Resource-Constrained Federated Continual Learning:What Does Matter?

Yichen Li^{1,2}, Yuying Wang³, Jiahua Dong², Haozhao Wang¹, Yining Qi¹, Rui Zhang¹, Ruixuan Li^{1*}

¹School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China

²Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates

³School of Computer Science and Technology, Soochow University, Suzhou, China

{ycli0204,hz_wang}@hust.edu.cn, rayteam@yeah.net

Abstract

Federated Continual Learning (FCL) aims to enable sequential privacy-preserving model training on streams of incoming data that vary in edge devices by preserving previous knowledge while adapting to new data. Current FCL literature focuses on restricted data privacy and access to previously seen data while imposing no constraints on the training overhead. This is unreasonable for FCL applications in real-world scenarios, where edge devices are primarily constrained by resources such as storage, computational budget, and label rate. We revisit this problem with a large-scale benchmark and analyze the performance of state-of-the-art FCL approaches under different resource-constrained settings. Various typical FCL techniques and six datasets in two incremental learning scenarios (Class-IL and Domain-IL) are involved in our experiments. Through extensive experiments amounting to a total of over 1,000+ GPU hours, we find that, under limited resource-constrained settings, existing FCL approaches, with no exception, fail to achieve the expected performance. Our conclusions are consistent in the sensitivity analysis. This suggests that most existing FCL methods are particularly too resource-dependent for real-world deployment. Moreover, we study the performance of typical FCL techniques with resource constraints and shed light on future research directions in FCL.

1 Introduction

Federated Learning (FL) emerges as a distributed learning paradigm, facilitating the collaborative training of a global deep learning model among edge clients while ensuring the privacy of locally stored data [38, 54, 53, 26]. Recently, FL has garnered significant interest and found applications in diverse domains, including recommendation systems [61, 7, 25, 24] and smart healthcare solutions [59, 41, 71].

Typically, FL has been actively studied in a static setting, where the number of training samples does not change over time. However, in a realistic FL application, each client may continue collecting new data and train the local model with streaming tasks, leading to performance degradation on previous tasks [60, 27, 28]. Such a phenomenon is known as catastrophic forgetting [9] in the Continual Learning (CL) paradigm. This challenge is further compounded in FL settings, where the local data remains inaccessible to others, and training on clients is constrained by limited resources.

^{*}Jiahua Dong and Ruixuan Li are corresponding authors.

[†]Homepage: https://www.ruizhang.info/

Table 1: Primary Directions of Progress in FCL. Analysis of three kinds of classifications in the study of the CL system (replay, regularization, and network), with **bold** highlighting the main contribution. Besides, we further summarize four typical FCL techniques (Sample Caching, Data Synthesis, Knowledge Distillation, and Network Extension) from existing works and focus on two common FCL scenarios. Here "Constraint" denotes the research based on whether the additional resource overheads are required (Memory Buffer, Computational Budget and Label Rate).

Dir.	Reference	erence Contribution		narios	Constraints			Typical FCL Techniques			
DII.	Reference	Contribution	Class-IL	Domain-IL	MB	CB	LR	SC	DS	KD	NE
	Ce	entralized	√	✓	×	×	✓	×	×	X	×
	Fee	dAvg [38]	✓	✓	×	×	\checkmark	✓	×	×	×
	Fee	dProx [22]	✓	✓	×	×	\checkmark	✓	×	×	×
	TARGET [66]	Exemplar Sample	√	×	√	×	✓	×	√	√	×
Replay	FedCIL [45]	Generation & Alignment	✓	×	✓	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Rep	Re-Fed [23]	Synergistic Replay	✓	\checkmark	✓	×	\checkmark	✓	×	×	×
	AF-FCL [58]	Accurate Forgetting	✓	×	×	\checkmark	\checkmark	×	\checkmark	\checkmark	×
	GLFC [5]	Class-Aware Loss	√	×	√	×	✓	✓	×	√	×
tion	FOT [2]	Orthogonality Projection	✓	×	×	\checkmark	\checkmark	×	×	×	\checkmark
Regularization	CFeD [37]	Knowledge Distillation	✓	✓	✓	\checkmark	\checkmark	×	×	\checkmark	×
ula	FedET [35]	Pre-training Backbone	✓	×	✓	×	\checkmark	✓	×	\checkmark	\checkmark
Reg	MFCL [1]	Data-Free Distillation	✓	×	✓	\checkmark	\checkmark	×	\checkmark	\checkmark	×
, ,	LGA [4]	Category-Aware Loss	✓	×	✓	×	\checkmark	×	\checkmark	×	\checkmark
ork	FCL-BL [19]	Broad Learning	✓	×	×	✓	✓	✓	×	×	√
Network	FedWeIT [62]	Parameter Decomposition	✓	×	×	×	\checkmark	×	×	×	\checkmark
ž	pFedDIL [30]	Knowledge Matching	×	\checkmark	×	×	\checkmark	×	×	\checkmark	\checkmark

To address this issue, researchers have studied federated continual learning (FCL), which enables each client to learn from a local private and incremental task stream continuously. One mainstream technique is to re-train the model with cached or synthetic samples later, a strategy referred to as data replay. FedCIL is proposed in [45] to reconstruct previous samples with a learnable generative network for replay, improving the retention of previous information. The authors in [23] propose to discern important samples from streaming tasks and update the local model with both cached samples and the current task's samples. Another promising solution for FCL is to limit the update of model parameters to new tasks, a process known as parameter regularization. The works in [5, 4] concentrate on federated class-incremental learning, addressing scenario-specific challenges through the computation of supplementary class-imbalance losses to train a unified global model. It is studied in [2] that projecting the different tasks' parameters onto orthogonal subspaces prevents new tasks from overwriting previous task parameters. In addition, the authors in [62, 19, 65] extend the backbone model with multi-head classifiers to isolate the task-specific parameters to prevent forgetting.

However, the current FCL literature overlooks a key necessity for practical real deployment of such algorithms. In particular, most existing methods focus on offline federated continual learning where, despite limited access to previous data, training algorithms do not have restrictions on the training resources. For example, Snapchat [68], in 2017, reported an influx of over 3.5 billion short videos daily from users across the globe. These videos had to be instantly processed for various tasks, from image rating and recommendation to hate speech and misinformation detection. Otherwise, new streaming data will accumulate until training is completed, causing server delays and worsening user experience. Different from the conditions in the centralized server, distributed devices (usually mobile or edge devices) pose greater challenges to the training resources. In this paper, we mainly focus on the following three mainstream resources, which are expensive on distributed devices.

Memory Buffer. Memory buffer serves as a crucial training resource for many existing methods, particularly those based on replay, as they necessitate the storage of previous samples or synthetic data for retraining. Additionally, some other methods relying on regularization also require buffering a portion of sample data or utilizing extra auxiliary datasets to facilitate the training process. In recent years, despite the advanced maturity of current storage technology, numerous platforms possess vast storage capacities, exemplified by computer SSDs priced at roughly 0.061\$/GB in the market³.

³Price reference for PC: https://www.amazon.com/ssd/s?k=ssd

Nevertheless, when it comes to distributed devices, augmenting storage capacity remains costly, as seen in the iPhone's storage price, hovering around 0.487\$/GB — nearly eightfold the price of computer SSDs⁴. Therefore, a thorough examination of the memory buffer overhead demanded by existing FCL methods is imperative.

Computational Budget. The computational budgets of continual learning (CL) algorithms tend to exceed those of static data-based methods, as the model must converge on each incremental task prior to learning new ones. Amidst the increasing influx of streaming data, it is paramount for each client to optimize their computational efficiency. However, distributed devices (e.g., IoT and mobile devices) are usually equipped with portable hardware and sacrifice powerful computing resources. A feasible way for distributed devices to improve computational efficiency is to rent cloud platform computing resources, but this is expensive. According to [44], executing a CL algorithm on the CLEAR benchmark [34], which performs 300,000 iterations, incurs approximately a cost of 100\$ on an A100 Google instance, equating to 3\$ per hour for a single GPU. However, in existing methods, such as those based on replay, additional computational budgets are required for retraining the cached samples or training generative models to produce pseudo-data. On the other hand, regularization-based methods may necessitate extra computation for knowledge distillation. In FCL scenarios, limiting the computational budget is necessary for reducing the overall cost.

Label Rate. Additionally, the majority of existing works assume that a full set of labels is accessible. Only recently, some work in the centralized server started to consider budgeted continual learning, which aims to ensure the applicability of continual learning algorithms under real-world scenarios. Nevertheless, existing FCL methods still concentrate on a fully labeled data stream, while the data may be presented in an unlabeled form, and the human annotation budget is always large. Although existing FCL methods cannot be trained directly on unlabeled datasets, it is meaningful to appropriately reduce the label rate to observe the impact of the number of training samples on the performance of these methods.

This raises the question: "Do existing federated continual learning algorithms perform well under resource-constrained settings?" To address this question, we exhaustively study federated continual learning systems, analyzing the effect of the primary directions of progress proposed in the literature in the setting where algorithms are permitted to limit all three training resources. We evaluate and benchmark at scale various existing FCL methods and summarize four typical FCL techniques (Sample Caching, Data Synthesis, Knowledge Distillation, and Network Extension) that are common in the literature. Evaluation is carried out on six large-scale datasets in two scenarios (Class-IL and Domain-IL), amounting to a total of 1,000+ GPU hours under various settings. As shown in Table 1, we conclude the existing FCL methods and analyze their main contributions and typical techniques with training resources involved. We summarize our empirical conclusions in three folds:

- First, we are the first to revisit resource constraints in federated continual learning and analyze how all three training resources (memory buffer, computational budget, and label rate data) can pose a great challenge to the federated continual learning issue.
- Then, we conduct extensive experiments on more than ten existing FCL algorithms with different limited resources and find that existing FCL literature is particularly suited for settings where memory is limited and less practical in scenarios having limited computational budgets and sparsely labeled data.
- Finally, we analyze the effect of typical FCL techniques with resource constraints and discuss the future research directions of federated continual learning with resource constraints.

2 Dissecting Federated Continual Learning Systems

Federated continual learning methods typically propose a system of multiple components that jointly help improve learning performance. The problem formulation is illustrated in Appendix B. In this section, we analyze FCL systems and dissect them into their underlying techniques. This helps to analyze and isolate the role of different components with different techniques under our resource-constrained settings and helps us to understand the most significant techniques. Overall, we summarize four major techniques from main contributions in Table 1.

⁴Price reference for Phone: https://www.apple.com/shop/buy-iphone/

- (1) Sample Caching. Rehearsing samples from previous tasks is a basic approach in FCL. Particularly when access to previous samples is restricted to a small memory, they are used to select which samples from the stream will update the memory. Recent FCL works in [23, 29] propose to synergistically cache samples based on both the local and global understanding. Other methods have not considered the sample selection strategy in FCL. For a fair comparison in our constrained memory buffer setup, we employ random sampling equally to corresponding methods.
- (2) Data Synthesis. Considering the security and privacy of data in some scenarios, or data protection under GDPR, the data of previous tasks cannot be cached locally. Some studies use generative models to learn the distribution of previous tasks and generate synthetic data for data replay. The authors in [45, 66] employ the GAN model [42] to generate synthetic samples while [58] explore the NF model [48] to learn the data distribution accurately. In our setting, the synthetic data will also occupy the memory buffer and the additional training cost brought by the generative model will share the computational budget with the target model.
- (3) Knowledge Distillation. As a popular approach, knowledge distillation preserves model performance on previous tasks by distilling the knowledge from the old model (teacher) to the new model (student). In the FCL, the distillation can be done on either the client side or the server side. On the client side, the student model can be the current model, while the teacher model is the one that has been trained for many previous tasks. On the server side, the student model is always the global model and the teacher model can be denoted as the ensemble prediction by each participating client. In this paper, we only focus on the distillation done on the client side since the resources of the server are not so scarce. The distillation will bring an extra computational budget compared with the basic FedAvg. Moreover, additional distillation data used on the client side will also be included in the memory buffer overhead.
- (4) Network Extension. Network extension strategies have been used for two objectives. On the one hand, it has been hypothesized that the large difference in the magnitudes of the weights associated with different classes in the last fully connected layer is among the key reasons behind catastrophic forgetting. There has been a family of different methods addressing this problem [62, 35, 2]. On the other hand, several works attempt to adapt the model architecture according to the data. This is done by only training part of the model or by directly expanding the model when data is presented [16, 65]. However, most of the previous techniques in this area do not apply to our setup. Most of this line of work [62, 35, 2], assumes a task-incremental setting, where test samples are known to what set of tasks they belong with known boundaries between streaming tasks. For a fair comparison, we modify these methods to make a correct classification among all classes from streaming tasks.

3 Experiments

We first start by detailing the experimental setup, datasets, three training resources, and evaluation metrics for our large-scale benchmark. We then present the main results of an evaluation of various FCL methods, followed by an extensive analysis. Our experiments are designed to answer the following research questions that are of importance to practical deployment of FCL methods, while also pointing out the future research directions in FCL.

- How do resource constraints affect the performance of existing FCL methods? (Section 3.2.1)
- How do typical techniques studied in FCL literature work under different resourceconstrained settings? (Section 3.2.2)

3.1 Experiment Setup

3.1.1 Datasets

We conduct our experiments with heterogeneous datasets over two typical scenarios: Class-Incremental Learning and Domain-Incremental Learning on six datasets: CIFAR-10 [18], CIFAR-100 [18], Tiny-ImageNet [20], Digit-10, Office-31 [50] and Office-Caltech-10 [69]. More details can be found in Appendix B.1.1.

Table 2: Performance comparison of various methods in two incremental scenarios w.r.t. sufficient resources.

Method	CIFA	R-10	CIFA	R-100	Tiny-In	nageNet	Dig	it-10	Offic	e-31	Office-C	altech-10
Wethou	A(f)	\bar{A}	A(f)	\bar{A}	A(f)	\bar{A}	A(f)	\bar{A}	A(f)	\bar{A}	A(f)	Ā
FedAvg [38]	40.94±1.32	54.33±1.03	25.14±0.87	35.97±1.12	32.87±0.45	48.55±0.34	80.13±0.37	90.59±0.31	45.82±0.58	47.65±0.47	50.55±0.63	55.36±0.51
FedProx [22]	40.10±0.92	53.52±0.73	25.23±0.71	35.83±0.83	29.92±0.67	45.12±0.53	81.35±0.44	91.73±0.39	46.14±0.61	49.90±0.54	51.66±0.59	56.29±0.44
FedAvg+ER [49]	42.33±1.54	55.15±1.29	27.07±0.84	37.77±1.06	33.31±0.52	48.56±0.49	80.48±0.30	90.86±0.27	46.72±0.53	49.50±0.42	52.62±0.57	56.16±0.51
FedProx+ER [49]	41.07±1.07	54.53±0.98	26.97±0.78	36.10±0.96	34.08±0.79	45.54±0.66	82.06±0.49	92.68±0.51	46.21±0.73	51.66±0.67	53.58±0.68	57.18±0.56
FedCIL [45]	45.35±1.76	56.54±1.35	24.88±1.44	34.70±1.08	28.96±0.90	44.54±0.71	85.09±0.91	92.83±0.68	48.78±0.84	50.24±0.72	54.69±1.03	58.15±1.17
TARGET [66]	43.78±1.67	56.34±1.38	24.01±1.33	33.38±0.87	29.14±0.70	45.02±0.54	84.73±1.06	93.11±0.88	48.29±1.17	50.32±0.85	53.19 ± 0.82	55.99±0.73
AF-FCL [58]	44.95±1.39	57.09±1.19	24.62±0.93	34.60±0.88	27.15±1.12	43.58±0.74	85.99±0.81	93.49±0.54	49.07±0.74	50.87±0.61	54.12±1.06	56.94±0.77
Re-Fed [23]	43.44±0.51	57.52±0.45	27.56±0.31	37.82±0.11	35.99±0.41	52.19±0.27	84.11±0.36	94.33±0.29	49.53±0.36	52.32±0.30	55.08±0.49	58.82±0.24
GLFC [5]	43.08±0.76	55.02±0.68	26.69±0.23	36.11±0.18	34.73±0.56	47.37±0.31	79.15±0.43	90.46±0.19	45.83±0.23	47.31±0.20	52.37±0.34	54.86±0.15
FOT [2]	43.74±1.02	58.24±0.78	28.43±1.14	38.57±0.95	34.23±0.74	49.52±0.61	82.97±0.67	90.40±0.55	49.35±0.98	52.09±0.81	52.18±0.53	55.11±0.60
CFeD [37]	46.54±1.13	58.23±1.78	28.37±0.46	35.43±0.86	33.05±0.30	47.98 ± 0.62	80.23±0.11	89.13±0.22	44.26±1.69	46.78±1.64	50.13±0.53	54.89±0.92
FedWeIT [62]	41.52±1.11	54.65±0.95	26.02±0.94	36.38±0.72	34.13±0.51	49.24±0.46	81.65±0.58	91.37±0.30	46.72±0.63	48.83 ± 0.44	51.97±0.27	56.40±0.19

3.1.2 Baselines

In this paper, we follow the same protocols proposed by [38, 47] to set up FIL tasks. We evaluate our resource-constrained settings with twelve baselines: FedAvg [38], FedProx [22], FL+ER[49], FCIL [5], FedCIL [45], Target [66], AF-FCL [58], Re-Fed [23], FOT [2] and FedWeIT [62]. More details about each baseline can be found in Appendix B.1.2.

3.1.3 Resource Constraints

We analyze three common constrained resources at edge devices: Memory Buffer, Computational Budget, and Label Rate. Here, we abbreviate the memory buffer size as M, which means the number of the cached samples in the edge storage, and the computational budget amount as B that denotes the gradient step during the model update; Label Rate as R, which represents the ratio of labeled data and unlabeled data. We have adopted different restriction methods for memory buffers and computational budgets for different baselines. The memory buffer is used to cache samples from previous tasks (Re-Fed[23], FCIL[5]), synthetic data (FedCIL[45], Target[66], AF-FCL[58]), and distillation samples (CFeD[37]). The computational budget is shared by the generative model (FedCIL[45], AF-FCL[58]), personalized model (Re-Fed[23]), knowledge distillation (FOT[2], CFeD[37]). The label rate is equally employed to all baselines, which controls the ratio of the labeled data.

3.1.4 Configurations

Unless otherwise mentioned, we use ResNet18 [10] as the backbone model for most methods and use the Dirichlet distribution $\mathrm{Dir}(\alpha)$ to distribute local samples to stimulate data heterogeneity for all tasks where a smaller α indicates higher data heterogeneity. Here we report the final accuracy A(f) when the model finishes the training of the last streaming task and the average accuracy \bar{A} across all streaming tasks. Although we try to eliminate the gap between baseline methods other than the core algorithm design in the experiment, there are still some methods that directly depend on the backbone model itself. In our experiments, FedCIL[45] employs ACGAN for generative replay, and AF-FCL[58] needs to use a Normalized Flow model to generate the feature space for an accurate forgetting. In addition, we try to adopt the ResNet18 to the FOT[2] but achieve an unstable result. According to the available code in the original manuscript, we use AlexNet as the backbone model for the FOT[2]. The feasibility of using the ResNet network and achieving excellent performance through simple parameter tuning in the FOT algorithm is still under investigation.

Hardware. Each experiment setting is run twice and we take each run's final 10 rounds' accuracy and calculate the average value and standard variance. We use Adam as an optimizer with a linear learning rate schedule. We set the remaining parameters according to the values in the original open-source code, such as the weight of multiple distillation losses. All experiments are run on 8 RTX 4090 GPUs and 8*2 RTX 3090 GPUs.

3.2 Overview Performance under Resource Constraints

In this section, we systematically investigate the influence of resource constraints on existing FCL methods and typical techniques studied in the FCL literature.

Table 3: Performance comparison of various methods in two incremental scenarios w.r.t. extremely limited resources.

Method	CIFAR-10		CIFAR-100		Tiny-ImageNet		Digit-10		Office-31		Office-Caltech-10	
Wethou	A(f)	\bar{A}	A(f)	\bar{A}	A(f)	\bar{A}	A(f)	\bar{A}	A(f)	\bar{A}	A(f)	\bar{A}
FedAvg [38]	10.11±1.11	21.76±0.78	4.88±0.79	12.37±1.12	16.11±0.65	30.99±0.41	72.00±0.45	80.57±0.27	8.42±0.73	8.97±0.51	9.65±0.35	10.13±0.12
FedProx [22]	10.04±1.30	21.62±1.23	4.59±1.70	11.44±1.52	16.92±0.83	31.24±0.57	71.68±1.14	80.85±0.85	8.98±0.74	9.45±0.39	9.370.77	9.84±0.42
FedCIL [45]	7.08±1.84	17.46±1.51	3.83±1.46	9.26±1.19	4.13±1.69	7.35±1.38	54.86±1.59	62.71±1.17	5.54±0.98	7.06±0.85	7.13±1.04	7.70±0.64
FOT [2]	8.76±0.93	19.57±0.81	4.85±0.59	11.21±0.67	10.44±0.52	19.98±0.40	70.96±0.75	78.13±0.62	8.17±0.71	10.02±0.76	9.88±0.48	11.24±0.53
FedWeIT [62]	9.37±1.05	20.52±0.67	5.95±0.95	12.32±0.87	17.32±0.53	31.60±0.32	71.63±0.42	81.85±0.36	9.02±0.65	9.13±0.43	8.42±0.22	9.32±0.16

With Sufficient Resources. In Table 2, we test typical FCL methods under sufficient resource conditions. Notably, both FedCIL and AF-FCL methods excel, surpassing most established baselines on CIFAR-10 and Digit-10. This superior performance underscores the effectiveness of their generative models, which can effectively train on relatively simple datasets and generate high-quality samples for replay. However, as we delve into more complex and larger-scale datasets like CIFAR-100 and Tiny-ImageNet, we observe a significant drop in performance for both FedCIL and AF-FCL. This decline highlights the limitations of their generative models when faced with greater data diversity and complexity. In the context of federated domain-incremental learning, where the data distribution changes over time, GLFC demonstrates an interesting behavior. When there are no new incremental sample classes, it reverts to the FedAvg algorithm. On the other hand, Re-Fed consistently achieves reasonable performance across all datasets and scenarios. Its synergistic replay strategy against data heterogeneity seems to provide a robust foundation for FCL.

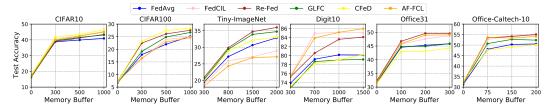
With Limited Resources. The experiments in Table 3 conducted under extremely limited resource conditions starkly contrast to the results obtained with sufficient resources. By simultaneously restricting three key types of training resources, we observe a significant decline in the performance of all methods. This underscores the critical importance of these resources for the effectiveness of federated continual learning techniques. To better understand the impact of these resource constraints, we conducted experiments from two perspectives. First, we analyzed how each resource limitation affects the performance of the various methods. This allowed us to identify the most sensitive components and bottlenecks that hinder the effectiveness of the FCL techniques under limited conditions. Second, we explored the interactions between different resource constraints and how they compound the challenges faced by the FCL methods. By understanding these interactions, we can gain insights into designing more resource-efficient FCL techniques. A detailed analysis will be provided in the next section.

In summary, the experiments with extremely limited resources highlight the need for continued research into developing FCL methods that can operate effectively under constrained conditions. By addressing the challenges of limited resources, we can pave the way for more practical and scalable applications of federated continual learning in real-world scenarios.

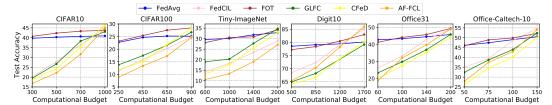
3.2.1 Ablation Study on Three Training Resources

We first explore the impact of each training resource on model performance and empirically select six baselines that may be sensitive to the corresponding resources and conduct experiments.

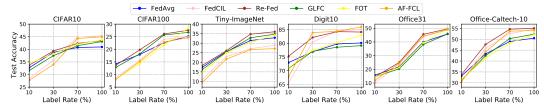
1. Does the Memory Buffer matter? As shown in Fig.1a, we select six methods that need extra memory buffer to cache previous samples/synthetic samples/auxiliary datasets. Specifically, when allocated a modest amount of memory buffer, these methods experience a marked improvement in their performance. This enhancement becomes particularly pronounced for methods that leverage generative models and distilled data for datasets with simple features. However, as the complexity of the datasets increases, posing challenges such as a wider diversity of classes and domains, the performance of these methods, particularly those reliant on generative modeling, undergoes a noticeable decline. This underscores the limitations of solely relying on synthetic data generation or distillation in complex learning environments. In contrast, methods that employ straightforward sample caching exhibit a more resilient performance profile. They maintain a relatively stable performance, demonstrating their robustness against dataset complexity. Nevertheless, as the number of cached samples surpasses a certain threshold, the model's performance gradually approaches an upper limit, indicating diminishing returns from further sample accumulation. This plateauing effect underscores the need for a delicate balance in managing the memory buffer, aiming to maximize performance gains without incurring unnecessary computational cost.



(a) The impact of the **Memory Buffer**. We set four different memory buffers for each dataset (e.g., $M = \{0, 300, 500, 1000\}$ for both CIFAR-10 and CIFAR-100). Here, we select six methods that use the memory buffer to cache samples from previous tasks, synthetic samples, or distillation samples.



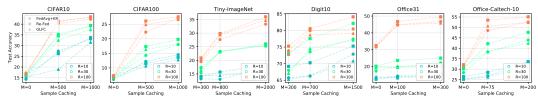
(b) The impact of the **Computational Budget**. Here we choose the FCL methods involved in complex computing. To normalize for effective computing due to the overhead of associated extra forward passes to decide on the distillation and training of the generative model, these additional calculations will share the computational budget equally with the target model.



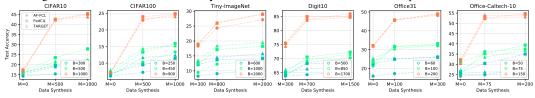
(c) The impact of the **Label Rate**. Here we equally test six random FCL methods with the ratio $R = \{10\%, 30\%, 70\%, 100\%\}$ for all datasets. Each FCL method trains the model just with the labeled data.

Figure 1: Ablation study on three training resources.

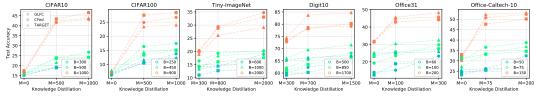
- 2. Does the Computational Budget matter? As depicted in Fig.1b, we carefully allocated varying computational budgets for each dataset, taking into account the maximum allowable limit specified in Table 5. It is evident from the results that when the computational budgets assigned to the various methods are restricted, the overall performance of the models inevitably suffers. This underlines the critical role that computational resources play in ensuring optimal model performance. However, certain methods demonstrate remarkable resilience, notably FedAvg and FOT. Even with limited computational budgets, they maintain satisfactory performance levels, highlighting their efficiency and effectiveness in resource-constrained environments. On the other hand, when the computational budget is abundant, allowing for unrestricted resource allocation, these other methods display the potential for higher performance ceilings. Given sufficient resources, they may achieve performance that surpasses that of FedAvg and FOT. Nevertheless, the practical implications of such high resource requirements must be carefully considered, as they may not always be feasible or cost-effective in real-world applications.
- **3. Does the Label Rate matter?** In Fig.1c, we analyze the relationship between the label rate and the model performance. Our analysis reveals a compelling trend: when the label rate falls below 70%, a strategic increase in the proportion of labeled data within the dataset is a potent catalyst for enhancing the performance of most model approaches. However, the Digit-10 dataset stands out as a unique case. Despite boasting a vast quantity of data, the simplicity of its feature information, characterized by single-channel data, renders it less reliant on an extensive labeled dataset for optimal performance. Consequently, even with a relatively modest amount of labeled data, the model can achieve promising results, underscoring the importance of considering the dataset's inherent characteristics when evaluating the label rate's impact. This observation underscores the nuanced interplay between the label rate, dataset complexity, and model performance. *While a*



(a) **Sample Caching**. Here we select three FCL methods that require a cache of samples from previous tasks. We designed three combinations of memory buffers and label rates to conduct the experiments.



(b) **Data Synthesis**. Here we select three FCL methods that are involved in generative models. We designed three combinations of memory buffers and computational budgets to conduct the experiments.



(c) **Knowledge Distillation**. Here we select three FCL methods that employ knowledge distillation. We designed three combinations of memory buffers and computational budgets to conduct the experiments.

Figure 2: Analysis of three typical FCL techniques.

higher label rate generally leads to improved performance, the extent of this improvement can vary significantly depending on the dataset's characteristics and the model being employed.

Conclusion. Existing methods have encountered limitations in achieving optimal results within resource-constrained environments. Notably, deploying a modestly sized memory buffer has emerged as a crucial factor in significantly augmenting model performance. This enhancement underscores the importance of an adequately provisioned yet economically efficient memory allocation strategy, as an overly generous buffer does not necessarily translate into commensurate gains in performance. A similar trend is observed with the label rate, emphasizing the need for a balanced approach in labeling data to maximize model efficacy. Moreover, the influence of the computational budget on FCL performance is intimately tied to the algorithmic design itself. Simple yet effective methods such as FedAvg demonstrate remarkable resilience, maintaining robust performance even with stringent computational constraints. This finding underscores the potential of streamlined FCL algorithms in addressing real-world challenges posed by limited resources. Experimental evidence highlights the imperative of selecting FCL methods tailored to the specific training resources. Researchers can achieve more effective learning outcomes by aligning algorithmic complexity with computational and memory resources.

3.2.2 Analysis of Typical FCL Techniques

In the experiments mentioned above, we have already observed that training resources play a crucial role in the performance of existing FCL methods. Next, we will further explore how to consider resource constraints in the design of FCL algorithms. We will research the four techniques above, often used to alleviate catastrophic forgetting, separately to demonstrate the effectiveness of different FCL techniques to different training resources.

1. Does the Sample Caching matter? To gain a deeper understanding of the efficacy of sample caching technology within limited resources, we impose restrictions on the memory buffer size and the label rate illustrated in Fig.2a. Regarding the sample caching technique, the label rate is pivotal in determining the quantity and quality of samples available for local training. Specifically, a higher label rate translates into more high-quality, labeled samples within the dataset, significantly enhancing the learning process. The Re-Fed algorithm, in particular, introduces an innovative approach that

leverages collaborative storage to intelligently select and retain the most critical samples when both the label rate and memory buffer are limited. This strategy is particularly effective in boosting model performance by focusing on the most informative data points, even under stringent resource constraints. Furthermore, as the label rate and memory buffer size vary, they jointly influence the performance of the sample caching technique in complex ways. The label rate not only dictates the overall quality of the data but also serves as an upper bound on the number of samples that can be feasibly stored within the given memory buffer. Consequently, the effectiveness of the sample caching is intimately tied to the interplay between these two training resources. Optimizing the allocation and utilization of these resources is thus crucial for maximizing the benefits of sample caching with limited resources.

- 2. Does the Data Synthesis matter? Data synthesis techniques, which often harness the power of generative models, are instrumental in creating synthetic data for replay purposes in various applications. In FCL, where resource constraints are prevalent, the training of these generative models inevitably introduces additional computational overhead. Consequently, it becomes imperative to carefully manage not only the memory buffer but also the computational budget overhead to ensure the feasibility and efficiency of the data synthesis process. As depicted in Fig.2b, the success of the data synthesis technique is intricately linked to both the available computational budget and the memory buffer capacity. Initially, as the memory buffer size increases, it provides more room for storing and manipulating synthetic data, thereby enhancing the technique's effectiveness. However, after reaching a threshold where a sufficient quantity of data can be comfortably accommodated, the marginal benefit of further expanding the memory buffer gradually diminishes. At this point, the computational budget becomes the primary bottleneck as the increased computational demands associated with generating higher-fidelity synthetic data or processing larger datasets begin to outweigh the benefits gained from additional memory. This shift in the dominance of factors underscores the importance of striking a balance between memory and computational resources in the design and implementation of data synthesis techniques for FCL. Efficient allocation of these resources can help maximize the effectiveness of the technique while minimizing the overall overhead, enabling more robust and scalable FCL systems.
- 3. Does the Knowledge Distillation matter? Knowledge distillation is a prevalent technique in mitigating catastrophic forgetting within existing FCL methods. While this approach effectively preserves key information across learning tasks, it necessitates the utilization of additional distillation datasets, whether publicly accessible or synthetically generated. Unfortunately, this requirement introduces additional complexity layers, including managing both computational overhead and memory buffer capacity. We primarily focus on limiting the computational budget, as it is often the primary factor constraining the scalability and speed of the distillation process. The Fig.2c illustrates that the computational budget is the primary limiting factor affecting the performance of the corresponding knowledge distillation methods. On the other hand, the memory buffer, though still a consideration, has a relatively minor impact on the overall performance of the knowledge distillation technique. This observation highlights the efficiency of the distillation process, where even a modest quantity of distilled data samples can achieve satisfactory performance gains. By efficiently managing the memory buffer to accommodate these necessary samples, we can maximize the benefits of knowledge distillation without incurring excessive memory overhead. In summary, our approach to knowledge distillation in FCL involves a careful balancing act between computational budget and memory buffer, with a greater emphasis on optimizing the former to ensure the technique's practicality and performance within the confines of federated and continual learning environments.

Discussion about the Network Extension. In this section, we do not perform additional experimental investigations specifically tailored for the Network Extension method. The main reason is that prevalent network extension methodologies typically presuppose knowledge of task boundaries, implying that the task ID for incoming data is accessible during inference. When this impractical assumption is relaxed, and we analogize to other methodologies that infer the category of the sample without prior task information, these extensions fail to uphold their erstwhile promising performance, as evidenced in Tables 2 and 3.

Conclusion. Three FCL strategies differ in strengths and limitations under varying resource conditions. With ample computational power and memory, sample caching preserves representative previous samples to combat forgetting, while data synthesis generates pseudo samples without storing real data – albeit requiring significant computational resources for effective rehearsal. Conversely,

knowledge distillation demonstrates resource efficiency by maintaining performance with minimal distilled samples, bypassing large memory buffers. Resource availability thus dictates strategy selection: sample caching and data synthesis excel in resource-rich environments, while knowledge distillation becomes optimal under constraints. Future research should prioritize reducing synthesis computation, optimizing cached memory usage, and enhancing distillation efficiency to address growing demands for resource-constrained FCL implementations.

4 Evaluation & Future Research Direction

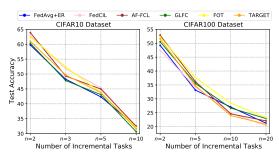


Figure 3: Performance w.r.t number of incremental tasks n for class-incremental datasets.

Table 4: Performance comparison of various methods with a different order of domain tasks. We report the reverse order compared to the Table 2.

Dataset	Metric	FedAvg	FedAvg FedCIL		FOT
Digit10	A(f)	75.84±0.36	79.96±1.12	79.63±0.53	74.45±0.82
	\bar{A}	83.62±0.41	87.98±0.88	88.23±0.49	83.91±0.76
Office31	A(f)	36.65±0.52	41.90±1.36	42.71±0.44	40.29±0.94
	\bar{A}	41.47±0.49	44.18±0.95	45.05±0.39	43.86±0.73

In this section, we delve deeper into the analysis of existing FCL methodologies by conducting extensive quantitative experiments that focus on two crucial aspects: the number of tasks within Class-IL datasets in Figure. 3 and the order of tasks across various Domain-IL datasets in Table 4. By systematically varying these parameters, we aim to gain a nuanced understanding of how these factors impact the performance of FCL methods. Firstly, we observe that as the number of tasks in the Class-IL datasets escalates, the performance of all the evaluated methods noticeably declines. Nevertheless, despite this performance decrement, the general trends exhibited by the different methods remain comparable, suggesting that the fundamental challenges they face are similar. Furthermore, our experiments reveal that the order in which domain tasks are presented to the model can significantly influence its ultimate performance within Domain-IL scenarios. This finding emphasizes the importance of task scheduling and curriculum design in FCL systems, as certain sequences may be more conducive to learning than others. However, even with this variability in performance due to task order, each method maintains its distinctive strengths and tendencies, demonstrating its resilience and adaptability to different contexts.

Moreover, although there is a lot of research on FCL, these studies mainly focus on transferring CL algorithms in centralized settings to alleviate catastrophic forgetting, ignoring the issue of training resource overhead. Based on this, we shed light on the future research direction in Appendix C.

5 Conclusion

This paper has presented a tutorial on FCL under resource constraints. Firstly, we begin with an introduction to the existing FCL methods and three training resources on distributed devices that influence the performance of the methods. Then, we conduct experiments using ablation studies on each training resource and analyze the effect of four typical FCL techniques on alleviating catastrophic forgetting in FCL. Finally, we discuss future research directions in resource-constrained FCL.

Acknowledgments and Disclosure of Funding

This work is supported by the National Key Research and Development Program of China under grant 2024YFC3307900; the National Natural Science Foundation of China under grants 62376103, 62302184, 62436003 and 62206102; Major Science and Technology Project of Hubei Province under grant 2024BAA008; Hubei Science and Technology Talent Service Project under grant 2024DJC078; Ant Group through CCF-Ant Research Fund; and Fundamental Research Funds for the Central

Universities under grant YCJJ20252319. The computation is completed in the HPC Platform of Huazhong University of Science and Technology.

References

- [1] Sara Babakniya, Zalan Fabian, Chaoyang He, Mahdi Soltanolkotabi, and Salman Avestimehr. A datafree approach to mitigate catastrophic forgetting in federated class incremental learning for vision tasks. *Advances in Neural Information Processing Systems*, 36, 2024.
- [2] Yavuz Faruk Bakman, Duygu Nur Yaldiz, Yahya H Ezzeldin, and Salman Avestimehr. Federated orthogonal training: Mitigating global catastrophic forgetting in continual federated learning. *arXiv* preprint *arXiv*:2309.01289, 2023.
- [3] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pages 2921–2926. IEEE, 2017.
- [4] Jiahua Dong, Hongliu Li, Yang Cong, Gan Sun, Yulun Zhang, and Luc Van Gool. No one left behind: Real-world federated class-incremental learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023.
- [5] Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated class-incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10164–10173, 2022.
- [6] Jiahua Dong, Duzhen Zhang, Yang Cong, Wei Cong, Henghui Ding, and Dengxin Dai. Federated incremental semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3934–3943, 2023.
- [7] Zhaoyang Du, Celimuge Wu, Tsutomu Yoshinaga, Kok-Lim Alvin Yau, Yusheng Ji, and Jie Li. Federated learning for vehicular internet of things: Recent advances and open issues. *IEEE Open Journal of the Computer Society*, 1:45–61, 2020.
- [8] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In *International conference on machine learning*, pages 3061–3071. PMLR, 2020.
- [9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. *The journal of machine learning research*, 17(1):2096–2030, 2016.
- [10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [11] Sheng Huang, Lele Fu, Tianchi Liao, Bowen Deng, Chuanfu Zhang, and Chuan Chen. Fedbg: Proactively mitigating bias in cross-domain graph federated learning using background data.
- [12] Wenke Huang, Zekun Shi, Mang Ye, He Li, and Bo Du. Self-driven entropy aggregation for byzantine-robust heterogeneous federated learning. In *Forty-first International Conference on Machine Learning*.
- [13] Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in heterogeneous federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10143–10153, 2022.
- [14] Jonathan J. Hull. A database for handwritten text recognition research. *IEEE Transactions on pattern analysis and machine intelligence*, 16(5):550–554, 1994.
- [15] Zhigang Jin, Junyi Zhou, Bing Li, Xiaodong Wu, and Chenxu Duan. Fl-iids: A novel federated learning-based incremental intrusion detection system. *Future Generation Computer Systems*, 151:57–70, 2024.
- [16] Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-importance based adaptive group sparse regularization. *arXiv: Learning*, 2020.
- [17] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring catastrophic forgetting in neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.
- [18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- [19] Junqing Le, Xinyu Lei, Nankun Mu, Hengrun Zhang, Kai Zeng, and Xiaofeng Liao. Federated continuous learning with broad network architecture. *IEEE Transactions on Cybernetics*, 51(8):3874–3888, 2021.

- [20] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
- [21] Yann LeCun, Corinna Cortes, and Chris Burges. Mnist handwritten digit database, 2010.
- [22] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.
- [23] Yichen Li, Qunwei Li, Haozhao Wang, Ruixuan Li, Wenliang Zhong, and Guannan Zhang. Towards efficient replay in federated incremental learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 12820–12829, June 2024.
- [24] Yichen Li, Qiyu Qin, Gaoyang Zhu, Wenchao Xu, Haozhao Wang, Yuhua Li, Rui Zhang, and Ruixuan Li. A systematic survey on federated sequential recommendation. arXiv preprint arXiv:2504.05313, 2025.
- [25] Yichen Li, Yijing Shan, Yi Liu, Haozhao Wang, Wei Wang, Yi Wang, and Ruixuan Li. Personalized federated recommendation for cold-start users via adaptive knowledge fusion. In *Proceedings of the ACM* on Web Conference 2025, WWW '25, page 2700–2709, New York, NY, USA, 2025. Association for Computing Machinery.
- [26] Yichen Li, Haozhao Wang, Yining Qi, Wei Liu, and Ruixuan Li. Re-fed+: A better replay strategy for federated incremental learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.
- [27] Yichen Li, Haozhao Wang, Wenchao Xu, Tianzhe Xiao, Hong Liu, Minzhu Tu, Yuying Wang, Xin Yang, Rui Zhang, Shui Yu, Song Guo, and Ruixuan Li. Unleashing the power of continual learning on non-centralized devices: A survey, 2024.
- [28] Yichen Li, Yuying Wang, Haozhao Wang, Yining Qi, Tianzhe Xiao, and Ruixuan Li. Fedssi: Rehearsal-free continual federated learning with synergistic synaptic intelligence. In *Forty-second International Conference on Machine Learning*.
- [29] Yichen Li, Wenchao Xu, Yining Qi, Haozhao Wang, Ruixuan Li, and Song Guo. Sr-fdil: Synergistic replay for federated domain-incremental learning. *IEEE Transactions on Parallel and Distributed Systems*, 35(11):1879–1890, 2024.
- [30] Yichen Li, Wenchao Xu, Haozhao Wang, Yining Qi, Jingcai Guo, and Ruixuan Li. Personalized federated domain-incremental learning based on adaptive knowledge matching. In *European conference on computer* vision, pages 127–144. Springer, 2024.
- [31] Tianchi Liao, Lele Fu, Jialong Chen, Zhen Wang, Zibin Zheng, and Chuan Chen. A swiss army knife for heterogeneous federated learning: Flexible coupling via trace norm. Advances in Neural Information Processing Systems, 37:139886–139911, 2024.
- [32] Tianchi Liao, Ziyue Xu, Qing Hu, Hong-Ning Dai, Huaiwei Huang, Zibin Zheng, and Chuan Chen. Fedbrb: A solution to the small-to-large scenario in device-heterogeneity federated learning. *IEEE Transactions on Mobile Computing*, 2025.
- [33] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion in federated learning. *Advances in neural information processing systems*, 33:2351–2363, 2020.
- [34] Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The clear benchmark: Continual learning on real-world imagery, 2022.
- [35] Chenghao Liu, Xiaoyang Qu, Jianzong Wang, and Jing Xiao. Fedet: a communication-efficient federated class-incremental learning framework based on enhanced transformer. arXiv preprint arXiv:2306.15347, 2023.
- [36] Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning based on knowledge distillation. In Lud De Raedt, editor, *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22*, pages 2182–2188. International Joint Conferences on Artificial Intelligence Organization, 7 2022. Main Track.
- [37] Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, Lidan Shou, and Luc De Raedt. Continual federated learning based on knowledge distillation. In *IJCAI*, pages 2182–2188, 2022.
- [38] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pages 1273–1282. PMLR, 2017.

- [39] Lei Meng, Zhuang Qi, Lei Wu, Xiaoyu Du, Zhaochuan Li, Lizhen Cui, and Xiangxu Meng. Improving global generalization and local personalization for federated learning. *IEEE Transactions on Neural* Networks and Learning Systems, 2024.
- [40] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural images with unsupervised feature learning. 2011.
- [41] Dinh C Nguyen, Quoc-Viet Pham, Pubudu N Pathirana, Ming Ding, Aruna Seneviratne, Zihuai Lin, Octavia Dobre, and Won-Joo Hwang. Federated learning for smart healthcare: A survey. ACM Computing Surveys (CSUR), 55(3):1–37, 2022.
- [42] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier GANs. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 2642–2651. PMLR, 06–11 Aug 2017.
- [43] Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. Advances in Neural Information Processing Systems, 34:16131–16144, 2021.
- [44] Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K Dokania, Philip HS Torr, Ser-Nam Lim, Bernard Ghanem, and Adel Bibi. Computationally budgeted continual learning: What does matter? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3698–3707, 2023.
- [45] Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning. arXiv preprint arXiv:2302.13001, 2023.
- [46] Zhuang Qi, Lei Meng, Zitan Chen, Han Hu, Hui Lin, and Xiangxu Meng. Cross-silo prototypical calibration for federated learning with non-iid data. In *Proceedings of the 31st ACM international conference on multimedia*, pages 3099–3107, 2023.
- [47] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pages 2001–2010, 2017.
- [48] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis Bach and David Blei, editors, *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pages 1530–1538, Lille, France, 07–09 Jul 2015. PMLR.
- [49] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience replay for continual learning. Advances in neural information processing systems, 32, 2019.
- [50] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV 11, pages 213–226. Springer, 2010.
- [51] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. *arXiv preprint* arXiv:1904.07734, 2019.
- [52] Johannes Von Oswald, Christian Henning, Benjamin F Grewe, and João Sacramento. Continual learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.
- [53] Haozhao Wang, Yichen Li, Wenchao Xu, Ruixuan Li, Yufeng Zhan, and Zhigang Zeng. Dafkd: Domain-aware federated knowledge distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20412–20421, 2023.
- [54] Haozhao Wang, Haoran Xu, Yichen Li, Yuan Xu, Ruixuan Li, and Tianwei Zhang. FedCDA: Federated learning with cross-rounds divergence-aware aggregation. In *The Twelfth International Conference on Learning Representations*, 2024.
- [55] Qiang Wang, Bingyan Liu, and Yawen Li. Traceable federated continual learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12872–12881, 2024.
- [56] Yuying Wang, Yichen Li, Haozhao Wang, Lei Zhao, and Xiaofang Zhang. Better knowledge enhancement for privacy-preserving cross-project defect prediction. *Journal of Software: Evolution and Process*, 37(1):e2761, 2025.
- [57] Zi Wang, Fei Wu, Feng Yu, Yurui Zhou, Jia Hu, and Geyong Min. Federated continual learning for edge-ai: A comprehensive survey. *arXiv preprint arXiv:2411.13740*, 2024.

- [58] Abudukelimu Wuerkaixi, Sen Cui, Jingfeng Zhang, Kunda Yan, Bo Han, Gang Niu, Lei Fang, Changshui Zhang, and Masashi Sugiyama. Accurate forgetting for heterogeneous federated continual learning. In The Twelfth International Conference on Learning Representations, 2023.
- [59] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated learning for healthcare informatics. *Journal of Healthcare Informatics Research*, 5:1–19, 2021.
- [60] Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and Tianrui Li. Federated continual learning via knowledge fusion: A survey. IEEE Transactions on Knowledge and Data Engineering, 2024.
- [61] Ming Yin, Yichang Xu, Minghong Fang, and Neil Zhenqiang Gong. Poisoning federated recommender systems with fake users. In *Proceedings of the ACM on Web Conference 2024*, pages 3555–3565, 2024.
- [62] Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual learning with weighted inter-client transfer. In *International Conference on Machine Learning*, pages 12073–12086. PMLR, 2021.
- [63] Hao Yu, Xin Yang, Xin Gao, Yihui Feng, Hao Wang, Yan Kang, and Tianrui Li. Overcoming spatial-temporal catastrophic forgetting for federated class-incremental learning. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 5280–5288, 2024.
- [64] Hao Yu, Xin Yang, Xin Gao, Yan Kang, Hao Wang, Junbo Zhang, and Tianrui Li. Personalized federated continual learning via multi-granularity prompt. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 4023–4034, 2024.
- [65] Liangqi Yuan, Yunsheng Ma, Lu Su, and Ziran Wang. Peer-to-peer federated continual learning for naturalistic driving action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5249–5258, 2023.
- [66] Jie Zhang, Chen Chen, Weiming Zhuang, and Lingjuan Lyu. Target: Federated class-continual learning via exemplar-free distillation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 4782–4793, 2023.
- [67] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameterized knowledge transfer for personalized federated learning. Advances in Neural Information Processing Systems, 34:10092–10104, 2021.
- [68] Wenxuan Zhang, Youssef Mohamed, Bernard Ghanem, Philip HS Torr, Adel Bibi, and Mohamed Elhoseiny. Continual learning on a diet: Learning from sparsely labeled streams under constrained computation. arXiv preprint arXiv:2404.12766, 2024.
- [69] Youshan Zhang and Brian D. Davison. Impact of imagenet model selection on domain adaptation, 2020.
- [70] Haichen Zhou, Yixiong Zou, Ruixuan Li, Yuhua Li, and Kui Xiao. Delve into base-novel confusion: Redundancy exploration for few-shot class-incremental learning. arXiv preprint arXiv:2405.04918, 2024.
- [71] Jianian Zhu, Yichen Li, Haozhao Wang, Yining Qi, and Ruixuan Li. Hypernetwork-driven centralized contrastive learning for federated graph classification. *World Wide Web*, 27(5):56, 2024.
- [72] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated learning. In *International conference on machine learning*, pages 12878–12889. PMLR, 2021.
- [73] Yixiong Zou, Shanghang Zhang, Haichen Zhou, Yuhua Li, and Ruixuan Li. Compositional few-shot class-incremental learning. *arXiv* preprint arXiv:2405.17022, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The summarized contributions are provided in the abstract and introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We indicated the limitations and future works.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: We did not include new theorems.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We could provide more details and codes to support the reproducibility.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We could provide our code if required.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https: //nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- · The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provided the settings.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by error bars, confidence intervals, or statistical significance tests.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide the amount of compute required for experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cited the original paper that produced the code package or dataset.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLM for the core method.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Background and Related Work

Federated Learning. Federated Learning (FL) is an approach to developing a unified global model by combining models trained on local, private datasets from multiple clients [31, 32, 56, 39]. A notable FL framework, FedAvg [38], enhances the global model by averaging the parameters of these locally trained models. Nevertheless, conventional FL methods, such as FedAvg, encounter difficulties when dealing with data heterogeneity, where client datasets are not independently and identically distributed (Non-IID), leading to reduced model performance [13, 12, 11, 46]. To address the Non-IID problem in FL, an optimization technique incorporating a proximal term was introduced in [22] to alleviate the impact of diverse and Non-IID data distributions among devices. Another strategy, federated distillation [67, 72], focuses on transferring knowledge from multiple local models to the global model by aggregating solely the soft predictions produced by each model. The authors of [33] presented a knowledge distillation technique that employs unlabeled training data as a surrogate dataset. However, these methods are tailored to address static data with spatial heterogeneity and do not account for the challenges presented by temporally heterogeneous streaming tasks in FL.

Continual Learning Continual Learning (CL) is a machine learning paradigm that enables models to learn sequentially from a stream of tasks while preserving knowledge acquired from earlier tasks [51, 73, 70]. CL methods can be broadly categorized into three primary approaches: replay-based [47, 8], regularization-based [16, 17], and parameter isolation techniques [52, 43]. Replay-based methods involve retaining a subset of previous task samples to maintain knowledge when learning new tasks. Regularization-based methods prevent the overwriting of existing knowledge by applying constraints to the loss function during the learning of new tasks. Parameter isolation methods usually introduce extra parameters and computational resources to facilitate the learning of new tasks. In this work, we concentrate on federated continual learning, which integrates elements of both federated and continual learning.

Federated Continual Learning Federated Continual Learning (FCL) is introduced to tackle the challenge of learning from a sequence of tasks on each client, focusing on adapting the global model to new data while preserving knowledge from previous data [57, 55, 63]. Although important, FCL has only recently started to receive attention, with [62] serving as a seminal work in this area. This study concentrates on Task-Incremental Learning (Task-IL), which necessitates distinct task IDs at inference time and employs dedicated task-specific masks to improve personalized performance. Concurrently, research efforts like [64] consider the multi-granularity representation of knowledge, fostering the integration of spatial-temporal knowledge in Federated Continual Incremental Learning (FCIL). The authors of [30] align local domain knowledge with a dynamic network to strike a balance between resource usage and model performance. Other works, such as [37], employ a proxy dataset and leverage knowledge distillation at both the server and client levels. In contrast, [5, 4] simplifies the problem by assuming clients have sufficient storage to store and share old examples, deviating from the conventional FL framework. Additionally, studies like [6, 15] investigate FCL in applications beyond image classification.

B Problem Formulation

Federated Learning. In the context of Federated Learning (FL), a common problem involves collaboratively training a global model across K clients. Each client k has exclusive access to its local private dataset, denoted as $\mathcal{T}_k = \{x_k^{(i)}, y_k^{(i)}\}$, where $x_k^{(i)}$ represents the i-th data sample, and $y_k^{(i)} \in \{1, 2, \dots, C\}$ is the associated label for C classes. The size of dataset \mathcal{T}_k is indicated by $|\mathcal{T}_k|$. The global dataset is the aggregate of all local datasets, i.e., $\mathcal{T} = \{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_K\}$, with $\mathcal{T} = \sum_{k=1}^K \mathcal{T}_k$. The goal of the FL system is to train a global model w that minimizes the overall empirical loss across the entire dataset D:

$$\min_{w} \mathcal{L}(w) := \sum_{k=1}^{K} \frac{|\mathcal{T}_k|}{|\mathcal{T}|} \mathcal{L}_k(w),$$
where $\mathcal{L}_k(w) = \frac{1}{|\mathcal{T}_k|} \sum_{i=1}^{|\mathcal{T}_k|} \mathcal{L}_{CE}(w; x_i^k, y_i^k).$ (1)

Table 5: Experimental Details.	Analysis of various	considered settings	of different	datasets in the
experiments section.				

Attributes	CIFAR-10	CIFAR-100	Tiny-ImageNet	Digit-10	Office-31	Office-Caltech-10
Task size	178MB	178MB	435MB	480M	88M	58M
Image number	60K	60K	120K	110K	4.6k	2.5k
Image Size	3×32×32	$3\times32\times32$	$3\times64\times64$	1×28×28	$3\times300\times300$	$3\times300\times300$
Task number	n = 5	n = 10	n = 10	n = 4	n = 3	n = 4
Task Scenario	Class-IL	Class-IL	Class-IL	Domain-IL	Domain-IL	Domain-IL
Batch Size	s = 64	s = 64	s=128	s = 64	s = 32	s = 32
ACC metrics	Top-1	Top-1	Top-10	Top-1	Top-1	Top-1
Learning Rate	l = 0.01	l = 0.01	l = 0.001	l = 0.001	l = 0.01	l = 0.01
Data heterogeneity	$\alpha = 1.0$	$\alpha = 1.0$	$\alpha = 10.0$	$\alpha = 0.1$	$\alpha = 1.0$	$\alpha = 1.0$
Client numbers	C = 20	C=20	C=20	C=15	C=10	C=8
Local training epoch	E = 20	E = 20	E = 20	E = 20	E = 20	E = 15
Client selection ratio	k = 0.4	k = 0.4	k = 0.5	k = 0.4	k = 0.4	k = 0.5
Communication Round	T = 80	T = 80	T = 100	T = 60	T = 60	T = 40
Memory Buffer	M = 1000	M = 1000	M = 2000	M = 1500	M = 300	M = 200
Label Rate	R = 100%	R = 100%	R = 100%	R = 100%	R = 100%	R = 100%
Computational Budget	B = 1000	B = 900	B = 2000	B = 1700	B = 200	B = 150

Here $\mathcal{L}_k(w)$ signifies the local loss for client k, and \mathcal{L}_{CE} is the cross-entropy loss function, which quantifies the discrepancy between the predicted and actual labels.

Continual Learning. In a typical Continual Learning (CL) scenario (outside of a federated context), a model is trained on a sequence of tasks $\{\mathcal{T}^1,\mathcal{T}^2,\dots,\mathcal{T}^n\}$, where \mathcal{T}^t represents the t-th task. Each task $\mathcal{T}^t = \sum_{i=1}^{N^t} (x_t^{(i)},y_t^{(i)})$ comprises N^t pairs of data samples $x_t^{(i)} \in \mathcal{X}^t$ and their corresponding labels $y_t^{(i)} \in \mathcal{Y}^t$. The domain space and label space for the t-th task are denoted by \mathcal{X}^t and \mathcal{Y}^t , respectively, with $|\mathcal{Y}^t|$ classes. The total class set across all tasks is $\mathcal{Y} = \bigcup_{t=1}^n \mathcal{Y}^t$, and similarly, the total domain space is $\mathcal{X} = \bigcup_{t=1}^n \mathcal{X}^t$. This paper focuses on two CL scenarios: (1) Class-Incremental Task: All tasks share the same domain space $(\mathcal{X}^1 = \mathcal{X}^t$ for all $t \in [n]$), but the number of classes may vary $(\mathcal{Y}^1 \neq \mathcal{Y}^t$ for all $t \in [n]$). (2) Domain-Incremental Task: All tasks have the same number of classes $(\mathcal{Y}^1 = \mathcal{Y}^t$ for all $t \in [n]$), but the domain and data distribution change over tasks $(\mathcal{X}^1 \neq \mathcal{X}^t$ for all $t \in [n]$).

Federated Continual Learning. We combine the CL with the federated setting. Our objective is to train a global model for K clients, where each client k can only access its local sequence of tasks $\{\mathcal{T}_k^1, \mathcal{T}_k^2, \dots, \mathcal{T}_k^n\}$. When the t-th task arrives, the goal is to train a global model w^t across all t tasks, denoted by $\mathcal{T}^t = \{\sum_{n=1}^t \sum_{k=1}^K \mathcal{T}_k^n\}$. This can be formulated as:

$$w^{t} = \arg\min_{w \in \mathbb{R}^{d}} \sum_{n=1}^{t} \sum_{k=1}^{K} \sum_{i=1}^{N_{k}^{n}} \frac{1}{|\mathcal{T}^{t}|} \mathcal{L}_{CE}(w; x_{k,n}^{(i)}, y_{k,n}^{(i)}). \tag{2}$$

Here \mathcal{L}_{CE} is the cross-entropy loss function used to measure the discrepancy between predictions and true labels.

B.1 Experiment Setup

B.1.1 Datasets.

Our experiments utilize diverse datasets distributed across two federated incremental scenarios, encompassing six datasets in total.

Class-Incremental Task Dataset: This dataset gradually introduces new classes. It begins with a subset of classes and expands by adding more classes in subsequent stages, facilitating models to learn and accommodate an increasing range of classes.

(1) CIFAR-10 [18]: Comprises 10 object classes, encompassing everyday items, animals, and vehicles. It includes 50,000 training and 10,000 test images.

- (2) CIFAR-100 [18]: Similar to CIFAR-10 but with 100 detailed object classes. It contains 50,000 training and 10,000 test images.
- (3) Tiny-ImageNet [20]: A selection from the ImageNet dataset, featuring 200 object classes. It includes 100,000 training images, 10,000 validation images, and 10,000 test images.

Domain-Incremental Task Dataset: This dataset progressively introduces new domains. It starts with samples from a specific domain and incorporates additional domains in later stages, allowing models to generalize to new contexts.

- (1) Digit-10: The Digit-10 dataset includes 10 digit categories across four domains: MNIST [21], EMNIST [3], USPS [14], and SVHN [40]. Each dataset represents a specific domain, such as handwriting style, and contains 10 digit classes.
 - MNIST: Contains 60,000 training and 10,000 test handwritten digit images.
 - EMNIST: An extension of MNIST with 240,000 training and 40,000 test handwritten character (letter and digit) images.
 - USPS: Includes 7,291 training and 2,007 test handwritten digit images from the US Postal Service.
 - SVHN: Features 73,257 training and 26,032 test images of house numbers captured from Google Street View.
- (2) Office-31 [50]: Contains images from three domains: Amazon, Webcam, and DSLR. It covers 31 categories, with approximately 4,100 images per domain.
- (3) Office-Caltech-10 [69]: Includes images from four domains: Amazon, Caltech, Webcam, and DSLR. It comprises 10 object categories, with around 2,500 images per domain.

B.1.2 Baselines.

In this paper, we follow the same protocols proposed by [38, 47] to set up tasks. We evaluate our resource-constrained settings with the following baselines.

FedAvg [38]: It is a representative FL model that aggregates client parameters in each communication round. It is a simple but effective model for FL.

FedProx [22]: It is also a representative FL model, which is better at handling heterogeneity in federated networks than FedAvg.

FedAvg/FedProx+ER [49]: Experience Replay is a technique primarily utilized in reinforcement learning, especially in deep reinforcement learning algorithms. Here, we combine the ER algorithm with the FL algorithms FedAvg and FedProx.

GLFC [5]: This method addresses the federated class-incremental learning issue and trains a global model with additional class-imbalance losses. A proxy server is used to reconstruct samples to help select the best old models for model updates.

FedCIL [45]: This method employs the ACGAN network to generate synthetic samples to consolidate the global model and align sample features in the output layer. The authors conducted experiments in the FCIL scenario, and we adopted it in our FDIL setting.

TARGET [66]: This method uses a generator to synthesize data to simulate the global data distribution on each client without additional data from previous tasks. The data heterogeneity is considered with catastrophic forgetting, and the authors focus on the FCIL scenario.

AF-FCL [58]: This method focuses on the data noise among previous tasks, which degrades the model performance. The NF model is used to quantify the credibility of previous knowledge and select the transfer knowledge.

Re-Fed [23]: This approach proposes synergistic replay for each client to selectively cache samples based on the understanding of both local and global data distributions. Each client trains an additional personalized model to discern the importance of the score to each client.

FOT [2]: This method uses orthogonal projection technology to project different parameters into different spaces to isolate task parameters. In addition, this method proposes a secure parameter

aggregation method based on projection. In the model inference stage, the method requires assuming that the boundaries of the task are known. We modified it to an automated inference of the model.

CFeD [36]: It employs public datasets as proxy data for knowledge distillation at both client and server sides. Upon introducing new tasks, clients use proxy data to transfer knowledge from previous to current models thus mitigating inter-task forgetting.

FedWeIT [62]: This method divides parameters into task-specific and shared parameters. A multihead model based on known task boundaries is used in the original method. To ensure a fair comparison, we modify it to automate the inference of the model.

C Future Research in Resource-Constrained Federated Continual Learning

In this paper, based on extensive experiments, we have proved that training resources play a crucial role in the effectiveness of existing FCL methods. Therefore, we propose the following suggestions for future research:

- Sampling Strategy: Sample caching is a mainstream method to prevent catastrophic forgetting in FCL, and it often has good results when memory buffer resources are not tight. In our experiments, we used simple strategies such as Random, FIFO, and LIFO. However, apart from the collaborative replay strategy proposed in [23], there is currently no in-depth exploration of sample caching strategies in FCL. In addition, future research can also focus on directly selecting exemplar samples during local training to train and cache locally.
- *Update Optimization:* Common SGD optimization often achieves expected performance under IID data, but in FCL, data exhibits heterogeneity in both spatial and temporal dimensions. Better optimization approaches can be considered, such as using analytic learning to estimate parameters and employing sharpness-aware minimization to replace empirical risk minimization), ultimately enhancing the model's robustness to data heterogeneity and improving model performance.
- Bandwidth Restriction: Bandwidth plays a crucial role in distributed systems, as the communication frequency between different clients and servers directly impacts the convergence of the model. In FCL, due to the continuous arrival of incremental tasks, clients need to participate in federated training for extended periods, resulting in substantial communication overhead. Researching how to reduce this communication overhead is of great significance for the large-scale deployment of FCL.
- Adaptive Allocation: Due to limited training resources, optimizing their allocation to boost model performance represents a pragmatic approach. This could entail allocating appropriate memory buffers to different datasets and assigning computational resources to particular processes. One viable method is the application of combinatorial optimization techniques. In practical implementations or method designs, dynamically allocating resources to each technique based on availability can further improve performance.