
Markov Processes Relat. Fields 23, 485–514 (2017)
Markov MPRF&��

��
Processes
and
Related Fields
c©Polymat, Moscow 2017

Monotonicity Requirements for Efficient

Exact Sampling with Markov Chains∗

P. Lorek and P. Markowski
University of Wroc law

Received June 30, 2016, revised March 3, 2017

Abstract. We recall three methods for exact sampling from a stationary dis-
tribution of a Markov chain: the coupling from the past (CFTP) algorithm, a
method based on strong stationary duality (SSD), and Fill’s rejection algorithm.
Each method, to be applied efficiently, requires a different notion of monotonic-
ity, which is defined with respect to a partial ordering of the state space, namely
realizable monotonicity, Möbius monotonicity, and stochastic monotonicity. We
show full relations between monotonicities. The applicability of the CFTP algo-
rithm implies the applicability of Fill’s rejection algorithm, but does not imply
that of the SSD-based method. We also state one open problem related to these
monotonicities.

Keywords: exact simulation, perfect simulation, coupling from the past, Fill’s rejec-

tion algorithm, strong stationary duality, strong stationary time, coupling, stochastic

monotonicity, realizable monotonicity, Möbius monotonicity, failure rate monotonicity,

Siegmund duality

AMS Subject Classification: 60J10, 60G40, 60J80

1. Introduction

Monte Carlo Markov Chain (MCMC) methods are a class of tools for approx-
imate sampling from a given distribution (usually intractable by other methods).
The method is based on constructing an ergodic Markov chain that has the de-
sired distribution as its stationary distribution. Then the algorithm outputs a
state after simulating the chain for some number of steps. The ergodicity implies
that the more steps are performed, the closer it is to the stationary distribution.
However, to say something about the error, one needs to have some theoretical

∗Work supported by NCN Research Grant DEC-2013/10/E/ST1/00359.

486 P. Lorek and P. Markowski

bounds on the rate of convergence, e.g., the mixing time. In many practical
problems this is an obstacle that is hard to overcome.

Exact (or perfect) simulation refers to the art of converting a Markov chain
(usually obtained from MCMC methods) into an algorithm which returns an
unbiased sample from its stationary distribution. In this paper we briefly present
three such algorithms. Our main focus in this paper is on their monotonicity
requirements for efficient application. Each of the algorithms requires then
a different notion of monotonicity. The monotonicities will be defined with
respect to a partial ordering (in the applications, a state space usually has some
natural underlying partial ordering). The idea of all the algorithms is based on
a coupling.

Coupling from the past (CFTP) is probably the most famous exact sam-
pling algorithm, introduced in a ground breaking paper [27]. The ingenious idea
of the algorithm is to realize the chain as a stochastic flow and evolve it from
the past (rather than into the future). Doing so requires considering coupled
realizations of chains started at all possible starting points. This is infeasible
in most cases. However, if the chain is so-called realizable monotone, we
need only to simulate two chains, thus making the algorithm very effective. Al-
though many variations of the algorithm have been invented, often with slightly
different requirement for monotonicity, see, e.g., [14,15,18,19], we focus on this
(widely used) monotonicity.

The second exact sampling algorithm is Strong Stationary Dual-based. The
notion was introduced in [5] and exploited mainly for studying the rate of con-
vergence. However, having such a dual chain (including a so-called link), we can
couple two chains in such a way that when the dual chain hits a specific state,
then the original chain has the stationary distribution. The point is that there
is no general way to come up with such a dual chain. In [5], the authors give
a recipe only for chains whose time reversals are stochastically monotone. This
duality for total ordering has been exploited in many contexts, see, e.g., [6,9–11]
(most of them deal only with birth and death chains). However, many inter-
esting distributions are given on a state space possessing a natural non-linear
ordering. The existence (and recipe) of such a dual for a partial ordering was
given in [24]. We briefly present an exact sampling algorithm based on the
coupling from [5] and the dual given in [24]. This dual exists (and thus we can
use the algorithm) if and only if the time reversal is Möbius monotone. For
examples of Möbius monotone chains, see [25], for connections with Siegmund
duality on partially ordered state spaces, see [21] and [22].

The last algorithm we will present is the so-called Fill’s rejection algo-
rithm [8]. The author presents the algorithm already assuming some mono-
tonicity. We present here a more general version of the algorithm, together
with a short proof of correctness. Similarly to the previous algorithms, it is
hard to apply it to a general chain. However, the algorithm can be applied

Monotonicity in Markov chains: exact sampling 487

assuming stochastic monotonicity (w.r.t. the partial ordering) of the time
reversed chain. For more details and/or extensions of the algorithm, consult,
e.g., [2, 7, 13].

The three exact sampling algorithms presented, require, as already men-
tioned, three different monotonicities for efficient application: realizable mono-
tonicity, Möbius monotonicity, and stochastic monotonicity. The relation be-
tween the first and the last one is already known: for a general partial ordering,
realizable monotonicity implies stochastic monotonicity, whereas they are equiv-
alent for total or tree-orderings, see [12,26]. However, Möbius monotonicity has
not been studied as extensively as the other two. Theorem 5.1 and Figure 1
show all the relationships between the orderings (including also weak mono-
tonicities and distinguishing between Möbius-↑ and Möbius-↓ monotonicities).
In particular, one interesting (from both points of view: theoretical and prac-
tical) implication is that the chain (and/or its time reversal) does not have to
be stochastically monotone (and thus realizable monotone) but can be Möbius
monotone. Thus we can still use one of the exact sampling algorithms. We also
present several examples of orderings and chains showing all possible cases of
being/not being monotone in a specific sense. However we are forced to leave
one open problem (see open problem 1): we cannot prove or disprove that
there exists a chain and ordering such that the chain is Möbius-↑, Möbius-↓,
stochastically monotone, but is not realizable monotone.

The organization of this paper is as follows: In Section 2 we present the
aforementioned exact sampling algorithms in their full generality. In Section 3
we formally introduce the monotonicities. Section 4 contains applications of the
monotonicities the three algorithms mentioned above (i.e., to their efficient ap-
plications). In Section 5 we present the relationship between the monotonicities,
whereas the examples are postponed to the Appendix.

2. Three general methods for exact sampling

Throughout the paper we consider an ergodic Markov chain X = {Xk}k≥0

with the initial distribution ν, finite state space E = {e1, . . . , eM}, transition
matrix P = [P(e, e′)]e,e′∈E, and stationary distribution π. The distribution of
the chain at step k, started with the initial distribution ν, is denoted by νPk(·).
For a measure f on E we write

f(A) =
∑
e∈A

f(e) for A ⊆ E.

It is said that
←−
X is the time reversed chain of the chain X if

←−
X is defined on

the same space as X and has t.m.

←−
P(e, e′) =

π(e′)
π(e)

P(e′, e).

488 P. Lorek and P. Markowski

One can simulate the Markov chain using an update rule:

Definition 2.1. A function φ : E× [0, 1]→ E is an update rule for the chain
X with the transition matrix P if:

1. for fixed e ∈ E the function φ(e, u) is piecewise constant, and

2. for all e, e′ ∈ E we have
∫ 1

0
1(φ(e, u) = e′)du = P(e, e′).

Note that for the uniformly distributed random variable U ∼ Unif [0, 1] we have

P(e, e′) = Pr(φ(e, U) = e′).

Having such an update rule, one can recursively simulate the chain:

X0 ∼ ν, Xk+1 = φ(Xk, Uk+1), (2.1)

where U1, U2, . . . is an iid sequence of random variables uniformly distributed
on [0, 1].

The usual Monte Carlo Markov Chain (MCMC) provides methods for ap-
proximate sampling from the desired distribution π, usually intractable by other
methods (such as, e.g., inverting the distribution function). Roughly speaking,
the methods include constructing an ergodic chain with π being its station-
ary distribution. Thus, simulating X0, X1, . . . long enough, the distribution
of Xk will be close to the stationary distribution (since ergodicity implies that
limk→∞ νPk(·) = π(·)). Note that: i) usually it will never be exactly the station-
ary distribution; ii) to know how close it is to the stationarity the distribution
of Xk, one needs to know the rate of convergence.

We briefly recall three methods for exact sampling (often called perfect
sampling), i.e., obtaining an unbiased sample from π. All of them rely on the
concept of coupling. A coupling of a pair of Markov chains with a common
transition matrix P is a bivariate process {(Xk, Yk)}k≥0 such that marginally
{Xk}k≥0 and {Yk}k≥0 are Markov chains with the transition matrix P (in par-
ticular, the processes may be, and usually are, dependent, and have different
initial distributions).

2.1. Method 1: Coupling from the past

One of the most known algorithms for exact sampling is called coupling from
the past (CFTP) (or the Propp – Wilson algorithm, cf. [27]). Given an increasing
sequence N1, N2, . . . of positive integers (usually Nr = 2r−1), the algorithm is
as follows:

Monotonicity in Markov chains: exact sampling 489

Algorithm 1 Coupling from the past (CFTP).

Require: State space E, ergodic chain X with update rule φ.
1: Set n = 1.
2: For each e ∈ E simulate the Markov chain starting at time −Nn in state e

and run it till time 0 using the same update rule φ and iid random variables
U−Nn+1, U−Nn+2, . . . , U−1, U0 uniformly distributed on [0, 1] (the same for
each chain).

3: If all chains in the previous step end up in the same state e0 at time 0, then
output e0 and stop.

4: Set n = n + 1 and go to Step 2 (keep the previously used {Ui}0≤i≤−Nn+1

for new n).

The very rough idea of the CFTP algorithm is the following: assume at some
time “in the past,” say at −Nn, for each e ∈ E we started a chain. Later on,
using the same update rule and the same uniform random variables driving the
chains, all the chains have coalesced before time 0. If we had started the chains
earlier, even at “minus infinity,” but from −Nn on using the same uniform
random variables, we would still end up in the same state at time 0. And
from “minus infinity” till 0 it surely has already “reached” stationarity, thus
the output of the algorithm is a random variable with the distribution being
the stationary distribution of the chain. For more technical details (e.g., that it
always terminates), see [27].

2.2. Method 2: Fill’s rejection algorithm

Let p(·), q(·) be two probability distributions on E = {e1, . . . , eM}. Assume
that for some c ∈ R we have p(e) ≤ cq(e) for all e ∈ E (then c ≥ 1, but c > 1
if the distributions are different). The classical acceptance-rejection algorithm
lets us simulate from p(·) if we are able to simulate from q(·):

Algorithm 2 Acceptence-rejection algorithm.

Require: Distributions p(·), q(·) on E, constant c : p(e) ≤ cq(e).
1: Generate Y ∼ q(·).
2: Flip a coin with Head probability p(Y)

cq(Y) . If Head, then return X := Y .

3: Else go to Step 1.

Based on this algorithm, Fill [8] came up with a tricky idea for simulating
from a stationary distribution π of an ergodic Markov chain. We will present
here its slightly generalized version (without specific assumptions on the tran-
sition matrix). We include also a short proof of its correctness (although it is
similar to that of Fill). Fix an integer k ≥ 1 (time instance) and a state e1 ∈ E.
In the above settings, we want to simulate from p(·) = π(·), given that we are

490 P. Lorek and P. Markowski

able to simulate from q(·) = P (Xk = ·|X0 = e1) = Pk(e1, ·) (which can be done

straightforwardly). Let
←−
φ be an update function of the time reversed chain

←−
X

with t.m.
←−
P(e, e′) = (π(e′)/π(e))P(e′, e). Similarly as in the CFTP algorithm,

we can use a sequence Nr = 2r−1.

Algorithm 3 Fill’s rejection algorithm.

Require: State space for all the following chains E = {e1, . . . , eM}, ergodic
chain X with a transition matrix P.

1: Set n = 1.
2: Simulate the Markov chain X starting at time 0 in state e1 and run it till

time k = Nn using the transition matrix P. Denote Xk = ez.
3: Treat (Xk = ez, Xk−1, . . . , X0 = e1) as a path of the time reversed chain

(
←−
X 0, . . . ,

←−
Xk). For s = 0, . . . , n do: Assume

←−
X s = e and

←−
X s+1 = e′. Then

generate Us ∼ Unif{u :
←−
φ (e, u) = e′}.

4: Start M chains
←−
Yj , j = 1, . . . ,M so that

←−
Y j

0 = j and couple them simu-

lating
←−
Y j
s+1 = φ(

←−
Y j
s, Us+1) (using the common update function φ and the

randomness obtained in the previous step).

5: If all chains
←−
Yj , j = 1, . . . ,M have coupled before time k (and thus at time

k they are all in state e1), output ez and stop.
6: Erase all information, set n = n+ 1 and go to Step 2.

In Step 3 we simulate random variables U1, . . . , Uk in such a way that if we
started the time reversed chain at ez then we would obtain exactly the trajectory
(Xk = ez, Xk−1, . . . , X0 = e1). And this is what will happen for sure with one

of
←−
Yj (the one starting in ez). That is why if all

←−
Yj , j = 1, . . . ,M coalesce,

then we must have
←−
Y j
k = e1 for all j = 1, . . . ,M . Let Ck(e) denote the event

that all the chains
←−
Yj have coalesced before time k and that at this time they

are all in e. Of course we have for any e that
←−
Pk(e, ez) ≤ Pr[Ck(ez)]. Now we

are ready to choose the constant c from Alg. 2.

π(e)

Pk(e1, e)
=

π(e1)
←−
Pk(e, e1)

≤ π(e1)

Pr[Ck(e1)]
=: c.

Thus we simulate from distribution Pk(e1, ·), say ez was obtained. We should
accept ez with probability

π(ez)

cPk(e1, ez)
=
Pr[Ck(e1)]

π(e1)

π(ez)

Pk(e1, ez)
=
Pr[Ck(e1)]
←−
Pk(ez, e1)

.

Monotonicity in Markov chains: exact sampling 491

The whole point is that this is exactly the acceptance probability in Alg. 3:

Pr(
←−
Y 1
k = . . . =

←−
Y M
k = e1 |

←−
X 0 = ez,

←−
Xk = e1,

←−
Y j

0 = ej , j = 1, . . . ,M)

=
Pr(
←−
Y 1
k = . . . =

←−
Y M
k = e1 |

←−
X 0 = ez,

←−
Y j

0 = ej , j = 1, . . . ,M)

Pr(
←−
Xk = e1 |

←−
X 0 = ez,

←−
Y j

0 = ej , j = 1, . . . ,M)
.

In this setting, X0 and Yj are independent, thus

=
Pr(
←−
Y 1
k = . . . =

←−
Y M
k = e1 |

←−
Y j

0 = ej , j = 1, . . . ,M)

Pr(
←−
X t = e1 |

←−
X 0 = ez)

=
Pr[Ck(ez)]
←−
Pk(ez, e1)

.

2.3. Method 3: Strong stationary duality

A random variable T is a Strong Stationary Time (SST) for X if it is
a stopping time independent from XT such that XT has the distribution π. It
was introduced in [1] mainly for studying the rate of convergence of the chain,
but it is also applicable for exact sampling, simply by simulating the chain until
time T we obtain unbiased sample from π. Although there are many examples
where such SST was find (probably the best example is Top-To-Random card
shuffling), the problem is that the examples were usually found “ad hoc”, in
general it is not easy to come up with SST.

Diaconis and Fill [5] came up with a systematic way of finding an SST, which
we will describe here directly with application to exact sampling.

Let E∗ = {e∗1, . . . , e∗N} be the state space of an absorbing Markov chain X∗

with initial distribution ν∗ and transition matrix P∗, whose unique absorbing
state is denoted by e∗N . An N × M matrix Λ is said to be a link if it is a
stochastic matrix such that Λ(e∗N , e) = π(e) for all e ∈ E. We say that X∗ is a
strong stationary dual (SSD) of X with link Λ if

ν = ν∗Λ and ΛP = P∗Λ. (2.2)

In this paper we assume that the SSD has the same state space, i.e., E∗ = E. For
the general case, see [5]. The sample path of the chain X∗ can be constructed
from a sample path of X as follows. Start with X0 = e0 and (using additional
randomness) set

X∗0 = e∗0 with probability
ν∗(e∗0)Λ(e∗0, e0)

ν(e0)
.

Then we proceed as follows. Assume X0 = e0, . . . , Xk−1 = e(k−1) and X∗0 =
e∗0, . . . , X∗k−1 = e∗(k−1). If Xk = ek have been chosen, then set

X∗k = e∗k with probability
P∗(e∗(k−1), e∗(k))Λ(e∗k, ek)

4(e∗(k−1), ek)
,

492 P. Lorek and P. Markowski

where 4 = P∗Λ. This construction yields a bivariate chain (X∗k , Xk) such
that Pr(Xk = ·|X∗0 = e∗0, . . . , X∗k = e∗k) = Λ(e∗k, ·) (consult [4, 5]). This
implies that T , the first time the chain X∗ hits the state e∗N (the absorbing
one) and the value of XT are independent. Moreover, the distribution of XT is
Λ(e∗N , ·) = π(e).

In summary, we are able to couple two chains in such a way that when one
hits a specific state (e∗N) then the other has a stationary distribution. This
way we can obtain an unbiased sample from π, i.e., we can perform an exact
sampling. Note that having the SST T lets one also study the rate of convergence
(the main application of this duality in [5]): the time to absorption T for X∗ is an
SST for X. In many examples, SST have been found ad hoc. The above duality
approach provided the first systematic way of finding them. Below we present
the above mentioned description of SSD-based exact sampling in algorithmic
form.

Algorithm 4 Exact sampling based on SSD.

Require: Ergodic chain X and absorbing chain X∗ on the same state space E,
link Λ.

1: Start with X0 = e0 and set X∗0 = e∗0 with probability ν∗(e∗0)Λ(e∗0,e0)
ν(e0) .

2: If X∗0 = e∗N then output X0 and stop.
3: Set n = 1.
4: Having Xn−1 = en−1 set Xn = en with probability P (en−1, en).
5: Having Xn−1 = en−1, Xn = en, X∗n−1 = e∗n−1 set X∗n = e∗n with probabil-

ity
P∗(e∗(n−1), e∗(n))Λ(e∗n, en)

4(e∗(n−1), en)
, where 4 = P∗Λ.

6: If X∗n = e∗N then output Xn and stop.
7: Set n = n+1 and go to Step 4 (keep previously simulatedXn = en, X∗n = e∗n

for new n).

3. Monotonicities in Markov chains

In the previous section we briefly described some methods for exact sampling.
Note however that CFTP and Fill’s rejection algorithm, as they stand, are very
inefficient (the number of chains one has to simulate is equal to the cardinality
of E) and no concrete way for finding the SSD was given (how to choose/find
Λ and P∗). This is where monotonicities come into play. Each of the methods
can be efficiently applied if the chain is monotone in some way.

So far we did not need any structure on E. However in many examples there
is a natural ordering of the state space, e.g., a total ordering, a coordinatewise
ordering, etc. From now on we assume that E is equipped with a partial ordering
�, making (E,�) a poset. We also assume that e1 is the minimum and eM is the
maximum. We will use the following notation. We say that U ∈ E is an upset

Monotonicity in Markov chains: exact sampling 493

if (e1 � e2, e1 ∈ U) ⇒ e2 ∈ U . Similarly, we say that D ∈ E is a downset if
(e1 � e2, e2 ∈ D) ⇒ e1 ∈ D. For given e ∈ E we define {e}↑ := {e′ : e � e′}
and {e}↓ := {e′ : e′ � e}. Note that each {e}↑ ({e}↓) is an upset (downset),
but, in general, not vice versa.

All the monotonicities we are about to define are defined for chains on a
common state space E with respect to a fixed partial ordering �. By X ∈ P we
mean that X has monotonicity property P keeping in mind that it is defined
w.r.t. the fixed partial ordering �.

Usual and weak stochastic monotonicity.

Definition 3.1. A Markov chain X with transition matrix P is stochastically
monotone (we write X ∈ S) if and only if for all upsets U and all e � e′ ∈ E
we have P(e, U) ≤ P(e′, U).

Remark 3.1. Since the complement of any upset is a downset, the condition for
stochastic monotonicity can be equivalently given by: for all downsets D and
all e � e′ ∈ E we have P(e, D) ≥ P(e′, D).

Stochastic monotonicity can be equivalently defined in the following way. For
two random variables Y1, Y2 (with distribution functions ν1, ν2) on E, we say that
Y1 �st Y2 (or ν1 �st ν2) ⇐⇒ E[f(Y1)] ≤ E[f(Y2)] for all nondecreasing (w.r.t.
�) functions f : E → R. Then the Markov chain X with the transition matrix
P is stochastically monotone if and only if ν1 �st ν2 implies ν1P �st ν2P.

Recall that K is an upward kernel if it is a Markov kernel such that K(ei, ·) is
supported on {ej ∈ E : ei � ej}. The following lemma goes back to Strassen [30]
(and is part of Theorem 1 in [17]).

Lemma 3.1. A Markov chain X with transition matrix P is stochastically
monotone if and only if for all e � e′ there exists an upward kernel Ke,e′ such
that P(e′, ej) =

∑
ei:ej�ei

P(e, ei)Ke,e′(ei, ej).

Replacing any upset (downset) in Definition 3.1 with a specific one we obtain
the notion of weak monotonicity.

Definition 3.2. A Markov chain X with transition matrix P is weakly-↑

monotone (we write X ∈ W↑) if and only if for all e � e′, ej ∈ E we have
P(e, {ej}↑) ≤ P(e′, {ej}↑).

The chain is weakly-↓ monotone (we write X ∈ W↓) if and only if for all
e � e′, ej ∈ E we have P(e, {ej}↓) ≥ P(e′, {ej}↓).

We define W :=W↑ ∩W↓.

494 P. Lorek and P. Markowski

Realizable monotonicity. This notion of monotonicity is defined in terms
of the update rule of the chain given in Definition 2.1.

Definition 3.3. A Markov chain X with transition matrix P is realizable
monotone if there exists a monotone update rule (preserving the ordering),
i.e.,

∀(u ∈ [0, 1]) ∀(e � e′) φ(e, u) � φ(e′, u).

This definition implies that for any states e � e′ and upset U we have

φ(e, u) ∈ U ⇒ φ(e′, u) ∈ U. (3.1)

Finding a monotone update rule is often a challenging task, and proving that
none exist can be even harder.

Möbius monotonicity. We can identify the ordering � with the matrix
C(ei, ej) = 1(ei � ej). We can always rearrange the states in such a way
that C is upper triangular (keeping in mind that the enumerations of the states
in C and P must preserve the same order), thus invertible. The inverse of C is
usually denoted by µ ≡ C−1 and called the Möbius function.

Definition 3.4. The function f : E→ RM is Möbius-↓ (Möbius-↑) monotone
if f(CT)−1 ≥ 0 (fC−1 ≥ 0), i.e., each entry is nonnegative.

Definition 3.5. A Markov chain X with transition matrix P is Möbius-↓

monotone (we write X ∈M↓) if

C−1PC ≥ 0 (each entry nonnegative).

Equivalently, in terms of the transition probabilities,

∀(ei, ej ∈ E)
∑
e�ei

µ(ei, e)P(e, {ej}↓) ≥ 0.

The chain is Möbius-↑ monotone (we write X ∈M↑) if

(CT)−1PCT ≥ 0 (each entry nonnegative).

In terms of the transition probabilities this is

∀(ei, ej ∈ E)
∑
e�ei

µ(e, ei)P(e, {ej}↑) ≥ 0.

We define M :=M↑ ∩M↓.
In the applications, checking Möbius monotonicity is usually not harder than

checking stochastic monotonicity. First, note that the inverse of C (i.e., the
Möbius function of the ordering) is known for many natural partial orderings
(however, its derivation is often not trivial). To mention a few:

Monotonicity in Markov chains: exact sampling 495

E1 For E = {1, . . . ,M} and a linear ordering �:=≤ the Möbius function is
given by µ(i, i) = 1, µ(i, i+ 1) = −1 and µ(i, j) = 0 for j /∈ {i, i+ 1}.

E2 For E = {0, 1}d with the coordinate-wise partial ordering e � e′, if e(i) ≤
e′(i), i = 1, . . . , d, the Möbius function is given by µ(e, e′) = (−1)|e|−|e

′|

if e � e′ and 0 otherwise (where |e| = ∑d
i=1 e(i)).

E3 For E = {0, 1, . . . , N}d with coordinate-wise partial ordering e � e′, if
e(i) ≤ e′(i), i = 1, . . . , d, the Möbius function is given by µ(e, e′) =
(−1)|e

′|−|e| if e′(k) = e(k) or e′(k) = e(k) + 1 for each k = 1, . . . , d.

E4 For a finite set I let P (I) be the set of all partitions of I. Let α, β ∈
P (I). The typically considered partial order is the following: α � β
if ∀(A ∈ α)∃(B ∈ β)(A ⊆ B). As derived in [3], the Möbius function is
given by µ(α, β) = 1α�β(−1)|α|+|β|

∏
B∈β(lαB−1)!, where lαB is the number

of atoms from α in B ∈ β.

Checking the Möbius monotonicity of a chain having a Möbius function turns out
to be feasible in many cases. For the total ordering (E1), exemplary calculations
are given in [21]. The computations checking Möbius-↓ monotonicity for some
nonsymmetric random walk on the cube (E3) are given in [24]. For the chain
corresponding to a nonstandard queue network, the computations are given
in [21]. The partial ordering on partitions (E4) was considered in the context
of duality in [16].

4. Applications of monotonicities

4.1. Realizable monotonicity and an efficient coupling from the past
algorithm

The CFTP algorithm given in Alg. 1 is very inefficient. The number of chains
we have to run is equal to the size of the state space. In most cases where CFTP
is to be applied, the size of the state space is huge (e.g., exponential in some
parameter). The main idea of the algorithm was to run the chains “from the
past” and check if all of them have coupled before time 0. Note that if we have
a monotone update rule and say X−m = e � X ′−m = e′, then

X−m+1 = φ(X−m, U−m+1) � φ(X
′

−m, U−m+1) = X
′

−m+1.

Thus it is enough to start only two chains: X1
0 = e1 and X2

0 = eM . Summariz-
ing, if the chain is realizable monotone and has the minimum and the maximum,
then we have an efficient CFTP algorithm:

496 P. Lorek and P. Markowski

Algorithm 5 Efficient coupling from the past.

Require: State space E, ergodic chain X, monotone update rule φ
1: Set n = 1
2: Start two chains at time −Nn, one at the minimum e1, the other at the

maximum eM . Run the chains till time 0 using the same update rule φ and
iid random variables U−Nn+1, U−Nn+2, . . . , U−1, U0 uniformly distributed on
[0, 1] (the same for each chain).

3: If both chains in previous step end up in the same state e0 at time 0, then
output e0 and stop.

4: Set n = n + 1 and go to Step 2 (keep previously used {Ui}0≤i≤−Nn+1 for
new n).

4.2. Stochastic monotonicity and an efficient Fill’s rejection algorithm

Similarly to the general CFTP algorithm given in Alg. 1, Fill’s rejection Alg.
3 is very inefficient. This is due to the fact that we have to start (and simulate)
as many chains as there are elements of the state space. It turns out that the
algorithm can be made efficient by assuming stochastic monotonicity of the time

reversed chain
←−
X . (This condition is weaker, as forthcoming sections will show,

than being realizable monotone).

Assume for the moment that
←−
X is realizable monotone (this will soon be

relaxed to stochastic monotonicity). Assume that ei � ej and that

←−
Y i
s = ei �

←−
Y j
s = ej

for some s ≤ k. Realizable monotonicity implies that

←−
Y i
s+1 = φ(

←−
Y i
s, Us) � φ(

←−
Y j
s, Us) =

←−
Y j
s+1.

This means that then in Step 5 of the algorithm, checking the coalescence of

all M chains is equivalent to checking only that the chain
←−
YM (the one started

in eM) has already reached the minimum e1 at time k. In other words, it is

enough to simulate just one chain
←−
YM .

Now we relax the realizable monotonicity requirement, assuming only that←−
X is stochastically monotone. Similarly, we want to have an efficient version of

the algorithm simulating only one chain
←−
YM (denoted simply by Y). This time

we do not generate Us as in Step 3 of Alg. 3. We make use of Lemma 3.1 instead.

Assume that at some step s we have
←−
X s = e1,

←−
X s+1 = e2 and

←−
Y s = ei. Then,

since e1 � e2, we may choose a state ej for
←−
Y s+1 with probability Ke1,ei

(e2, ej).

This constructions ensures that
←−
X s �

←−
Y s, s = 0, . . . , k. Thus, similarly, only

the condition
←−
Y k = e1 must be checked. In summary, we have:

Monotonicity in Markov chains: exact sampling 497

Algorithm 6 Efficient Fill’s rejection algorithm.

Require: State space E = {e1, . . . , eM}, ergodic chain X whose time reversal←−
X is stochastically monotone and set of kernels Ke,e′ for all e � e′.

1: Set n = 1
2: Simulate the Markov chain X starting at time 0 in state e1 and run it till

time k = Nn using the transition matrix P. Denote Xt = ez
3: Simulate the chain

←−
Y starting at the maximum, i.e.,

←−
Y 0 = eM in the

following way: Assume at time s we have
←−
X s = e1,

←−
Y s = ei and

←−
X s+1 = e2.

Set
←−
Y s+1 = ej with probability Ke1,ei(e2, ej).

4: If
←−
Y k = e1, then output ez and stop

5: Erase all information, set n = n+ 1 and go to Step 2.

4.3. Möbius monotonicity and strong stationary duality

In Section 2.3 we presented an exact sampling algorithm based on strong
stationary duality. Note however that no recipe was given on how to find such a
dual. The duality was introduced in [5], where the recipe was given only in case

the time reversed chain
←−
X was stochastically monotone w.r.t. a total ordering.

In [24] an extension to partial orderings was given. Surprisingly, it turned out
that not the usual stochastic monotonicity, but rather Möbius monotonicity,
was required. We recall here the main theorem from [24].

Theorem 4.1 (Lorek and Szekli [24]). Let X be an ergodic Markov chain
on a finite state space E = {e1, . . . , eM} which is partially ordered by � and has
the maximum eM . For a stationary distribution π and an initial distribution ν
we assume that

(i) g(e) = ν(e)
π(e) is Möbius-↓ monotone,

(ii)
←−
X is Möbius-↓ monotone.

Then there exists a strong stationary dual chain X∗ on E∗ = E with link a
truncated stationary distribution Λ(ej , ei) = 1(ei � ej)π(ei)/H(ej), where
H(ej) =

∑
e:e�ej

π(e). The initial distribution and the transitions of X∗ are
given, respectively, by

ν∗(ei) = H(ei)
∑

e:e�ei

µ(ei, e)g(e), (4.1)

P∗(ei, ej) =
H(ej)

H(ei)

∑
e:e�ej

µ(ej , e)
←−
P(e, {ei}↓). (4.2)

(The Möbius monotonicity of the function g(e) means that the resulting ν∗(e)
is nonnegative).

498 P. Lorek and P. Markowski

Remark 4.1. Note that the existence of the minimum is not required in Theorem
4.1. However, if it exists and if the chain X starts at the minimum (i.e., Pr(X0 =
e1) = 1), then so does the dual chain (i.e., Pr(X∗0 = e1)). Similarly one can
construct an SSD chain when there is a minimum e1 and the time reversed chain←−
X is Möbius-↑ monotone, see Corollary 3.1 in [24].

More examples of SSDs constructed on partially ordered state spaces can be
found in [25].

5. Relations between monotonicities in Markov chains

Fix a state space E = {e1, . . . , eM} and partial ordering �. Recall that
by X ∈ P we mean that the chain has the monotonicity property P, which is
defined with respect to this given state space and ordering. For example, the
implication “if X ∈ P1 then X ∈ P2” means that if X is P1-monotone then
it is P2-monotone with respect to the same state space and ordering. For a
general ordering �, we present the relations between the different concepts of
monotonicity in Theorem 5.1.

Theorem 5.1. For a discrete time Markov chain X on a finite state space E =
{e1, . . . , eM} which is partially ordered by �, we have the following implications:

1. If X ∈ R then X ∈ S
2. If X ∈ S then X ∈ W↑

3. If X ∈ S then X ∈ W↓

4. If X ∈M↑ then X ∈ W↑

5. If X ∈M↓ then X ∈ W↓

We derive and recall some useful properties of the Möbius function of a
partial ordering. First we will show that

∑
ei∈E µ(ei, e) = 0 for any poset with

the minimum state (we denote it by e1) and that
∑

ei∈E µ(e, ei) = 0 for any
poset with the maximum state (denoted by eM).

It is known (see [28]) that the matrix C−1 = µ can be calculated recursively:

µ(ei, ej) =


1 if ei = ej ,
−∑ei≺ek�ej

µ(ek, ej) if ei ≺ ej ,

0 otherwise,

(5.1)

or by inverting the matrix C using Gauss – Jordan elimination by columns in-
stead of rows:

=


1 if ei = ej ,
−∑ei�ek≺ej

µ(ei, ek) if ei ≺ ej ,

0 otherwise.

(5.2)

Monotonicity in Markov chains: exact sampling 499

Therefore, using (5.1): for any poset with the minimum state and any state e
which is not the minimum, we have∑

ei∈E
µ(ei, e) =

∑
ei∈E:ei 6�e

µ(ei, e) +
∑

e1≺ei�e
µ(ei, e) + µ(e1, e)

= 0− µ(e1, e) + µ(e1, e) = 0.

Similarly, using (5.2): for any poset with the maximum state and for any state
e which is not the maximum, we have∑

ei∈E
µ(e, ei) =

∑
ei∈E:e6�ei

µ(e, ei) +
∑

e�ei≺eM

µ(e, ei) + µ(e, eM)

= 0− µ(e, eM) + µ(e, eM) = 0.

We will write e+ for an arbitrary successor of e. For a poset (E,�) with the
maximum eM we can consider the subspaces {e}↑, {e+}↑ with the minimum
states e and e+ respectively. From the above consideration, we have∑

ei:e�ei,e+ 6�ei

µ(ei, e
′) =

∑
ei:e�ei�eM

µ(ei, e
′)−

∑
ei:e+�ei�eM

µ(ei, e
′) (5.3)

=

 1− 0 if e′ = e,
0− 1 if e′ = e+

0− 0 otherwise
=

 1 if e′ = e,
−1 if e′ = e+,

0 otherwise.
(5.4)

Similarly, for a poset (E,�) with the minimum state e1 we can consider the
subspaces {e}↓, {e+}↓ with the maximum states e and e+ respectively. We
have: ∑

ei:ei�e+,ei 6�e
µ(e′, ei) =

∑
ei:e1�ei�e+

µ(e′, ei)−
∑

ei:e1�ei�e
µ(e′, ei) (5.5)

=

 0− 1 if e′ = e,
1− 0 if e′ = e+,
0− 0 otherwise

=

 −1 if e′ = e,
1 if e′ = e+,
0 otherwise.

(5.6)

Proof of Theorem 5.1. Implications 1–3 are known (see, e.g., [12]), we include
short proofs in the notation of this paper for completeness.

1. We want to show that for any states ei � ej and any upset U , the in-
equality P(ei, U) ≤ P(ej , U) is fulfilled. From the definition of update function
and the property of realizable monotonicity (3.1), we have

P(ei, U) =

1∫
0

1(φ(ei, u) ∈ U)du ≤
1∫

0

1(φ(ej , u) ∈ U)du = P(ej , U)

500 P. Lorek and P. Markowski

as the indicator of set is equal to 1 when the indicator of its subset is equal to 1.
2. & 3. For any state e, {e}↑ is an upset and {e}↓ is a downset. Thus

stochastic monotonicity implies that the monotonicity is preserved for any {e}↑
and {e}↓, which is the definition of ↑-weak and ↓-weak monotonicity.

4. & 5. Möbius-↓ monotonicity means

∀e�ek

∑
ei:e�ei

µ(e, ei)P(ei, {ek}↓) ≥ 0,

thus for arbitrary ej ∈ E we have∑
e:ej�e,e+

j 6�e

∑
ei:e�ei

µ(e, ei)P(ei, {ek}↓) ≥ 0.

Changing the order of summation we have∑
ei:ej�ei

∑
e:e�ei,ej�e,e+

j 6�e

µ(e, ei)P(ei, {ek}↓) ≥ 0,

∑
ei:ei�ej

P(ei, {ek}↓)
∑

e:e�ei,ej�e,e+
j 6�e

µ(e, ei) ≥ 0.

Using (5.4) for each ei for the (sub-)poset ({ei}↓,�) (where ei is the maximum)
with its subspaces {e}↑, {e+}↑, we have

P(ej , {ek}↓)−P(e+
j , {ek}↓) ≥ 0

for any ej , ek. The proof that Möbius-↑ monotonicity implies weak-↑ is similar.
2

In Figure 1, Theorem 5.1 is summarized.
We know of no other implications involving the monotonicities we have con-

sidered. More precisely, the only one we do not know is whether Möbius-↑,
Möbius-↓ and stochastic monotonicities imply realizable monotonicity (which is
stated below as an open problem). The nonexistence of other implications is
proven by presenting examples in Appendix A (the numbers in Figure 1 corre-
spond to the enumeration of these examples).

Open problem 1. Does there exist a chain X, state space E, and partial or-
dering � such that X ∈M↓ ∩M↑ ∩ S \ R ?

Remark 5.1 (On Möbius monotonicity). For a total ordering (denote the states
by E = {1, . . . ,M}), the stochastic monotonicity of X can be written as

∀(j, i1 ≤ i2) PX(i1, {j}↑) ≤ PX(i2, {j}↑) ≡ PX(i1, {j}↓) ≥ PX(i2, {j}↓).
In this ordering we can think of this monotonicity in two different (though
equivalent) ways:

Monotonicity in Markov chains: exact sampling 501

W↑ \ (W↓ ∪M↑)

W↓ \ (W↑ ∪M↓)

W \M

M↑ \W↓

M↓ \W↑

M

(M↑ ∩W↓) \M↓

(M↓ ∩W↑) \M↑

S \ R

R

1

2

3

4

5

6 7

8

9

11

12

13

14

15

16

10

Figure 1. Relation between monotonicities. General partial ordering.

• “Understanding 1”. For any upset U and ∀(i1 ≤ i2) we have PX(i1, U) ≤
PX(i2, U) (or equivalently: for any downset D and ∀(i1 ≤ i2) we have
PX(i1, D) ≥ PX(i2, D)).

• “Understanding 2”. For any upset U define FU (i) := PX(i, U). Then X
is stochastically monotone if the function FU (i), treated as a function of
i, must be “like” a distribution function, i.e., ∀(i1 ≤ i2)FU (i1) ≤ FU (i2).

Equivalently: for any downset D define F̄D(i) = PX(i,D). Then X is
stochastically monotone if the function F̄D(i), treated as a function of i,
must be “like” the tail of a distribution function, i.e., ∀(i1 ≤ i2)F̄D(i1) ≥
F̄D(i2).

Extending “Understanding 1” to a partial ordering � (we simply have different
downsets and upsets, and each i1 ≤ i2 is replaced by e � e′) leads to stochas-
tic monotonicity as defined in Definition 3.1. Extending “Understanding 2”
with FU (·) being like a distribution function (F̄D(·) being like the tail of a dis-
tribution function) leads to Möbius-↓ (Möbius-↑) monotonicity, as defined in
Definition 3.5.

5.1. Tree-ordering and total ordering

For a general partial ordering, we have, in Theorem 5.1, determined all the
monotonicity relations. In this section we restrict our attention to some special
cases: tree ordering and linear ordering.

502 P. Lorek and P. Markowski

Tree ordering. Let us start with a definition of this ordering.

Definition 5.1. A partial ordering � on E is called a tree ordering if there
exists a maximum (which has no predecessor) and every other (non-maximal)
state e has exactly one predecessor.

This definition affords a straightforward algorithm for inverting the matrix
C = 1(ei � ej). For a column corresponding to the state e, it is enough to
subtract the columns corresponding to the successors of e. We obtain the matrix

µ(ei, ej) =


1 if ei = ej ,
−1 if e+

i = ej ,
0 otherwise.

(5.7)

Theorem 5.2. Let X be a Markov chain on E with a tree ordering �. Then
the following statements are equivalent.

(i) X ∈ S

(ii) X ∈ R

(iii) X ∈M↓

(iv) X ∈ W↓

Proof.

• (i) ⇐⇒ (ii)

Implication (ii)⇒ (i) follows from implication 1 of Theorem 5.1, whereas
(i)⇒ (ii) follows from Theorem 4.3 in [12].

• (iii) ⇐⇒ (iv)

Implication (iii) ⇒ (iv) follows from implication 5 of Theorem 5.1. To
show (iv) ⇒ (iii) we assume Möbius-↓ monotonicity, i.e., we have (the
Möbius function given in Eq. (5.7))

∀(ei, ej ∈ E) 0 ≤ P(ei, {ej}↓)−P(e+
i , {ej}↓) =

∑
e�ei

µ(ei, e)P(e, {ej}↓),

which is exactly weak-↓ monotonicity.

• (i) ⇐⇒ (iv)

Implication (i)⇒ (iv) follows from implication 3 of Theorem 5.1. To show
(iv)⇒ (i), note that any downset D can be written as a disjoint union of

Monotonicity in Markov chains: exact sampling 503

sets of the form {ek}↓, i.e., D =
⋃· k∈K{ek}↓ for some K ⊆ E. For any ek,

weak-↓ monotonicity implies that P(ei, {ek}↓)−P(e+
i , {ek}↓) ≥ 0, thus

P(ei, D)−P(e+
i , D) =

∑
k∈K

(
P(ei, {ek}↓)−P(e+

i , {ek}↓)
)
≥ 0,

which implies stochastic monotonicity.

2

The monotonicity relations for tree-ordering are summarized in Figure 2.
The examples numbered 17, 18, 19 and 20 are given in Appendix A.

W↑ \M↑

M↑

R = S = M↓ = W↓

17181920

Figure 2. Relation between monotonicities. Tree-like ordering.

Total ordering. For this ordering let us denote the elements of state space E
by {1, . . . ,M}. The Möbius function is following:

µ(i, j) =

 1 if j = i,
−1 if j = i+ 1,

0 otherwise,
(5.8)

with ones on the diagonal and minus ones directly above it. For this ordering,
we have the following lemma.

Lemma 5.1. Let X be a Markov chain on E with total ordering �:=≤. Then
all the monotonicities S,R,M↑,M↓,W↑,W↓ are equivalent.

504 P. Lorek and P. Markowski

Proof. By Theorem 5.2 it is enough to show that W↑ is equivalent to W↓ and
that W↑ ⇒ M↑. For a total ordering, all upsets are of the form {k}↑ =
{k, . . . ,M} and all downsets are of the form {k}↓ = {1, . . . , k}. Hence (since
the complement of a downset is an upset and vice versa), they are equivalent to
each other and actually denote stochastic monotonicity.

Note that ∑
k∈E

µ(k, i)P(k, {j}↑) = P(i+ 1, {j}↑)−P(i, {j}↑),

which means that W↑ and M↑ are equivalent. 2

6. Monotonicities and Siegmund duality

As mentioned, strong stationary duality was introduced in [5]. However, a
somewhat general recipe for such an SSD was only given in the case when the
time reversal was stochastically monotone with respect to a total ordering. In
Section 4.3 we recalled the theorem from [24], that for a given ergodic chain X
there exists a strong stationary dual chain X∗ (with the link being a truncated
stationary distribution) if and only if the time reversal of X is Möbius monotone.
It turns out that there is a close connection between SSD and another duality.
We say that the chain Z is a Siegmund dual of X if for any n ≥ 0, ei, ej ∈ E
we have Pr(Xn � ej |X0 = ei) = Pr(Zn � ei|Z0 = ej). Siegmund [29] showed
that for a total ordering, such a dual exists if and only if X is stochastically
monotone. Lorek [21] gives an extension to partial orderings (the existence
of the minimum and the maximum is required). The main result is that the
Siegmund dual exists if and only if the chain is Möbius-↓ monotone. Moreover,
in the latter article it is shown that the SSD from [24] can be constructed in
the following three steps: i) Calculate the time reversal of X; ii) Calculate its
Siegmund dual; iii) Calculate the appropriate Doob h-transform.

The results of this article are relevant for SSD and Siegmund duality. The
general constructions of the SSD and the Siegmund dual were unknown for
partial orderings. For Siegmund duality, for partially ordered state spaces, it
was known that stochastic monotonicity is “not enough.” Liggett, in [20] a
book on particle systems) writes (p. 87) “having a (reasonable) dual is a much
more special property than being monotone, when the state space is not totally
ordered.” However, we can obtain an SSD or a Siegmund dual for a chain
which is not stochastically monotone, such as is shown with the chain with the
transition matrix P6 in Appendix A (the chain is not stochastically monotone,
but is both Möbius-↓ and Möbius-↑ monotone).

Monotonicity in Markov chains: exact sampling 505

A. Examples

The relations between monotonicities were given in Theorem 5.1 for a general
partial ordering and in Theorem 5.2 for a tree ordering. They were summarized
in Figures 1 and 2 respectively. In this section we prove (except for Open
problem 1) that all the intersections in these figures are non-empty.

Given P and C, checking all monotonicities except realizable monotonicity
is straightforward (it only requires some matrix operations):

• Checking Möbius-↓ and Möbius-↑ monotonicity is straightforward from
Definition 3.5.

• For weak monotonicities we need to precompute the offspring matrix R.
Let O(ei) = {e : ei ≺ e and !∃ej

(ei ≺ ej ≺ e)} be the set of offspring of
the state ei. The offspring matrix is defined as R = (RT

e1
, . . . ,RT

eM
)T ,

where Rei
is the |O(ei)| × |E| matrix such that Rei

(ej , ei) = 1 and
Rei

(ej , ej) = −1 for ej ∈ O(ei), all other entries being equal to zero.
Note that O(ei) for all ei ∈ E and thus the matrix R is computed from
C. Weak-↑ monotonicity means that all entries of RPCT are nonpositive,
whereas weak-↓ means that all entries of RPC nonnegative.

• For stochastic monotonicity, we additionally need the matrix of all upsets
(denoted by S) instead of “just” the ordering matrix C (S is computed
from C). Stochastic monotonicity means that all entries of RPS are
nonnegative.

We wrote functions in The Julia Language [23] checking all the above
monotonicities. The functions require the transition matrix P and the ordering
matrix C. Also, the script checking the above monotonicities of all the exam-
ples that follow is available. The proofs concerning realizable monotonicites are
given after introducing the examples. Recall that for a tree ordering, realiz-
able monotonicity is equivalent to (among others) stochastic monotonicity, thus
checking the latter is enough.

The pairing of the ordering matrices and the transition matrices:

• C1 for processes P3,P6,P7,P11,P12,P13,P14,P15,P16,

• C2 for P1,P2,

• C3 for P4,P5,P8,P9 and

• C4 for P17,P18,P19,P20.

506 P. Lorek and P. Markowski

Order matrices and Hasse diagrams:

C1 =


1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1



e6

e5e4

e3e2

e1

C2 =



1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1



e8

e7e6e5

e4e3e2

e1

C3 =


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


e5

e4e3e2

e1

C4 =



1 0 0 0 1 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1



e7

e6e5

e2e1 e3 e4

The transition matrices

1. W↑ \ (W↓ ∪M↑)

Monotonicity in Markov chains: exact sampling 507

P1 =



3/8 1/8 1/8 1/8 0 1/8 1/8 0
1/4 1/4 0 1/8 1/8 0 1/8 1/8
1/4 0 3/8 0 0 1/4 0 1/8
1/4 0 1/8 0 1/8 1/4 1/8 1/8
0 1/8 1/8 0 0 1/4 1/4 1/4
0 0 1/4 1/4 0 1/8 0 3/8
0 0 1/8 1/8 1/4 1/4 1/8 1/8
0 0 1/8 0 1/8 1/8 0 5/8


2. W↓ \ (W↑ ∪M↓)

P2 =



5/8 0 1/8 1/8 0 1/8 0 0
1/8 1/8 1/4 1/4 1/8 1/8 0 0
3/8 0 1/8 0 1/4 1/4 0 0
1/4 1/4 1/4 0 0 1/8 1/8 0
1/8 1/8 1/4 1/8 0 1/8 0 1/4
1/8 0 1/4 0 0 3/8 0 1/4
1/8 1/8 0 1/8 1/8 0 1/4 1/4
0 1/8 1/8 0 1/8 1/8 1/8 3/8


3. W \ (M∪S)

P3 =


1/2 1/6 0 1/3 0 0
1/3 1/6 1/6 1/3 0 0
1/3 1/6 0 1/3 1/6 0
1/6 1/6 1/6 0 1/6 1/3
1/6 0 1/6 1/6 1/3 1/6
0 1/6 1/3 0 1/6 1/3


4. M↑ \W↓

P4 =


2/5 1/5 1/5 1/5 0
2/5 1/5 1/5 1/5 0
0 2/5 2/5 1/5 0
0 2/5 1/5 2/5 0
0 1/5 2/5 0 2/5


5. M↓ \W↑

P5 =


2/5 0 2/5 1/5 0
0 2/5 1/5 2/5 0
0 1/5 2/5 2/5 0
0 1/5 1/5 1/5 2/5
0 1/5 1/5 1/5 2/5



508 P. Lorek and P. Markowski

6. M\ S

P6 =


17/24 0 0 1/8 1/8 1/24
1/8 5/16 5/16 1/12 1/12 1/12
1/8 5/16 5/16 1/12 1/12 1/12
1/12 1/12 1/12 5/16 5/16 1/8
1/12 1/12 1/12 5/16 5/16 1/8
1/24 1/8 1/8 0 0 17/24


7. S \ (M↑ ∪M↓ ∪R)

P7 =


1/3 1/3 1/3 0 0 0
1/3 1/3 0 1/3 0 0
1/3 0 1/3 1/3 0 0
0 1/3 1/3 1/3 0 0
0 1/6 1/6 1/6 1/6 1/3
0 1/6 1/6 1/6 1/6 1/3


8. S ∩M↑ \ (M↓ ∪R)

P8 =


2/5 1/5 1/5 1/5 0
2/5 1/5 1/5 1/5 0
2/5 0 1/5 1/5 1/5
1/5 1/5 2/5 1/5 0
0 2/5 1/5 0 2/5


9. S ∩M↓ \ (M↑ ∪R)

P9 =


2/5 0 1/5 2/5 0
0 1/5 2/5 1/5 1/5

1/5 1/5 1/5 0 2/5
0 1/5 1/5 1/5 2/5
0 1/5 1/5 1/5 2/5


10. Aforementioned open problem.

11. R \ (M↑ ∪M↓)

P11 =


1/3 1/6 1/6 1/6 1/6 0
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
0 1/6 1/6 1/6 1/6 1/3



Monotonicity in Markov chains: exact sampling 509

12. R∩M↑ \M↓

P12 =


1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
0 1/3 1/6 1/6 1/6 1/6


13. R∩M↓ \M↑

P13 =


1/6 1/6 1/6 1/6 1/3 0
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6


14. R∩M

P14 =


1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6


15. W↓ ∩M↑ \ (M↓ ∪ S)

P15 =


17/24 0 0 1/8 1/8 1/24
1/8 5/16 5/16 1/12 1/12 1/12
1/8 5/16 5/16 1/12 1/12 1/12
1/12 1/12 1/12 5/16 5/16 1/8
1/12 1/12 1/12 5/16 5/16 1/8
1/24 1/16 1/16 1/16 1/16 17/24


16. W↑ ∩M↓ \ (M↑ ∪ S)

P16 =


17/24 1/16 1/16 1/16 1/16 1/24
1/8 5/16 5/16 1/12 1/12 1/12
1/8 5/16 5/16 1/12 1/12 1/12
1/12 1/12 1/12 5/16 5/16 1/8
1/12 1/12 1/12 5/16 5/16 1/8
1/24 1/8 1/8 0 0 17/24


Examples 17–20 deal with tree-ordering.

510 P. Lorek and P. Markowski

17. W↑ \ S

P17 =



1/2 1/2 0 0 0 0 0
0 0 1/2 1/2 0 0 0

1/2 1/2 0 0 0 0 0
0 0 1/2 1/2 0 0 0
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2 0


.

18. S \M↑

P18 =



1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7


.

19. W↑ ∩ S ∩M↑

P19 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


20. M↑ \ S

P20 =



1/2 1/2 0 0 0 0 0
0 0 1/2 1/2 0 0 0

1/2 1/2 0 0 0 0 0
0 0 1/2 1/2 0 0 0
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2 0
0 0 0 0 0 0 1


.

As already stated, checking all monotonicities except realizable monotonic-
ity can be done automatically on a computer. Note that if the chain is not
stochastically monotone, then it cannot be realizable monotone. That is why
we only need to prove that

• The chains with the transition matrices P11,P12,P13,P14 are realizable
monotone.

Monotonicity in Markov chains: exact sampling 511

• The chains with the transition matrices P7,P8,P9 are not realizable
monotone.

To prove realizable monotonicity it is enough to provide a monotone update
rule, whereas showing that a given chain is not realizable monotone (i.e., that
no monotone update function exists) is more challenging.

Monotone update rules for the chains with the transition matrices
P11,P12,P13 and P14. For

⋃· 6
i=1Ai = [0, 1] and P (U ∈ Ai) = 1/6 for i =

1, . . . , 6 and U ∼ Unif [0, 1] the following functions are monotone w.r.t. the
partial ordering defined by C1.

• P11

φ(ej , u) = ei if u ∈ Ai, for i = 1, . . . , 6, j = 2, . . . , 5,

φ(e1, u) =

{
e1 if u ∈ A6,

ei if u ∈ Ai, i = 1, . . . , 5,

φ(e6, u) =

{
e6 if u ∈ A1,

ei if u ∈ Ai, i = 2, . . . , 6.

• P12

φ(ej , u) = ei if u ∈ Ai, for i = 1, . . . , 6, j = 1, . . . , 5,

φ(e6, u) =

{
e6 if u ∈ A1,

ei if u ∈ Ai, i = 2, . . . , 6.

• P13

φ(ej , u) = ei if u ∈ Ai, for i = 1, . . . , 6, j = 2, . . . , 6,

φ(e1, u) =

{
e1 if u ∈ A6,

ei if u ∈ Ai, i = 1, . . . , 5.

• P14 φ(ej , u) = ei if u ∈ Ai, for i = 1, . . . , 6, j = 1, . . . , 6.

Proofs that P7,P8,P9 are not realizable monotone w.r.t. the partial
ordering defined by C1.

• The transition matrix P7.

The idea of the proof is the following: we try to construct a monotone
update function φ and deduce a contradiction. Start with defining an ar-
bitrary update function at state e1: φ(e1, u) = ei if u ∈ Ai, i = 1, 2, 3,

for
⋃· 3
i=1Ai = [0, 1], P (U ∈ Ai) = 1/3, i = 1, 2, 3 and U ∼ Unif [0, 1].

512 P. Lorek and P. Markowski

Since e1 � e2 we have the following requirements for φ(e2, ·): namely
φ(e2, u) � ei for u ∈ Ai, i = 1, 2, 3. Thus the function is uniquely deter-
mined:

φ(e2, u) =

 e1 if u ∈ A1,
e2 if u ∈ A2,
e4 if u ∈ A3.

Similarly, since e1 � e3, we conclude that

φ(e3, u) =

 e1 if u ∈ A1,
e3 if u ∈ A3,
e4 if u ∈ A2.

Also, since e2 � e4, we conclude that

φ(e4, u) =

 e2 if u ∈ A2,
e3 if u ∈ A1,
e4 if u ∈ A3.

But this function is not monotone, since for u ∈ A2 we have φ(e3, u) =
e4 � e2 = φ(e4, u).

• The transition matrices P8 and P9.

The idea of the proof is similar to the previous case. It will be done
only for P8 (the proof for P9 is almost identical, since P9(ei, ej) =
P8(e6−i, e6−j), i, j = 1, . . . , 5).

We can start with defining an arbitrary update function at state e1:

φ(e1, u) =

{
e1 if u ∈ A0,
ei if u ∈ Ai, i = 1, 2, 3, 4

for
⋃· 4
i=0Ai = [0, 1], P (U ∈ Ai) = 1/5, i = 0, . . . , 4 and U ∼ Unif [0, 1].

Since e1 � e3, we have the following requirements for φ(e3, ·): namely
φ(e3, u) � φ(e1, u) for u ∈ Ai, i = 0, . . . , 4. Thus the function is uniquely
determined:

φ(e3, u) =


e1 if u ∈ A0 ∪A1,
e5 if u ∈ A2,
e3 if u ∈ A3,
e4 if u ∈ A4.

Also, since e3 � e5, we conclude that

φ(e5, u) =

 e2 if u ∈ A0 ∪A1,
e5 if u ∈ A2 ∪A4,
e3 if u ∈ A3.

Monotonicity in Markov chains: exact sampling 513

Since e1 � e4, we conclude that there are two choices for φ(e4, u). We
can have

φ(e4, u) =


e1 if u ∈ A0,
e3 if u ∈ A1 ∪A3,
e2 if u ∈ A2,
e4 if u ∈ A4,

but then for u ∈ A1 we have φ(e4, u) = e3 � e2 = φ(e5, u). We can also
have

φ(e4, u) =


e1 if u ∈ A1,
e3 if u ∈ A0 ∪A3,
e2 if u ∈ A2,
e4 if u ∈ A4,

but then for u ∈ A0 we have φ(e4, u) = e3 � e2 = φ(e5, u). Thus, the
function is not monotone.

References

[1] D. Aldous and P. Diaconis (1986) Shuffling cards and stopping times. Amer-
ican Mathematical Monthly 93 (5), 333–348.

[2] G. Casella, M. Lavine and C.P. Robert (2001) Explaining the perfect sam-
pler. The American Statistician 55 (4), 299–305.

[3] L. Comtet (1970) Analyse combinatoire. Presses universitaires de France, Paris.

[4] P. Diaconis and J.A. Fill (1990) Examples for the theory of strong stationary
duality with countable state spaces. Probability in the Engineering and Informa-
tional Sciences 4 (2), 157–180.

[5] P. Diaconis and J.A. Fill (1990) Strong stationary times via a new form of
duality. Ann. Prob. 18 (4), 1483–1522.

[6] P. Diaconis and L. Saloff-Coste (2006) Separation cut-offs for birth and
death chains. Ann. Appl. Probab. 16 (4), 2098–2122.

[7] X.K. Dimakos (2001) A Guide to exact simulation. International Statistical
Review 69 (1), 27–48.

[8] J.A. Fill (1998) An interruptible algorithm for perfect sampling via Markov
chains. Ann. Appl. Probab. 8 (1), 131–162.

[9] J.A. Fill (2009) On hitting times and fastest strong stationary times for skip-free
and more general chains. J. Theor. Probab. 22 (3), 587–600.

[10] J.A. Fill (2009) The passage time distribution for a birth-and-death chain:
strong stationary duality gives a first stochastic proof. J. Theor. Probab. 22 (3),
543–557.

[11] J.A. Fill and V. Lyzinski (2014) Hitting times and interlacing eigenvalues: a
stochastic approach using intertwinings. J. Theor. Probab. 27 (3), 954–981.

514 P. Lorek and P. Markowski

[12] J.A. Fill and M. Machida (2001) Stochastic monotonicity and realizable mono-
tonicity. Ann. Prob. 29 (2), 938–978.

[13] J.A. Fill, M. Machida, D.J. Murdoch and J.S. Rosenthal (2000) Extension
of Fill’s perfect rejection sampling algorithm to general chains. Random Structures
and Algorithms 17 (3–4), 290–316.

[14] O. Häggström and K. Nelander (1998) Exact sampling from antimonotone
systems. Statistica Neerlandica 52 (3), 360–380.

[15] M. Huber (2003) A Bounding chain for Swendsen–Wang. Random Structures
and Algorithms 22 (1), 43–59.

[16] T. Huillet and S. Mart́ınez (2016) On Möbius duality and coarse-graining.
J. Theor. Probab. 29 (1), 143–179.

[17] T. Kamae, U. Krengel and G.L. O’Brien (1977) Stochastic inequalities on
partially ordered spaces. Ann. Prob. 5 (6), 899–912.

[18] W.S. Kendall (1998) Perfect simulation for the area-interaction point process.
In: Probability towards 2000, L. Accardi and C.C. Heyde (eds.), vol. 128 of Lecture
Notes in Statistics. Springer-Verlag, Berlin, 218–234.

[19] W.S. Kendall and J. Møller (2000) Perfect simulation using dominating
processes on ordered spaces, with application to locally stable point processes.
Adv. Appl. Probab. 32 (3), 844–865.

[20] T.M. Liggett (2004) Interacting Particle Systems. Springer-Verlag, Berlin.

[21] P. Lorek (2017) Siegmund duality for Markov chains on partially ordered state
spaces. To appear in Probability in the Engineering and Informational Sciences.

[22] P. Lorek (2017) Generalized gambler’s ruin problem: explicit formulas via
Siegmund duality. Methodology and Computing in Applied Probability 19 (2),
603–613.

[23] P. Lorek and P. Markowski (2017) The Julia Language module for check-
ing monotonicities in Markov chains. GitHub repository, https://github.com/

lorek/MarkovChains_monotonicities/.

[24] P. Lorek and R. Szekli (2012) Strong stationary duality for Möbius monotone
Markov chains. Queueing Systems 71 (1–2), 79–95.

[25] P. Lorek and R. Szekli (2016) Strong stationary duality for Möbius monotone
Markov chains: examples. Probability and Mathematical Statistics 36 (1), 75–97.

[26] M. Machida (2001) Stochastic monotonicity and realizable monotonicity. Phd
Thesis, The Johns Hopkins University.

[27] J.G. Propp and D.B. Wilson (1996) Exact sampling with coupled Markov
chains and applications to statistical mechanics. Random Structures and Algo-
rithms 9, 223–252.

[28] G.C. Rota (1964) On the foundations of combinatorial theory I. Theory of
Möbius functions. Probab. Theory and Relat. Fields 368, 340–368.

[29] D. Siegmund (1976) The equivalence of absorbing and reflecting barrier problems
for stochastically monotone Markov processes. Ann. Probab. 4 (6), 914–924.

[30] V. Strassen (1965) The existence of probability measures with given marginals.
The Annals of Mathematical Statistics 36 (2), 423–439.

