayesian inference mecha-

nism in Assumption D.3, we have

PLLM(s′ | s, a,D, g) =
∫
Pθ(s

′ | s, a; g) · PLLM(θ | D)dθ, (D.1)
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for all D and (s′, s, a, g) ∈ S ×S ×A×G. By the data-generating mechanism in Assumption D.2,

we have

PData(s
′ | s, a,D, g) =

∫
Pθ⋆(s′ | s, a; g) · PData(θ

⋆ | s, a,D, g)dθ⋆

=

∫
Pθ⋆(s′ | s, a; g) · PData(θ

⋆ | D)dθ⋆ (D.2)

for all D and (s′, s, a, g) ∈ S × S × A × G. Let PData(· | D) be the posterior distribution of the

underlying parameter θ⋆. By the pretraining consistency in Assumption D.4, we have∫
Pθ(s

′ | s, a; g) · PLLM(θ | D)dθ =

∫
Pθ(s

′ | s, a; g) · PData(θ | D)dθ (D.3)

for all D and (s′, s, a, g) ∈ S × S × A × G. By the factorization condition in Assumption D.1, we

transform (D.3) into

ϕg(s
′, s, a)⊤

∫
fg(θ) · PLLM(θ | D)dθ = ϕg(s

′, s, a)⊤
∫
fg(θ) · PData(θ | D)dθ (D.4)

for all D and (s′, s, a, g) ∈ S × S × A × G. By the redundancy condition in Assumption D.1 and

the property of a basis, we have

∫
fg(θ) · PLLM(θ | D)dθ =

dg∑
i=1

(
ϕg(s

′
(i), s(i), a(i))

⊤
∫
fg(θ) · PLLM(θ | D)dθ

)
· ϕg(s′(i), s(i), a(i))

=

dg∑
i=1

(
ϕg(s

′
(i), s(i), a(i))

⊤
∫
fg(θ) · PData(θ | D)dθ

)
· ϕg(s′(i), s(i), a(i))

=

∫
fg(θ) · PData(θ | D)dθ, (D.5)

which implies

Eθ∼PLLM(· | D)

[
fg(θ)

]
= Eθ∼PData(· | D)

[
fg(θ)

]
for all g ∈ G and D. By the identifiability condition in Assumption D.1, we have

PLLM(θ | D) = PData(θ | D)

which shows that the implicit Bayesian inference mechanism in Assumption D.3 matches the data-

generating process in Assumption D.2. Thus, we verify Assumption 4.1.

To numerically verify Assumption 4.1, we conduct three experiments on Bayesian linear regression,
the ALFWorld environment, and multi-arm bandit, respectively. Since the predictions given by
posterior sampling have the contraction property and the variance heterogeneity, we examine these
two properties of LLM predictions in multiple settings to study if the distribution of LLM predictions
matches the one given by posterior sampling.
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Bayesian Linear Regression. We test if GPT-3 can make an implicit Bayesian inference for the
linear regression problem from the perspectives of unbiasedness, contraction property, and Variance
heterogeneity of Predictions.

• Unbiasedness and contraction property. The unbiasedness and contraction property
ensure LLMs give a responsible answer given enough prompts and we consider a one-
dimensional Bayesian linear regression setting to verify them. We first generate i.i.d.
data {(xi, yi)}Ni=1 from xi ∼ N (0.8, 1), yi ∼ N (βxi, 0.04), where we take β = 0.5.
Then, we query GPT-3 API to obtain 200 predictions when xpred = 1 (we set tem-
perature as 1.0 and top-p as 0.8, where these parameter configurations can be found
in [21]). Specifically, the prompts are “The following data is for linear regression:
(x1, y1), (x2, y2), . . . , (xN , yN ), (1.000000,”. Then, we plot the histogram of the LLM-
generated predictions and the density function of the calculated ypred by posterior sampling,
where we choose the prior of the coefficient β as N (0, 0.5). We report the results in Figure
6. We find that the histogram of LLM predictions approximately matches the theoretical
distribution of the prediction given by the posterior sampling. Also, with an increasing
number of generated data, the variance of LLM predictions decays, which shows the con-
traction property.

• Variance heterogeneity of Predictions. The variance heterogeneity of predictions helps
LLMs give more diverse answers when the current prompt contains less relevant in-
formation. RAFA relies on the diversity of LLM predictions to guarantee the explo-
ration for those states less explored, hence we wish the variance of LLM predictions
for the less explored states is higher. We consider a two-dimensional Bayesian lin-
ear regression setting to study the variance heterogeneity of LLM predictions. We
first generate i.i.d. data D = {((x(1)i , x

(2)
i ), yi)}Ni=1 from xi = (x

(1)
i , x

(2)
i )⊤ ∼

N ((0.8, 0.8)⊤, diag(4, 0.1)), yi ∼ N (x⊤i β, 0.04), where we set N = 60 and β =
(0.25, 0.25)⊤. Then, we query GPT-3 API to obtain 200 predictions given the covariate
xpred (we set temperature as 1.0 and top-p as 0.8, where these parameter configurations
can be found in [21]). Specifically, the prompts are “The following data is for linear re-
gression: ((x

(1)
1 , x

(2)
1 ), y1), (x

(1)
2 , x

(2)
2 ), y2), . . . , ((x

(1)
N , x

(2)
N ), yN ), ((x

(1)
pred, x

(2)
pred)”. Theo-

retically, the variance of predictions given by posterior sampling is σ2 + (x⊤predΣ
−1xpred),

where Σ−1 = σ−2Λ0 +
∑N

i=1(xi − x̄)(xi − x̄)⊤ is the covariance matrix of the posterior
distribution of β and x̄ denotes the mean of {xi}Ni=1. Here, we choose the prior distribu-
tion of β is N ((0, 0)⊤,Λ0) with Λ0 = diag(0.5, 0.5). To study the variance heterogeneity
of predictions, we conduct a single-value decomposition on Σ−1 to obtain its eigenval-
ues {λ1, λ2} and the corresponding unit eigenvectors {v1, v2}, where we let λ1 < λ2 (if
λ1 = λ2, we regenerate the data). Note that

V[ypred | D, xpred = x̄+ λ
−1/2
1 · v1] = σ2 + ∥v1∥22

> σ2 + (λ2/λ1) · ∥v2∥22
= V[ypred | D, xpred = x̄+ λ

−1/2
1 · v2].

Thus, we examine the sample variance of LLM predictions given different covariates and
present the results in Table 4. Results show that LLM predictions reveal variance hetero-
geneity, which helps RAFA explore the unknown environment.

ALFWorld. We also test if the LLM performs an implicit Bayesian inference in the ALFWorld
environment.

• Contraction property. We begin by examining the contraction property in the ALFWorld
environment. Specifically, the model LLM is prompted to predict the observation of a
certain action “go to countertop 1”. The prediction result is provided in Figure 7. We
find that as more action-observation paris are added to the GPT-3 prompt when timestep
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(b) N = 30.

0.0 0.2 0.4 0.6 0.8 1.0
value of prediction

0

10

20

30

40

50

60

70

80

fre
qu

en
cy

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

de
ns

ity

(c) N = 60.

Figure 6: Histograms of LLM predictions and theoretical distribution of the prediction given by the
posterior sampling in the Bayesian linear regression problem.

xpred Sample Variance of LLM Predictions

x̄ 0.00496
x̄+ λ

−1/2
1 · v2 0.00752

x̄+ λ
−1/2
1 · v1 0.00864

Table 4: Sample variance of LLM Predictions on different xpred.

increases, the number of distinct prediction responses decreases, i.e., the model LLM has
decreasing uncertainty of what objects a certain place has after observing the locations of
objects at other places. This corresponds to a decreasing entropy and contraction of the
posterior distribution, which supports Assumption 4.1.
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Figure 7: Contraction property in the
ALFWorld environment.
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Action 'go to countertop 1'
Action 'go to diningtable 1'

Figure 8: Variance heterogeneity of pre-
dictions in the ALFWorld environment.

• Variance heterogeneity of Predictions. To show the variance heterogeneity of the pre-
dictions, we prompt the model LLM to predict the next observations when taking actions
that the agent has less relevant information. Specifically, in the trajectory that the agent
has never explored any dining table, we prompt the model LLM to predict the observation
after taking the action “go to dining table 1” at different timesteps. The result is shown in
Figure 8. We can observe that the number of distinct predictions of taking this action is
much larger the “go to countertop 1” action where similar locations such as “countertop 2”
and “countertop 3” are explored by the agent in this episode. This indicates the variance
heterogeneity of the predictions.

Contextual Bandit. We also conduct an experiment on a two-arm contextual bandit setting to
compare the performance of LLMs, Thompson sampling (posterior sampling), and Bayesian model
averaging. At each step, the agent receives a context x sampled from N (0.8, 1) and pulls the first arm
or the second one. If she pulls the first arm, she will receive a reward sampled from N (β1x, 0.04)
with β1 = 0.1. If she pulls the second arm, she will receive a reward sampled from N (β2x, 0.04)
with β2 = 0.5. For the LLM agent, we use the GPT-4 model and prompt it to output the best
arm given the history of the context-reward pair when pulling different arms at different timesteps.
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Figure 9: Performance of LLMs, Thompson sampling (posterior sampling), and Bayesian model
averaging in a two-arm bandit setting. Results are averaged under five random seeds, and the shaded
area represents a confidence band with one standard deviation.

Specifically, the LLM agent is first given the context and asked to determine the next arm to pull.
The context state [context], the pulled arm [arm], and the received reward [reward] are all added to
the prompt of the LLM. The system prompt we use is “You are a linear bandit expert. Output the
best arm based on the observed data. Output format: Best arm: [arm 0 or 1]. DO NOT generate
unnecessary text and always end with 0 or 1.” and the user prompt we use is “Consider the following
contextual linear bandit scenario with two arms. The following data is observed: state: [context],
arm: [arm], reward: [reward]; state: [context], arm: [arm], reward: [reward]; . . .. Will you try
arm 0 or arm 1 in the next step? Remember the exploration-exploitation tradeoff when generating
the response.”. For Thompson sampling, the agent first samples a parameter β̃i from the posterior
distribution of βi and samples an estimated reward ỹi given β̃i for all i ∈ {1, 2}. She will only pull
the first arm if ỹ1 > ỹ2. For Bayesian averaging, the agent chooses the mean of the posterior of βi
as the parameter estimate β̂i and samples an estimated reward ŷi given β̂i for all i ∈ {1, 2}. She will
also only pull the first arm if ŷ1 > ŷ2. The prior distribution of βi in both Thompson sampling and
Bayesian model averaging is chosen as N (0, 1) for all i ∈ {1, 2} We report the cumulative rewards
across 10 steps in Figure. 9.
From Figure 9, we observe that the cumulative reward obtained by the LLMs approximately matches
the Thompson sampling, both of which perform better than the Bayesian model averaging. This
implies that both LLMs and Thompson sampling can make a more effective exploration, while
Bayesian model averaging is easier to get trapped in the suboptimality. This close relationship
between the Thompson sampling algorithm and LLMs also supports Assumption 4.1.

APPENDIX E PROOF OF THEOREM 4.4

Proof of Theorem 4.4. We specify the terminating condition for Algorithm 3 (and Algorithm 1). Let

(K − 1) be the total number of switches until t reaches (T − 1). Let tK = T . At the (T − 1)-th

step, Algorithm 3 samples θT−1 from ptK−1
and executes aT−1 = πT−1(sT−1) , where we have

πT−1 = PLϵ(θT−1). Upon receiving rT−1 and sT from the external environment, Algorithm 3

updates DT = {(st, at, st+1, rt)}T−1
t=0 and terminates. Throughout the following proof, we denote
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the upper bound of the value function as L, i.e., maxθ∈Θ,π∈Π,s∈S |V π
θ (s)| ≤ L, for a positive

constant L.

Recall that the Bayesian regret R(T ) and the optimal planner PL⋆(θ) are defined in Section 2. By

the tower property of the conditional expectation, we have

R(T ) = E
[K−1∑
k=0

tk+1−1∑
t=tk

V π⋆

θ⋆ (st)− V πt

θ⋆ (st)
]

= E
[K−1∑
k=0

E
[
E
[tk+1−1∑

t=tk

V π⋆

θ⋆ (st)− V πt

θ⋆ (st)
∣∣∣Fk

]]]

= E
[K−1∑
k=0

E
[
E
[tk+1−1∑

t=tk

V
PL⋆(θ⋆)
θ⋆ (st)− V πt

θ⋆ (st)
∣∣∣Fk

]]]

= E
[K−1∑
k=0

E
[
E
[tk+1−1∑

t=tk

V
PL⋆(θt)
θt

(st)− V πt

θ⋆ (st)
∣∣∣Fk

]]]

= E
[K−1∑
k=0

tk+1−1∑
t=tk

V
PL⋆(θt)
θt

(st)− V πt

θ⋆ (st)
]
, (E.1)

where we define

Fk = σ
({

(st, at, st+1, rt)
}tk−1

t=0

)
(E.2)

and the fourth equality uses the fact that θ⋆ | Fk and θt | Fk follows the same distribution for all

tk ≤ t < tk+1. Note that the parameter sequence {θt}tk+1−1
t=tk

is sampled from ptk independently

and identically, while we have πt = PLϵ(θt), where PLϵ is an ϵ-optimal planner in Definition 4.2.

Let θk = θtk and πk = πtk . We are able to rewrite (E.1) as

R(T ) = E
[K−1∑
k=0

tk+1−1∑
t=tk

V
PL⋆(θk)

θk (st)− V πk

θ⋆ (st)
]
. (E.3)

Meanwhile, Definition 4.2 gives

V
PL⋆(θk)

θk (st)− V πk

θk (st) ≤ ϵ. (E.4)

Here, we use πk = PLϵ(θk).

To connect (E.3) and (E.4), we introduce the regret decomposition. For notational simplicity, we

denote by

(BθV )(s, a) = rθ(s, a) + γ(PθV )(s, a) (E.5)

for all (s, a) ∈ S ×A and V .
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Lemma E.1 (Regret Decomposition). For Algorithm 3, it holds that

1− γ

γ
· E

[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V πk

θk (st)− V πk

θ⋆ (st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(BθkV πk

θk )(st, at)− (Bθ⋆V πk

θk )(st, at)
]]

︸ ︷︷ ︸
term (A): information gain

+ E
[K−1∑
k=0

Eπk

[(
V πk

θk (stk+1
)− V πk

θ⋆ (stk+1
)
)
−

(
V πk

θk (stk)− V πk

θ⋆ (stk)
)]]

︸ ︷︷ ︸
term (B): value inconsistency

, (E.6)

where Eπk is taken with respect to the state-action sequence following st+1 ∼ Pθ⋆(· | st, at) and

at = πk(st) for all tk ≤ t < tk+1, while E is taken with respect to the prior distribution p0 of θ⋆,

the posterior distribution ptk of θk, and the iterative update of πk. Here, πk is determined by θk and

ptk is conditioned on Dtk = {(st, at, st+1, rt)}tk−1
t=0 , which is generated by θ⋆ and Algorithm 3.

Proof of Lemma E.1. The Bellman equation [59] connects Qπ
θ (s, a) and V π

θ (s) by

Qπ
θ (s, a) = rθ (s, a) + γ (PθV

π
θ ) (s, a) , V π

θ (s) = Qπ
θ

(
s, π(s)

)
. (E.7)

By (E.5), we rewrite (E.7) as Qπ
θ (s, a) = (BθV

π
θ )(s, a). For the left-hand side of (E.6), we have

E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V πk

θk (st)− V πk

θ⋆ (st)
]]

= γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(BθkV πk

θk )(st, at)− (Bθ⋆V πk

θ⋆ )(st, at)
]]

= γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(BθkV πk

θk )(st, at)− (Bθ⋆V πk

θk )(st, at)
]]

︸ ︷︷ ︸
term (A)

+ γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(Bθ⋆V πk

θk )(st, at)− V πk

θk (st+1)
]]

︸ ︷︷ ︸
term (C1)

+ γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V πk

θ⋆ (st+1)− (Bθ⋆V πk

θ⋆ )(st, at)
]]

︸ ︷︷ ︸
term (C2)

+ γ · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V πk

θk (st+1)− V πk

θ⋆ (st+1)
]]

︸ ︷︷ ︸
term (D)

, (E.8)
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where the first equality uses at = πk(st). Since we have

(Pθ⋆V )(st, at) = Est+1∼Pθ⋆ (· | st,at)

[
V (st+1)

]
,

terms (C1) and (C2) in (E.8) are zero. Meanwhile, term (D) in (E.8) satisfies

term (D) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(
V πk

θk (st)− V πk

θ⋆ (st)
)]]

+ E
[K−1∑
k=0

Eπk

[(
V πk

θk (stk+1
)− V πk

θ⋆ (stk+1
)
)
−

(
V πk

θk (stk)− V πk

θ⋆ (stk)
)]]

︸ ︷︷ ︸
term (B)

, (E.9)

where term (B) is defined in Lemma E.1. Rearranging (E.8) and (E.9), we prove Lemma E.1.

We characterize terms (A) and (B) in (E.6). Let E be the high-probability event in Definition 4.3.

For the information gain in term (A), we have

term (A) ≤ E
[K−1∑
k=0

Eπk

[
1E ·

tk+1−1∑
t=tk

(BθkV πk

θk )(st, at)− (Bθ⋆V πk

θk )(st, at)
]]

+ LδT

≤ E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

Γtk(δ) ·
√
I(θ; ξt+1 | Dt)

]]
+ LδT

≤ sup
t†<T

Γt†(δ) · E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

√
I(θ; ξt+1 | Dt)

]]
+ LδT

≤ sup
t†<T

Γt†(δ) · E
[√

T ·
(T−1∑

t=0

I(θ; ξt+1

∣∣∣Dt)
)1/2]

+ LδT

= sup
t†<T

Γt†(δ) · E
[√

T (H0 −HT )
]
+ LδT. (E.10)

The first inequality uses the fact that the value function is upper bounded by L and P(E) ≥ 1 − δ

in Definition 4.3. The last inequality invokes the Cauchy-Schwarz inequality. The last equality is

derived from I(θ; ξt+1 | Dt) = Ht − Ht+1. We explain the second inequality as follows. For any

0 ≤ k < K, we consider t† = tk and θk = θtk , which is sampled from ptk given Dtk , and the value

function sequence {Vt}tk+1−1
t=tk

= {V πk

θk }tk+1−1
t=tk

, which is adapted to {σ(Dt)}tk+1−1
t=tk

since Dtk ⊆ Dt

for all tk ≤ t < tk+1. Correspondingly, we have

∣∣(rθ⋆ − rθtk )(st, at) +
(
(Pθ⋆ − Pθtk

)Vt
)
(st, at)

∣∣ ≤ Γtk(δ) ·
√
I(θ; ξt+1|Dt).
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Hence, we obtain the second inequality in (E.10). As the switching condition in Algorithm 3 implies

Htk −Htk+1
≥ log 2, we have

H0 −HtK−1
=

K−2∑
k=0

Htk −Htk+1
≥ (K − 1) · log 2,

which implies

K − 1 ≤ (H0 −HtK−1
)/log 2 ≤ (H0 −HT )/ log 2. (E.11)

Recall that the value function is upper bounded by L. For the value inconsistency in term (B), we

have

term (B) ≤ (4L/log 2) · E[H0 −HT ] + 4L. (E.12)

Plugging (E.10) and (E.12) into Lemma E.1, we have

1− γ

γ
· E

[ K∑
k=0

Eπk

[tk+1−1∑
t=tk

V πk

θk (st)− V πk

θ⋆ (st)
]]

≤ LδT + sup
t†<T

Γt†(δ) · E
[√

T (H0 −HT )
]
+ (4L/log 2) · E[H0 −HT ] + 4L. (E.13)

Combining (E.3), (E.4), and (E.13), we have

R(T ) = O
(
γ · supt†<T Γt†(δ) · E[

√
H0 −HT ]

1− γ
·
√
T

+
γδL

1− γ
· T + ϵ · T +

γL · E[H0 −HT ]

(1− γ)

)
. (E.14)

Since the reward function is bounded in [0, 1], we take L =
∑∞

t=0 γ
t = 1/(1− γ) and obtain

R(T ) = O
(
γ · supt†<T Γt†(δ) · E[

√
H0 −HT ]

1− γ
·
√
T +

γδ

(1− γ)2
· T + ϵ · T +

γ · E[H0 −HT ]

(1− γ)2

)
.

Thus, we prove Theorem 4.4.

APPENDIX F LINEAR SPECIAL CASE

We specialize Algorithm 3 to a linear setting and characterize the Bayesian regret. In particular,
we define a Bayesian variant of linear kernel MDPs [71, 70, 10, 81]. Here, Es′∼Pθ(· | s,a)V (s′) is
linear in a feature ψV (s, a) ∈ Rd for an arbitrary parameter θ ∈ Rd, while the prior and posterior
distributions of the data-generating parameter θ⋆ ∈ Rd are Gaussian. Specifically, ψV (s, a) maps
the value function V and the state-action pair (s, a) to a d-dimensional vector. Recall that ρ is the
initial distribution of states, t is the step index, and T is the total number of steps. Also, pt is the
posterior distribution at the t-th step.
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Definition F.1 (Bayesian Linear Kernel MDP [19, 71, 70, 10, 81]). A Bayesian linear kernel MDP

M satisfies

V (st+1) | st, at ∼ N (ψV (st, at)
⊤θ, 1)

for all t ≥ 0, (st, at) ∈ S ×A, st+1 ∼ Pθ(· | st, at), θ ∈ Rd, as well as all value function V . Here,

ψV (s, a) maps V and (s, a) to a d-dimensional vector, which satisfies ∥ψV (s, a)∥2 ≤ R for all

(s, a) ∈ S ×A and all V . Also, M also satisfies |Es0∼ρV (s0)| ≤ R for all V . Here, R is a positive

constant that is independent of t and T . The prior distribution of the data-generating parameter

θ⋆ ∈ Rd is N (0, λId), where λ is a positive constant. Here, ψV is known and θ⋆ is unknown.

Without loss of generality, we assume that the reward function is deterministic and known.

Let (K − 1) be the total number of switches until t reaches (T − 1). Let tK = T . At the (T − 1)-th
step, Algorithm 3 samples θT−1 from ptK−1

and executes aT−1 = πT−1(sT−1) , where we have
πT−1 = PLϵ(θT−1). Upon receiving rT−1 and sT from the external environment, Algorithm 3
updates DT = {(st, at, st+1, rt)}T−1

t=0 and terminates. For notational simplicity, we define Vt =

V πk

θk for all tk ≤ t < tk+1 and obtain the closed form of pt as follows,

θ | Dt ∼ N (θ̂t; Σ
−1
t ),

where

θ̂t =
(
λId +

t−1∑
i=0

ψVi
(si, ai)ψVi

(si, ai)
⊤
)−1(t−1∑

i=0

ψVi
(si, ai)Vi(si+1)

)
(F.1)

and

Σt = λId +

t−1∑
i=0

ψVi
(si, ai)ψVi

(si, ai)
⊤
. (F.2)

Hence, the posterior entropy is

Ht = H(pt) = 1/2 · log(det(Σt)) + d/2 · (1 + log(2π)). (F.3)

We specialize the switching condition in Algorithm 3 as follows,

1/2 · log(det(Σtk))− 1/2 · log(det(Σt)) > log 2,

which is equivalent to det(Σtk) > 4 · det(Σt). This switching condition is also similarly adopted in
work for RL [81, 1]. As a result, we have

det(Σtk) ≤ 4 · det(Σt) (F.4)

for all tk ≤ t < tk+1 and k < K.
To apply Theorem 4.4, we characterize the information gain H0 −HT throughout the T steps and
the information ratio Γt†(δ), which is defined in Definition 4.3.
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Information Gain. By the definition of Σt in (F.2), we have log det(Σ0) = d · log λ and

log det(ΣT ) = log det
(
λId +

T−1∑
t=0

ψVt
(st, at)ψ

⊤
Vt
(st, at)

)
≤ d · log

(
1/d · tr

(
λId +

T−1∑
t=0

ψVt
(st, at)ψ

⊤
Vt
(st, at)

))
= d · log

(
1/d ·

(
λd+

T−1∑
t=0

∥ψVt(st, at)∥22
))

≤ d · log(λ+ TR2/d) (F.5)

almost surely. Here, the first inequality uses the relationship between the trace and the determinant
of a square matrix, the second equality uses tr(a⊤b) = tr(ba⊤) for two arbitrary vectors a and b,
and the last inequality uses the fact that ∥ψV (s, a)∥2 is upper bounded by R for all (s, a) ∈ S × A
and V . Hence, we have

H0 −HT = O
(
d · log(1 + TR2/(dλ))

)
(F.6)

almost surely. By (E.11) in the proof of Theorem 4.4, we obtain

K − 1 = O
(
d · log(1 + TR2/(dλ))

)
(F.7)

almost surely.
Information Ratio. The following proposition characterizes the information ratio Γt†(δ), which is
defined in Definition 4.3.

Proposition F.2. The information ratio Γt†(δ) satisfies supt†<T Γt†(δ) = O(d · log(dT/δ)).

Proof of Proposition F.2. For any t† and t ≥ t†, Ht† −Ht ≤ log 2 implies

(1/2) · log det (Σt†)− (1/2) · log det (Σt) ≤ log 2,

which uses (F.3). Hence, we have

det (Σt†) ≤ 4 · det (Σt). (F.8)

By Definition F.1, we have

∣∣((Pθ⋆ − Pθ
t†
)Vt)(st, at)

∣∣ = (θ⋆ − θt†)
⊤ψVt(st, at)

≤ ∥θ⋆ − θt†∥Σt†
· ∥ψVt

(st, at)∥Σ−1

t†

≤ 4 · ∥θ⋆ − θt†∥Σt†
· ∥ψVt

(st, at)∥Σ−1
t
, (F.9)

where the first inequality invokes the Cauchy-Schwarz inequality and the second inequality is de-

rived from Lemma 12 in [2] and (F.8). Since θt† and θ⋆ share the posterior distribution N (θ̂t† ,Σ
−1
t†

)

given Dt† , we know that ∥θ − θ̂t†∥2Σ
t†

follows X 2
d , where θ ∈ {θ⋆, θt†} and X 2

d is the chi-square
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distribution with d degrees of freedom. By the tail behavior of the chi-square distribution [20], we

have

P
(
∥θ⋆ − θ̂t†∥2Σ

t†
> 2d · log(2d/δ)

)
≤ δ/2 (F.10)

and

P
(
∥θt† − θ̂t†∥2Σ

t†
> 2d · log(2d/δ)

)
≤ δ/2 (F.11)

for a sufficiently large d and a sufficiently small δ. Hence, it holds with probability at least 1−δ that

∥θ⋆ − θt†∥Σt†
≤

√
2 ·

√
∥θt† − θ̂t†∥2Σ

t†
+ ∥θ⋆ − θ̂t†∥2Σ

t†
= O

(√
d · log(d/δ)

)
, (F.12)

which uses the triangle inequality for ∥ · ∥Σ
t†

and the inequality (a + b)2 ≤ 2 · (a2 + b2) for all

a, b ≥ 0. Recall that the information gain is defined as

I(θ; ξt+1 | Dt) = Ht −Ht+1.

By (F.3), we have

I(θ; ξt+1 | Dt) = 1/2 · log
(
det(Σt+1)/det(Σt)

)
= 1/2 · log(1 + ψVt

(st, at)
⊤Σ−1

t ψVt
(st, at))

≥ log(1 + d)/(2d) · ψVt
(st, at)

⊤Σ−1
t ψVt

(st, at)

= log(1 + d)/(2d) · ∥ψVt
(st, at)∥2Σ−1

t
, (F.13)

where the second equality uses the matrix determinant lemma and the first inequality uses the fact

that log(1 + x)/x is an increasing function for x ≥ 0 and

0 ≤ ψVt
(st, at)

⊤Σ−1
t ψVt

(st, at)

≤ ψVt
(st, at)

⊤(ψVt(st, at)ψVt(st, at)
⊤)−1

ψVt(st, at)

= tr
(
ψVt(st, at)ψVt(st, at)

⊤(ψVt(st, at)ψVt(st, at)
⊤)−1

)
= d. (F.14)

Here, the first inequality uses the nonnegativity of a quadratic form, the first equality uses tr(a⊤b) =

tr(ba⊤) for two arbitrary vectors a and b, and the second inequality uses (F.2). We obtain

4 · ∥θ⋆ − θt†∥Σt†
· ∥ψVt

(st, at)∥Σ−1
t

≤ 4
√
2d/

√
log(1 + d) · ∥θ⋆ − θt†∥Σt†

·
√
I(θ; ξt+1 | Dt)

≤ 4
√

2(d+ 1) · ∥θ⋆ − θt†∥Σt†
·
√
I(θ; ξt+1 | Dt)

= O
(√

d(d+ 1) · log(d/δ) ·
√
I(θ; ξt+1 | Dt)

)
(F.15)
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for all t < T such thatHt† −Ht ≤ log 2. Here, the first inequality uses (F.13), the second inequality

uses log(1 + x) ≥ x/(1 + x) for all x ≥ 0, and the first equality uses (F.12). Setting δ′ = δ/T and

applying the union bound over 0 ≤ t < T , we obtain

sup
t†<T

Γt†(δ
′) = O

(√
d(d+ 1) · log(dT/δ′)

)
= O

(
d · log(dT/δ′)

)
with probability at least 1− δ′ for a sufficiently large enough d and a sufficiently small δ′. Thus, we

prove Proposition F.2.

Bayesian Regret. Proposition F.2 enables us to specialize Theorem 4.4 in Bayesian linear kernel
MDPs when any value function is upper bounded by L [40, 45, 47, 36]. To remove the boundedness
assumption, we present a refined analysis based on the proof of Theorem 4.4, which characterizes
term (A) in Lemma E.1 through a conditional expectation. Recall that Bayesian linear kernel MDPs
are defined in Definition F.1.

Proposition F.3. For Bayesian linear kernel MDPs, the Bayesian regret of Algorithm 3 satisfies

R(T ) = O
(γd3/2 · log(TR2/(dλ))

1− γ
·
√
T +

γλ1/2d3/2R

1− γ
· log(TR2/(dλ)) + ϵ · T

)
. (F.16)

Proposition F.3 establishes the
√
T regret of Algorithm 3 for an appropriate choice of the planning

suboptimality ϵ, e.g., ϵ = O(1/
√
T ). Here, the first term on the right-hand side of (F.16) is the

leading term.

F.1 PROOF OF PROPOSITION F.3

Proof of Proposition F.3. Following the proof of Theorem 4.4, it suffices to bound

1− γ

γ
· E

[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V πk

θk (st)− V πk

θ⋆ (st)
]]

on the left-hand side of (E.6) in Lemma E.1. In particular, Lemma E.1 gives

1− γ

γ
· E

[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V πk

θk (st)− V πk

θ⋆ (st)
]]

= E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

(BθkV πk

θk )(st, at)− (Bθ⋆V πk

θk )(st, at)
]]

︸ ︷︷ ︸
term (A): information gain

+ E
[K−1∑
k=0

Eπk

[(
V πk

θk (stk+1
)− V πk

θ⋆ (stk+1
)
)
−

(
V πk

θk (stk)− V πk

θ⋆ (stk)
)]]

︸ ︷︷ ︸
term (B): value inconsistency

, (F.17)

where Eπk is taken with respect to the state-action sequence following st+1 ∼ Pθ⋆(· | st, at) and

at = πk(st) for all tk ≤ t < tk+1, while E is taken with respect to the prior distribution p0 of θ⋆,
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the posterior distribution ptk of θk, and the iterative update of πk. Here, πk is determined by θk and

ptk is conditioned on Dtk = {(st, at, st+1, rt)}tk−1
t=0 , which is generated by θ⋆ and Algorithm 3.

Analysis of Term (A). Recall that we define Vt = V πk

θk for all tk ≤ t < tk+1 and k < K. We have

term (A) = E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

ψVt
(st, at)

⊤(θk − θ⋆)
]]

= E
[K−1∑
k=0

[tk+1−1∑
t=tk

E
[
ψVt

(st, at)
⊤(θk − θ⋆)

∣∣Fk

]]]

≤ E
[K−1∑
k=0

tk+1−1∑
t=tk

(
E
[
∥ψVt(st, at)∥2Σ−1

tk

∣∣Fk

])1/2

·
(
E
[
∥θk − θ⋆∥2Σtk

∣∣Fk

])1/2]

≤ 4 · E
[K−1∑
k=0

tk+1−1∑
t=tk

(
E
[
∥ψVt

(st, at)∥2Σ−1
t

∣∣Fk

])1/2

·
(
E
[
∥θk − θ⋆∥2Σtk

∣∣Fk

])1/2]
,

(F.18)

where the first equality uses Definition F.1 and the second equality uses the tower property of the

conditional expectation. Note that Fk is defined in (E.2) and the reward function is deterministic

and known in Definition F.1. Also, the first inequality invokes the Holder’s inequality and the sec-

ond inequality uses Lemma 12 in [2] and (F.4). Since θk and θ⋆ share the posterior distribution

N (θ̂tk ,Σ
−1
tk

) given Dtk , we have that ∥θ − θ̂tk∥2Σtk
follows X 2

d . Here, θ ∈ {θ⋆, θk} and X 2
d is the

chi-square distribution with d degrees of freedom, whose expectation is d. Hence, we have

E
[
∥θk − θ⋆∥2Σtk

∣∣Fk

]
≤ 2 · E

[
∥θk − θ̂tk∥2Σtk

∣∣Fk

]
+ 2 · E

[
∥θ⋆ − θ̂tk∥2Σtk

∣∣Fk

]
= 2d, (F.19)

where the first inequality uses the triangle inequality for ∥ · ∥Σtk
and (a+ b)2 ≤ 2(a2 + b2) for all

a, b ≥ 0. Plugging (F.19) into (F.18), we obtain

term (A) ≤ 4
√
2d · E

[K−1∑
k=0

tk+1−1∑
t=tk

(
E
[
∥ψVt

(st, at)∥2Σ−1
t

∣∣Fk

])1/2]

≤ 8
√
(d+ 1)d · E

[K−1∑
k=0

tk+1−1∑
t=tk

(
E
[
I(θ; ξt+1 | Dt)

∣∣Fk

])1/2]

≤ 8
√
(d+ 1)d ·

√
T · E

[(T−1∑
t=0

E
[
I(θ; ξt+1 | Dt)

∣∣Fk

])1/2]
≤ 8

√
(d+ 1)d ·

√
T ·

(
E
[T−1∑
t=0

E
[
I(θ; ξt+1 | Dt)

∣∣Fk

]])1/2

= 8
√
(d+ 1)d ·

√
T ·

√
E
[
H0 −HT

]
, (F.20)

where the second inequality follows the same arguments in (F.13) and (F.15), the second last in-

equality invokes the Cauchy-Schwarz inequality. Also, the last inequality uses the concavity of the

square-root function, while the last equality uses I(θ; ξt+1 | Dt) = Ht −Ht+1 and the tower prop-
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erty of the conditional expectation. Recall thatH0−HT = O(d · log(1+TR2/(dλ))) almost surely

in (F.6). We have

term (A) = O
(
d3/2 · log(TR2/(dλ)) ·

√
T
)
. (F.21)

Analysis of Term (B). By Definition F.1, we have

term (B) = E
[K−1∑
k=0

Eπk

[(
ψ
V πk

θk

(stk+1−1, atk+1−1)− ψ
V πk

θ⋆
(stk+1−1, atk+1−1)

)⊤
θ⋆
]]

− E
[K−1∑
k=1

Eπk

[(
ψ
V πk

θk

(stk−1, atk−1)− ψ
V πk

θ⋆
(stk−1, atk−1)

)⊤
θ⋆
]]

+ E
[
V π0

θ⋆ (s0)− V π0

θ0 (s0)
]

≤ E
[K−1∑
k=0

Eπk

[∥∥ψ
V πk

θk

(stk+1−1, atk+1−1)− ψ
V πk

θ⋆
(stk+1−1, atk+1−1)

∥∥
2
· ∥θ⋆∥2

]]
+ E

[K−1∑
k=1

Eπk

[∥∥ψ
V πk

θ⋆
(stk−1, atk−1)− ψ

V πk

θk

(stk−1, atk−1)
∥∥
2
· ∥θ⋆∥2

]]
+ 2R

≤ 4R · E
[
K · ∥θ⋆∥2

]
+ 2R, (F.22)

where the first equality uses stk ∼ Pθ⋆(· | stk−1, atk−1), atk−1 = πk(stk−1), and

Estk∼Pθ⋆ (· | stk−1,atk−1)V (stk) = ψV (stk−1, atk−1)
⊤θ⋆

for all 0 < k < K and V . In (F.22), the first inequality invokes the Cauchy-Schwarz inequality

and |Es0∼ρV (s0)| ≤ R for all V , while the last inequality uses the triangle inequality for ∥ · ∥2 and

∥ψV (s, a)∥2 ≤ R for all (s, a) ∈ S ×A and V . By (F.7), we have

4R · E
[
K · ∥θ⋆∥2

]
+ 2R = O

(
R ·

(
1 + d log 2 · log(1 + TR2/(dλ))

)
· E

[
∥θ⋆∥2

])
= O

(
λ1/2d1/2R ·

(
1 + d · log 2 · log(1 + TR2/(dλ))

))
,

where the last equality uses the fact that the prior distribution is N (0, λId) and E[∥θ⋆∥2] ≤√
E[∥θ⋆∥22] ≤

√
λd. Here, ∥θ⋆∥22/λ follows the chi-square distribution with d degrees of freedom,

whose expectation is d. For a sufficiently large d, we have

term (B) = O
(
λ1/2d1/2R ·

(
1 + d · log 2 · log(1 + TR2/(dλ))

))
= O

(
λ1/2d3/2R · log(TR2/(dλ))

)
. (F.23)

Combining Lemma E.1, (F.21), and (F.23), we obtain

E
[K−1∑
k=0

Eπk

[tk+1−1∑
t=tk

V πk

θk (st)− V πk

θ⋆ (st)
]]

= O
(γd3/2 · log(TR2/(dλ))

1− γ
·
√
T +

γλ1/2d3/2R

1− γ
· log(TR2/(dλ))

)
.
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By Definition 4.2 and a similar argument of (E.1) in the proof of Theorem 4.4, we obtain

R(T ) = O
(γd3/2 · log(TR2/(dλ))

1− γ
·
√
T +

γλ1/2d3/2R

1− γ
· log(TR2/(dλ)) + ϵ · T

)
.

Thus, we prove Proposition F.3.

APPENDIX G MORE EXPERIMENTS

In what follows, we provide the detailed setups and additional results of our experiments.

G.1 GAME OF 24

Task Setup. Game of 24 [73] is a mathematical puzzle where the player uses basic arithmetic
operations (i.e., addition, subtraction, multiplication, division) with four given numbers to get 24.
Figure 10 gives an illustrative example for Game of 24.

[Illustrative example for Game of 24]
• Numbers: [2, 5, 8, 11]
• Arithmetic Operations: [+, −, ×, /, (, )]
• Solution:

(11− 5)× 8/4 = 24

Figure 10: An illustrative example of the Game of 24. The player uses combinations of basic
arithmetic operations with four given numbers to get 24.
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Figure 11: Sample efficiency on Game of 24. RAFA agent achieves strong performance due to an
orchestration of reasoning and acting. The success rate at a given step is the number of tasks that is
solved within the given step.
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Figure 12: Token efficiency on Game of 24. RAFA is superior in terms of token complexity. Methods
that lack planning like Reflexion has a low token demand, however it is not enough to compen-
sate for the drop in performance. Methods that lacks in-context learning like ToT would generate
unnecessary repeated trials due to lack of reflection and improvement, which makes the method to-
ken inefficient.

To evaluate the performance of RAFA in a more profound way, we also consider token complexity
for evaluation as shown in Figure 12. This rules out the possibility that some methods can get better
performance via just using more queries. We compare the token efficiency of our method on the
Game of 24 with various baseline methods and the results and RAFA is superior in terms of token
complexity. Methods that lack planning like Reflexion has a low token demand, however it is
not enough to compensate for the drop in performance. Methods that lacks in-context learning like
ToT would generate unnecessary repeated trials due to lack of reflection and improvement, which
makes the method token inefficient.
Following Yao et al. [73], we use the same subset indexed 901-1,000 from a total of 1,362 tasks
collected from 4nums.com. The index is arranged from easy to hard by human solving time so the
subset is relatively challenging. The agent receives a reward of 1 if the proposed formula is correct
and the proposed formula is accepted and concatenated into the state; if the final result is exactly
24, the agent receives a reward of 10, and the episode terminates. Otherwise, the agent receives
a reward of 0, and the proposed formula is not accepted. We limit the maximum trials for each
task to 20 to avoid meaningless retries. The task is successful if the agent receives a return larger
than 10 1 (i.e., find a valid solution within 20 steps). We report the final success rate and sample
efficiency for each method on the subset of 100 tasks. Notably, a task is considered successful if
the RAFA agent returns one and only one correct formula, which is more strictly evaluated than
Tree of Thoughts (ToT, Yao et al. [73]): we allow open-loop agents like ToT to retry 20 times and
consider them successful if they generate a valid solution in any of the 20 trials. For CoT [67] and
Reflexion [53] agents, we allow them to reflect on the environment’s feedback but require them
to generate a plan immediately without sophisticated reasoning. only require any one of the best k
formulas to be correct for success. Thus, our result is not directly comparable to theirs.
RAFA Setup. In the Game of 24, the RAFA agent uses ToT as the planner, regenerates a plan when
the agent receives a zero reward and continues acting according to the previous plan when the agent
receives a positive reward. We set the base ToT planner with beam search width b = 1, 2 and use
both gpt-3.5-turbo and gpt-4 to test the RAFA’s boost-up over LLM agents with different
reasoning abilities. We set the temperature t = 0.2 by default to favor rigorous reasoning and
t = 0.7 for majority voting.
Reduced Hallucination Through Interaction. A comprehensive review of various method pro-
posals revealed significant hallucination, especially with gpt-3.5-turbo. A common halluci-
nation is that the agent believes she can reuse the same number (e.g. using the number 2 twice as

1For gpt-3.5-turbo, we report the success rate when the agent receives a return no less than 3 (i.e.,
find all sub-steps to get 24 but not necessarily generate a whole correct formula). This is because ToT with
gpt-3.5-turbo is known to suffer from correctly get a whole formula due to limited reasoning ability and
non-perfect prompts. See https://github.com/princeton-nlp/tree-of-thought-llm/issues/24 for more details.
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illustrated in Figure 2). RAFA efficiently mitigates such hallucination by actively interacting with
the environment, displaying exceptional hallucination resistance and improved performance.
Enhanced Efficiency Through Planning. Evidenced in Figure 3, the RAFA agent substantially
surpasses the Reflexion baseline, reflecting heightened efficiency and minimized regret by negat-
ing careless trials. For example, without carefully planning, agent may give negative answers,
e.g,“Impossible to obtain 24 with the given numbers, or unchecked answers, e.g.,“Answer: 6 * 9
/ (3 - 2) = 24”. This reduction of careless trails is especially achieved when a strong backbone LLMs
(e.g., gpt-4) is used, even with a basic planning method, such as BFS with B = 1.
Ablation Study. The RAFA agent’s performance is dissected by individually examining its com-
ponents: (1) Planning modules or model/elite LLM, (2) Reflection modules or critic LLM, and (3)
Different LLMs. Results, displayed in Table 1 and Figure 3, affirm the substantial contribution of
each segment to the aggregate performance. Compared to absent or rudimentary zero-shot planning,
a basic planner markedly enhances overall performance. However, augmenting planner strength
only offers marginal performance enhancements. Both critic LLM and robust LLM usage emerge
as pivotal for optimal performance.

G.2 ALFWORLD

Elite LLM

Reasoning

Model LLM

You see a fork 1
and a cup 1.

You see a cd 1
and a cup 1.

Take egg 1

Take cup 1
from

drawer 1

Go to
drawer 1

You see a bread
1 and an egg 1.

Go to
drawer 1

Go to
cabinet 1

Go to
countertop

1

Critic LLM

You see a
cd 1.

Egg 1 is
picked up.

Cup 1 is
picked up.

Goal: heat an egg and 
put it on dining table

You see a
cabinet 1, a
countertop 1, a
diningtable 1,
and a drawer 1.

Acting

Env

...

Go to
countertop 1

Figure 13: An illustration of RAFA in the ALFWorld environment.

Task Setup. The action space of ALFWorld consists of high-level actions such as “heat a potato
with a microwave”, which is executed in the underlying embodied simulator through low-level action
primitives. The egocentric visual observations of the simulator are translated into natural language
before being provided to the agent. The state is the history of the observations. If a task goal can be
precisely achieved by the agent, it will be counted as a success.
RAFA Setup. In the ALFWorld environment, the RAFA planner is instantiated as Breadth First
Search (BFS). Specifically, B and U are both set to 2, and we use gpt-3 (text-davinci-003)
for the Critic, Model, and Elite modules. Besides, since it is challenging to prompt the LLM
with the stored full trajectories in the memory buffer due to the token limit, we make the following
modifications: the Model LLM instance uses only the partial trajectory executed so far in the current
episode, and the Elite LLM instance uses the same partial executed trajectory with additional
model-generated state-action pairs during the planning subroutine. When switching is triggered
after 20 failed timesteps (i.e., an episode), a summary from the failure trajectory is generated by
gpt-4 and added to the Critic prompt.
Reduced Hallucination Through Interaction. The baselines are more likely to hallucinate when
the target object is not found after exploring many locations. On the other hand, the critic LLM
used in RAFA is able to probe the hallucination by generating the summary “In this environment,
my critic assigned a 1/3 value after taking a knife. However, the task is to take and cool a tomato.”
and avoid it in the next episode. Therefore, RAFA is more sample-efficient due to an orchestration
of reasoning and acting and the ability to mitigate hallucination through interaction.
Ablation Study. To better understand the role that the planning subroutine plays in the RAFA al-
gorithm, we conduct ablation studies on the search depth U and search breadth B. The results
are shown in Figure 14 and 15, respectively. We observe that when setting the search depth to
B = U = 2, the success rate is higher than when setting the search depth to U = 1 or setting the
search breadth B = 1, especially at the initial episode. This indicates that the reasoning ability of
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RAFA is enhanced through the planning subroutine. Besides, the algorithm is also more sample-
efficient when setting B = U = 2, indicating a better capacity for learning and planning through
interaction and reasoning.
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Figure 14: Ablation on the search depth
U in the ALFWorld environment.
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Figure 15: Ablation on the search breadth
B in the ALFWorld environment.

G.3 BLOCKSWORLD

Task Setup. The reported success rates are averaged in tasks that require different minimum steps.
Specifically, the evaluation is conducted in 57 4-step tasks and 114 6-step tasks. We set the state
as the current arrangement of the blocks and the actions contain Stack, Unstack, Put, and Pickup,
coupled with a block being operated.

Unstack yellow
block from blue

block

s1

Model LLM Critic LLM

Pick up the
orange block

Unstack purple
block from red

block

Elite LLM

ReasoningGoal: blue block on top
of the orange block

Acting

Env

...

Unstack yellow
block from blue

block

Figure 16: Illustration of RAFA in the BlocksWorld environment.

RAFA Setup. The search space is up to 54 for a 4-step task and is up to 56 for a 6-step
task. For 4-step tasks, RAFA can achieve over 50% success rate within 8 learning steps
with Vicuna-13B(v1.3) and achieve over 80% success rate within 8 learning steps with
Vicuna-33B(v1.3). For 6-step tasks, RAFA can achieve over 40% success rate within 20 learn-
ing steps with Vicuna-13B(v1.3) and achieve over 50% success rate within 20 learning steps
with Vicuna-33B(v1.3). Empirical results show that Vicuna could produce wrong state tran-
sition in the planning phase. RAFA can mitigate hallucination with feedback from failure trajectories
and active exploration. One can draw such a conclusion by comparing RAFA with RAP as RAP does
not receive feedback from the real environment.

G.4 TIC-TAC-TOE

Task Setup. Tic-Tac-Toe [7] is a competitive game in which two players take turns to mark a three-
by-three grid with X or O, and a player succeeds when their marks occupy a diagonal, horizontal, or
vertical line.
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Elite LLM

Reasoning

Dynamic
Model LLM Critic LLM Not

done

Opponent
Model LLM

O | 2 | 3
-----------
4 | X | X

-----------
O | 8 | 9

O | 2 | 3
-----------
O | X | X

-----------
X | 8 | 9

O | 2 | 3
-----------
O | X | X

-----------
7 | 8 | 9

O | 2 | 3
-----------
X | X | X

-----------
O | 8 | 9

Fail

O | O | 3
-----------
4 | X | X

-----------
7 | 8 | 9

O | O | 3
-----------
X | X | X

-----------
7 | 8 | 9

Fail

Acting

O | 2 | 3
-----------
4 | X | X

-----------
7 | 8 | 9

Env

...

Opponent action

Figure 17: Illustration of RAFA (playing O) in the Tic-Tac-Toe game. States are represented by
a numbered 3 × 3 grid and actions are represented by a number between 1-9. The opponent is
considered part of the environment.

We adopt the convention that X plays first. As illustrated below in Figure ??, we use a numbered
3 × 3 grid to represent a state and a number between 1 and 9 to represent an action, which also
illustrates the transition and reward function. Although Tic-Tac-Toe is a solved game with a forced
draw assuming the best play from both players, it remains a challenge for LLMs to accomplish this
task even when prompted to play only the optimal moves. We collected the battle outcomes between
different LLM models in Table 5, where we notice that gpt-4 performs worse when playing as “O”.
Thus, in our experiments, we let RAFA play as “O” and let baseline LLM models play as “X”.

X wins : Tie : O wins O
gpt-3.5 gpt-4

X gpt-3.5 55% : 35% : 10% 90% : 0% : 10%
gpt-4 65% : 15% : 20% 90% : 0% : 10%

Table 5: Probability of “X wins,” “Tie,” and “O wins” in Tic-Tac-Toe. The results are obtained by
averaging over 20 simulated games.

RAFA Setup. For implementation, we setB = 3 and adopt MCTS to evaluate the proposed actions.
We set U = 4 which is the maximum game depth. We set a prediction-based switching condition
triggered when the prediction does not agree with the observation. Specifically, policy switches
when one of the following events occurs:

• The RAFA agent takes an action and predicts the next state, which is different from the
observed next state.

• Before the opponent takes an action, the RAFA agent tries to predict such an action, which
is different from the actual action that the opponent takes.

• After the opponent takes an action, RAFA agent predicts the next state, which is different
from the observed next state.

• The RAFA agent predicts the current game status (X wins, O wins, Tie, Not finished), which
is different from the environment’s feedback.

Besides, we use the ground truth of those predictions to update the agent’s belief of the world, which
also implicitly affects the agent’s policy.
We define a discrete reward function with r = −1, 0, 1 corresponding to lose, tie, and win. The
agent only gets rewards when the current episode is completed. We define the score of an agent as
its expected reward which can be approximated by simulation. The empirical results are shown in
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figure 18. We conduct experiments using both gpt-4 as the backend. The score of RAFA (B = 4)
increases as it interacts more with the environment. By analyzing the generated trajectories, we also
notice that although RAFA agent is not perfect, it exploits the weakness of the baseline model well,
which is why it almost never loses after 7 episodes.
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Figure 18: Score curves in the Tic-Tac-Toe game. We use gpt-4 as backend. Results are averaged
across 10 simulations and smoothed with a window size of 5.

APPENDIX H PROMPTS

In this section, we give details of the prompts used for each task.

H.1 GAME OF 24

Critic LLM. For the LLM instance of the Critic, we prompt it with the current action (formula)
with reward and feedback from the environment. The critic is required to determine whether each
formula is valid or not and give a ”sure” or ”impossible” label for the formula. We use critic prompts
to generate reflection for formula proposal and evaluation, respectively.

Critic prompt (for formula proposal)

Now we would like to play a game of 24. That is, given 4 numbers, try

to use them with arithmetic operations (+ - * /) to get 24. Now we

consider the following puzzle: {input}.

Here is an attempt answer:

{answer}

And we have the following feedback:

{feedback}

Now using the above feedback, give 'sure' or 'impossible' labels for

each formula with left numbers from each step. Give 'sure' if the

formula is correct and can lead to 24 and give 'impossible' if the

formula is incorrect or illegal. First repeat the formula with left

numbers from each step above and then give the label, with the

following form: {{formula}} (left: {{left numbers}}): {{label}}.
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Critic prompt (for formula evaluation)

Now we would like to play a game of 24. That is, given 4 numbers, try

to use them with arithmetic operations (+ - * /) to get 24. Now we

consider the following puzzle: {input}.

Here is an attempt answer:

{answer}

And we have the following feedback:

{feedback}

Now using the above feedback, give 'sure' or 'impossible' labels for

left numbers from each step. Give 'sure' if the formula is correct and

left numbers can lead to 24 and give 'impossible' if the formula is

incorrect or illegal. First repeat the left numbers from each step

above and then give the label, with the following form: {{left

numbers}}: {{label}}.

Elite LLM. We adopt the same prompts used in Tree-of-Thoughts [73] to propose and evaluate for-
mulas, except that we concatenate the reflections from each step to avoid making repeated mistakes.

Elite prompt (for formula proposal)

Now we would like to play a game of 24. That is, given 4 numbers, try

to use them with arithmetic operations (+ - * /) to get 24.

Evaluate if given numbers can reach 24 and choose labels from 'sure',

'likely' and 'impossible'.

What you have learned about the puzzle are summarized below.

{reflections}

Now use numbers and basic arithmetic operations (+ - * /) to generate

possible next steps. Make sure use steps that is sure to leads to 24

and avoid steps that are impossible to generate 24. Note that it is

possible that we are considering intermediate steps so the numbers of

the input may be less than 4.

Example:

Input: 2 8 8 14

Possible next steps:

2 + 8 = 10 (left: 8 10 14)

8 / 2 = 4 (left: 4 8 14)

14 + 2 = 16 (left: 8 8 16)

2 * 8 = 16 (left: 8 14 16)

8 - 2 = 6 (left: 6 8 14)

14 - 8 = 6 (left: 2 6 8)

14 / 2 = 7 (left: 7 8 8)

14 - 2 = 12 (left: 8 8 12)

Example:

Input: 2 5 8

5 - 2 = 3 (left: 3 8)

5 * 2 = 10 (left: 10 8)
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8 / 2 = 4 (left: 4 5)

Now try with the following input:

Input: {input}

Possible next steps:

{input}

Elite prompt (for formula evaluation)

Now we would like to play a game of 24. That is, given 4 numbers, try

to use them with arithmetic operations (+ - * /) to get 24.

Evaluate if given numbers can reach 24 and choose labels from 'sure',

'likely' and 'impossible'.

What you have learned about the puzzle are summarized below.

{reflections}

If the given numbers are already in the feedback above, just give the

answer. Otherwise enumerate possible steps and try to give an

approximate answer. Give the final answer in a separated line.

{input}

Elite prompt (for last step formula evaluation)

Now we would like to play a game of 24. That is, given 4 numbers, try

to use them with arithmetic operations (+ - * /) to get 24.

Evaluate if given numbers can reach 24 and choose labels from 'sure',

'likely' and 'impossible'.

What you have learned about the puzzle are summarized below.

{reflections}

Use numbers and basic arithmetic operations (+ - * /) to obtain 24.

Given an input and an answer, give a judgement (sure/impossible) if

the answer is correct, i.e., it uses each input exactly once and no

other numbers, and reach 24.

Input: 4 4 6 8

Answer: (4 + 8) * (6 - 4) = 24

Judge:

sure

Input: 2 9 10 12

Answer: 2 * 12 * (10 - 9) = 24

Judge:

sure

Input: 4 9 10 13

Answer: (13 - 9) * (10 - 4) = 24

Judge:

sure

Input: 4 4 6 8

Answer: (4 + 8) * (6 - 4) + 1 = 25

Judge:
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impossible

Input: 2 9 10 12

Answer: 2 * (12 - 10) = 24

Judge:

impossible

Input: 4 9 10 13

Answer: (13 - 4) * (10 - 9) = 24

Judge:

impossible

Input: {input}

Answer: {answer}

Judge:

For Chain-of-Thought baselines, we adopt the same methodology, and keep the original prompts
except for adding reflections as below.

Elite prompt (for chain-of-thought proposals)

Now we would like to play a game of 24. That is, given 4 numbers, try

to use them with arithmetic operations (+ - * /) to get 24.

Evaluate if given numbers can reach 24 and choose labels from 'sure',

'likely' and 'impossible'.

What you have learned about the puzzle are summarized below.

{reflections}

Now just remember the tips from before (if any) and focus on the new

task. Use numbers and basic arithmetic operations (+ - * /) to obtain

24. Each step, you are only allowed to choose two of the remaining

numbers to obtain a new number.

Input: 4 4 6 8

Steps:

4 + 8 = 12 (left: 4 6 12)

6 - 4 = 2 (left: 2 12)

2 * 12 = 24 (left: 24)

Answer: (6 - 4) * (4 + 8) = 24

Input: 2 9 10 12

Steps:

12 * 2 = 24 (left: 9 10 24)

10 - 9 = 1 (left: 1 24)

24 * 1 = 24 (left: 24)

Answer: (12 * 2) * (10 - 9) = 24

Input: 4 9 10 13

Steps:

13 - 10 = 3 (left: 3 4 9)

9 - 3 = 6 (left: 4 6)

4 * 6 = 24 (left: 24)

Answer: 4 * (9 - (13 - 10)) = 24
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Input: 1 4 8 8

Steps:

8 / 4 = 2 (left: 1 2 8)

1 + 2 = 3 (left: 3 8)

3 * 8 = 24 (left: 24)

Answer: (1 + 8 / 4) * 8 = 24

Input: 5 5 5 9

Steps:

5 + 5 = 10 (left: 5 9 10)

10 + 5 = 15 (left: 9 15)

15 + 9 = 24 (left: 24)

Answer: ((5 + 5) + 5) + 9 = 24

Input: {input}

H.2 ALFWORLD

Critic LLM. For the LLM instance of the Critic, we prompt it with successful examples for
each of the six task types to generate the value within each episode. Specifically, the critic LLM first
determines if the value of the current state changes. If it changes, the critic LLM then generates the
scalar value with the corresponding reason. We provide the following two examples in the put and
cool tasks, respectively.

Critic prompt (for value generation), "put" task

You are in the middle of a room. Looking quickly around you, you see a

cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a

garbagecan 1, a handtowelholder 2, a handtowelholder 1, a sinkbasin 2,

a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder

1.Your task is to: put some spraybottle on toilet.

> critic: My task requires two sub-goals in order: take a spraybottle

and put the spraybottle on the toilet. My current state satisfies zero

of the two sub-goals. The value is 0/2=0.

> OK.

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.

> OK.

The cabinet 2 is closed.

> OK.

You open the cabinet 2. The cabinet 2 is open. In it, you see a candle

1, and a spraybottle 2.

> OK.

You pick up the spraybottle 2 from the cabinet 2.

> critic: Now I take a spraybottle. My current state satisfies the

first of the two sub-goals: take a spraybottle. The value is 1/2=0.5.

> OK.

On the toilet 1, you see a soapbottle 2.

> OK.
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You put the spraybottle 2 in/on the toilet 1.

> critic: Now I put the spraybottle on the toilet. My current state

satisfies all the two sub-goals. The value is 2/2=1.

Critic prompt (for value generation), "cool" task

You are in the middle of a room. Looking quickly around you, you see a

cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a

cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a

cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a

cabinet 1, a coffeemachine 1, a countertop 2, a countertop 1, a

diningtable 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a

drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a safe 1, a

sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a

stoveburner 1, and a toaster 1.

Your task is to: cool some pan and put it in stoveburner.

> critic: My task requires three sub-goals in order: take a pan, cool

the pan with fridge, and put the pan in the stoveburner. My current

state satisfies zero of the three sub-goals. The value is 0/3=0.

> OK.

On the stoveburner 1, you see nothing.

> OK.

On the stoveburner 2, you see a pot 1.

> OK.

On the stoveburner 3, you see a pan 1.

> OK.

You pick up the pan 1 from the stoveburner 3.

> critic: Now I take a pan. My current state satisfies the first of

the three sub-goals: take a pan. The value is 1/3=0.333.

> OK.

The fridge 1 is closed.

> OK.

You cool the pan 1 using the fridge 1.

> critic: Now I cool the pan. My current state satisfies the first two

of the three sub-goals: take a pan and cool the pan with fridge. The

value is 2/3=0.667.

> OK.

On the stoveburner 1, you see nothing.

> OK.

You put the pan 1 in/on the stoveburner 1.

> critic: Now I put the pan in the stoveburner. My current state

satisfies all the three sub-goals. The value is 3/3=1.

In addition to the prompt for value generation within each episode, we also prompt the Critic
LLM to generate summary feedback according to the past failure trajectory. We use the same prompt
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for all six task types. Specifically, it contains the full failure trajectory (observation only), as well as
the failure feedback at the end of each trajectory.

Critic prompt (for feedback generation)

You are in the middle of a room. Looking quickly around you, you see a

cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a

cabinet 1, a coffeemachine 1, a countertop 3, a countertop 2, a

countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a

garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf 1, a

sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a

stoveburner 1, and a toaster 1.

Your task is to: put a clean plate in countertop.

> critic: My task requires three sub-goals in order: take a plate,

clean the plate with sinkbasin, and put the plate on the countertop.

My current state satisfies zero of the three sub-goals. The value is

0/3=0.

> OK.

The drawer 1 is closed.

> OK.

You open the drawer 1. The drawer 1 is open. In it, you see a

creditcard 2, a knife 1, and a spatula 2.

> OK.

On the stoveburner 2, you see a pan 1.

> OK.

You pick up the pan 1 from the stoveburner 2.

> critic: Now I take a pan. My current state satisfies the first of

the three sub-goals: take a plate. The value is 1/3=0.167.

> OK.

On the sinkbasin 1, you see nothing.

> OK.

You put the pan 1 in/on the sinkbasin 1.

> OK.

The microwave 1 is closed.

> OK.

You open the microwave 1. The microwave 1 is open. In it, you see a

potato 1.

> OK.

On the garbagecan 1, you see a soapbottle 2.

> OK.

The microwave 1 is open. In it, you see a potato 1.

> OK.

On the coffeemachine 1, you see nothing.

> OK.

On the countertop 2, you see a bread 1, a cellphone 2, a cellphone 1,

a papertowelroll 1, a plate 2, and a soapbottle 1.
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> OK.

The drawer 2 is closed.

> OK.

You open the drawer 2. The drawer 2 is open. In it, you see a spatula

1.

> OK.

On the sinkbasin 1, you see a pan 1.

> OK.

On the cabinet 3, you see a cup 1.

> OK.

On the countertop 1, you see a apple 2, a dishsponge 2, a potato 3,

and a potato 2.

STATUS: FAIL

Failure feedback: In this environment, my critic assigned a 1/3 value

after taking a pan. However, the task is to take and clean a plate. I

noticed that the plate was found on countertop 2. In the next trial, I

will go to countertop 2 to take the plate, then go to a sinkbasin to

clean the plate.

You are in the middle of a room. Looking quickly around you, you see a

cabinet 20, a cabinet 19, a cabinet 18, a cabinet 17, a cabinet 16, a

cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a cabinet 11, a

cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a

cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a

coffeemachine 1, a countertop 3, a countertop 2, a countertop 1, a

drawer 3, a drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a

microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin 1, a

stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and

a toaster 1.

Your task is to: put two saltshaker in drawer.

> critic: My task requires four sub-goals in order: take the first

saltshaker, put the first saltshaker in the drawer, take the second

saltshaker, and put the second saltshaker in the drawer. My current

state satisfies zero of the four sub-goals. The value is 0/4=0.

> OK.

On the coffeemachine 1, you see a cup 1, a fork 4, and a potato 2.

> OK.

On the toaster 1, you see a pan 1 and a knife 1.

> OK.

On the countertop 3, you see a bowl 2, a houseplant 1, a knife 2, a

peppershaker 1, a saltshaker 4, a soapbottle 1, a spatula 2, and a

tomato 3.

> OK.
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You pick up the saltshaker 4 from the countertop 3.

> critic: Now I take the first saltshaker. My current state satisfies

the first of the four sub-goals: take the first saltshaker. The value

is 1/4=0.25.

> OK.

The drawer 1 is open. In it, you see nothing.

> OK.

You put the saltshaker 4 in/on the drawer 1.

> critic: Now I put the first creditcard in the dresser. My current

state satisfies the first two of the four sub-goals: take the first

saltshaker and put the first saltshaker in the drawer. The value is

2/4=0.5.

> OK.

On the stoveburner 1, you see a bread 1.

> OK.

On the stoveburner 2, you see a potato 1, a pot 2, and a knife 3.

> OK.

On the stoveburner 3, you see a fork 1, a fork 2, and a cup 2.

> OK.

On the stoveburner 4, you see a peppershaker 1 and a pan 2.

> OK.

You pick up the peppershaker 1 from the stoveburner 4.

> critic: Now I take the second saltshaker. My current state satisfies

the first three of the four sub-goals: take the first saltshaker, put

the first saltshaker in the drawer, and take the second saltshaker.

The value is 3/4=0.75.

> OK.

The drawer 1 is open. In it, you see a saltshaker 4.

> OK.

You put the peppershaker 1 in/on the drawer 1.

> critic: Now I put the second creditcard in the dresser. My current

state satisfies all the four sub-goals. The value is 4/4=1.

STATUS: FAIL

Failure feedback: In this environment, my critic assigned a 1/4 value

after taking a saltshaker and a 3/4 value after taking a peppershaker.

However, the task is to put two saltshaker in the drawer. I noticed

that one saltshaker was put on the countertop 3. I didn't find the

second saltshaker in this trial. In the next trial, I will first go to

countertop 3 to take the first saltshaker and then explore other

locations to find a second saltshaker, including drawer 2-3, shelf

1-3, and cabinet 1-20.
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You are in the middle of a room. Looking quickly around you, you see a

cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a

coffeemachine 1, a countertop 3, a countertop 2, a countertop 1, a

drawer 3, a drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a

microwave 1, a shelf 3, a shelf 2, a shelf 1, a sinkbasin 1, a

stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and

a toaster 1.

Your task is to: put a cool tomato in microwave.

> critic: My task requires three sub-goals in order: take a tomato,

cool the tomato with fridge, and put the tomato in the microwave. My

current state satisfies zero of the three sub-goals. The value is

0/3=0.

> OK.

On the countertop 1, you see a mug 1, and a saltshaker 1.

> OK.

On the sinkbasin 1, you see a fork 1, a glassbottle 2, a spatula 1,

and a spoon 3.

> OK.

You pick up the fork 1 from the sinkbasin 1.

> critic: Now I take a fork. My current state satisfies the first of

the six sub-goals: take a fork. The value is 1/3=0.333.

> OK.

On the countertop 2, you see a butterknife 2, a butterknife 1, a

cellphone 1, a glassbottle 1, a knife 1, a lettuce 3, a peppershaker

1, a statue 2, a statue 1, and a vase 1.

> OK.

On the countertop 3, you see a bread 1, a butterknife 3, a creditcard

2, a houseplant 1, a knife 3, a knife 2, a mug 2, a peppershaker 2,

and a spatula 2.

> OK.

On the stoveburner 4, you see a pan 1.

> OK.

The drawer 3 is closed.

> OK.

You open the drawer 3. The drawer 3 is open. In it, you see a

saltshaker 3.

> OK.

The fridge 1 is closed.

> OK.

On the countertop 3, you see a bread 1, a butterknife 3, a creditcard

2, a houseplant 1, a knife 3, a knife 2, a mug 2, a peppershaker 2,

and a spatula 2.

> OK.
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On the cabinet 1, you see a dishsponge 1.

> OK.

The cabinet 2 is closed.

> OK.

You open the cabinet 2. The cabinet 2 is open. In it, you see nothing.

> OK.

On the cabinet 3, you see a cd 1 and a plate 4.

STATUS: FAIL

Failure feedback: In this environment, my critic assigned a 1/3 value

after taking a fork. However, the task is to take and cool a tomato. I

didn't find the tomato in this trial. In the next trial, I will

explore other locations to find a tomato, including cabinet 4, cabinet

5, coffeemachine 1, microwave 1, shelf 1-3, stoveburner 1-4 and

toaster 1, etc.

Model LLM and Elite LLM. We use the same prompt for both the Model LLM and the Elite
LLM. Specifically, we simply prompt these two instances with the successful past trajectories (ob-
servations and actions) for each task type and expect the Model LLM and Elite LLM to generate
the possible next observation and the potential actions, respectively. Below, we provide two prompt
examples in the put and cool tasks, respectively.

Model & Elite prompt, "put" task

You are in the middle of a room. Looking quickly around you, you see a

cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a

garbagecan 1, a handtowelholder 2, a handtowelholder 1, a sinkbasin 2,

a sinkbasin 1, a toilet 1, a toiletpaperhanger 1, and a towelholder 1.

Your task is to: put some spraybottle on toilet.

> go to cabinet 1

On the cabinet 1, you see a cloth 1, a soapbar 1, a soapbottle 1.

> go to cabinet 2

The cabinet 2 is closed.

> open cabinet 2

You open the cabinet 2. The cabinet 2 is open. In it, you see a candle

1, and a spraybottle 2.

> take spraybottle 2 from cabinet 2

You pick up the spraybottle 2 from the cabinet 2.

> go to toilet 1

On the toilet 1, you see a soapbottle 2.

> put spraybottle 2 in/on toilet 1

You put the spraybottle 2 in/on the toilet 1.
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Model & Elite prompt, "cool" task

You are in the middle of a room. Looking quickly around you, you see a

cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a

cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a

cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a

cabinet 1, a coffeemachine 1, a countertop 2, a countertop 1, a

diningtable 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a

drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a safe 1, a

sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a

stoveburner 1, and a toaster 1.

Your task is to: cool some pan and put it in stoveburner.

> go to stoveburner 1

On the stoveburner 1, you see nothing.

> go to stoveburner 2

On the stoveburner 2, you see a pot 1.

> go to stoveburner 3

On the stoveburner 3, you see a pan 1.

> take pan 1 from stoveburner 3

You pick up the pan 1 from the stoveburner 3.

> go to fridge 1

The fridge 1 is closed.

> cool pan 1 with fridge 1

You cool the pan 1 using the fridge 1.

> go to stoveburner 1

On the stoveburner 1, you see nothing.

> put pan 1 in/on stoveburner 1

You put the pan 1 in/on the stoveburner 1.

H.3 BLOCKSWORLD

Critic LLM. We evaluate RAFA and RAP with the reward scheme proposed by [23]. We prompt
the language model with the previous state-action trajectory and calculate the log probabilities of
taking each feasible action. Given the action taken in the current state, the Model LLM predicts
the next state and we calculate the percentage of subgoals completed in the next state. We adopt the
prompt examples from [23] to ensure the fairness in comparison.

Critic prompt example (for log probability), "step-4" task

I am playing with a set of blocks where I need to arrange the blocks

into stacks. Here are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:
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I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block

is clear. A block is clear if the block has no other blocks on top of

it and if the block is not picked up.

I can only unstack a block from on top of another block if the block I

am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the block I

am unstacking is clear.

Once I pick up or unstack a block, I am holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the

block being stacked.

I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.

Once I put down or stack a block, my hand becomes empty.

[STATEMENT]

As initial conditions I have that, the red block is clear, the yellow

block is clear, the hand is empty, the red block is on top of the blue

block, the yellow block is on top of the orange block, the blue block

is on the table and the orange block is on the table.

My goal is to have that the orange block is on top of the red block.

My plan is as follows:

[PLAN]

unstack the yellow block from on top of the orange block

put down the yellow block

pick up the orange block

stack the orange block on top of the red block

[PLAN END]

[STATEMENT]

As initial conditions I have that, the orange block is clear, the

yellow block is clear, the hand is empty, the blue block is on top of

the red block, the orange block is on top of the blue block, the red

block is on the table and the yellow block is on the table.

My goal is to have that the blue block is on top of the red block and

the yellow block is on top of the orange block.

My plan is as follows:
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[PLAN]

pick up the yellow block

stack the yellow block on top of the orange block

[PLAN END]

[STATEMENT]

As initial conditions I have that, the red block is clear, the blue

block is clear, the orange block is clear, the hand is empty, the blue

block is on top of the yellow block, the red block is on the table,

the orange block is on the table and the yellow block is on the table.

My goal is to have that the blue block is on top of the orange block

and the yellow block is on top of the red block.

My plan is as follows:

[PLAN]

unstack the blue block from on top of the yellow block

stack the blue block on top of the orange block

pick up the yellow block

stack the yellow block on top of the red block

[PLAN END]

[STATEMENT]

As initial conditions I have that, the red block is clear, the blue

block is clear, the yellow block is clear, the hand is empty, the

yellow block is on top of the orange block, the red block is on the

table, the blue block is on the table and the orange block is on the

table.

My goal is to have that the orange block is on top of the blue block

and the yellow block is on top of the red block.

My plan is as follows:

[PLAN]

unstack the yellow block from on top of the orange block

stack the yellow block on top of the red block

pick up the orange block

stack the orange block on top of the blue block

[PLAN END]

Model LLM. we prompt the Model LLM with few-shot examples and the current state and action.
The Model LLM generates the predicted next state description. We adopt the prompt examples
from [23] to ensure the fairness in comparison.
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Model prompt template, "Pick up" action

I am playing with a set of blocks where I need to arrange the blocks

into stacks. Here are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block

is clear. A block is clear if the block has no other blocks on top of

it and if the block is not picked up.

I can only unstack a block from on top of another block if the block I

am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the block I

am unstacking is clear. Once I pick up or unstack a block, I am

holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the

block being stacked.

I can only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or stack a

block, my hand becomes empty.

After being given an initial state and an action, give the new state

after performing the action.

[SCENARIO 1]

[STATE 0] I have that, the white block is clear, the cyan block is

clear, the brown block is clear, the hand is empty, the white block is

on top of the purple block, the purple block is on the table, the cyan

block is on the table and the brown block is on the table.

[ACTION] Pick up the brown block.

[CHANGE] The hand was empty and is now holding the brown block, the

brown block was on the table and is now in the hand, and the brown

block is no longer clear.

[STATE 1] I have that, the white block is clear, the cyan block is

clear, the brown block is in the hand, the hand is holding the brown

block, the white block is on top of the purple block, the purple block

is on the table and the cyan block is on the table.
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[SCENARIO 2]

[STATE 0] I have that, the purple block is clear, the cyan block is

clear, the white block is clear, the hand is empty, the white block is

on top of the brown block, the purple block is on the table, the cyan

block is on the table and the brown block is on the table.

[ACTION] Pick up the cyan block.

[CHANGE] The hand was empty and is now holding the cyan block, the

cyan block was on the table and is now in the hand, and the cyan block

is no longer clear.

[STATE 1] I have that, the cyan block is in the hand, the white block

is clear, the purple block is clear, the hand is holding the cyan

block, the white block is on top of the brown block, the purple block

is on the table and the brown block is on the table.

Model prompt template, "Unstack" action

I am playing with a set of blocks where I need to arrange the blocks

into stacks. Here are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block

is clear. A block is clear if the block has no other blocks on top of

it and if the block is not picked up.

I can only unstack a block from on top of another block if the block I

am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the block I

am unstacking is clear. Once I pick up or unstack a block, I am

holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the

block being stacked.

I can only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or stack a

block, my hand becomes empty.
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After being given an initial state and an action, give the new state

after performing the action.

[SCENARIO 1]

[STATE 0] I have that, the white block is clear, the cyan block is

clear, the brown block is clear, the hand is empty, the white block is

on top of the purple block, the purple block is on the table, the cyan

block is on the table and the brown block is on the table.

[ACTION] Unstack the white block from on top of the purple block.

[CHANGE] The hand was empty and is now holding the white block, the

white block was on top of the purple block and is now in the hand, the

white block is no longer clear, and the purple block is now clear.

[STATE 1] I have that, the purple block is clear, the cyan block is

clear, the brown block is clear, the hand is holding the white block,

the white block is in the hand, the purple block is on the table, the

cyan block is on the table and the brown block is on the table.

[SCENARIO 2]

[STATE 0] I have that, the purple block is clear, the cyan block is

clear, the white block is clear, the hand is empty, the cyan block is

on top of the brown block, the purple block is on the table, the white

block is on the table and the brown block is on the table.

[ACTION] Unstack the cyan block from on top of the brown block.

[CHANGE] The hand was empty and is now holding the cyan block, the

cyan block was on top of the brown block and is now in the hand, the

cyan block is no longer clear, and the brown block is now clear.

[STATE 1] I have that, the purple block is clear, the brown block is

clear, the cyan block is in the hand, the white block is clear, the

hand is holding the cyan block, the purple block is on the table, the

white block is on the table and the brown block is on the table.

Model prompt template, "Put down" action

I am playing with a set of blocks where I need to arrange the blocks

into stacks. Here are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.
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I can only pick up a block if the block is on the table and the block

is clear. A block is clear if the block has no other blocks on top of

it and if the block is not picked up.

I can only unstack a block from on top of another block if the block I

am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the block I

am unstacking is clear. Once I pick up or unstack a block, I am

holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the

block being stacked.

I can only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or stack a

block, my hand becomes empty.

After being given an initial state and an action, give the new state

after performing the action.

[SCENARIO 1]

[STATE 0] I have that, the white block is clear, the purple block is

clear, the cyan block is in the hand, the brown block is clear, the

hand is holding the cyan block, the white block is on the table, the

purple block is on the table, and the brown block is on the table.

[ACTION] Put down the cyan block.

[CHANGE] The hand was holding the cyan block and is now empty, the

cyan block was in the hand and is now on the table, and the cyan block

is now clear.

[STATE 1] I have that, the cyan block is clear, the purple block is

clear, the white block is clear, the brown block is clear, the hand is

empty, the white block is on the table, the purple block is on the

table, the cyan block is on the table, and the brown block is on the

table.

[SCENARIO 2]

[STATE 0] I have that, the purple block is clear, the black block is

in the hand, the white block is clear, the hand is holding the black

block, the white block is on top of the brown block, the purple block

is on the table, and the brown block is on the table.

[ACTION] Put down the black block.
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[CHANGE] The hand was holding the black block and is now empty, the

black block was in the hand and is now on the table, and the black

block is now clear.

[STATE 1] I have that, the black block is clear, the purple block is

clear, the white block is clear, the hand is empty, the white block is

on top of the brown block, the purple block is on the table, the brown

block is on the table, and the black block is on the table.

Model prompt template, "Stack" action

I am playing with a set of blocks where I need to arrange the blocks

into stacks. Here are the actions I can do

Pick up a block

Unstack a block from on top of another block

Put down a block

Stack a block on top of another block

I have the following restrictions on my actions:

I can only pick up or unstack one block at a time.

I can only pick up or unstack a block if my hand is empty.

I can only pick up a block if the block is on the table and the block

is clear. A block is clear if the block has no other blocks on top of

it and if the block is not picked up.

I can only unstack a block from on top of another block if the block I

am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the block I

am unstacking is clear. Once I pick up or unstack a block, I am

holding the block.

I can only put down a block that I am holding.

I can only stack a block on top of another block if I am holding the

block being stacked.

I can only stack a block on top of another block if the block onto

which I am stacking the block is clear. Once I put down or stack a

block, my hand becomes empty.

After being given an initial state and an action, give the new state

after performing the action.

[SCENARIO 1]

[STATE 0] I have that, the white block is clear, the purple block is

clear, the cyan block is in the hand, the brown block is clear, the

hand is holding the cyan block, the white block is on the table, the

purple block is on the table, and the brown block is on the table.
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[ACTION] Stack the cyan block on top of the brown block.

[CHANGE] The hand was holding the cyan block and is now empty, the

cyan block was in the hand and is now on top of the brown block, the

brown block is no longer clear, and the cyan block is now clear.

[STATE 1] I have that, the cyan block is clear, the purple block is

clear, the white block is clear, the hand is empty, the cyan block is

on top of the brown block, the brown block is on the table, the purple

block is on the table, and the white block is on the table.

[SCENARIO 2]

[STATE 0] I have that, the purple block is clear, the black block is

in the hand, the white block is clear, the hand is holding the black

block, the white block is on top of the brown block, the purple block

is on the table, and the brown block is on the table.

[ACTION] Stack the black block on top of the purple block.

[CHANGE] The hand was holding the black block and is now empty, the

black block was in the hand and is now on top of the purple block, the

purple block is no longer clear, and the black block is now clear.

[STATE 1] I have that, the black block is clear, the white block is

clear, the hand is empty, the black block is on top of the purple

block, the white block is on top of the brown block, the brown block

is on the table, and the purple block is on the table.

H.4 TIC-TAC-TOE

Elite LLM
Elite prompt, propose n actions

In the game of Tic-Tac-Toe, two players, "X" and "O," alternate

placing their symbols on a 3x3 grid. The objective is to be the first

to get three of their symbols in a row, either horizontally,

vertically, or diagonally. We use numbers to indicate empty positions,

and then replace them with "X" or "O" as moves are made. For example,

an empty board is denoted by

1 | 2 | 3

---------

4 | 5 | 6

---------

7 | 8 | 9

Your task is to identify the optimal position for the next move based

on the current board state. Assume that it's your turn and you're

playing as "{role}". Please make sure the optimal position is EMPTY.

For example, in the following Tic-Tac-Toe Board:
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1 | 2 | 3

---------

4 | X | 6

---------

7 | 8 | 9

Position 5 is occupied by "X". Thus, position 5 is not an optimal

position. Provide only the optimal position in the first line. In the

second line, give a brief explanation for this choice.

Current Tic-Tac-Toe Board:

{state}

Role: {role}

Optimal Position:

Model LLM
Model prompt, predict next state

Predict the Next State of the Tic-Tac-Toe Board

In a game of Tic-Tac-Toe, two players, "X" and "O," take turns to

place their symbols on a 3x3 grid. Your task is to predict what the

board will look like after a specified move has been made.

Examples

{examples}

Now, Predict the Next State of the Following Tic-Tac-Toe Board:

Initial Tic-Tac-Toe Board:

{state}

Move: Player puts "{role}" in position {action}.

Updated Board:

Model prompt, predict opponent’s action

In Tic-Tac-Toe, each player takes turns placing their respective

symbols ("X" or "O") on a 3x3 board. Your task is to predict where the

opponent will place their symbol based on their past moves and the

current board state.
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Example

Tic-Tac-Toe Board:

O | X | O

---------

X | O | X

---------

7 | 8 | X

Opponent's Move: "O" in position 7

{examples}

Here's how the Tic-Tac-Toe board currently looks:

Tic-Tac-Toe Board:

{state}

Given the history and current board state, where do you think the

opponent will place their "{role}" next? Please make sure the output

is an empty position without "X" or "O".

Opponent's Move: "{role}" in position

Critic LLM
Critic prompt, evaluate winner

Determine the Winner in a Tic-Tac-Toe Game

In Tic-Tac-Toe, two players, "X" and "O" take turns to place their

respective symbols on a 3x3 board. The first player to get three of

their symbols in a row, either horizontally, vertically, or

diagonally, wins the game. Your task is to evaluate the board state

and determine if there is a winner.

Examples

Example

Tic-Tac-Toe Board:

O | X | O

---------

X | X | X

---------

O | O | X
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Question: Is there a winner?

Answer: Let's think step by step.

First row: O X O, no winner

Second row: X X X, X wins

Therefore, "X" wins

Example

Tic-Tac-Toe Board:

X | 2 | O

---------

4 | O | X

---------

O | X | 9

Question: Is there a winner?

Answer: Let's think step by step.

First row: X 2 O, no winner

Second row: 4 O X, no winner

Third row: O X 9, no winner

First column: X 4 O, no winner

Second column: 2 O X, no winner

Thrid column: O X 9, no winner

Main diagonal: X O 9, no winner

Anti-diagonal: O O O, O wins

Therefore, "O" wins.

{examples}

Now, for the Current Tic-Tac-Toe Board:

Tic-Tac-Toe Board:

{state}

Question: Is there a winner?

Answer: Let's think step by step.
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Critic prompt, evaluate tie (when there is no winner)

In the game of Tic-Tac-Toe, two players alternate turns to fill a 3x3

grid with their respective symbols: "X" and "O". A board is considered

"completely filled" when all nine cells of the grid contain either an

'X' or an 'O', with no empty spaces or other characters.

Examples:

{examples}

Now for the Current Tic-Tac-Toe Board:

Tic-Tac-Toe Board:

{state}

Is the board completely filled?

Answer:
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