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Abstract

This paper presents NOISYCOCONUT, a novel inference-time method that enhances large
language model (LLM) reliability by manipulating internal representations. Unlike fine-
tuning methods that require extensive retraining, NOISYCOCONUT operates directly on
model representations during inference and requires no retraining. Rather than training
models to reason in latent space, we inject controlled noise into latent trajectories to gen-
erate diverse reasoning paths. Agreement among these paths provides a confidence signal,
enabling models to abstain when uncertain. We demonstrate that this approach achieves
effective coverage-accuracy tradeoffs across multiple reasoning benchmarks without requir-
ing access to training data or modification of model parameters. This approach provides
a practical pathway to improving the reliability of LLM outputs while maintaining com-
patibility with existing models. Our experiments show that unanimous agreement among
noise-perturbed paths reduces error rates from 40-70% to below 15%, enabling models to
exceed 95% accuracy on mathematical reasoning tasks through selective abstention.

1 Introduction

Large language models (LLMs) continue to demonstrate remarkable capabilities and are increasingly deployed
in high-stakes environments, including healthcare, financial services, and legal practice (Haltaufderheide &
Ranisch| 2024). These nondeterministic models generate text autoregressively, producing one token at a
time conditioned on the preceding token sequence based on a probability distribution. While this process
yields fluent and coherent outputs, it provides no inherent mechanism for the model to signal uncertainty
about its own generations. As a result, LLMs can produce seemingly confident but erroneous outputs, a
phenomenon known as hallucination (Xu et all, [2025b; [Farquhar et al.| 2024). Such errors pose particular
risks in regulated sectors, where legal and regulatory obligations demand accuracy and auditability.

One approach to mitigating the risk of unreliable outputs in predictive machine learning systems is selective
prediction, which allows models to abstain from giving predictions when it is likely to be incorrect (Geifman &
El-Yanivl, 2017} [El-Yaniv & Wiener} 2010). This method introduces a tradeoff between coverage (the fraction
of queries answered) and accuracy (the correctness of answered queries). In classification settings, selective
prediction is well-established based on softmax confidence providing a natural abstention signal (Geifman
& El-Yanivj [2017; |Guo et all) [2017). Enabling confidence-based abstention for generative LLMs is less
straightforward, however, because token-level probabilities often reflect linguistic uncertainty rather than
factual correctness (Kuhn et al.l 2023]). The main problem is how to identify instances where abstention is
warranted.
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Figure 1: (Left) NoisyCocONUT architecture with noise-induced branching for diverse reasoning paths.
(Right) Accuracy-coverage tradeoff for Qwen2.5-7B-Instruct across three benchmarks. Solid lines show
accuracy, while the dashed lines show coverage.

Several methods have been proposed for estimating the confidence of generative LLMs at inference-time.
Verbalized confidence methods prompt models to explicitly rate their certainty, though such self-assessments
can be poorly calibrated (Kadavath et al., 2022; | Xiong et al.,|2024]). Self-correction approaches (e.g.,
let al) 2023} [Shinn et al [2023) iteratively refine outputs through self-generated feedback, though recent
work suggests that intrinsic self-correction struggles for reasoning tasks without external signals (Huang
2024). Sampling-based methods generate multiple outputs and measure their consistency, using
majority voting across multiple, generated paths or clustering semantically equivalent responses to compute
uncertainty over meanings (e.g.,|Wang et al.| [2023; Kuhn et al. 2023). Thus, when sampled outputs disagree,
the system can abstain rather than producing an unreliable answer, enabling coverage—accuracy tradeoffs.
However, because these methods rely on standard autoregressive sampling, they are restricted to the diversity
present in the surface-level token distribution at the output layer (Holtzman et all [2020). Consequently,
they often fail to explore a sufficiently broad set of reasoning trajectories, as the sampling process is confined
by the language space.

A separate line of research has begun exploring methods that operate directly on the continuous hidden states
of language models, rather than through token generation (Zhu et al., 2025¢; (Goyal et all [2023; Hao et al.
. These approaches reflect a growing recognition that the discrete, token-by-token generation process
may be suboptimal for complex reasoning tasks and that reasoning in neural networks involves operations
in a continuous representational space not readily accessible through token manipulations. However, latent-
space methods face the same reliability challenges as their token-space counterparts, as models can produce
incorrect outputs with no inherent mechanism for assessing confidence. Moreover, all of these methods
require specialized architectures and training to enable latent-space reasoning.

We address this gap by extending agreement-based confidence estimation to latent space. We build on
the Continuous Chain-of-Thought (CocoNUT) framework from Hao et al| (2025]), which trains language
models to perform iterative computation in hidden states by feeding the last hidden state back as the
next input embedding. Our goal differs from COCONUT’s—rather than training models to reason in latent
space, we leverage latent representations to assess confidence in model outputs. Specifically, we introduce
NoisyCocoNuT, illustrated in Figure [[] NoisyCOCONUT injects controlled noise into latent trajectories to
generate counterfactual reasoning paths. This enables selective prediction for latent-space methods, achieving
effective coverage—accuracy tradeoffs without additional training.

Contributions. We make these main contributions: (1) We introduce Noi1syCOCONUT, a training-free
inference-time method that generates diverse reasoning paths through controlled noise injection in continuous
latent space, enabling agreement-based confidence estimation directly on hidden states (Section [3]). (2) We
demonstrate that path agreement provides a reliable proxy for prediction confidence (Section (3) We
characterize the noise-accuracy relationship in latent space (Section. (4) We show that NoisyCocONUT
achieves effective coverage-accuracy tradeoffs across three reasoning benchmarks and five language models

(Section [4.3).
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2 Background and Related Work

Our work connects two research threads: inference-time methods for improving LLM reliability and latent-
space computation. We review each area before describing the COCONUT framework we build upon.

2.1 Confidence Estimation and Selective Prediction

Selective prediction for LLMs in generative settings presents fundamentally different challenges than selective
prediction for classification tasks (Xin et al., 2021)). In classification, models select from a fixed set of discrete
labels, but autoregressive generation produces outputs token-by-token over many steps, with an effectively
unbounded space of possible responses (Ren et al.2023]). This distinction has motivated a substantial body of
work developing uncertainty quantification methods tailored for generative models (Si et al., |2023; [Varshney
et all [2022; [Kadavath et all [2022; |[Kuhn et al., 2023|). Prior works have examined selective prediction
in settings where questions themselves are ambiguous, requiring models to recognize when clarification is
needed rather than producing potentially incorrect answers (Cole et al., 2023 [Yin et al., |2023). Another
line of research employs auxiliary models trained to discriminate between correct and incorrect predictions
from a primary QA system (Varshney & Barall [2023]), though such approaches introduce additional training
requirements and may not generalize across domains.

These challenges have motivated sampling-based approaches that operationalize selective prediction by gen-
erating multiple outputs and using their agreement as a confidence signal for abstention decisions. Self-
consistency (Wang et al.| |2023)) samples NV reasoning chains from the model, then selects the most frequent
final answer via majority voting. The key insight is that correct answers tend to be reachable via multiple
reasoning paths, while incorrect answers arise from idiosyncratic errors unlikely to recur across samples. This
approach substantially improves accuracy on arithmetic and commonsense reasoning benchmarks, though it
requires generating N complete token sequences per query.

An alternative direction uses training to improve selective prediction. ASPIRE (Chen et all [2023b)) fine-
tunes LLMs via parameter-efficient tuning to not only answer questions but also evaluate whether their
generated answers are correct, producing explicit confidence scores. While effective, such approaches require
task-specific training data and model access, limiting applicability.

Semantic entropy (Kuhn et al., |2023; Farquhar et al.| [2024) addresses a limitation of token-level uncertainty
measures since different surface forms can express the same meaning. Rather than computing entropy over
token sequences, semantic entropy clusters sampled responses by meaning using bidirectional entailment,
then computes entropy over these semantic equivalence classes. This provides uncertainty estimates that are
invariant to paraphrasing and has been shown to detect hallucinations more reliably than token probabilities
alone.

Verbalized confidence methods take a different approach, prompting models to directly express uncertainty.
Kadavath et al.|(2022) introduced P(True), which asks models to evaluate whether their own sampled answers
are correct; the probability assigned to the token “True” serves as a confidence estimate. While effective
for well-calibrated models, subsequent work has shown that verbalized confidence can be poorly calibrated,
particularly for instruction-tuned models (Xiong et all 2024} Tian et all 2023)). Probing-based methods
instead train classifiers on internal representations to predict correctness (Azaria & Mitchell, 2023)), though
these require labeled data for each task.

Recent work has extended these approaches in various directions. Confidence-Informed Self-Consisten-
cy (Taubenfeld et al., |2025) weights the majority vote by model confidence, reducing the number of samples
needed. Kernel Language Entropy (Nikitin et al., |2025) generalizes semantic entropy using kernel methods
for finer-grained uncertainty estimates.

2.2 Inference-Time Approaches to Improving LLM Reliability

Token-Space Methods. Beyond confidence estimation, several inference-time methods seek to improve
LLM reliability by structuring the generation process itself. Chain-of-Thought (Wei et al.| 2022) improves



Under review as submission to TMLR

accuracy on complex tasks by eliciting intermediate steps, reducing errors that arise from single-step gener-
ation. This approach has been extended through decomposition strategies (Khot et al., 2022 |Zhou et al.
2022) and explicit search methods such as Tree-of-Thoughts (Yao et al., 2023), which explores multiple
solution paths and enables backtracking.

Self-correction approaches attempt to improve reliability through iterative refinement. Self-Refine (Madaan
et al., 2023) prompts models to critique and revise their own outputs, while Reflexion (Shinn et al., [2023)
maintains memory of past errors to guide future attempts. However, Huang et al.| (2024]) demonstrate that
intrinsic self-correction, without external feedback, often fails to improve accuracy on reasoning tasks.

These methods operate entirely in the language and token-space, generating explicit text at each step. This
limits the model to express all intermediate computation through natural language. AsMadaan & Yazdan-
bakhsh/| (2022)) observe, most tokens in a reasoning chain serve textual coherence rather than substantive
computation.

Latent-Space Computation. An alternative approach performs computation directly in the continu-
ous hidden states of language models, bypassing token generation. Studies have shown that intermediate
reasoning steps can be recovered from hidden representations (Yang et al., [2024) and that models may em-
ploy latent processes distinct from their generated text (Turpin et al.l 2024). |Zhu et al.| (2025c) categorize
latent-space methods into activation-based approaches that expand computational depth through repeated
layer processing, hidden state-based methods that maintain compressed memory states, and diffusion-based
approaches enabling iterative refinement.

Chain of Continuous Thought (Coconut). Prior work has explored augmenting LLMs with special
tokens that enable additional hidden-state computation, such as learnable pause tokens (Goyal et al., 2023))
and filler tokens (Pfau et all [2024). However, these approaches require training and still operate through
the token interface. [Hao et al| (2025)) introduced CocoNUT (Chain of Continuous Thought), which enables
reasoning entirely in continuous latent space. Rather than generating intermediate tokens, COCONUT feeds
the model’s last hidden state back as the next input embedding. Formally, given an initial hidden state
hg, the model iteratively computes hy;; = fy(h;) where f5 : R? — R? represents a forward pass through
the transformer. This formulation enables reasoning without intermediate tokenization, achieving strong
performance on tasks requiring search and planning.

Analysis of COCONUT reveals structured latent dynamics: hidden states exhibit exploration phases with
rapid movement through representation space, followed by convergence phases as solutions crystallize. The
model learns to maintain stable representations of problem constraints while iteratively refining candidate
solutions. Several methods have built on this foundation, including theoretical frameworks for understanding
reasoning through superposition of computational states (Zhu et al. 2025b|) and demonstrations of parallel
exploration in continuous representations (Gozeten et al., [2025D)).

Our work bridges confidence estimation and latent-space reasoning. We observe that COCONUT’s
continuous states provide a natural substrate for diversification, and injecting controlled noise into the hidden
state trajectory induces branching into alternative reasoning paths. By measuring agreement among these
paths, analogous to how self-consistency measures agreement across sampled token sequences, we obtain
confidence estimates that enable coverage-accuracy tradeoffs. Unlike CoCONUT, which trains models for
latent reasoning, NO1SYCOCONUT operates at inference time to assess confidence in model outputs, requiring
no additional training.

3 NoisyCoconut

The core idea of NOISYCOCONUT is to perturb the hidden states during the continuous hidden state space
process, creating multiple reasoning trajectories that explore different regions of the solution space. Agree-
ment among diverse reasoning paths provides stronger evidence for correctness, and allows for accuracy—
coverage tradeoffs to improve reliability.
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3.1 Noise-Based Path Exploration

The method of No1syCoCONUT is simple—we inject noise into the internal process of an LLM and aggregate
results across multiple paths with different noise injection. We sample a random noise pattern from a
Gaussian distribution and inject it into the last hidden layer of the first forward pass of an LLM to create
multiple reasoning paths from a common initial state. Ideally, the noise should be large enough to induce
meaningful divergences, yet constrained enough to maintain coherent sequences. We hypothesize that this
perturbation creates divergences in the latent space, yielding disparate reasoning chains. If these chains
reach the similar conclusions, this increases our confidence that the model’s prediction is correct.

Let M be a pre-trained language model with hidden dimension d. For input query ¢ € Q, let hy = ¢(q) € R?
denote the initial hidden state from the first forward pass. The NOIsYCOCONUT process evolves as:

hipy = fo(hy +m), me ~N(0,0714) (1)
where {n;} are independent and the noise scale decays exponentially:

o =ope ™M, 09, A >0 (2)

We adapt the noise based on trajectory properties. Let u; denote the exponentially-weighted moving average
of the hidden state norm, updated as:

pe = ope—1 + (1 = a)l[hefl2, € (0,1) (3)
Thus, the adaptive noise scale is:
h
op = O_Oe—)\t i H tHQ (4)
1243

3.2 Path Diversity

To ensure effective exploration of the solution space, we require sequences that are sufficiently disparate.
Our goal is to produce perturbations that result in distinct paths rather than minor variations of the same
solution strategy.

For K paths {h(()z;)T}iK:l, we define pairwise trajectory diversity as:

T-1
2 1 i -
Dk = m Z T Z ||h£ ) - hgj)||2 (5)
1<i<j<K = t=0

The expected diversity scales with noise: E[Dk] = Q(0¢vdT) under independent path divergence.

3.3 Aggregating Outputs

Each of the K generated paths yields an output, which we denote as {y(i)}fil € Y. To produce the consensus
output, we aggregate these generated outputs to either produce a consensus output or abstain (denoted as
1). We choose a majority voting strategy by selecting the output that appears most frequently among the
K generated paths, treating each path equally regardless of its generation process or characteristics:

K

. K
ot 39t e Y st {y® =} > =
g = 2H =5 (6)

1 otherwise
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While Equation |§| defines the general selection criteria for any K, for our experimental analysis (where
K = 5), we specifically categorize the consensus patterns into mutually exclusive outcomes to diagnose
reliability based on the minimum number of paths that must agree for the system to produce an answer:

o Unanimous (5/5): All five paths converge to the exact same answer.
o Strong Majority (4/5): Four paths agree on an answer, while one diverges.
o Moderate Majority (3/5): Three paths agree on an answer.

o Minimal Plurality (2/5): Two paths agree on an answer, while the other three are distinct (e.g.,
A, A B, C, D).

These categories allow us to map the latent stability of the model to the correctness of the final output in
our experiments, and would provide an accuracy—coverage tradeoff in a deployed system. In cases where no
answer appears on more than two paths, the system will always abstainﬂ

4 Evaluation and Results

To understand the coverage—accuracy tradeoffs enabled by NoisyCocoNUT, we conduct a systematic eval-
uation across five language models and three benchmarks. describes our experimental setup,
including model selection, benchmarks, and implementation details. We then validate a core assumption of
our method by characterizing the noise-accuracy relationship as the noise scale varies (Section 4.2)). [Sec-|
tion 4.3| presents our main results, analyzing how agreement patterns among diverse reasoning paths correlate
with accuracy. Our findings show that path agreement in latent space provides a strong signal for prediction
reliability. Unanimous agreement among five noise-perturbed reasoning paths reduces error rates from 40—
70% to below 15%, enabling models to achieve over 95% accuracy on mathematical reasoning benchmarks
when selectively abstaining on low-confidence predictions.

4.1 Experimental Setup

We selected representative open-source language models of similar parameter scales to evaluate the effective-
ness of NO1IsYCOCONUT across different architectures and training paradigms. The selection includes a mix
of instruction-tuned models, base models, and a specialized distilled reasoning model to assess performance
across different model optimization approaches.

Table 1: Language models used in evaluation

Model Parameters Type
Qwen2.5-7B-Instruct 7B Instruction-tuned
Llama-3.1-8B-Instruct 8B Instruction-tuned
Mixtral-8B-Instruct-v0.1 8B Instruction-tuned
gpt-oss-20B 20B Foundation model
DeepSeek-R1-Distill-Qwen-7B 7B Distilled reasoning

summarizes the models tested. Qwen2.5-7B-Instruct (Qwen Team) 2024]) is a recent instruction-tuned
model from the Qwen family, known for strong reasoning capabilities despite its moderate size. Llama-
3.1-8B-Instruct (Grattafiori et al., 2024) is one of Meta’s smaller, instruction-tuned variants in the Llama
series, widely used as a foundation for many applications. Mixtral-8B-Instruct-v0.1 (Jiang et al., [2024)
provides another instruction-tuned variant, optimized specifically for following complex instructions with
enhanced reasoning capabilities. gpt-o0ss-20B (OpenAll [2025) is an open-weights model that offers strong

1 Although one can imagine future work that attempts to find the most likely answer even with no explicit agreement or that
derives more information from the different paths by considering token probabilities or other factors, we do not explore that in
this work, but keep things simple by just counting outcomes.
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general-purpose language abilities. Finally, DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AlL |2025) is a special-
ized distilled reasoning model that combines elements from both DeepSeek and Qwen architectures, where
knowledge distillation techniques were specifically employed to enhance reasoning capabilities.

While our NoisyCoCONUT implementation works directly with standard architectures (Qwen-2.5-7B-
Instruct, DeepSeek-R1-Distill-Qwen-7B), we observed that gpt-o0ss-20B produced degenerate outputs when
using the default final-layer hidden state feedback mechanism, regardless of noise level. Thus, we use h(!)
(first layer) instead of h(®) (final layer) for the continuous sequence. This modification enables functional
operation, though it reduces the effective reasoning depth per latent pass. All other models use the standard
final-layer configuration.

Benchmarks. To evaluate both mathematical reasoning and broader knowledge capabilities, we selected
three established benchmarks. GSM8K (Cobbe et al., [2021) provides a challenging grade-school math word
problem benchmark consisting of 1000 linguistically diverse problems requiring multi-step reasoning. GSM-
Symbolic (Mirzadeh et al., |2025|) represents a variant of GSM8K that replaces natural language descriptions
with more symbolic representations of the same underlying problems, testing how well models handle dif-
ferent formulations of equivalent mathematical concepts. The MMLU (Massive Multitask Language Under-
standing) (Hendrycks et all 2021)) benchmark offers a comprehensive assessment covering 57 subjects across
STEM, humanities, social sciences, and more, testing both factual knowledge and reasoning abilities. For
each benchmark, we randomly sampled 1000 questions to ensure sufficient statistical power while maintaining
computational feasibility.

4.2 \Validating Impact of Noise

A fundamental assumption of NO1sYCOCONUT is that injecting noise into hidden states produces controlled
and predictable degradation in model performance. To validate this assumption and inform our choice of
noise level, we systematically measured accuracy across noise scales o € [0,50], where o represents the ratio
of noise norm to hidden state norm (||e||2 = o|/hl|2).

summarizes the results, showing a characteristic sigmoid decay pattern across all models, with
fits achieving R? > 0.94. Accuracy remains relatively stable at low noise levels before undergoing steep
degradation, eventually plateauing near random performance. This consistent pattern across architectures
confirms that noise injection produces predictable, exploitable effects.

Based on these results, we selected oy = 0.2 (marked by the vertical dotted line in as the noise
level for our main experiments. This value lies in the early portion of the degradation curve, where accuracy
remains within 2-5% of unperturbed performance. This choice introduces sufficient perturbation to gener-
ate meaningful diversity in generated paths, while avoiding excessive degradation that would compromise
individual path quality. Further analysis of this trade-off is provided in Appendix

4.3 Results and Analysis

We implemented NO1SYCOCONUT as described in with several key hyperparameters selected to
balance performance and computational cost.

For our main experiments, we use five reasoning paths per problem, which our ablation studies
show provides a good efficiency-performance tradeoff. As mentioned earlier, based on our experiments in
we set the noise scale to og = 0.2. Noise injections were performed at the first hidden state after
the first forward pass. Early injection enables greater exploration of the reasoning space and aligns with our
goal of generating diverse reasoning trajectories from the outset. We set a maximum of eight latent thinking
steps élo allow sufficient reasoning depth, following the same constraint established in the original CocoNUT
work

For each model and benchmark combination, we first establish a baseline by evaluating the model using
standard greedy decoding without inference-time modifications. We then apply Noisy COCONUT, generating

2Note that these component-wise ablations do not capture interaction effects between hyperparameters.
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Figure 3: Coverage-accuracy trade-off across confidence thresholds. Solid lines denote accuracy and dashed
lines denote coverage. As the agreement threshold increases from baseline to unanimous, accuracy improves
while coverage decreases correspondingly.

five (K = 5) distinct reasoning paths for each test example by injecting controlled noise into the hidden
states. We analyze the generated paths using the aggregation outcomes defined in Section 3] While we track
distinct outcomes such as “Split Votes” for error analysis, our primary performance evaluation focuses on the
cumulative confidence threshold. We perform this generation step once per test example, and then analyze
the impact of applying the different aggregation functions to this static set of outputs. This allows us to
observe how the consensus output g, which is either a specific answer ¢* or an abstention 1, changes as a
function of the strictness of the agreement threshold.

Figure [3| illustrates the fundamental trade-off enabled by our method. We observe a consistent relationship
between the agreement threshold and accuracy. As the threshold increases from a plurality (> 2/5 agree-
ment) through majority requirements (> 3/5) to unanimous agreement (> 5/5), the reliability improves
significantly.

Across the five language models and three benchmarks, the path agreement confidence measure enabled by
No1syCOCONUT provides a trade-off between coverage (the proportion of questions for which the system
provides an answer) and accuracy (the correctness of answers output when the model does not abstain).

We observe a consistent relationship between agreement threshold and accuracy, with performance improving
as the threshold increases from the baseline (single-path inference) through > 2, > 3, > 4 and unanimous
agreement thresholds.

Our results demonstrate that NOo1syCocoNUT offers a mechanism for enhancing predictive accuracy through
selective abstention on low-confidence predictions. The magnitude of improvement on mathematical bench-
marks is particularly noteworthy. On GSMS8K, no baseline model exceeds 75% accuracy, yet at the unanimous
(5/5) agreement threshold, all models exceed 90% accuracy, with coverage ranging from 31.1% (Llama-
3.1-8B) to 53.2% (gpt-0ss-20B). The largest accuracy improvement is observed for DeepSeek-Qwen, which
improves from 62.0% accuracy at the baseline to 95.2% at unanimous agreement, while maintaining 31.4%
coverage. Similar patterns emerge across all evaluated models, suggesting that path agreement constitutes
an effective method for measuring prediction reliability.

Accuracy Improvement Analysis. shows the accuracy gains achieved at each confidence
threshold relative to baseline performance. The heatmap reveals consistent improvements across all model—-
benchmark combinations, with gains ranging from approximately 10 percentage points at the lowest agree-
ment threshold to over 40 percentage points with unanimous agreement for certain models. Models with
lower baseline accuracy exhibit the largest absolute improvements, achieving near-parity with stronger mod-
els when predictions are restricted to high-agreement instances. This finding suggests that Noi1syCoCcoNUT
can serve as an equalizing mechanism, enabling weaker models to approach the reliability of stronger counter-
parts on the subset of questions where they exhibit high confidence. The continuous increase in improvement
magnitude from further corroborates the effectiveness of agreement level as a confidence signal.
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Figure 4: Cumulative accuracy improvement over baseline (in percentage points) at each confidence thresh-
old. Higher agreement requirements yield larger improvements across all models and benchmarks. Values
represent the accuracy gain when the model provides an answer at that confidence threshold.
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gpt-oss +13.9 +16.3 =191

GSMS8K GSM-Symbolic MMLU
2/5 3/5 5/5 2/5 3/5 4/5 5/5 2/5 3/5 4/5
Qwen 38% 50% 33% 9% 3% 83% 48% 36% 13%
Llama 31% 6% 39% 35% 11% 8% 61% 51% - 14%
Mixtral 33% % 46% 30% 11% 5% 41%

gpt-oss 50% 28% 5% 42% - 60% 43% 28% 11%

- - o o

Figure 5: Error rates at each agreement level across models and benchmarks. Lower agreement levels (2/5,
3/5) consistently exhibit higher error rates (shown in red/orange), while high-agreement predictions (4/5,
5/5) achieve substantially lower error rates (shown in green). This confirms that path disagreement effectively
identifies unreliable predictions suitable for abstention.
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Error Distribution. [Figure 5presents another perspective through examination of error rates stratified by
agreement level. Test examples where there is low path agreement exhibit substantially elevated error rates,
typically ranging from 40% to 70%, whereas high-agreement predictions demonstrate markedly lower error
rates, generally below 15% for instances of unanimous agreement. These results are remarkably consistent
across the five tested models and three benchmarks.

This concentration of errors within low-agreement categories provides direct empirical validation for the
assumption underlying NoisyCocCONUT: path disagreement serves as a reliable indicator of prediction un-
certainty, effectively identifying instances where model outputs are unreliable and where abstention or addi-
tional verification would be warranted. The consistency of this pattern across diverse models and benchmarks
underscores the robustness of agreement-based confidence estimation as a general-purpose mechanism for
uncertainty quantification in language model inference.

5 Discussion

By injecting controlled noise into hidden states rather than operating at the token level, NoisyCocoNuUT
provides an inference-time method that introduces an accuracy—coverage tradeoff which can be used to
enhance LLM reliability without any need for retraining. The consistent relationship between path agreement
and accuracy suggests that uncertainty in LLMs may be visible in latent space. When noise perturbations
lead to divergent reasoning paths, this likely indicates the model is operating in a region of representational
instability where small changes in hidden states lead to substantially different outputs. Conversely, when
perturbed paths converge to the same answer, the model appears to be in a stable attractor basin where
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the solution is robust to perturbation. This interpretation aligns with recent theoretical work analyzing how
reasoning emerges through superposition of computational states in continuous representations (Zhu et al.
2025a).

The sigmoid degradation pattern observed in Figure [2, with fits achieving R? > 0.94 across all models,
suggests a phase transition in model behavior. At low noise levels, the model’s reasoning process is robust
enough to absorb perturbations without changing outputs. Beyond a critical threshold, perturbations over-
whelm the signal, causing rapid degradation to near-random performance. The consistency of this pattern
across architectures, from instruction-tuned models to distilled reasoning models, indicates this may be a
fundamental property of how transformer representations encode reasoning processes rather than an artifact
of specific training procedures.

Our finding that weaker baseline models exhibit larger absolute improvements under high-agreement filtering
merits further investigation. Omne hypothesis is that weaker models possess latent capabilities that are
inconsistently activated during standard inference. No1sYCoCONUT may function as a capability elicitation
mechanism, identifying instances where the model “knows” the answer but requires favorable initialization
to reliably surface it. This speculation connects to work on latent knowledge in language models (Christiano
et al., [2021)) and suggests that agreement-based filtering could complement techniques designed to extract
reliable knowledge from uncertain models.

5.1 Limitations

Generalizability. Noi1syCoOCONUT requires the ability to access and perturb internal model states, limit-
ing applicability to open-weight models or settings with sufficient API access. The method cannot currently
be applied to closed models accessible only through text-based APIs. As latent-space methods gain promi-
nence, API designs that expose intermediate representations could enable broader application of techniques
like ours (Gao et al.| [2023)).

Our method’s effectiveness varies across architectures. Most notably, gpt-oss-20B required using first-layer
hidden states rather than final-layer states for the continuous feedback loop, as the default configuration
produced degenerate outputs. This sensitivity suggests that the structure of hidden representations differs
meaningfully across model families, and optimal noise injection strategies may need architecture-specific
tuning. Understanding why certain architectures respond differently to latent perturbation remains an open
question.

Discrete Responses. Our evaluation focused on mathematical reasoning and knowledge-intensive tasks
where the set of responses is small (multiple-choice questions) and agreement is well-defined. Extending
No1sYCOCONUT to open-ended generation tasks where “agreement” requires semantic similarity rather than
exact matching poses a difficult, but we think not impenetrable, challenge. Integration with semantic
entropy methods (Kuhn et al.| [2023} [Farquhar et all [2024) could enable agreement-based confidence for
tasks like summarization or translation, where multiple valid outputs exist. Additionally, exploring whether
latent perturbation can improve factuality in long-form generation, where hallucination risks compound,
represents a practically important direction.

Design space exploration. While we identified og = 0.2 as effective across our experiments, the optimal
noise scale likely depends on task difficulty, model capacity, and input characteristics. Our current approach
uses fixed hyperparameters, but adaptive noise scaling based on input uncertainty or model confidence could
improve robustness. The exponentially weighted moving average adaptation in Equation [4 represents a first
step, but more sophisticated approaches drawing on adaptive gradient methods (Kingma & Baj [2015) or
learned noise schedules (Ho et al., 2020) may prove beneficial.

Our evaluation was limited to consensus by voting as the aggregation strategy, where outputs are compared
via exact match. The vast space of possible aggregation strategies remains largely unexplored. More sophisti-
cated approaches such as learned aggregation functions that consider output semantics, confidence-weighted
schemes based on token-level probabilities, or methods that leverage partial agreement structure may yield
improved performance. Additionally, our exact-match criterion for agreement is well-suited to mathematical
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reasoning tasks with unique correct answers but may be overly restrictive for domains where semantically
equivalent but lexically distinct outputs are valid. Integrating semantic similarity measures (Kuhn et al.
2023) or embedding-based comparison into the aggregation step could extend NOIsYCOCONUT to open-
ended generation tasks where multiple valid phrasings exist. Making the aggregation adaptive would also
offer additional opportunities, using additional executions only when necessary to reduce cost, and providing
finer grained methods for determining when to abstain, when to invest more compute, and when there is
sufficient confidence to produce a reliable output.

Cost. A straightforward implementation of NO1SYCOCONUT requires computational overhead to generat-
ing K paths that scales approximately linearly with K. While we believe K = 5 is already a reasonable cost
for improved reliability in many settings, this may be prohibitively expensive for many applications where
inference costs already dominate.

Current No1SYCOCONUT generates paths independently, missing opportunities for computation sharing.
Speculative decoding techniques (Leviathan et al.l 2023} |Chen et al., |2023a)) demonstrate that parallel ver-
ification can be substantially cheaper than parallel generation. Analogously, architectures that share early
computation across paths while branching only at key decision points could reduce overhead while maintain-
ing diversity. Tree-structured approaches (Yao et all|2023) provide one template, though adapting these to
continuous latent space rather than discrete token space requires further development.

Techniques for early termination when paths show rapid convergence could mitigate this cost. It may also
be the case that multiple executions of a smaller model that can be run locally within the NoisyCocoNuT
framework can be used to provide more reliable results for lower cost than would be required for a single
execution of an expensive proprietary model.

Controlling the computational budget allocated to reasoning is an active research area. Length Controlled
Policy Optimization (LCPO) enables precise control over reasoning length, allowing models to generate
outputs adhering to user-specified length constraints (Aggarwal & Madaan, 2025)). Similarly, the simple
test-time scaling (s1) approach introduces “budget forcing” as a technique to control test-time computation
by either terminating the model’s thinking process early or extending it to encourage further reasoning
(Muennighoff et al.| [2025). Both approaches reveal that models can adapt their reasoning strategies based
on available computational resources. Combining these insights with NoIsyCoCONUT suggests an adaptive
approach: allocate more reasoning paths to instances showing early signs of disagreement while terminat-
ing early when paths rapidly converge. Such selective computation could maintain reliability gains while
substantially reducing average-case overhead.

5.2 Future Directions

Integration with Learned Latent Reasoning. One promising direction involves architectures specif-
ically designed to leverage the latent space directly for extended reasoning. Recent work has introduced
recurrent latent reasoning architectures that enable scaling test-time computation through iterative pro-
cessing in latent space (Tan et all 2025 Orlickil |2025; | Xu et al.l [2025a)). These approaches employ core
recurrent blocks that can be executed multiple times before producing a final output, allowing models to per-
form more computation without generating additional tokens. Since these architectures explicitly optimize
representations for iterative reasoning, they may exhibit even more structured uncertainty geometry that
No1sYCOCONUT could exploit. Investigating whether our agreement signal remains predictive—or becomes
even more informative—when applied to such architectures represents a natural extension.

Language Mixing and Code-Switching Phenomena. During our experiments with varying noise
thresholds, we observed an unexpected phenomenon: at certain perturbation levels, models exhibited spon-
taneous language mixing, producing reasoning traces that alternated between English and other languages
(e.g., Chinese) despite receiving English-only prompts (Appendix . Intriguingly, these code-switched out-
puts sometimes yielded correct answers where monolingual reasoning failed, suggesting that language mixing
may activate alternative reasoning pathways or access knowledge encoded differently across linguistic sub-
spaces. This observation aligns with recent systematic studies by [Wang et al.[ (2025]), who demonstrate that
language mixing in reasoning language models reflects latent processing preferences and that forcing models
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to reason in specific scripts can notably improve accuracy. The broader phenomenon connects to emerging
research on latent chain-of-thought reasoning, which decouples reasoning from explicit language generation
(Chen et al.l [2025), and work showing that activation-space perturbations can encode complex reasoning
patterns (Zhang & Viteri, |2025)). However, we did not pursue this direction further, as we lacked a principled
mechanism to predict when code-switching would be beneficial or to reliably induce it. Developing meth-
ods to detect instances where language mixing improves reasoning—and techniques to controllably trigger
such behavior—represents a promising avenue for future work, potentially combining our agreement-based
confidence estimation with script-aware decoding strategies.

Theoretical Foundations. The empirical success of agreement-based confidence estimation invites theo-
retical investigation. Why should path diversity in latent space correlate with correctness? Recent work by
Zhu et al.| (2025a)) provides one lens through their analysis of reasoning via superposition, suggesting that
correct solutions may correspond to more stable superposition states. |Gozeten et al.| (2025a) demonstrate
that continuous representations enable parallel exploration of solution paths, which may explain why noise
injection effectively diversifies reasoning. Developing a formal framework connecting latent geometry, per-
turbation stability, and output correctness could guide principled improvements to noise injection strategies
and provide guarantees on when agreement-based confidence is reliable.
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A Main Results

Question Count Correct No Answer Incorrect Accuracy (%)

o Baseline (No majority) 1000 639 0 261 71.00
I Minimal Majority (2/5) 54 23 0 31 42.59
o Moderate Majority (3/5) 122 76 0 46 62.30
2 Other 31 2 0 29 6.45
C Split Vote (2/2) 22 12 0 10 54.55
Strong Majority (4/5) 157 122 0 35 77.71
Unanimous (5/5) 514 469 0 45 91.25
n Baseline (No majority) 1000 507 0 293 63.38

0
~  Minimal Majority (2/5) 69 30 0 39 43.48
% Moderate Majority (3/5) 159 109 0 50 68.55
g Other 31 1 0 30 3.23
- Split Vote (2/2) 34 10 0 24 29.41
Strong Majority (4/5) 196 155 0 41 79.08
Unanimous (5/5) 311 291 0 20 93.57
n Baseline (No majority) 1000 695 0 305 69.50

I~
& Minimal Majority (2/5) 58 26 0 32 44.83
T:E Moderate Majority (3/5) 135 90 0 45 66.67
% Other 35 3 0 32 8.57
= Split Vote (2/2) 27 14 0 13 51.85
Strong Majority (4/5) 175 142 0 33 81.14
Unanimous (5/5) 470 437 0 33 92.98
Baseline (No majority) 1000 735 0 265 73.50

M
& Minimal Majority (2/5) 50 25 0 25 50.00
2 Moderate Majority (3/5) 110 79 0 31 71.82
é Other 28 4 0 24 14.29
& Split Vote (2/2) 20 11 0 9 55.00
Strong Majority (4/5) 160 135 0 25 84.38
Unanimous (5/5) 532 506 0 26 95.11
= Baseline (No majority) 1000 496 0 304 62.00
&  Minimal Majority (2/5) 142 37 0 105 26.06
%  Moderate Majority (3/5) 125 86 0 39 68.80
% Other 66 13 0 53 19.70
5 Split Vote (2/2) 43 10 0 33 23.26
A Strong Majority (4/5) 110 92 0 18 83.64
Unanimous (5/5) 314 299 0 15 95.22

Table 2: GSM8K Results.
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Question Count Correct No Answer Incorrect Accuracy (%)

o Baseline (No majority) 1000 666 0 234 74.00
I Minimal Majority (2/5) 82 41 0 41 50.00
o Moderate Majority (3/5) 141 94 0 47 66.67
g Other 40 3 0 37 7.50
c Split Vote (2/2) 31 10 0 21 32.26
Strong Majority (4/5) 170 155 0 15 91.18
Unanimous (5/5) 436 421 0 15 96.56
n Baseline (No majority) 1000 657 0 343 65.70

0
= Minimal Majority (2/5) 104 64 0 40 61.54
C;-; Moderate Majority (3/5) 237 155 0 82 65.40
% Other 41 10 0 31 24.39
- Split Vote (2/2) 42 13 0 29 30.95
Strong Majority (4/5) 273 244 0 29 89.38
Unanimous (5/5) 303 279 0 24 92.08
n Baseline (No majority) 1000 720 0 280 72.00

r~
& Minimal Majority (2/5) 70 38 0 32 54.29
© Moderate Majority (3/5) 165 115 0 50 69.70
v Other 42 5 0 37 11.90
S Split Vote (2/2) 33 12 0 21 36.36
Strong Majority (4/5) 210 188 0 22 89.52
Unanimous (5/5) 380 362 0 18 95.26
Baseline (No majority) 1000 760 0 240 76.00

M
8 Minimal Majority (2/5) 60 35 0 25 58.33
2 Moderate Majority (3/5) 130 98 0 32 75.38
..é Other 35 7 0 28 20.00
& Split Vote (2/2) 25 12 0 13 48.00
Strong Majority (4/5) 190 175 0 15 92.11
Unanimous (5/5) 460 444 0 16 96.52
¢ Baseline (No majority) 1000 645 0 355 64.50
&  Minimal Majority (2/5) 155 58 0 97 37.42
%  Moderate Majority (3/5) 145 102 0 43 70.34
% Other 72 18 0 54 25.00
2 Split Vote (2/2) 48 14 0 34 29.17
A  Strong Majority (4/5) 135 122 0 13 90.37
Unanimous (5/5) 345 333 0 12 96.52

Table 3: GSM-Symbolic Results.
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Question Count Correct No Answer Incorrect Accuracy (%)

o Baseline (No majority) 1000 586 0 314 65.11
I Minimal Majority (2/5) 12 2 0 10 16.67
o Moderate Majority (3/5) 181 94 0 87 51.93
S Split Vote (2/2) 47 10 0 37 21.28
C  Strong Majority (4/5) 205 132 0 73 64.39
Unanimous (5/5) 455 397 0 58 87.25
n Baseline (No majority) 1000 483 0 417 53.67

0
= Minimal Majority (2/5) 41 16 0 25 39.02
% Moderate Majority (3/5) 285 141 0 144 49.47
% Other 1 0 0 1 0.00
- Split Vote (2/2) 102 29 0 73 28.43
Strong Majority (4/5) 228 173 0 55 75.88
Unanimous (5/5) 243 208 0 35 85.60
n Baseline (No majority) 900 429 0 471 47.67

r~
& Minimal Majority (2/5) 27 12 0 15 44.44
© Moderate Majority (3/5) 291 128 0 163 43.99
e Split Vote (2/2) 105 27 0 78 25.71
S Strong Majority (4/5) 246 145 0 101 58.94
Unanimous (5/5) 231 179 0 52 77.49
Baseline (No majority) 1000 368 0 632 36.80

M
& Minimal Majority (2/5) 12 4 0 8 33.33
2 Moderate Majority (3/5) 180 65 0 115 36.11
é Other 6 2 0 4 33.33
& Split Vote (2/2) 52 19 0 33 36.54
Strong Majority (4/5) 220 82 0 138 37.27
Unanimous (5/5) 430 168 0 262 39.07
= Baseline (No majority) 1000 487 0 413 54.11
& Minimal Majority (2/5) 27 8 0 19 20.63
%  Moderate Majority (3/5) 246 99 0 147 40.24
s Other 4 0 0 4 0.00
g Split Vote (2/2) 76 35 0 41 46.05
A Strong Majority (4/5) 226 128 0 98 56.64
Unanimous (5/5) 321 268 0 53 83.49

Table 4: MMLU Results
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B Ablations

To validate our key hyperparameter choices, we conducted ablation studies on the two parameters that fun-
damentally define Noisy Coconut: the noise scale (0p) and the number of reasoning paths (K). Experiments
were conducted on GSM8K using Qwen2.5-7B-Instruct. Table [f] summarizes our findings.

Table 5: Core ablation study on GSM8K (Qwen2.5-7B-Instruct) where number of questions is equal to 1000.
We vary noise scale and path count independently. Baseline uses K=1 with no noise injection.

Configuration Accuracy (%) A
Baseline (K=1, 09=0) 71.0 —
Noise scale (fized K=5):
50=0.0 76.4 +5.4
00=0.2 78.2 172
00=0.5 77.8 +6.8
Path count (fized 09=0.2):
K=1 72.0 +1.0
K=5 (>3/5) 78.2 +7.2
K=10 (>6/10) 80.2 +9.2

Noise scale. We evaluated oy € {0,0.2,0.5} with K'=5 paths. Setting 0o=0 (i.e., multiple paths without
noise injection) yields 76.4% accuracy (45.4% over baseline), demonstrating that diversity alone provides
substantial improvements through majority voting. However, performance peaks at 0p=0.2 with 78.2%
accuracy, indicating that noise injection provides an additional +1.8% gain beyond path diversity alone.
Higher noise scales show logarithmic decay, with 09g=0.5 achieving 77.8% as individual path quality degrades.
We select 0p=0.2 as it achieves the optimal balance between exploration diversity and reasoning coherence.

Number of paths. We evaluated K € {1,5,10} with 0¢p=0.2. Performance scales sublinearly with K,
showing diminishing returns beyond K'=5. While K=10 achieves 2.0 points higher accuracy, it requires 2x
the computational cost. We select K=5 as a practical tradeoff between performance and efficiency.
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C Language Mixing

Input Question

Question ID: 1 Reference Answer: 285

Gabriel is popping popcorn for a snack. As the skillet of kernels heats up, the kernels start popping
faster. 30 pop in the first 20 seconds of cooking, then 2 times that amount in the next 20 seconds. The
kernels increase to 4 times the initial popping rate in the next 20 seconds, but in the final 20 seconds,
the popping slows down to half the rate as the past 20 seconds. After Gabriel takes the skillet off the
heat, a quarter of the number of kernels that popped in the final 20 seconds of cooking also pop from
the residual heat. How many pieces of popcorn does Gabriel have to eat?

Response A: Monolingual (English)

Initial popping rate is 30 kernels in 20 seconds.
In the next 20 seconds, the popping rate is 2 times the initial rate:

2 x 30 = 60 kernels
In the next 20 seconds, the popping rate is 4 times the initial rate:
4 x 30 = 120 kernels

In the final 20 seconds, the popping rate is half of the previous 20 seconds:
1
2 x 60 = 30 kernels

< Error: Should be half of 120, not 60
After taking the skillet off the heat, a quarter of the final 20 seconds’ popping also pops from the
residual heat:

1
1 x 30 = 7.5 kernels
Adding all the popped kernels together:
30 4 60 + 120 + 30 + 7.5 = 247.5 kernels

Since we can’t have half a kernel, we’ll round down to the nearest whole number:

Final Answer: 247 X Incorrect
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BHANNERE?
B, HRTESTHMERIBREN~ESE,

1. B—ME : #5120 %, 30 MEXKTE.
2. BIMER : TR 20 7, BREHERFE MR 2 Z, B 30 x2=60 1
3. B=MER : BETRM 20 7, BREHESE —MEREY 4 &, B 30 x4=120 1%

4. BIUMNEE : &E 20 #, BREHERE=MEM 0.5 &, Bl 120 x 0.5=60 1
Correct: Half of 120

WE, BRTHEERRE 20 DREREPR, BFHERRAE, TIMNEFHN
BREHE, XERRE 20 WEREHENTSZ—, B 60x 1 =15 1%
&fE, HIVEFEMREREKIEHEMEE:

30 + 60 + 120 + 60 + 15 = 285

Fitt, Gabriel B 285 TERIERILIZ, FRLL, &FERZ:

Final answer: 285  Correct,

Translation of Code-Switched Response

How many pieces of popcorn are there?
First, let’s calculate the popping rate for each step:

1. First step: the first 20 seconds, 30 pieces of popcorn.

2. Second step: In the next 20 seconds, the number of popped kernels is 2 times the amount from the
first step, i.e. 30 x 2 = 60 kernels.

3. Third step: In the next 20 seconds, the number of popped kernels is 4 times the amount from the
first step, i.e. 30 x 4 = 120 kernels.

4. Fourth step: In the last 20 seconds, the number of popped kernels is 0.5 times the amount from
the third step, i.e. 120 x 0.5 = 60 kernels.

Now, we calculate the number of popped kernels in the last 20 seconds’ popping from the residual heat.
This is a quarter of the final 20 seconds’ popping, meaning that 60 x }1 = 15 kernels.
Finally, we sum up all the numbers of popped kernels from every step:

30 + 60 + 120 + 60 + 15 = 285

Thus, Gabriel has 285 pieces of popcorn that he can eat. Therefore, the answer is:

Final answer: 285  Correct
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Figure: Comparison of model outputs demonstrating noise-induced code-switching behavior. At
certain noise thresholds, the model exhibits language mizing (Chinese-English) which correlates
with improved reasoning accuracy on this mathematical task. Yellow highlighting indicates
Chinese text segments in the code-switched response.
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