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Abstract

Electrocardiograms (ECGs) are multivariate time series where clinically relevant1

patterns span both local waveform morphology and long-range rhythm structure.2

We introduce LGA-ECG, a hierarchical Transformer architecture that integrates3

convolutional inductive biases into self-attention. Queries are extracted from4

overlapping local windows to retain morphological fidelity, while keys and values5

are globally derived to enable full temporal context. This design eliminates the6

need for explicit positional encodings by leveraging convolutional locality. On the7

CODE-TEST benchmark, LGA-ECG achieves a macro F1-score of 0.885, recall8

of 0.872, and precision of 0.907, outperforming CNN and Transformer baselines.9

Ablation studies confirm the effectiveness of combining local queries with global10

key-value pairs.111

1 Introduction12

Time series data are central to modern healthcare. From electronic health records and continuous13

monitoring devices to population-level trends, temporal information drives medical decision-making14

across scales. Among these signals, electrocardiograms (ECGs) stand out as one of the most15

structured and widely studied physiological time series. As one-dimensional signals capturing the16

heart’s electrical activity over time, ECGs encode both fine-grained morphological patterns (e.g., P,17

QRS, and T waves) and long-range temporal dynamics (e.g., rhythm and rate). This dual structure18

makes ECGs a powerful yet challenging benchmark for time series modeling, requiring architectures19

that can operate across multiple temporal resolutions.20

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, accounting for 17.921

million deaths in 2019 (32% of all global deaths), according to the World Health Organization22

(WHO) [19]. Electrocardiograms (ECGs), being non-invasive and widely available, are essential23

in diagnosing and monitoring heart conditions, and their role has expanded with the growth of24

digital health technologies [10]. In this context, artificial intelligence has become a powerful tool25

for automating ECG analysis, supporting clinical decision-making, reducing telemedicine backlogs,26

and enabling tasks such as arrhythmia classification [14, 15, 3], atrial fibrillation detection [18], age27

estimation [9], and wave segmentation [5].28

Deep learning, particularly convolutional neural networks (CNNs), has driven these advances by29

autonomously extracting morphological and temporal ECG features [14, 15]. CNNs leverage induc-30

tive biases such as spatial locality and translation equivariance, enabling hierarchical modeling from31

localized waveform details to global rhythm patterns. Hybrid models combining CNNs and recurrent32
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Figure 1: Overall architecture of the proposed LGA-ECG network.

layers have also been proposed to jointly capture morphology and temporal dependencies [18]. More33

recently, transformer architectures have been introduced to ECG analysis, motivated by their success34

in sequence modeling. CNN-transformer hybrids [7, 4] combine convolutional front-ends for local35

feature extraction with global self-attention layers, while beat-aligned transformers (BaT) [8] leverage36

local attention on segmented beats, and hierarchical CNN-transformer pipelines further improve37

multi-scale modeling [2].38

These efforts reflect broader trends in time series modeling. As researchers seek general-purpose39

architectures for diverse health signals, there is increasing emphasis on combining inductive biases40

for local structure with mechanisms capable of modeling long-range dependencies. General advances41

in local attention mechanisms, such as Swin Transformers with shifting windows [11], CoAtNet’s42

convolution-attention integration [1], and ELSA’s enhanced local sensitivity [20], demonstrate the43

importance of combining convolutional inductive biases with global self-attention. These approaches44

underscore that effective ECG analysis requires models capable of capturing both localized waveform45

morphology and long-range temporal dependencies.46

Motivated by these insights, we propose a novel hierarchical transformer architecture for ECG signals47

that embeds convolutional biases directly into the attention mechanism. Queries are derived from48

overlapping convolutional projections, preserving locality, while global key-value pairs enable broader49

temporal modeling. This design allows the model to jointly capture fine-grained morphological50

variations and global rhythm context, aiming to advance the state of automated ECG interpretation.51

Our proposed Local-Global Attention ECG model (LGA-ECG) treats ECGs not just as clinical52

artifacts, but as representative of a broader class of complex, multiscale time series in healthcare. By53

integrating local convolutional inductive biases with global self-attention, LGA-ECG captures both54

fine-grained waveform morphology and long-range temporal patterns. Experiments show that this55

hybrid architecture outperforms state-of-the-art baselines across multiple ECG classification tasks.56

2 Methods57

The proposed LGA-ECG model integrates a convolutional front-end with a hierarchical transformer58

backbone (Figure 1). The design explicitly targets two complementary aspects of ECG interpretation:59

(i) fine-grained waveform morphology (P, QRS, T waves and intervals) and (ii) broader rhythm60

patterns across multiple beats. Convolutional layers provide strong locality biases, while transformer61

blocks equipped with the proposed Local–Global (LG) self-attention mechanism capture dependencies62

across multiple temporal scales.63

2.1 Convolutional Front-End64

The convolutional encoder consists of four sequential residual blocks (ResBlocks), each composed65

of two 1D convolutions (kernel sizes 7 and 3), BatchNorm, ReLU activations, and Dropout. These66

layers project raw ECG signals into a high-dimensional feature space while preserving spatial locality67

and morphology. All ResBlocks maintain 64 output channels and progressively reduce the temporal68

resolution, forming a feature sequence suitable for transformer-based processing.69
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2.2 Local–Global Self-Attention70

Let the input sequence be X ∈ RB×N×D, where B is the batch size, N the sequence length, and71

D the embedding dimension. Queries are derived from overlapping temporal windows: for each72

window of length l, a 1D convolution followed by averaging yields a single query vector73

Q(i) =
1

l

l∑
t=1

Conv1DQ

(
X(i)

)
:,t
, (1)

capturing localized waveform morphology. Stacking across M windows produces Q ∈ RB×M×D.74

In contrast, keys and values are obtained from convolutional projections over the entire sequence,75

K,V ∈ RB×N×D, enabling global context modeling while retaining a locality bias.76

Attention is then computed via standard multi-head scaled dot-product attention:77

Attn(Q,K,V) = softmax
(
QK⊤
√
d

)
V, (2)

where d = D/H is the head dimension. Residual connections preserve the morphology captured78

in queries, and each block reduces the temporal length by half through strided pooling, yielding79

progressively shorter but semantically richer sequences. This mechanism overcomes the quadratic80

cost of global attention while embedding clinically relevant local structure. A full mathematical81

derivation of this mechanism, including normalization, residual pathways, and hierarchical reduction,82

is provided in Appendix A.83

Each Local-Global attention block reduces the temporal dimension by half, forming a hierarchical84

sequence representation. This structure mirrors clinical reasoning: earlier layers focus on wave85

morphology, while deeper layers model inter-beat patterns and rhythm. Moreover, this design reduces86

computational complexity from O(N2) in global attention to O(MN) with M = N/2L, enabling87

scalability to long ECG sequences.88

2.3 Transformer Block and Overall Architecture89

Each Transformer Block integrates the LG self-attention layer with a two-layer feed-forward network90

(MLP), both wrapped by normalization and residual connections. A parallel pooling–projection91

branch ensures dimensional compatibility when the temporal resolution is reduced. Stacking multiple92

blocks produces a hierarchical representation: early blocks emphasize waveform morphology, inter-93

mediate blocks capture intra-beat intervals, and deeper blocks encode rhythm-level dependencies.94

The complete architecture consists of: (i) a convolutional front-end of residual blocks that embed95

raw ECG signals into feature sequences, and (ii) a cascade of Transformer Blocks equipped with LG96

attention, progressively abstracting features toward clinically meaningful rhythm analysis.97

Notably, LGA-ECG does not require explicit positional encodings. The convolutional projections in-98

herently encode spatial and temporal position via their receptive fields. Ablation studies (Appendix B)99

show that neither absolute nor relative positional encodings improve overall performance, reinforcing100

the effectiveness of convolutional inductive biases.101

Following prior work, we partitioned the dataset by patient ID to prevent leakage. Specifically, 90%102

of CODE-15 was used for training, 5% for validation, and 5% as a development set for ablations and103

hyperparameter tuning. Final evaluation was conducted on CODE-TEST, which includes 827 ECGs104

with consensus labels from expert cardiologists. A complete description of the datasets, experimental105

protocol, and implementation details is provided in Appendix C.106

3 Results107

We evaluate the proposed LGA-ECG model against state-of-the-art (SOTA) approaches for ECG108

abnormality classification, including ResNet-1 [15], ResNet-2 [6], BAT [8], ECG-DETR [7], and HiT109

[2]. Table 1 summarizes the average performance across accuracy, precision, recall, and F1-score.110

LGA-ECG achieves the highest accuracy (0.994) and F1-score (0.885), outperforming all baselines.111

While BAT exhibits slightly higher precision (0.918 vs. 0.907), our model significantly improves112

recall (0.872 vs. 0.799), surpassing the 0.8 threshold for the first time. This increase in recall, crucial113
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Table 1: Average performance of LGA-ECG when compared to other SOTA methods.
Metrics | ResNet-1 | ResNet-2 | ECG-Transform | BAT | ECG-DETR | HiT | LGA-ECG
Accuracy 0.991 0.989 0.981 0.991 0.984 0.991 0.994
Precision 0.875 0.908 0.711 0.918 0.776 0.909 0.907
Recall 0.778 0.743 0.687 0.799 0.661 0.798 0.872
F1-Score 0.814 0.811 0.677 0.848 0.699 0.841 0.885

Table 2: Per class F1-score of LGA-ECG and baseline methods in the test set.
Abnormality | ResNet-1 | ResNet-2 | ECG-Transform | BAT | ECG-DETR | HiT | LGA-ECG
1st AVB 0.661 0.719 0.489 0.689 0.631 0.682 0.8
RBBB 0.924 0.890 0.909 0.922 0.747 0.886 0.923
LBBB 0.927 0.843 0.886 0.945 0.826 0.909 0.983
SB 0.767 0.821 0.535 0.836 0.588 0.824 0.778
AF 0.703 0.758 0.478 0.818 0.563 0.833 0.880
ST 0.897 0.833 0.763 0.870 0.838 0.914 0.946
Avg. F1 0.814 0.811 0.677 0.848 0.699 0.841 0.885

in medical diagnosis where false negatives are costly, is obtained without a drastic drop in precision,114

demonstrating the robustness of LGA-ECG for practical deployment.115

Per-class results (Table 2) show that LGA-ECG sets new benchmarks in four abnormalities: ST116

(0.946), LBBB (0.983), AF (0.880), and 1st AVB (0.800). Performance is nearly equivalent to the117

best baseline for RBBB (0.923 vs. 0.924), while the only underperformance occurs in SB, likely due118

to difficulties in capturing longer RR intervals. Despite this, the model still maintains competitive119

results.120

Finally, we benchmarked model performance against human annotators using the CODE-TEST121

dataset. Figure 2 shows that LGA-ECG consistently outperforms 4th-year cardiology residents,122

3rd-year emergency residents, and 5th-year medical students across all key metrics, using consensus123

labels from specialist cardiologists as ground truth. These findings demonstrate that LGA-ECG not124

only surpasses existing machine learning baselines but also exceeds the diagnostic performance of125

medical professionals at varying levels of expertise.126

4 Conclusion and Future Work127

This study introduced LGA-ECG, a novel deep learning model for ECG classification that integrates128

local convolutional inductive biases with global self-attention mechanisms. Our approach effectively129

captures both fine-grained morphological features and broader temporal dependencies, leading to130

improvements over state-of-the-art methods. LGA-ECG achieved the highest F1-score among all131

evaluated models, demonstrating the benefits of local-global attention in medical signal analysis.132

A promising and important future direction is extending LGA-ECG with self-supervised learning133

techniques to pretrain the model on large unlabeled ECG datasets before fine-tuning it for classifica-134

tion. This approach could enhance generalization and robustness, particularly for rare abnormalities135

with limited labeled data.136
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Figure 2: Comparison of the average metrics between LGA-ECG and human performance.
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A Expanded Methodology196

ECG analysis requires capturing information across multiple temporal scales: wave morphology (P,197

QRS, T), intra-heartbeat intervals (PR, QT), and inter-beat distances essential for rhythm analysis.198

We propose a novel self-attention mechanism tailored for ECG signals, which effectively balances199

fine-grained morphological details with global heartbeat patterns.200

The proposed model first uses convolutional layers to project the ECG into an embedding space.201

Its core comprises layers of a novel windowed self-attention and feed-forward blocks with residual202

connections. Unlike traditional global self-attention, our method extracts queries (Q) from small203

overlapping windows to preserve local detail, while keys (K) and values (V) are computed globally,204

capturing long-range dependencies. Additionally, each self-attention block progressively reduces205

the sequence length, similar to convolutional pooling, allowing hierarchical abstraction from local206

waveform characteristics toward global rhythm and beat-to-beat features.207

A.1 Local-Global Self-Attention208

We now formalize the local–global attention mechanism, assuming the input X has already been209

projected into an embedding space by the convolutional encoder described in Section 2.210

Step 1: Normalization. First, we apply a standard layer normalization along the embedding211

dimension to stabilize and normalize the input:212

X̃ = LayerNorm(X), X̃ ∈ RB×N×D. (3)

Step 2: Local Windowed Query Generation. To effectively capture precise wave-level morphologi-213

cal details from ECG signals, we introduce a local window-based query generation strategy. Starting214

from the normalized input tensor X̃ ∈ RB×N×D, we extract a series of overlapping windows along215

the temporal dimension to form localized queries (Q).216

Formally, given a window length l and stride s, we extract M overlapping windows from the sequence,217

where:218

M =

⌊
N − l

s

⌋
+ 1. (4)

For each window indexed by i ∈ {0, 1, . . . ,M − 1}, we select a contiguous subset of the input219

sequence:220

X̃(i) = X̃ [:, (i · s) : (i · s+ l), :] , X̃(i) ∈ RB×l×D. (5)

Next, each extracted window X̃(i) undergoes a convolutional projection along the temporal dimension.221

Specifically, we apply a 1D convolution with kernel size kq, stride 1, padding pq, and D output222

channels, obtaining:223

Q(i)
conv = Conv1DQ

(
X̃(i)

)
, Q(i)

conv ∈ RB×D×l. (6)

The output Q(i)
conv represents an enhanced embedding of the original local window, where each224

temporal position within the window has been projected into a new feature space through convolution.225

To summarize this detailed local information into a single representative query vector per window,226

we then average these embeddings along the temporal dimension of length l. For each window i, the227

averaged query vector is calculated as:228

Q(i) =
1

l

l∑
t=1

Q(i)
conv[:, :, t], Q(i) ∈ RB×D. (7)

Finally, stacking all the averaged queries across the M extracted windows results in the complete229

query tensor for attention:230

Q =
[
Q(0), Q(1), . . . , Q(M−1)

]
, Q ∈ RB×M×D. (8)
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To enhance stability and facilitate residual connections in deeper layers, we retain a copy of the231

query tensor as a residual term. This preserves local morphological details captured by convolution,232

ensuring stable gradients and improved convergence.233

This process can be implemented in a simple and effective manner using a combination of a 1D234

convolutional layer that preserves the input shape, followed by an average pooling layer. The kernel235

size of the pooling operation determines the temporal compression factor. This approach is illustrated236

in Figure 3.237

Step 3: Global Key and Value Generation. In contrast to the localized queries, keys (K) and values238

(V) are computed from the entire normalized sequence, enabling each local query to attend globally.239

We define these global projections using convolutional layers to retain a locality inductive bias while240

still allowing global context modeling:241

Kconv = Conv1DK(X̃), Vconv = Conv1DV (X̃), (9)

both producing tensors of shape:242

Kconv,Vconv ∈ RB×D×N . (10)

We permute them back to match the original embedding format:243

K = K⊤
conv ∈ RB×N×D, V = V⊤

conv ∈ RB×N×D. (11)

Step 4: Multi-Head Local-Global (LG) Attention Computation. We now apply a multi-head244

attention mechanism. For H attention heads, we split the embedding dimension D into H sub-245

dimensions of size Dh = D/H:246

Qh ∈ RB×M×Dh , Kh,Vh ∈ RB×N×Dh , h = 1, . . . ,H. (12)

For each head h, the scaled dot-product attention scores are computed as:247

Ah = softmax
(
QhK

⊤
h√

Dh

)
∈ RB×M×N . (13)

Subsequently, we calculate the features as a weighted sum of values:248

Oh = AhVh ∈ RB×M×Dh . (14)

Concatenating across all heads, we get the combined multi-head attention output:249

O = concat(O1, . . . ,OH) ∈ RB×M×D. (15)

Step 5: Residual Connection and Sequence Reduction. Finally, we reintroduce the residual query250

information by adding back the previously stored queries Qres, maintaining strong local fidelity:251

Y = O+Qres, Y ∈ RB×M×D. (16)

8



The sequence length is effectively reduced from N to M by selecting a stride s = 2, ensuring252

M = N/2. This hierarchical summarization progressively condenses ECG features, capturing local253

and global information.254

Our LG self-attention combines standard self-attention, convolution, and hierarchical transformers255

while overcoming their limitations. Unlike traditional self-attention, which lacks locality and scales256

quadratically, or convolutions, which struggle with long-range dependencies, our method extracts257

locally-informed queries via overlapping convolutional projections while maintaining global attention258

through sequence-wide keys and values. Additionally, convolutional projections inherently encode259

positional information, removing the need for explicit positional encodings. The local-global attention260

is illustrated in Figure 4261
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Figure 4: Local-global self-attention operation for one ECG embedding window.

A.2 Transformer Block with Local–Global Self-Attention262

Each Transformer Block integrates the LGA layer within a residual architecture. Its formal computa-263

tion is detailed below.264

Given an input tensor X ∈ RB×N×D, where B is the batch size, N is the sequence length, and D265

is the embedding dimension, the Transformer Block initially applies layer normalization along the266

embedding dimension:267

X̃ = LayerNorm(X), X̃ ∈ RB×N×D. (17)

Subsequently, the normalized sequence is processed by the local-global self-attention layer. Due to268

the windowed attention design, the spatial dimension N is effectively reduced approximately by half,269

from N to M = N/2, resulting in an output tensor Yattn:270

Yattn = LocalGlobalAttention(X̃), Yattn ∈ RB×M×D. (18)

To maintain a consistent residual connection despite the reduction in sequence length, we apply a271

pooling operation followed by a 1× 1 convolution to the normalized input X̃, ensuring dimensional272

compatibility:273

Xres = Conv1D
(

MaxPool1D
(
X̃
))

, Xres ∈ RB×M×D. (19)

Here, the max pooling operation reduces the temporal dimension by half, from N to M , while the274

1× 1 convolution adjusts embedding dimensions and reinforces the residual pathway. The resulting275

residual tensor Xres is added to the self-attention output, stabilizing training and enhancing gradient276

flow:277

Z = Yattn +Xres, Z ∈ RB×M×D. (20)
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Next, we apply a second-layer normalization followed by a feed-forward neural network, often called278

the Multi-Layer Perceptron (MLP). This MLP consists of two linear layers with an intermediate non-279

linearity (ReLU). The dimensionality of the intermediate MLP layer, denoted as DMLP, dynamically280

increases at each transformer block stage i, defined explicitly as DMLP = Dbase × 2× i. Specifically,281

the MLP initially projects each embedding vector from the input dimension D to this expanded282

dimension DMLP:283

Z
(i)
MLP = ReLU

(
Z(i)W

(i)
1 + b

(i)
1

)
, Z

(i)
MLP ∈ RB×M×(Dbase×2×i), (21)

and subsequently project it back to the original embedding dimension D:284

Z
(i)
out = Z

(i)
MLPW

(i)
2 + b

(i)
2 , Z

(i)
out ∈ RB×M×D. (22)

This incremental expansion of the MLP dimensionality at successive transformer stages allows the285

model to progressively capture more complex and abstract features. A second residual connection286

then integrates the MLP output back into the main pathway, resulting in the final output tensor of287

each transformer block:288

X
(i)
final = Z(i) + Z

(i)
out, X

(i)
final ∈ RB×M×D. (23)

This staged expansion of the MLP dimension allows deeper layers to encode increasingly complex289

and abstract features, naturally aligning with the progressive shift from fine-grained morphological290

details to broader, long-range inter-beat relationships.291

Each Transformer Block hierarchically condenses and enriches representations, aligning with clinical292

ECG analysis. Early layers capture fine-grained wave morphology, intermediate layers focus on intra-293

heartbeat intervals, and deeper layers model long-range dependencies across heartbeats, effectively294

identifying rhythm abnormalities. This structured progression inherently encodes clinically relevant295

inductive biases.296

B Ablations297

To assess the effectiveness of our proposed local-global attention mechanism, we perform a series of298

ablation studies to isolate its contributions and better understand its impact on ECG feature extraction.299

B.1 Alternative Attention Mechanisms300

First, we compare the proposed LGA against alternative attention strategies. Our goal is to evaluate301

how different query, key, and value configurations influence the model’s ability to capture fine-grained302

ECG morphology and global contextual dependencies.303

ViT-like: We begin by examining a standard ViT-like approach, which applies global self-attention304

across the entire sequence using linear projections for queries, keys, and values. While this method305

captures the global context effectively, it lacks local inductive biases.306

Swin-like: Next, we compare our method with a local attention mechanism inspired by Swin307

Transformer [11], where self-attention is restricted to non-overlapping windows. This approach308

captures local features while progressively integrating global context through stacked local attention309

and inter-block pooling.310

Global Q, K, V: We also analyze a global attention variant, which follows the standard attention311

mechanism but replaces linear projections with convolutional and average pooling layers. In this312

configuration, queries are computed in the same manner as keys and values, ensuring that all positions313

attend to each other globally. Although this setup preserves global context awareness, it may fail to314

efficiently encode localized waveform structures.315

Local Q, K, V: Finally, we examine a fully localized variant, where the query Q is the mean of the316

embeddings within a window, while the keys K and values V correspond only to the embeddings of317

that window, without global context. We extract overlapping windows, ensuring that each window is318
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Table 3: Per class F1-score comparison between different attention mechanisms.
Abnormality | ViT-like | Swin-like | Global Q, K, V | Local Q, K, V | LGA-ECG
1st AVB 0.653 0.682 0.809 0.782 0.800
RBBB 0.862 0.886 0.925 0.955 0.923
LBBB 0.875 0.909 0.909 0.982 0.983
SB 0.768 0.824 0.733 0.750 0.778
AF 0.792 0.833 0.833 0.782 0.880
ST 0.887 0.914 0.870 0.885 0.946
Avg. F1 0.806 0.841 0.847 0.856 0.885

condensed into a single embedding after the attention operation. This progressively reduces the data319

by half at each stage, establishing a hierarchical processing framework.320

The results in Table 3 show that LGA-ECG achieves the highest F1-score (0.885), outperforming321

all alternative attention mechanisms. By integrating local convolutional inductive biases with global322

context, LGA-ECG surpasses both fully global (ViT-like, global QKV) and fully local (Swin-like,323

local QKV) approaches, demonstrating superior feature extraction for ECG classification.324

B.2 Positional Encoding325

We further evaluate whether convolutional biases introduced by the adapted projections sufficiently326

capture positional information, which is crucial in ECG analysis due to the diagnostic relevance327

of intervals between waves and heartbeats. Specifically, we investigate three positional encoding328

strategies:329

Absolute sinusoidal positional encoding: Predefined sinusoidal functions of varying frequencies are330

computed based on absolute positions and directly summed to the embeddings after the convolutional331

projection, explicitly embedding absolute positional information into each token.332

Absolute learnable positional encoding: A trainable embedding vector for each absolute position is333

learned during training and summed to the embeddings immediately after convolutional projection,334

enabling the model to adaptively capture position-specific patterns.335

Relative positional encoding: A learnable relative position matrix, matching the attention matrix336

dimensions, is added directly to the attention scores before the softmax operation. This matrix encodes337

pairwise relative distances between token positions, allowing the model to flexibly emphasize or338

suppress interactions based on relative position.339

Table 4: Per class F1-score comparison between positional encoding strategies.
Abnormality | Sinusoidal APE | Learnable APE | RPE | Without PE
1st AVB 0.681 0.526 0.667 0.800
RBBB 0.857 0.844 0.928 0.923
LBBB 0.966 0.947 0.909 0.983
SB 0.743 0.643 0.800 0.778
AF 0.769 0.667 0.621 0.880
ST 0.873 0.899 0.853 0.946
Avg. F1 0.815 0.754 0.796 0.885

The results in Table 4 indicate that LGA-ECG achieves the highest performance without explicit posi-340

tional encoding, suggesting that the convolutional projections effectively encode spatial dependencies341

inherent in ECG signals. While relative positional encoding improves certain classes, neither absolute342

nor relative positional encodings consistently enhances performance, reinforcing the effectiveness343

of the learned convolutional inductive biases in capturing diagnostic temporal structures. Notably,344

relative positional encoding (RPE) improved SB detection, likely aiding R-R interval analysis for345

bradycardia and rhythm abnormalities. A similar trend in the Swin-like attention, which also uses346

RPE, emphasizes its role in enhancing rhythm irregularity detection.347
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Figure 5: F1-score comparison across different window sizes.

B.3 Window Size Analysis348

We investigate the impact of varying the window size on the proposed LGA-ECG architecture. This349

hyperparameter controls both the kernel size of convolutional projections and the temporal length350

of local segments used to compute the local queries. By testing different window sizes, we aim to351

evaluate the sensitivity of the model’s performance to the temporal scale at which local morphological352

features are captured.353

As shown in Figure 5, the best performance was achieved with a window size of 64. This setting354

provides a trade-off between capturing fine-grained waveform details and maintaining sufficient355

temporal context for effective local-global feature integration.356

C Experiment setup357

C.1 Datasets358

Our model was trained and evaluated using CODE-15, a publicly available 15% subset of the CODE359

(Clinical Outcomes in Digital Electrocardiography) dataset [16]. CODE contains over 2 million360

ECGs from Minas Gerais, Brazil, annotated by cardiologists for six cardiac abnormalities: first-361

degree atrioventricular block (1st AVB), right bundle branch block (RBBB), left bundle branch362

block (LBBB), sinus bradycardia (SB), atrial fibrillation (AF), and sinus tachycardia (ST). These363

conditions indicate an increased risk for cardiovascular events, including stroke, heart failure, and364

sudden death, and require targeted clinical interventions. CODE-15 comprises 345,779 exams from365

233,770 patients and has been widely adopted in ECG research, serving as a benchmark dataset for366

developing and evaluating deep learning models [15] [17].367

We evaluated our model using the publicly available CODE-TEST dataset, also collected by the368

Telehealth Network of Minas Gerais (TNMG). CODE-TEST comprises 827 ECGs labeled by369

consensus among two or three cardiologists, covering the same six cardiac abnormalities. The370

high-quality, expert-consensus labels provide a robust benchmark for performance assessment.371

For developing and validating the LGA-ECG model, the dataset is divided into four subsets by patient372

IDs: 90% of CODE-15 is used as the training set to train the model, while 5% of CODE-15 serves as373

the validation set for early stopping. An additional 5% of CODE-15 is designated as the development374

set, which is utilized for hyperparameter tuning and ablation studies. Finally, the entire CODE-TEST375

dataset is used as the test set to evaluate the final model performance against baseline methods.376

C.2 Implementation details and Benchmarks377

For comparison, we assessed LGA-ECG against a suite of baseline models spanning diverse architec-378

tural families, including traditional CNN and transformer-based architectures. This selection ensured379

a rigorous and comprehensive evaluation across distinct modeling paradigms. The baselines were380

implemented using their original authors’ codebases, with training settings configured according to381

their recommendations. All models were trained on the same Training Set and evaluated on the Test382

Set to ensure consistent comparisons. We employed standard classification metrics to evaluate the383

models: accuracy, F1-score, precision, and recall. These metrics were computed for each cardiac384

condition individually to provide a detailed understanding of model performance across different385

diseases, as well as averaged (macro).386

The training process utilized the AdamW optimizer [12] and employed a cosine annealing learning387

rate schedule [13]. The initial learning rate was set to 0.0001 and was decreased cosine-wise to388
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0.00001 throughout the training. Additionally, early stopping was implemented, which terminates389

training if the validation error does not decrease for seven consecutive epochs. The training was390

conducted in parallel using 4 NVIDIA V100 GPUs.391
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