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Abstract

Electrocardiograms (ECGs) are multivariate time series where clinically relevant
patterns span both local waveform morphology and long-range rhythm structure.
We introduce LGA-ECG, a hierarchical Transformer architecture that integrates
convolutional inductive biases into self-attention. Queries are extracted from
overlapping local windows to retain morphological fidelity, while keys and values
are globally derived to enable full temporal context. This design eliminates the
need for explicit positional encodings by leveraging convolutional locality. On the
CODE-TEST benchmark, LGA-ECG achieves a macro F1-score of 0.885, recall
of 0.872, and precision of 0.907, outperforming CNN and Transformer baselines.
Ablation studies confirm the effectiveness of combining local queries with global
key-value pairsm

1 Introduction

Time series data are central to modern healthcare. From electronic health records and continuous
monitoring devices to population-level trends, temporal information drives medical decision-making
across scales. Among these signals, electrocardiograms (ECGs) stand out as one of the most
structured and widely studied physiological time series. As one-dimensional signals capturing the
heart’s electrical activity over time, ECGs encode both fine-grained morphological patterns (e.g., P,
QRS, and T waves) and long-range temporal dynamics (e.g., thythm and rate). This dual structure
makes ECGs a powerful yet challenging benchmark for time series modeling, requiring architectures
that can operate across multiple temporal resolutions.

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, accounting for 17.9
million deaths in 2019 (32% of all global deaths), according to the World Health Organization
(WHO) [[19]]. Electrocardiograms (ECGs), being non-invasive and widely available, are essential
in diagnosing and monitoring heart conditions, and their role has expanded with the growth of
digital health technologies [[10]. In this context, artificial intelligence has become a powerful tool
for automating ECG analysis, supporting clinical decision-making, reducing telemedicine backlogs,
and enabling tasks such as arrhythmia classification [14} [15} 3], atrial fibrillation detection [18]], age
estimation [9]], and wave segmentation [5].

Deep learning, particularly convolutional neural networks (CNNs), has driven these advances by
autonomously extracting morphological and temporal ECG features [[14}[15]]. CNNs leverage induc-
tive biases such as spatial locality and translation equivariance, enabling hierarchical modeling from
localized waveform details to global rhythm patterns. Hybrid models combining CNNs and recurrent
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Figure 1: Overall architecture of the proposed LGA-ECG network.

layers have also been proposed to jointly capture morphology and temporal dependencies [18]]. More
recently, transformer architectures have been introduced to ECG analysis, motivated by their success
in sequence modeling. CNN-transformer hybrids [7} 4] combine convolutional front-ends for local
feature extraction with global self-attention layers, while beat-aligned transformers (BaT) [8]] leverage
local attention on segmented beats, and hierarchical CNN-transformer pipelines further improve
multi-scale modeling [2].

These efforts reflect broader trends in time series modeling. As researchers seek general-purpose
architectures for diverse health signals, there is increasing emphasis on combining inductive biases
for local structure with mechanisms capable of modeling long-range dependencies. General advances
in local attention mechanisms, such as Swin Transformers with shifting windows [11], CoAtNet’s
convolution-attention integration [1l], and ELSA’s enhanced local sensitivity [20]], demonstrate the
importance of combining convolutional inductive biases with global self-attention. These approaches
underscore that effective ECG analysis requires models capable of capturing both localized waveform
morphology and long-range temporal dependencies.

Motivated by these insights, we propose a novel hierarchical transformer architecture for ECG signals
that embeds convolutional biases directly into the attention mechanism. Queries are derived from
overlapping convolutional projections, preserving locality, while global key-value pairs enable broader
temporal modeling. This design allows the model to jointly capture fine-grained morphological
variations and global rhythm context, aiming to advance the state of automated ECG interpretation.
Our proposed Local-Global Attention ECG model (LGA-ECG) treats ECGs not just as clinical
artifacts, but as representative of a broader class of complex, multiscale time series in healthcare. By
integrating local convolutional inductive biases with global self-attention, LGA-ECG captures both
fine-grained waveform morphology and long-range temporal patterns. Experiments show that this
hybrid architecture outperforms state-of-the-art baselines across multiple ECG classification tasks.

2 Methods

The proposed LGA-ECG model integrates a convolutional front-end with a hierarchical transformer
backbone (Figure[T). The design explicitly targets two complementary aspects of ECG interpretation:
(i) fine-grained waveform morphology (P, QRS, T waves and intervals) and (ii) broader rthythm
patterns across multiple beats. Convolutional layers provide strong locality biases, while transformer
blocks equipped with the proposed Local-Global (LG) self-attention mechanism capture dependencies
across multiple temporal scales.

2.1 Convolutional Front-End

The convolutional encoder consists of four sequential residual blocks (ResBlocks), each composed
of two 1D convolutions (kernel sizes 7 and 3), BatchNorm, ReLU activations, and Dropout. These
layers project raw ECG signals into a high-dimensional feature space while preserving spatial locality
and morphology. All ResBlocks maintain 64 output channels and progressively reduce the temporal
resolution, forming a feature sequence suitable for transformer-based processing.
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2.2 Local-Global Self-Attention

Let the input sequence be X € REXN*D 'where B is the batch size, N the sequence length, and
D the embedding dimension. Queries are derived from overlapping temporal windows: for each
window of length [, a 1D convolution followed by averaging yields a single query vector

1
i 1 i
QW = 7 El ConvIDg(X ' >):,t, 1)
t=

capturing localized waveform morphology. Stacking across M windows produces Q € RBXM*D,

In contrast, keys and values are obtained from convolutional projections over the entire sequence,
K,V € REXNXD ‘enabling global context modeling while retaining a locality bias.

Attention is then computed via standard multi-head scaled dot-product attention:

QK' )
Attn(Q, K, V) = softmax({ —— | V 2
(QK.V) (V). @
where d = D/H is the head dimension. Residual connections preserve the morphology captured
in queries, and each block reduces the temporal length by half through strided pooling, yielding
progressively shorter but semantically richer sequences. This mechanism overcomes the quadratic
cost of global attention while embedding clinically relevant local structure. A full mathematical
derivation of this mechanism, including normalization, residual pathways, and hierarchical reduction,
is provided in Appendix [A]

Each Local-Global attention block reduces the temporal dimension by half, forming a hierarchical
sequence representation. This structure mirrors clinical reasoning: earlier layers focus on wave
morphology, while deeper layers model inter-beat patterns and rhythm. Moreover, this design reduces
computational complexity from O(NN?) in global attention to O(M N) with M = N/2, enabling
scalability to long ECG sequences.

2.3 Transformer Block and Overall Architecture

Each Transformer Block integrates the LG self-attention layer with a two-layer feed-forward network
(MLP), both wrapped by normalization and residual connections. A parallel pooling—projection
branch ensures dimensional compatibility when the temporal resolution is reduced. Stacking multiple
blocks produces a hierarchical representation: early blocks emphasize waveform morphology, inter-
mediate blocks capture intra-beat intervals, and deeper blocks encode rhythm-level dependencies.
The complete architecture consists of: (i) a convolutional front-end of residual blocks that embed
raw ECG signals into feature sequences, and (ii) a cascade of Transformer Blocks equipped with LG
attention, progressively abstracting features toward clinically meaningful rhythm analysis.

Notably, LGA-ECG does not require explicit positional encodings. The convolutional projections in-
herently encode spatial and temporal position via their receptive fields. Ablation studies (Appendix B)
show that neither absolute nor relative positional encodings improve overall performance, reinforcing
the effectiveness of convolutional inductive biases.

Following prior work, we partitioned the dataset by patient ID to prevent leakage. Specifically, 90%
of CODE-15 was used for training, 5% for validation, and 5% as a development set for ablations and
hyperparameter tuning. Final evaluation was conducted on CODE-TEST, which includes 827 ECGs
with consensus labels from expert cardiologists. A complete description of the datasets, experimental
protocol, and implementation details is provided in Appendix

3 Results

We evaluate the proposed LGA-ECG model against state-of-the-art (SOTA) approaches for ECG
abnormality classification, including ResNet-1 [[15], ResNet-2 [6], BAT [8]], ECG-DETR [7], and HiT
[2]]. Table[I]summarizes the average performance across accuracy, precision, recall, and F1-score.

LGA-ECG achieves the highest accuracy (0.994) and F1-score (0.885), outperforming all baselines.
While BAT exhibits slightly higher precision (0.918 vs. 0.907), our model significantly improves
recall (0.872 vs. 0.799), surpassing the 0.8 threshold for the first time. This increase in recall, crucial
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Table 1: Average performance of LGA-ECG when compared to other SOTA methods.
Metrics | ResNet-1 | ResNet-2 |ECG-Transform |BAT |ECG-DETR |HIiT |LGA-ECG

Accuracy 0.991 0.989 0.981 0.991 0.984 0.991 0.994
Precision 0.875 0.908 0.711 0.918 0.776 0.909 0.907
Recall 0.778 0.743 0.687 0.799 0.661 0.798 0.872
F1-Score 0.814 0.811 0.677 0.848 0.699 0.841 0.885

Table 2: Per class F1-score of LGA-ECG and baseline methods in the test set.
Abnormality | ResNet-1 | ResNet-2 |ECG-Transform |BAT |ECG-DETR |HIiT |LGA-ECG

Ist AVB 0.661 0.719 0.489 0.689 0.631 0.682 0.8

RBBB 0.924 0.890 0.909 0.922 0.747 0.886 0.923
LBBB 0.927 0.843 0.886 0.945 0.826 0.909 0.983
SB 0.767 0.821 0.535 0.836 0.588 0.824 0.778
AF 0.703 0.758 0.478 0.818 0.563 0.833 0.880
ST 0.897 0.833 0.763 0.870 0.838 0914 0.946
Avg. F1 0.814 0.811 0.677 0.848 0.699 0.841 0.885

in medical diagnosis where false negatives are costly, is obtained without a drastic drop in precision,
demonstrating the robustness of LGA-ECG for practical deployment.

Per-class results (Table 2) show that LGA-ECG sets new benchmarks in four abnormalities: ST
(0.946), LBBB (0.983), AF (0.880), and 1st AVB (0.800). Performance is nearly equivalent to the
best baseline for RBBB (0.923 vs. 0.924), while the only underperformance occurs in SB, likely due
to difficulties in capturing longer RR intervals. Despite this, the model still maintains competitive
results.

Finally, we benchmarked model performance against human annotators using the CODE-TEST
dataset. Figure 2] shows that LGA-ECG consistently outperforms 4th-year cardiology residents,
3rd-year emergency residents, and Sth-year medical students across all key metrics, using consensus
labels from specialist cardiologists as ground truth. These findings demonstrate that LGA-ECG not
only surpasses existing machine learning baselines but also exceeds the diagnostic performance of
medical professionals at varying levels of expertise.

4 Conclusion and Future Work

This study introduced LGA-ECG, a novel deep learning model for ECG classification that integrates
local convolutional inductive biases with global self-attention mechanisms. Our approach effectively
captures both fine-grained morphological features and broader temporal dependencies, leading to
improvements over state-of-the-art methods. LGA-ECG achieved the highest F1-score among all
evaluated models, demonstrating the benefits of local-global attention in medical signal analysis.

A promising and important future direction is extending LGA-ECG with self-supervised learning
techniques to pretrain the model on large unlabeled ECG datasets before fine-tuning it for classifica-
tion. This approach could enhance generalization and robustness, particularly for rare abnormalities
with limited labeled data.

Precision

LGA-ECG 0.907
Cardiologist 0.891
Emergency 0.835
Student 0.788
H Recall
= LGA-ECG 0.872
© Cardiologist 0.845
2 Emergency 0.808
-l'-‘j Student 0.848
(8] F1 Score
LGA-ECG 0.885
Cardiologist 0.862
Emergency 0.822
Student 0.817
0.70 0.75 0.80 0.85 0.90 0.95 1.00
Scores

Figure 2: Comparison of the average metrics between LGA-ECG and human performance.
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A Expanded Methodology

ECG analysis requires capturing information across multiple temporal scales: wave morphology (P,
QRS, T), intra-heartbeat intervals (PR, QT), and inter-beat distances essential for rhythm analysis.
We propose a novel self-attention mechanism tailored for ECG signals, which effectively balances
fine-grained morphological details with global heartbeat patterns.

The proposed model first uses convolutional layers to project the ECG into an embedding space.
Its core comprises layers of a novel windowed self-attention and feed-forward blocks with residual
connections. Unlike traditional global self-attention, our method extracts queries (Q) from small
overlapping windows to preserve local detail, while keys (K) and values (V) are computed globally,
capturing long-range dependencies. Additionally, each self-attention block progressively reduces
the sequence length, similar to convolutional pooling, allowing hierarchical abstraction from local
waveform characteristics toward global rhythm and beat-to-beat features.

A.1 Local-Global Self-Attention

We now formalize the local—global attention mechanism, assuming the input X has already been
projected into an embedding space by the convolutional encoder described in Section 2}

Step 1: Normalization. First, we apply a standard layer normalization along the embedding
dimension to stabilize and normalize the input:

X = LayerNorm(X), X € REXN*D, 3)

Step 2: Local Windowed Query Generation. To effectively capture precise wave-level morphologi-
cal details from ECG signals, we introduce a local window-based query generation strategy. Starting

from the normalized input tensor X € RBXNXD e extract a series of overlapping windows along
the temporal dimension to form localized queries (Q).

Formally, given a window length [ and stride s, we extract M overlapping windows from the sequence,

where: l
N —
M = { J + 1. 4)
S
For each window indexed by ¢ € {0,1,..., M — 1}, we select a contiguous subset of the input
sequence:
X® — X[, (i-8):(i-s+1), ], X () ¢ RBXIxD )

Next, each extracted window X () undergoes a convolutional projection along the temporal dimension.
Specifically, we apply a 1D convolution with kernel size kq, stride 1, padding p4, and D output
channels, obtaining:

Qg)?w = ConvlDg (X(i)) 7 QEQW c RBxDxI, ©)

The output QgQw represents an enhanced embedding of the original local window, where each
temporal position within the window has been projected into a new feature space through convolution.

To summarize this detailed local information into a single representative query vector per window,
we then average these embeddings along the temporal dimension of length /. For each window 7, the
averaged query vector is calculated as:

~| =

l
QY =3 QU t, QW eREXP. (7
t=1

Finally, stacking all the averaged queries across the M extracted windows results in the complete
query tensor for attention:

Q= {Q“)), QW, ..., QW] QeRPMP, ®)
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Figure 3: Mean query extraction process for each ECG window.

To enhance stability and facilitate residual connections in deeper layers, we retain a copy of the
query tensor as a residual term. This preserves local morphological details captured by convolution,
ensuring stable gradients and improved convergence.

This process can be implemented in a simple and effective manner using a combination of a 1D
convolutional layer that preserves the input shape, followed by an average pooling layer. The kernel
size of the pooling operation determines the temporal compression factor. This approach is illustrated
in Figure 3]

Step 3: Global Key and Value Generation. In contrast to the localized queries, keys (K) and values
(V) are computed from the entire normalized sequence, enabling each local query to attend globally.
We define these global projections using convolutional layers to retain a locality inductive bias while
still allowing global context modeling:

Kconv = ConvlDg (X), Vo = ConvlDy (X), 9)
both producing tensors of shape:

Keonys Veony € REXPXN, (10)

We permute them back to match the original embedding format:
K:KT eIRBXI\/XD7 V:VT ERBXNXD. (11)

conv conv
Step 4: Multi-Head Local-Global (LG) Attention Computation. We now apply a multi-head
attention mechanism. For H attention heads, we split the embedding dimension D into H sub-
dimensions of size Dy, = D/H:

Qp € REXMxDr K, vV, e REXNXDr =1, ... H. (12)
For each head h, the scaled dot-product attention scores are computed as:
KT
A}, = softmax (Qh h ) € REXMxN, (13)
VD
Subsequently, we calculate the features as a weighted sum of values:
O}L :Ahvh eRBXA4><Dh. (14)

Concatenating across all heads, we get the combined multi-head attention output:
O = concat(Oy,...,0p) € REXMxD, (15)
Step 5: Residual Connection and Sequence Reduction. Finally, we reintroduce the residual query
information by adding back the previously stored queries Q.s, maintaining strong local fidelity:
Y =0+ Qu, Y eREXMxD (16)
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The sequence length is effectively reduced from N to M by selecting a stride s = 2, ensuring
M = N/2. This hierarchical summarization progressively condenses ECG features, capturing local
and global information.

Our LG self-attention combines standard self-attention, convolution, and hierarchical transformers
while overcoming their limitations. Unlike traditional self-attention, which lacks locality and scales
quadratically, or convolutions, which struggle with long-range dependencies, our method extracts
locally-informed queries via overlapping convolutional projections while maintaining global attention
through sequence-wide keys and values. Additionally, convolutional projections inherently encode
positional information, removing the need for explicit positional encodings. The local-global attention
is illustrated in Figure 4]
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Figure 4: Local-global self-attention operation for one ECG embedding window.

A.2 Transformer Block with Local-Global Self-Attention

Each Transformer Block integrates the LGA layer within a residual architecture. Its formal computa-
tion is detailed below.

Given an input tensor X € REXNXD ‘where B is the batch size, N is the sequence length, and D
is the embedding dimension, the Transformer Block initially applies layer normalization along the
embedding dimension:

X = LayerNorm(X), X € REXN*D, (17)

Subsequently, the normalized sequence is processed by the local-global self-attention layer. Due to
the windowed attention design, the spatial dimension N is effectively reduced approximately by half,
from N to M = N/2, resulting in an output tensor Y y,:

Y. = LocalGlobalAttention(X), Y, € REXM*D, (18)

To maintain a consistent residual connection despite the reduction in sequence length, we apply a

pooling operation followed by a 1 x 1 convolution to the normalized input X, ensuring dimensional
compatibility:

X,.. = ConviD (MaxPoollD (x)) . X, € REXMXD (19)

Here, the max pooling operation reduces the temporal dimension by half, from N to M, while the
1 x 1 convolution adjusts embedding dimensions and reinforces the residual pathway. The resulting
residual tensor X, is added to the self-attention output, stabilizing training and enhancing gradient
flow:

Z =Y + Xies, Z € REXMXD (20)
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Next, we apply a second-layer normalization followed by a feed-forward neural network, often called
the Multi-Layer Perceptron (MLP). This MLP consists of two linear layers with an intermediate non-
linearity (ReLU). The dimensionality of the intermediate MLP layer, denoted as Dy p, dynamically
increases at each transformer block stage ¢, defined explicitly as Dy p = Dpase X 2 X . Specifically,
the MLP initially projects each embedding vector from the input dimension D to this expanded
dimension Dy p:

Z}(\;’ip — ReLU (Z(i)wgi) n bgi)) , Zr(vﬁp € RBXMX(Druwx2x3) 1)
and subsequently project it back to the original embedding dimension D:

Zo = Zale WY + b, 2y € RPN, (22)
This incremental expansion of the MLP dimensionality at successive transformer stages allows the
model to progressively capture more complex and abstract features. A second residual connection
then integrates the MLP output back into the main pathway, resulting in the final output tensor of

each transformer block:

Xiou = Z9 + 25, X{, € RPMXD, (23)
This staged expansion of the MLP dimension allows deeper layers to encode increasingly complex
and abstract features, naturally aligning with the progressive shift from fine-grained morphological
details to broader, long-range inter-beat relationships.

Each Transformer Block hierarchically condenses and enriches representations, aligning with clinical
ECG analysis. Early layers capture fine-grained wave morphology, intermediate layers focus on intra-
heartbeat intervals, and deeper layers model long-range dependencies across heartbeats, effectively
identifying rhythm abnormalities. This structured progression inherently encodes clinically relevant
inductive biases.

B Ablations

To assess the effectiveness of our proposed local-global attention mechanism, we perform a series of
ablation studies to isolate its contributions and better understand its impact on ECG feature extraction.

B.1 Alternative Attention Mechanisms

First, we compare the proposed LGA against alternative attention strategies. Our goal is to evaluate
how different query, key, and value configurations influence the model’s ability to capture fine-grained
ECG morphology and global contextual dependencies.

ViT-like: We begin by examining a standard ViT-like approach, which applies global self-attention
across the entire sequence using linear projections for queries, keys, and values. While this method
captures the global context effectively, it lacks local inductive biases.

Swin-like: Next, we compare our method with a local attention mechanism inspired by Swin
Transformer [[11]], where self-attention is restricted to non-overlapping windows. This approach
captures local features while progressively integrating global context through stacked local attention
and inter-block pooling.

Global Q, K, V: We also analyze a global attention variant, which follows the standard attention
mechanism but replaces linear projections with convolutional and average pooling layers. In this
configuration, queries are computed in the same manner as keys and values, ensuring that all positions
attend to each other globally. Although this setup preserves global context awareness, it may fail to
efficiently encode localized waveform structures.

Local Q, K, V: Finally, we examine a fully localized variant, where the query () is the mean of the
embeddings within a window, while the keys K and values V' correspond only to the embeddings of
that window, without global context. We extract overlapping windows, ensuring that each window is
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Table 3: Per class F1-score comparison between different attention mechanisms.
Abnormality | ViT-like [Swin-like |Global Q,K,V ILocal Q,K,V |LGA-ECG

Ist AVB 0.653 0.682 0.809 0.782 0.800
RBBB 0.862 0.886 0.925 0.955 0.923
LBBB 0.875 0.909 0.909 0.982 0.983
SB 0.768 0.824 0.733 0.750 0.778
AF 0.792 0.833 0.833 0.782 0.880
ST 0.887 0914 0.870 0.885 0.946
Avg. F1 0.806 0.841 0.847 0.856 0.885

condensed into a single embedding after the attention operation. This progressively reduces the data
by half at each stage, establishing a hierarchical processing framework.

The results in Table [3|show that LGA-ECG achieves the highest F1-score (0.885), outperforming
all alternative attention mechanisms. By integrating local convolutional inductive biases with global
context, LGA-ECG surpasses both fully global (ViT-like, global QKV) and fully local (Swin-like,
local QKV) approaches, demonstrating superior feature extraction for ECG classification.

B.2 Positional Encoding

We further evaluate whether convolutional biases introduced by the adapted projections sufficiently
capture positional information, which is crucial in ECG analysis due to the diagnostic relevance
of intervals between waves and heartbeats. Specifically, we investigate three positional encoding
strategies:

Absolute sinusoidal positional encoding: Predefined sinusoidal functions of varying frequencies are
computed based on absolute positions and directly summed to the embeddings after the convolutional
projection, explicitly embedding absolute positional information into each token.

Absolute learnable positional encoding: A trainable embedding vector for each absolute position is
learned during training and summed to the embeddings immediately after convolutional projection,
enabling the model to adaptively capture position-specific patterns.

Relative positional encoding: A learnable relative position matrix, matching the attention matrix
dimensions, is added directly to the attention scores before the softmax operation. This matrix encodes
pairwise relative distances between token positions, allowing the model to flexibly emphasize or
suppress interactions based on relative position.

Table 4: Per class F1-score comparison between positional encoding strategies.
Abnormality | Sinusoidal APE | Learnable APE | RPE | Without PE

1st AVB 0.681 0.526 0.667 0.800
RBBB 0.857 0.844 0.928 0.923
LBBB 0.966 0.947 0.909 0.983
SB 0.743 0.643 0.800 0.778
AF 0.769 0.667 0.621 0.880
ST 0.873 0.899 0.853 0.946
Avg. F1 0.815 0.754 0.796 0.885

The results in Table ] indicate that LGA-ECG achieves the highest performance without explicit posi-
tional encoding, suggesting that the convolutional projections effectively encode spatial dependencies
inherent in ECG signals. While relative positional encoding improves certain classes, neither absolute
nor relative positional encodings consistently enhances performance, reinforcing the effectiveness
of the learned convolutional inductive biases in capturing diagnostic temporal structures. Notably,
relative positional encoding (RPE) improved SB detection, likely aiding R-R interval analysis for
bradycardia and rhythm abnormalities. A similar trend in the Swin-like attention, which also uses
RPE, emphasizes its role in enhancing rhythm irregularity detection.
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Figure 5: Fl-score comparison across different window sizes.

B.3 Window Size Analysis

We investigate the impact of varying the window size on the proposed LGA-ECG architecture. This
hyperparameter controls both the kernel size of convolutional projections and the temporal length
of local segments used to compute the local queries. By testing different window sizes, we aim to
evaluate the sensitivity of the model’s performance to the temporal scale at which local morphological
features are captured.

As shown in Figure 5] the best performance was achieved with a window size of 64. This setting
provides a trade-off between capturing fine-grained waveform details and maintaining sufficient
temporal context for effective local-global feature integration.

C Experiment setup

C.1 Datasets

Our model was trained and evaluated using CODE-15, a publicly available 15% subset of the CODE
(Clinical Outcomes in Digital Electrocardiography) dataset [16]. CODE contains over 2 million
ECGs from Minas Gerais, Brazil, annotated by cardiologists for six cardiac abnormalities: first-
degree atrioventricular block (1st AVB), right bundle branch block (RBBB), left bundle branch
block (LBBB), sinus bradycardia (SB), atrial fibrillation (AF), and sinus tachycardia (ST). These
conditions indicate an increased risk for cardiovascular events, including stroke, heart failure, and
sudden death, and require targeted clinical interventions. CODE-15 comprises 345,779 exams from
233,770 patients and has been widely adopted in ECG research, serving as a benchmark dataset for
developing and evaluating deep learning models [15] [[17].

We evaluated our model using the publicly available CODE-TEST dataset, also collected by the
Telehealth Network of Minas Gerais (TNMG). CODE-TEST comprises 827 ECGs labeled by
consensus among two or three cardiologists, covering the same six cardiac abnormalities. The
high-quality, expert-consensus labels provide a robust benchmark for performance assessment.

For developing and validating the LGA-ECG model, the dataset is divided into four subsets by patient
IDs: 90% of CODE-15 is used as the training set to train the model, while 5% of CODE-15 serves as
the validation set for early stopping. An additional 5% of CODE-15 is designated as the development
set, which is utilized for hyperparameter tuning and ablation studies. Finally, the entire CODE-TEST
dataset is used as the test set to evaluate the final model performance against baseline methods.

C.2 Implementation details and Benchmarks

For comparison, we assessed LGA-ECG against a suite of baseline models spanning diverse architec-
tural families, including traditional CNN and transformer-based architectures. This selection ensured
a rigorous and comprehensive evaluation across distinct modeling paradigms. The baselines were
implemented using their original authors’ codebases, with training settings configured according to
their recommendations. All models were trained on the same Training Set and evaluated on the Test
Set to ensure consistent comparisons. We employed standard classification metrics to evaluate the
models: accuracy, Fl-score, precision, and recall. These metrics were computed for each cardiac
condition individually to provide a detailed understanding of model performance across different
diseases, as well as averaged (macro).

The training process utilized the AdamW optimizer [[12] and employed a cosine annealing learning
rate schedule [13]. The initial learning rate was set to 0.0001 and was decreased cosine-wise to
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ss9  0.00001 throughout the training. Additionally, early stopping was implemented, which terminates
390 training if the validation error does not decrease for seven consecutive epochs. The training was
391 conducted in parallel using 4 NVIDIA V100 GPUs.
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