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Figure 1: Paradigm comparison between classic few-shot action recognition methods and ours. (a) Existing methods fully
fine-tune the feature extractor and combine it with temporal alignment module at feature level. (b) We advance the alignment
module into the process of feature extraction particularly considering the internal information of the entire task by introducing
tunable task-specific adapters into the frozen pre-trained model.

ABSTRACT
Existing works in few-shot action recognition mostly fine-tune a
pre-trained image model and design sophisticated temporal align-
ment modules at feature level. However, simply fully fine-tuning
the pre-trained model could cause overfitting due to the scarcity
of video samples. Additionally, we argue that the exploration of
task-specific information is insufficient when relying solely on well
extracted abstract features. In this work, we propose a simple but ef-
fective task-specific adaptation method (Task-Adapter) for few-shot
action recognition. By introducing the proposed Task-Adapter into
the last several layers of the backbone and keeping the parameters
of the original pre-trained model frozen, we mitigate the overfitting
problem caused by full fine-tuning and advance the task-specific
mechanism into the process of feature extraction. In each Task-
Adapter, we reuse the frozen self-attention layer to perform task-
specific self-attention across different videos within the given task
to capture both distinctive information among classes and shared
information within classes, which facilitates task-specific adapta-
tion and enhances subsequent metric measurement between the
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query feature and support prototypes. Experimental results consis-
tently demonstrate the effectiveness of our proposed Task-Adapter
on four standard few-shot action recognition datasets. Especially
on temporal challenging SSv2 dataset, our method outperforms the
state-of-the-art methods by a large margin.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding;

KEYWORDS
few-shot action recognition, parameter-efficient fine-tuning, task-
specific adaptation

1 INTRODUCTION
In recent years, large-scale pre-trained models [19, 32] have demon-
strated remarkable performance across various downstream tasks.
However, manually collecting hundreds of millions of labeled data
and training such large models from scratch for each specific task
is impractical. Hence, researchers are increasingly focusing on fine-
tuning large pre-trained models on specific tasks [10, 48, 54, 59] to
harness their generalization capability. In video understanding, the
utilization of large-scale pre-trained models has significantly en-
hanced the performance of action recognition [15, 21, 28, 29, 40, 47,
49, 54]. Yet, these works typically fine-tune pre-trained models on
well-labeled video datasets [5, 11], where the testing and training
categories are the same. In realistic scenarios, collecting sufficient
and well-labeled video samples is inherently hard. Most problems

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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manifest in a few-shot manner: there are very few annotated sam-
ples for new action categories. Few-shot learning [3, 6, 30, 37, 55]
aims to achieve satisfactory classification performance on any few-
shot manner unseen class data by training only on seen class data.
Therefore, how to leverage the prior knowledge of pre-trained
models to improve few-shot action recognition is an imperative
challenge.

In few-shot action recognition, a common practice is following
the metric based meta-learning strategy [4, 34, 39], which computes
classification probability according to the measured distance be-
tween query video feature and support prototypes. Consequently,
previous works [4, 14, 20, 26, 31, 42, 44, 51] design various temporal
alignment modules at the feature level to better match the features
of different videos. These works commonly use a pre-trained image
model [7, 32] and then fine-tune on the video dataset. An illustra-
tion of this traditional paradigm is depicted in Figure 1 (a). However,
this traditional paradigm has two drawbacks: First, the majority of
works adopt full fine-tuning strategy, i.e., fine-tuning all parameters
of the pre-trained model on seen classes and expecting to learn a
robust feature extractor which maintains good generalization per-
formance on unseen classes. However, this classic full fine-tuning
strategy could overly destroy the prior knowledge of the pre-trained
model, leading to catastrophic forgetting and overfitting to seen
class data. The second drawback is that most existing works ne-
glect the importance of extracting the task-specific information (i.e.,
inter-class distinctive information among classes and intra-class
shared information within classes). Solely designing temporal align-
ment modules at highly abstracted feature level could not discover
the most discriminative feature for a given few-shot learning task.

To address the first drawback, we turn to the recently emerged
Parameter-Efficient Fine-Tuning (PEFT) approach. Originating from
the field of NLP [12, 13, 17], PEFT aims to adapt large pre-trained
models to downstream applications without fine-tuning all the pa-
rameters of the model, while attaining performance comparable to
that of full fine-tuning. In the field of computer vision, a series of
adapter-tuning works [29, 54] have demonstrated the effectiveness
of PEFT for video understanding. Inspired by these works, we argue
such methods, which only fine-tune a small number of additional
adapter parameters, are particularly well-suited for few-shot action
recognition, since they enable better trade-offs between leverag-
ing the generalizable prior knowledge of pre-trained models and
incorporating domain-specific knowledge from downstream tasks.
However, existing adapter methods mainly focus on temporal mod-
eling and lack the consideration of enhancing task-specific features
for the few-shot learning tasks, consequently not suitable to be
directly introduced to the few-shot action recognition field. In this
work, we propose a novel adapter-based method which further
brings the capability of task-specific adaptation to the pre-trained
model by reusing the frozen self-attention block to perform the
task-specific self-attention across different videos within the given
task to capture the most discriminative task-relevant information.

Task-specific adaptation of features has always been a key is-
sue in metric based few-shot learning [18, 22, 44, 55]. A common
consensus is that the most discriminative features vary for differ-
ent target tasks. For example, in distinguishing between “High
Jump” and “Long Jump”, the body movements performed by the
actor is more crucial, whereas in distinguishing between “High

Jump” and “Pole Vault”, it is more significant whether the actor
is holding a long pole. In few-shot action recognition, most pre-
vious works [4, 14, 20, 26, 31, 42, 44, 51] focus on the temporal
alignment between different video features, but only a few [44]
consider task-specific adaptation. Meanwhile, existing works solely
apply task-specific methods at the level of well-extracted features.
Different from previous works, we propose to perform task-specific
adaptation during the process of feature extraction as shown in
Figure 1 (b). Specifically, for a Transformer backbone, e.g. ViT, in
addition to the original spatial self-attention over the image tokens
within the same frame, we further apply the frozen self-attention
layer over the image tokens across different frames and different
videos to perform both temporal attention and task attention across
different videos within a given task. Experimental results reveal
that performing task-specific adaptation during the feature extrac-
tion could better capture the discriminative task-specific feature
compared to only adapting the final features. In summary, our
contributions can be outlined as follows:
• We introduce a novel parameter-efficient adaptation method for
few-shot action recognition called Task-Adapter, effectively al-
leviating the issues of catastrophic forgetting and overfitting
induced by full fine-tuning.

• To the best of our knowledge, we are the first to propose per-
forming task-specific adaptation during the process of feature
extraction, which significantly enhances the discriminative fea-
tures specific to the given few-shot learning task.

• Extensive experiments demonstrate the superiority and good
generalization ability of our Task-Adapter, which achieves new
state-of-the-art results on four standard few-shot action recogni-
tion benchmarks.

2 RELATEDWORK
2.1 Few-shot Learning
Few-shot learning aims to learn a model that can quickly adapt
to unseen classes using only a few labeled data. Existing works
can be divided into three categories: augmentation-based [25, 45],
metric-based [1, 3, 18, 33, 34, 39, 50, 55, 55] and optimization-based
methods [8, 53]. Augmentation-based methods use auxiliary data to
enhance the feature representations or generate extra samples [25]
to increase the diversity of the support set. Metric-based methods
focus on learning a generalizable feature extractor and classify the
query instance by measuring the feature distance. Optimization-
based methods aim to learn a good network initialization which
can fast adapt to unseen classes with minimal optimization steps.
Among these approaches, metric-based methods are commonly
adopted thanks to its simplicity and superior performance. Addi-
tionally, task-specific learning has been explored in image-domain
metric-based works [1, 18, 33, 55] to achieve better few-shot learn-
ing performance. CTM [18] proposes category traversal module to
obtain themost discriminative features within a given C-way K-shot
few-shot learning task. FEAT [55] introduces set-to-set function to
obtain task-specific visual features for the few-shot learning tasks.
However, these methods all introduce task-specific modules at the
level of well-extracted image features, which is insufficient for more
complex video features due to the additional temporal dimension.
In this work, we follow the metric-based paradigm and perform
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task-specific adaptation during the feature extraction process to
achieve more comprehensive adaptation to video data.

2.2 Few-shot action recognition
In few-shot action recognition, most of the previous works[2, 4,
9, 14, 20, 24, 26, 27, 31, 36, 43, 44, 46, 52, 57, 62, 63] fall into the
metric-based methods. To solve the problem of temporal misalign-
ment when comparing different videos, a wide series of temporal
alignment modules are proposed. OTAM [4] improves the dynamic
time warping algorithm to preserve the temporal ordering inside
the video feature similarities. TRX [31] proposes to take the or-
dered tuples of frames as the least matching unit instead of single
frames. CMOT [24] uses the optimal transport algorithm to find
the best matching between two video features. HyRSM [44] treats
the sequence matching problem as a set matching problem for
better alignment. Except for the aforementioned works, there are
also studies focusing on spatial relations [58] and multi-modal
fusion [9, 41, 46]. However, there is still a lack of research on task-
specific learning in few-shot action recognition. In this work, we
emphasize the vital importance of task-specific adaptation in iden-
tifying the most discriminative spatial-temporal features within the
provided video samples.

2.3 Parameter-Efficient Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) is derived from NLP [12, 13,
17], aiming to fine-tune large pre-trained models on downstream
tasks in an efficient way (i.e., only fine-tune a small number of pa-
rameters while freezing most parameters of the pretrained model),
while achieving comparable performance to full fine-tuning. Re-
cently, this method has been introduced to computer vision fields.
CLIP-Adapter [10] adds a learnable bottleneck layer behind the
frozen CLIP [32] backbone to learn new features for downstream
tasks. ST-Adapter [29] proposes a 3D convolution based adapter
to model the temporal information. AIM [54] reuses the frozen
pre-trained attention layer and applies it to the temporal dimension
of the input video. Vita-CLIP [47] introduces learnable prompt to-
kens into the frozen model to enrich the representation capability.
However, the aforementioned PEFT methods do not consider the
characteristic of the few-shot learning task, where task-specific
adaptation plays a crucial role in distinguishing the query sample
from irrelevant categories. In this work, we propose a novel PEFT
method to maximize the generalization ability of the pre-trained
model and equip the pre-trained image model with the capability
of enhancing task-specific features for few-shot action recognition.

3 METHODOLOGY
In this section, we first describe howAIM [54] utilizes the pretrained
image model ViT to perform action recognition in Section 3.1. Then,
in Section 3.2, we extend this method to few-shot action recognition
by introducing task-specific adaptation capability. The overview of
our method is shown in Figure 3.

3.1 Adapting ViT to Action Recognition
Given an RGB video sample 𝑣 ∈ 𝑅𝑇×𝐻×𝑊 ×3, a vanilla ViT takes
the temporal dimension𝑇 as the batch dimension 𝐵, i.e., there is no
exchange of information between frames. Specifically, ViT divides

LN

T-MSA

Adapter

LN

S-MSA

Adapter

LN

MLPAdapter

LN

MSA

LN

MLP

LN

FC Up

GELU

(c) Adapter(b) ViT block(a) AIM

Figure 2: AIM (a) adapts the standard ViT bock (b) by freezing
the original pre-trained model (outlined with a blue back-
ground) and adding tunable Adapters (c) individually for
temporal adaptation, spatial adaptation and joint adapta-
tion.

each frame into 𝑁 = 𝐻𝑊 /𝑃2 patches, where 𝑃 is the patch size,
and transforms the patches into 𝐷 dimensional patch embeddings
𝑣𝑝 ∈ 𝑅𝑇×𝑁×𝐷 . A learnable [class] token is prepended to the patch
embeddings 𝑣𝑝 as 𝑣0 ∈ 𝑅𝑇×(𝑁+1)×𝐷 . To retain position information,
a learnable positional embedding 𝐸𝑝𝑜𝑠 ∈ 𝑅 (𝑁+1)×𝐷 is added to 𝑣0
as 𝑧0 = 𝑣0 + 𝐸𝑝𝑜𝑠 , where the 𝐸𝑝𝑜𝑠 is broadcast to𝑇 dimension to be
shared among different frames and 𝑧0 is the final input of the stacked
ViT blocks. Each ViT block consists of LayerNorm (LN), multi-head
self-attention (MSA) and MLP layers, with residual connections
after each block, as shown in Figure 2 (b). The computation process
during each ViT block can be given by:

𝑧′
𝑙
= MSA(LN(𝑧𝑙−1)) + 𝑧𝑙−1 (1)

𝑧𝑙 = MLP(LN(𝑧′
𝑙
)) + 𝑧′

𝑙
(2)

where 𝑧𝑙 denotes the output of the 𝑙-th ViT block and all the MSAs
are computed on patch dimension to learn the relationship of dif-
ferent spatial parts of the original frame. The [class] tokens of each
frame from the last ViT block are concatenated as the final video
feature 𝐹𝑣 ∈ 𝑅𝑇×𝐷 which is fed into the classifier and used to
calculate the final classification score.

Inspired by PEFT techniques, AIM [54] tries to adapt pre-trained
image model to video action recognition with minimal fine-tuning
by freezing the original model and only fine-tuning additionally
introduced Adapters shown in Figure 2 (a). Moreover, AIM pro-
poses to reuse the pre-trained MSA layer to do temporal modeling
which is deficient in the vanilla ViT. As shown in Figure 2 (c), a
shared frozen temporal MSA (T-MSA) layer is prepended to the
original spatial MSA (S-MSA) sequentially to exchange the tem-
poral information between frames for temporal modeling, which
can be achieved easily by permuting the patch dimension and the
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Figure 3: Illustration of our method. Note that we only add Adapters into the last 𝐿 ViT layers. In Task-Adapter, we introduce
task adaptation after T-MSA and S-MSA to enhance the task-specific information for the few-shot action recognition. After
feature extraction, the video features are passed to the metric module to compute the classification scores. The upper figure
illustrates the computational process of the Task-Adapter given a 2-way 1-shot learning task with two query videos in the
query set.

temporal dimension. The tunable Adapter is added after each MSA
layer and parallel to the MLP layer to achieve temporal, spatial and
joint adaptation as follows:

𝑧𝑡
𝑙
= Adapter(T-MSA(LN(𝑧𝑙−1))) + 𝑧𝑙−1 (3)

𝑧𝑠
𝑙
= Adapter(S-MSA(LN(𝑧𝑡

𝑙
))) + 𝑧𝑡

𝑙
(4)

𝑧𝑙 = Adapter((LN(𝑧𝑠
𝑙
)) +MLP(LN(𝑧𝑠

𝑙
)) + 𝑧𝑠

𝑙
(5)

where 𝑧𝑡
𝑙
, 𝑧𝑠
𝑙
and 𝑧𝑙 individually stands for temporal adapted, spa-

tial adapted and jointly adapted output from the 𝑙-th ViT block.
However, directly transferring this method to few-shot action recog-
nition is inadequate due to the lack of considering the relationship

between different videos within the few-shot learning task and the
information gap between seen classes and unseen classes.

3.2 Adapting ViT to Task-specific FSAR
Few-shot action recognition (FSAR) studies how to classify unseen
class query videos with only a limited number of labeled samples
available. Following the episodic training [39], we randomly sample
a 𝐶-way 𝐾-shot task, which has 𝐶 action classes and 𝐾 labeled
samples in each class, from the training set D𝑡𝑟 for each episode
during training. All the 𝐶 × 𝐾 video samples form the support set
S = {𝑥𝑖 }𝐶×𝐾𝑖=1 . Additionally, there is a query set Q = {𝑥𝑖 }𝑄𝑖=1 from
the same 𝐶 action classes. The learning objective of each task is to
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classify each query video 𝑞 ∈ Q into one of the𝐶 classes. Although
the temporal adaptation proposed by AIM gives vanilla ViT the
ability of temporal modeling, it remains unaddressed that the ViT
model could not attend to different videos and enhance the task-
specific discriminative features.

Next, we describe how we empower the frozen ViT with the
ability to adapt embeddings with task-specific information for few-
shot action recognition. As described in Section 3.1, we first map
all the videos in the whole sampled task (both support set and
query set) into their patch embeddings by Eq. 1 and Eq. 2, then
we get the input features of the first ViT block S0 = [𝑥10 , ..., 𝑥

𝐶𝐾
0 ]

and Q0 = [𝑥10 , ..., 𝑥
𝑄

0 ], where 𝑥𝑖0 ∈ 𝑅𝑇×(𝑁+1)×𝐷 denotes the patch
embeddings of the 𝑖-th video both for the support set and query set.
Then, these patch embeddings are fed into several frozen ViT blocks
to exchange spatial information between different tokens. It should
be noted that we only introduce tunable adapters in the last 𝐿 ViT
blocks, which is a choice based on empirical study. We will further
analyze the impact of this decision in the ablation experiment.
Starting from the (𝑁 −𝐿 +1)-th layer, we introduce tunable adapter
layers into the original model. Specifically, besides T-MSA and S-
MSA, we further reuse the frozen MSA layer as Task-MSA after
the temporal and spatial adaptation to perform task-specific self-
attention across the tokens at the same spatial-temporal location in
different videos (see Figure 3, upper part). Take the support features
as an example:

S𝑡
𝑙

= Adapter(T-MSA(LN(S𝑙−1))) + S𝑙−1 (6)

S𝑠
𝑙

= Adapter(S-MSA(LN(S𝑡
𝑙
))) + S𝑡

𝑙
(7)

S𝑡𝑎𝑠𝑘
𝑙

= Adapter(Task-MSA(LN(S𝑠
𝑙
))) + S𝑠

𝑙
(8)

S𝑙 = Adapter(LN(S𝑡𝑎𝑠𝑘
𝑙

)) +MLP(LN(S𝑡𝑎𝑠𝑘
𝑙

)) + S𝑡𝑎𝑠𝑘
𝑙

(9)

where 𝑆𝑙−1, 𝑆𝑙 ∈ 𝑅𝐶𝐾×𝑇×(𝑁+1)×𝐷 individually denotes the input
and output support features of the 𝑙-th layer (𝑙 ∈ {𝑁 − 𝐿 + 1, 𝑁 −
𝐿 + 2, ..., 𝑁 }).

The query features can be computed in the same way. To avoid
exposing the target support class features to the specific query
video feature, we isolate the information interaction between the
support set and query set. The bottom right corner of Figure 3 shows
a conceptual view illustrating the changes that task-specific self-
attention brings to the video features. As can be seen, the support
video features of different classes are pushed away, and the query
video features are pulled closer to the video features of the target
support class based on the unique information specific to each task,
resulting in varying effects across different tasks. As a result, we
explicitly enhance the the most discriminative features in the given
few-shot action recognition task with the introduced task-specific
adaptation.

Finally, we concatenate the [class] tokens of each frame from the
last ViT block to get the support set video representations FS ∈
𝑅𝐶×𝐾×𝑇×𝐷 and the query set video representations FQ ∈ 𝑅𝑄×𝑇×𝐷 .
The final question is how to compute the distance between the
query features FQ and each class using the support features FS .
The existing works further design elaborate temporal alignment
modules to construct class prototypes for each class, aiming to align
the action semantics at the feature level. Thanks to our proposed
task-specific adaptation, we have completed the semantic alignment

during the process of feature extraction. Consequently, we directly
average all the support video features as the class prototype for
each class:

F̂ 𝑐S =
1
𝐾

𝐾∑︁
𝑖

FS [𝑐] [𝑖] (10)

where F̂ 𝑐S ∈ 𝑅𝐶×𝑇×𝐷 denotes the class prototype of the 𝑐-th sup-
port class.

To calculate the classification probability, we measure the dis-
tance between the query features and the class prototypes by an ar-
bitrary metric module, e.g., TRX [31], OTAM [4] and Bi-MHM [44],
which can formulated by:

P𝑐𝑖 = Metric(FQ [𝑖], F̂S) (11)

where P𝑐
𝑖
is the probability of the 𝑐-th class for the 𝑖-th query video

in query set and F̂S = [F̂ 1
S, F̂

2
S, ..., F̂

𝑐
S] ∈ 𝑅𝐶×𝑇×𝐷 stands for all

the class prototypes of the whole support set.
For the metric modules, we will demonstrate in our experiments

that our proposed Task-Adapter consistently improves the perfor-
mance of any metric methods. Besides that, owning to the supe-
riority of our task-specific adaptation during feature extraction,
excellent performance can be achieved simply by averaging the
frame-to-frame cosine similarity without complex metric measure-
ments. During the training stage, classification probabilities for
each task serve as the logits for computing cross-entropy loss and
backpropagating gradients. Importantly, we solely fine-tune the pa-
rameters of the additional adapter layers while keeping the original
pre-trained model frozen. In testing, we freeze the entire backbone,
including the adapters, and directly extract features for the unseen
test classes.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets.We evaluate ourmethod on four datasets that widely used
in few-shot action recognition, namely HMDB51 [16], UCF101 [35],
Kinetics [5] and SSv2 [11]. The first three datasets focus on scene
understanding, while the last dataset, SSv2, has been shown to re-
quire more challenging temporal modeling [4, 38]. Particularly, We
use the few-shot split proposed by [57] for HMDB51 and UCF101,
with 31/10/10 classes and 70/10/21 classes for train/val/test, respec-
tively. Following [60], Kinetics is used by selecting a subset which
consists of 64, 12 and 24 training, validation and testing classes.
For SSv2, we provide the results of two publicly available few-shot
split, i.e., SSv2-Small [61] and SSv2-Full[4]. Both SSv2-Small and
SSv2-Full contain 100 classes selected from the original dataset,
with 64/12/24 classes for train/val/test, while SSv2-Full contains
10x more videos per class in the training set.
Implementation details. As previously illustrated, we aim to
adapt the image pre-trained ViT model to achieve task-specific few-
shot action recognition. To show the applicability of our method for
different pre-trained models, we respectively choose the ImageNet
pre-trained [7] and CLIP pre-trained [32] ViT as our backbone.
Specifically, for CLIP pre-trained backbone, we combine the zero-
shot results and few-shot results in the sameway as CLIP-FSAR [42]
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Table 1: Comparison with current SOTA few-shot action recognition methods on 5-way 1-shot and 5-way 5-shot benchmarks.
The reported results cover both temporal-related dataset (SSv2) and scene-related datasets (including HMDB51, UCF101, and
Kinetics). The best results are highlighted in bold and the second-best results are underlined.

Method Reference Backbone Pretrain Fine-tuning SSv2-Small SSv2-Full HMDB51 UCF101 Kinetics
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

CMN [60] ECCV’18 ResNet50 IN-21K Full Fine-tuning 34.4 43.8 36.2 48.9 - - - - 60.5 78.9
TARN [26] BMVC’19 C3D Sports-1M Full Fine-tuning - - - - - - - - 66.6 80.7
ARN [57] ECCV’20 C3D - Full Fine-tuning - - - - 44.6 59.1 62.1 84.8 63.7 82.4
OTAM [4] CVPR’20 ResNet50 IN-21K Full Fine-tuning - - 42.8 52.3 - - - - 73.0 85.8
AmeFuNet [9] MM’20 ResNet50 IN-21K Full Fine-tuning - - - - 60.2 75.5 85.1 95.5 74.1 86.8
TRX [31] CVPR’21 ResNet50 IN-21K Full Fine-tuning - 59.1 - 64.6 - 75.6 - 96.1 63.6 85.9
SPRN [41] MM’21 ResNet50 IN-21K Full Fine-tuning - - - - 61.6 76.2 86.5 95.8 75.2 87.1
HyRSM [44] CVPR’22 ResNet50 IN-21K Full Fine-tuning 40.6 56.1 54.3 69.0 60.3 76.0 83.9 94.7 73.7 86.1
TA2N + Sampler [22] MM’22 ResNet50 IN-21K Full Fine-tuning - - 47.1 61.6 59.9 73.5 83.5 96.0 73.6 86.2
MoLo [43] CVPR’23 ResNet50 IN-21K Full Fine-tuning 41.9 56.2 55.0 69.6 60.8 77.4 86.0 95.5 74.0 85.6
MASTAF [23] WACV’23 ViViT JFT Full Fine-tuning 45.6 - 60.7 - 69.5 - 91.6 - -
MGCSM [56] MM’23 ResNet50 IN-21K Full Fine-tuning - - - - 61.3 79.3 86.5 97.1 74.2 88.2
SA-CT [58] MM’23 ResNet50 IN-21K Full Fine-tuning - - 48.9 69.1 60.4 78.3 85.4 96.4 71.9 87.1
SA-CT(ViT) [58] MM’23 ViT-B IN-21K Full Fine-tuning - - - 66.3 - 81.6 - 98.0 - 91.2
CLIP-FSAR [42] IJCV’23 ViT-B CLIP Full Fine-tuning 54.6 61.8 62.1 72.1 75.8 87.7 96.6 99.0 89.7 95.0
MA-CLIP [51] ArXiv’23 ViT-B CLIP PEFT 59.1 64.5 63.3 72.3 83.4 87.9 96.5 98.6 95.7 96.0
Task-Adapter(Ours) - ViT-B CLIP PEFT 60.2 70.2 71.3 74.2 83.2 88.8 98.0 99.4 95.0 96.8

which uses a simple element-wise multiplication. For a fair com-
parison with the existing works [42, 51], we uniformly sample 8
frames for each video, and crop the frames to 224×224 as the input
resolution. During the training stage, random crop is used for data
augmentation. We freeze the original pre-trained model and only
fine-tune the introduced adapters (as shown in Figure 2 (c)) using
the SGD optimizer with a learning rate of 0.001. For the testing
stage, we freeze all the parameters of our backbone to extract task-
specific discriminative video features for measuring the distances.
All reported results in our paper are the average accuracy over
10,000 few-shot action recognition tasks.

4.2 Comparison with state-of-the-art methods
Table 1 presents a comprehensive comparison of our method with
recent few-shot action recognition methods. As our Task-Adapter is
designed for ViT-based architectures, we use CLIP [32] pre-trained
ViT to make a fair comparison with recent few-shot action recogni-
tion works that use large-scale pretrained models. For the scene-
related datasets, the background understanding is more crucial. Of
particular note, by comparing the results of works that use CLIP pre-
trained models and those that use ImageNet (IN-21K) pre-trained
models, we can conclude that the performance of few-shot action
recognition indeed benefits from large-scale pretraining, especially
for scene-related datasets. As shown in Table 1, our Task-Adapter
can achieve promising results on HMDB51, UCF101 and Kinetics.
Especially for 5-shot tasks, our method outperforms the exsisting
SOTA methods by 0.9% on HMDB51, 0.4% on UCF101 and 0.8%
on Kinetics, respectively. Compared with full fine-tuning method
CLIP-FSAR [42], we can see our method has an overall improve-
ment (from 0.4% to 7.4%) on all datasets. Compared with PEFT
method MA-CLIP [51], our method has an improvement of 0.9%,
0.8% and 0.8% respectively on HMDB51, UCF101 and Kinetics in
5-shot setting. Note that while our method exhibits slightly lower
1-shot performance on HMDB51 and Kinetics compared to MA-
CLIP (0.2% and 0.7% respectively), it achieves a 1.5% improvement

on UCF101 in the 1-shot setting. We attribute this to our under-
utilization of the semantic information in HMDB51 and Kinetics,
while MA-CLIP design an elaborate multimodal adaptation method
with text-guided prototype construction module. We would like
to consider more comprehensive multi-modal fusion as the future
research.

As mentioned in Section 4.1, SSv2 requires more temporal mod-
eling than other three datasets, making it much more challenging.
In our experiments, we observe that our proposed task-specific
adaptation significantly enhances the temporal alignment during
the feature extraction process. From Table 1, we can see that our
method significantly outperforms all existing approaches on both
SSv2-small and SSv2-Full, establishing new state-of-the-art results.
Except for MA-CLIP [51] and ours, most of the previous works fully
fine-tune the pre-trained models, resulting in inferior results due to
the overfitting problem. Most relvant to our method, MA-CLIP [51]
is also based on AIM [54], but it focuses on the multimodal adapta-
tion mechanism at the feature level, while our method emphasizes
the importance of task-specific adaptation during the feature ex-
traction process. The results on the SSv2 datasets demonstrate the
effectiveness of our proposed method, showing a significant im-
provement of 5.7% for the 5-shot task on SSv2-Small and 8.0% for
the 1-shot task on SSv2-Full, respectively. Also, we can see that the
improvement of the 1-shot task on SSv2-Small is smaller than that
on SSv2-Full. We attribute this phenomenon to the 10x increase in
the number of videos for each class in SSv2-Full, which enables our
Task-Adapter to learn low-shot task-specific adaptation through a
variety of sampled tasks.

4.3 Applicability of proposed Task-Adapter
In Table 2, we demonstrate the applicability of our method on dif-
ferent pre-trained weights. From the upper part of the table, we
show the performance of different fine-tuning methods with IN-
21K pre-trained weights. Note that the supervised pretraining on
ImageNet does not follow the contrastive text-image pretraining
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Table 2: Illustration of the effectiveness of our Task-Adapter
using different pretrained weights (e.g., IN-21K pre-trained
and CLIP pre-trained weights). The experiment is conducted
on 5-way 1-shot task on UCF101.

Methods Bacbone Pretrain Modality Acc

Full Fine-tuning ViT-B IN-21K Unimodal 73.0
AIM Adapter ViT-B IN-21K Unimodal 84.7
Task Adapter ViT-B IN-21K Unimodal 87.7

Full Fine-tuning ViT-B CLIP Multimodal 93.5
AIM Adapter ViT-B CLIP Multimodal 96.5
Task Adapter ViT-B CLIP Multimodal 98.0

TRX BiMHM OTAM ProtoNet
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A
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Full Fine-tuning
AIM Adapter
Task-Adapter (Ours)

Figure 4: Comparison of the performance achieved by com-
bining different fine-tuning strategies with existing widely
used metric measurement methods for 5-way 1-shot task on
the challenging SSv2-Small.

paradigm used by CLIP. Consequently, we can only perform uni-
modal inference with pure visual information. As can be seen, just
substituting the full fine-tuning with the PEFT method of AIM
brings an improvement of 9.7%, which is in line with our insights
that full fine-tuning limits the generalization capability of the pre-
trained model. Furthermore, an another 3.0% improvement (totally
up to 10.7%) is observed when using our Task-Adapter due to the
fact that it enhances the capability of extracting task-specific in-
formation from the few-shot learning task. Also, we can see a 1.5%
improvement of our Task Adapter over AIM and a 4.5% improve-
ment over full fine-tuning under CLIP pre-trained weights. The
consistent improvement over both full fine-tuning and AIM un-
der different pre-trained weights show the strong generalization
capability of our method.

We also compare the performance of different fine-tuning strate-
gies using different metric measurement methods to demonstrate
the applicability of our Task-Adapter. Four commonly used metric
measurement methods are taken in this paper, namely TRX [31],
Bi-MHM [44], OTAM [4] and ProtoNet (e.g., directly averaging the
frame-to-frame cosine similarity over temporal dimension without
complex metric measurements). Taking full fine-tuning strategy as
the baseline, we observe a consistent improvement across all metric
measurement methods, as shown in Figure 4. It should be noted

Table 3: Effectiveness of each component. We choose frozen
backbone as the baseline and compare the performance of
different settings for 5-way 1-shot task on SSv2-Small.

Frozen Backbone AIM Task-specific Adaptation Partial Adapting Acc

✓ × × × 36.0
× × × × 47.8
✓ ✓ × × 53.3
✓ ✓ × ✓ 54.3
✓ ✓ ✓ × 55.2
✓ × ✓ ✓ 56.6

✓ ✓ ✓ ✓ 60.2

Table 4: Effect of inserting
position of Task-Adapters
on SSv2-Small.

Position Tunable Param Acc

All 14.1 M 55.2
Bottom 6 7.2 M 50.7
Top 6 7.2 M 60.2

Table 5: Impact of posi-
tion of Task-MSA relative
to T&S-MSA on SSv2-Small.

Methods Acc

in front of T&S-MSA 55.6
between T&S-MSA 55.5
back of T&S-MSA 60.2

Figure 5: Effect of inserting Task-Adapters into the last 𝐿 ViT
layers (e.g., 𝐿 = 1, 2, 3, 6, 12) on scene-related datasets.

that ProtoNet outperforms all the other methods when uniformly
using Task-Adapter. We attribute it to the fact that with our Task-
Adapter, the model is able to dynamically align the task-specific
feature during the process of feature extraction corresponding to
the given task. Therefore it is unnecessary to add extra complex
alignment method at feature level.

4.4 Ablation Studies
Effectiveness of each component. To demonstrate the effective-
ness of each component, we perform detailed ablation experiments
in Table 3. The first row shows the results of a frozen pre-trained
model without any learnable adapters, while the second row refers
to the performance of full fine-tuning. Comparing the results of the
third and fourth rows, we can see the effectiveness of PEFT over
traditional full fine-tuning in few-shot action recognition. Note
that the “Partial Adapting” in the fourth column of Table 3 refers
to a common strategy which only adds adapters in the last several
ViT layers. We can observe from the table that the improvement
of introducing task-specific adaptation into AIM is distinct (1.9%)
when inserting adapters into all the layers of the pre-trained model.
Additionally, using partial adapting strategy for AIM also brings
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(a) Category: High Jump (b) Category: Pole Vault
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Input frames

Figure 6: Visualizations of the attention map of “High Jump” and “Pole Vault” for a given few-shot learning task obtained by
baseline AIM and our Task-Adapter. Our method is able to pay more attention to the most discriminative area of the actions
with the help of task-specific adaptation.

an improvement of 1%. Even so, the improvement of introducing
task-specific adaptation into AIM is notably enhanced under the
partial adapting strategy, increasing from 1.9% to 5.9%. As men-
tioned in Section 3.1, AIM brings temporal modeling ability to the
pre-trained image model, while our Task-Adapter further equip the
model with the capability of performing task-specific adaptation.
The result of the second-to-last row shows that we can still achieve
comparable results only using task-specific adaptation without any
temporal modeling, which demonstrates the importance of finding
task-specific information for the few-shot learning task. Finally,
the complete version of our method which only adds Adapters
into the last several layers to the frozen model achieves the best
performance.
Partial Adapting. In this section, we conduct ablation studies on
the partial adapting strategy. Firstly, we study the effect of different
inserting positions of our Task-Adapter in Table 4. The default set-
ting is inserting adapters into all of the 12 ViT layers. Alternatively,
we also evaluate the settings which respectively insert adapters to
the bottom 6 layers and top 6 layers of the model (assuming forward
propagation is from bottom to top). Inserting adapters only into the
top 6 layers has been shown to achieve comparable performance
with inserting to all layers in AIM [54]. However, inserting our
Task-Adapter only into the top 6 layers outperforms inserting it
into all layers by a large margin (5%) for few-shot action recogni-
tion. We attribute this to the hypothesize that bottom layers focus
on generic features that do not require extensive adaptation, while
the top layers focus on task-specific and discriminative features
that benefit a lot from our task-specific adaptation module. Note
that even with our Task-adapter inserted into all the layers, the
increase in tunable parameters is small (only 14 M compared to
400 M frozen parameters of the pretrained model), which demon-
strates the training efficiency of our method. For the scene-related
dataset, we choose the best partial adapting strategy by ablation
experiments depicted in Figure 5. We can see from the figure that
inserting our Task-Adapter into the top 2 layers is the best setting
for all these three datasets. Since these scene-related datasets focus
on background understanding and do not need much temporal
modeling, a more lightweight setting with inserting adapters into
only 2 top layers is more appropriate.
Position of Task-MSA relative to AIM. As illustrated in Sec-
tion 3.1, the original AIM comprises two multi-head self-attentions
(MSAs) individually for spatial modeling and temporal modeling.
In this section, we study the optimal placement relative to the ex-
isting two MSAs of our Task-MSA for task-specific modeling. As

can be seen in Table 5, inserting the proposed Task-MSA after the
T-MSA and S-MSA achieve the best performance. It should be noted
that regardless of where the Task-MSA is inserted, it consistently
outperforms the baseline AIM [54]. The results indicate that com-
pared with AIM, the introduction of Task-MSA indeed improves
the performance for few-short action recognition. Furthermore, the
Task-MSA after T-MSA and S-MSA can maximize the ability to
extract task-specific discriminative features within the task.

4.5 Visualizations
Figure 6 presents the attention map visualizations for a given few-
shot learning task obtained by baseline AIM and our Task-Adapter.
We visualize the action “High Jump" and “Pole Vault” from UCF101
in Figure 6 (a) and (b) respectively. As can be seen in Figure 6 (a), the
attention maps of AIM attend to several background areas that are
unassociatedwith the action being performed. After introducing the
task-specific adaptation proposed by us, the model begins to focus
on the movements of the actor which are the most discriminative
features for the category of “High Jump". In Figure 6 (b), compared
with the attention maps obtained by AIM, we can see that the
areas of distinctive venue facilities gain a higher attention score
(brighter color in the figure) with our Task-Adapter. For similar
actions “High Jump” and “Pole Vault”, as can be seen, the model
begins to attend to the specific information of the actions, e.g, the
movements for “High Jump” and the long pole and large foam mats
for “Pole Vault” when task-specific information is considered. The
visualization results demonstrate that our method can enhance the
most discriminative features for the few-short action recognition.

5 CONCLUSION
In this paper, we propose a novel adaptation method named Task-
Adapter to better adapt the pre-trained image models (including
unimodal and multimodal pre-trained models) for few-shot action
recognition. Instead of using the traditional full fine-tuning strategy,
we propose to only fine-tune the newly inserted adapters which
alleviates the issues of catastrophic forgetting and overfitting. To
enhance the most discriminative features within the given few-
shot learning tasks, we further propose to reuse the frozen self-
attention layer for task-specific adaptation during the process of
feature extraction, which remarkably improves the performance
on four few-shot action recognition benchmarks and achieves the
new state-of-the-art results, particularly on the challenging SSv2
dataset.
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