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ABSTRACT

Few-shot learning or meta-learning leverages the data scarcity problem1

in machine learning. Traditionally, training data requires a multitude2

of samples and labeling for supervised learning. To address this issue,3

we propose a one-shot unsupervised meta-learning to learn the latent4

representation of the training samples. We use augmented samples as the5

query set during the training phase of the unsupervised meta-learning.6

A temperature-scaled cross-entropy loss is used in the inner loop of7

meta-learning to prevent overfitting during unsupervised learning. The8

learned parameters from this step are applied to the targeted supervised9

meta-learning in a transfer-learning fashion for initialization and fast10

adaptation with improved accuracy. The proposed method is model ag-11

nostic and can aid any meta-learning model to improve accuracy. We use12

model agnostic meta-learning (MAML) and relation network (RN) on13

Omniglot and mini-Imagenet datasets to demonstrate the performance of14

the proposed method. Furthermore, a meta-learning model with the pro-15

posed initialization can achieve satisfactory accuracy with significantly16

fewer training samples.17

1 INTRODUCTION18

Meta-learning is a relatively new branch of machine learning that deals with learning to learn problems19

? with only a few samples. Traditional machine learning algorithms require massive datasets to reach20

their peak performance. Nevertheless, these algorithms suffer if the test domain slightly deviates21

from the training domain. Furthermore, if a new class is introduced, it requires training from scratch22

again. On the other hand, human learning is far more advanced as they can learn from only a few23

samples and distinguish a new class without seeing many samples. It is because humans use their24

previous memory when learning a new task. Meta-learning mimics the process of human learning25

and tries to bridge the gap between machine learning and human learning ?.26

Almost all meta-learning algorithms ???? deal with a task or episode generation during the training27

phase to learn to use this knowledge during the testing phase for being able to distinguish from a few28

samples. This phenomenon is defined as learning to learn, and both the training and testing phase29

have samples that are called support and query sets ?, respectively. The support set is used for learning30

the class representation, and the query set is applied for inference. All meta-learning algorithms are31

built on this fundamental strategy. Support and query sets are generated in batches (also known as32

episodes in meta-learning lingo) by drawing samples from the training data. A One hot encoded33

pseudo labels are added to the classes in the episodes. Exact class labelling is not essential at this34

stage because, during the training time, meta-learning algorithms only try to learn to perform testing35

on some new classes never seen before. This motivates our study to use random training samples for36

support sets from the pool of the training data and generate query sets using the augmented training37

samples. This pseudo-labeling helps the classifier learn some feature representations from the dataset38

without going through the time-consuming manual labeling process.39

Our proposed method uses specific image augmentation techniques to generate the training episodes.40

First, we lose all the labels and class information from our data pool. Then we randomly draw41

samples from the pool to generate our support sets and do image augmentation on the support sets42

to generate our query sets. Technically, it works for datasets like Omniglot ? and mini-Imagenet ?43
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or larger datasets because they contain a multitude of samples and classes, and the probability of44

drawing from the same class, is much lower.45

Our method contains two steps of training. First, the fully unsupervised training to learn the latent46

representations of the dataset. We use the labeled test sets to observe the performance during this time.47

The meta-learning algorithm achieves some accuracy during unsupervised representation learning,48

although not as good as supervised learning. Later, these learned parameters are used to initialize49

the final supervised meta-learning and to boost the performance. Therefore, in the second step of50

meta-learning, we initialize with the learned parameters from the unsupervised learning model instead51

of random initialization. Thus, the whole process becomes a semi-supervised meta-learning ?.52

For an effective augmentation technique, we followed the suggestion from the SimCLR ? with a53

few additional augmentations to increase the effectiveness. Our proposed method is model agnostic54

and can be applied to any meta-learning model. We used two prominent meta-learning architectures,55

model agnostic meta-learning (MAML) ? and relation network (RN) ?, to test our hypothesis. We56

also modified a part of the MAML network architecture by adding temperature ? to the SoftMax57

activation function in the inner loop of MAML to reduce overfitting during the unsupervised training.58

We did not modify the RN architecture but used our hyperparameters and architecture to obtain higher59

accuracy than reported in the original paper. Our proposed method can enhance the accuracy of any60

state-of-the-art meta-learning model, as proved in the experiments of this study.61

Our contributions to this work are listed below:62

• We proposed a more effective data augmentation technique to generate query sets by63

combining techniques from SimCLR and our additional steps.64

• We used a temperature-scaled SoftMax in the inner steps of MAML to reduce overfitting65

during meta-training. Our implementation of RN surpasses the accuracy of the original RN.66

• We replaced random initialization of meta-learning with unsupervised representation learn-67

ing for inherent feature learning that does not require extensive data labeling. After trans-68

ferring the parameters from unsupervised learning, we applied supervised meta-learning to69

achieve improved accuracy.70

• We showed that our two steps meta-learning is model agnostic and improves the accuracy71

of any existing meta-learning model. We also experimented with partially labeled data and72

found that the classifier loses insignificant accuracy when trained with our method.73

2 RELATED WORK74

Meta-learning ? has many practical applications, such as self-driving cars, face recognition, and75

computer vision. Although the core motivation of meta-learning is to classify with a few samples,76

training the model still requires a lot of labeled samples. This popularized the use of data augmentation77

in meta-learning. Yao et al. ? proposed two task augmentation methods, called MetaMix and channel78

shuffle. MetaMix linearly combines features and labels of samples from both the support and query79

sets. Channel shuffle randomly replaces a subset of their channels with the corresponding ones from a80

different class. Experimental analysis showed that their method effectively reduces overfitting in meta-81

learning. Rajendran et al. ? introduced an information-theoretic framework of meta-augmentation82

for better generalization by adding randomness, which discourages the base learner and model from83

learning unimportant features. Nevertheless, all these methods are supervised learning and still need84

the labeling of a large number of samples.85

Hsu et al. proposed one of the earliest unsupervised meta-learning algorithm called CACTUs ? which86

assigns pseudo level to the remaining unlabelled datasets using a nearest neighbor approach. It is an87

iterative process where the pseudo-labels are incorporated into the clustering and adaptation steps88

leading to an improved accuracy. Nevertheless, the proposed method requires additional steps such as89

embedding learning algorithm and k-means clustering ? for the purpose of pseudo label generation.90

These extra steps make the algorithm computationally expensive. Moreover, the authors did not91

extend the idea to semi-supervised learning. Therefore, the method cannot match the accuracy of a92

supervised learning.93

Khodadadeh et al. ? proposed UMTRA, an algorithm that performs unsupervised, model-agnostic94

meta-learning for classification tasks. They used augmented query samples for the unsupervised95
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classification of MAML. However, their proposed method is fully unsupervised and ultimately96

achieves much lower accuracy than supervised meta-learning. Chen et al. ? proposed SimCLR97

that investigates the most effective data augmentation for semi-supervised learning. They used98

a normalized temperature-scaled cross-entropy loss to achieve better generalization during the99

unsupervised representation learning. The two aforementioned pieces of research heavily influenced100

our proposed work to develop a semi-supervised meta-learning that utilizes the power of unsupervised101

representation learning and meta-transfer learning.102

There are several state-of-the-art meta-learning models popular in the research community. MAML103

? is one of the pioneers of deep meta-learning models. MAML tries to find the optimal parameters104

over the task embeddings for fast adaptation. The family of MAML contains several popular and105

almost similar classifiers, namely, Reptile ?, Meta-SGD ?, LEO ?. Another popular model is called106

Prototypical network ?, which learns a metric space in which classification can be performed by107

computing distances to prototype representations of each class. This network obtains higher accuracy108

than many of its predecessors. RN ? came out right after the Prototypical network, which surpassed109

the accuracy of the Prototypical network in most cases. Our study obtained promising outputs using110

a modified MAML for unsupervised learning and additionally uses RN to show its model-agnostic111

ability.112

3 PROPOSED METHOD113

3.1 STEP 1: UNSUPERVISED LEARNING114

Data Preparation: To incorporate representation learning with meta-learning, we first take the115

entire or partial dataset without any label information. An effective way to learn the representation116

is to use both the labeled and unlabelled data. This ensures that the classifiers learn all the inherent117

representation in a semi-supervised way.118

First, we draw the samples xi,j from the data pool of XN where i, j are the number of shots and the119

number of ways, respectively, considered in the unsupervised learning and N is the total number120

of unlabelled samples. We only design n-way (n is the number of ways or classes), 1-shot support121

sets because each sample in the support set is drawn randomly, and we cannot randomly add more122

same-class support samples to that set. However, we can apply data augmentation for the query set123

to generate multiple query samples of the same class. But is generating more query samples more124

effective? We answer that question in the later part of this research.125

The exact labeling in meta-training episodes is not crucial. Therefore, after generating the training126

episodes, we randomly assign labeled values yi,j to each class of the support sets, where j is the127

number of ways generated as {c0, c1, ..., cj−1} and one-hot encoded later. We initialize the random128

initialization parameter for the unsupervised classifier, θ. We randomly draw the support sets for each129

task episode and generate the randomly generated support labels. To generate the query set, we pass130

each sample of the support set through a data augmentation function f(A) and similarly generate the131

pseudo labels. Ultimately, we use the regular supervised meta-learning learning test setup to examine132

the classifier’s performance.133

Deep Dive into Support-Query Set Generation: We intuitively know that when we draw a few134

samples from a large pool of data, more than one sample belonging to the same class is low. Therefore,135

we must ensure that n << c where n is the number of ways (or the drawn samples since we only136

apply 1-shot learning) and c is the total number of classes. Nevertheless, we need to mathematically137

compute the probability of getting unique samples in each class for the datasets used in this study.138

We use two different datasets, Omniglot and mini-Imagenet. The prior one has less number of139

samples in each class than the total number of classes. Therefore, it is most likely that all drawn140

samples will originate from different classes. The latter has more samples (600) in each class than141

the total number of classes. Therefore, the probability of originating from different classes would be142

slightly lower. Nevertheless, we have an equal number of samples in both datasets, m for each class.143

Now, we can calculate the probability of the samples belonging to different classes as follows:144

P =
c! ·mn(c ·m− n)

(c− n)! · (c ·m)!
(1)
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Using the aforementioned formula, the probabilities of 5-way 1-shot classification for the Omniglot145

(1200 classes) and mini-Imagenet (64 classes) are 99.21% and 85.23%, respectively.146

Effective data augmentation is important in this research to generate the query sample. We follow the147

suggestion from the SimCLR ? and combine it with other methods to make it more effective for the148

RGB image classification (mini-Imagenet). SimCLR paper elaborates on the effectiveness of data149

augmentation and choosing the proper augmentation function, which motivates us to follow their150

method. They suggested the most effective combination of Gaussian blur, random crop, and random151

color distortion. We added horizontal flip and random color invert (50% probability) with these three152

methods as we found that it reduces overfitting and improves accuracy. On the other hand, for the153

grayscale Omniglot dataset, we only use random affine transform because we found that both the154

support and query samples are very similar, and a hard augmentation hurts the performance.155

Classifiers: Our proposed method is model agnostic and can be applied to any model. In this paper,156

we use two meta-learning models, MAML and RN, to demonstrate the performance on different157

architectures. We find that for MAML, the classifier trained on RGB samples (mini-Imagenet in our158

case) has a severe overfitting issue using the regular classifier. This is because the augmented query159

samples are similar to the original support samples. Therefore, the classifier learns very little during160

the training phase. We solve this problem by using a temperature-scaled SoftMax activation function161

only in the inner loop of MAML. The temperature term makes the classifier less confident of the162

support set samples, and thus the classifier can learn more information from the subtle differences.163

The mathematical expression for temperature-scaled SoftMax is as follows:164

exp(zi/T )∑j−1
k=0 exp(zk/T )

(2)

where the scaling is accomplished by dividing the logits of SoftMax by a value T , known as165

temperature. j is the number of ways, and zi, zk represent the ith, kth input to the SoftMax,166

respectively.167

We found RN performing counter effectively when using a temperature-scaled SoftMax. We instead168

used our own set of hyperparameters that led to more improved accuracy than the RN in the original169

paper.170

After training the unsupervised learning algorithm, we save the weights and biases to perform171

semi-supervised meta learning. Therefore, in the classifier of step-2, instead of randomly initialized172

parameters, θ, we used the transferred parameters, θ∗. Then, we perform the regular meta-learning173

for fine-tuning and improved accuracy.174

3.2 STEP 2: SEMI-SUPERVISED META LEARNING (SSML)175

In this step, we apply SSML on the regular meta-learning settings but initialize the weights and biases176

from the first classifier. First, let us talk briefly about the two classifiers, MAML and RN.177

MAML: MAML tries to find the optimal parameters θ derived from a few parametric models fθ.178

In MAML, we generate the episodes from the data distribution such as τi = (Dtr, Dval). We use179

the gradient update to update the initialize parameter θ to θ
′

i across tasks sampled from p(τ) and is180

obtained as follows:181

θ
′

i = θ − α∇θ£τi(fθ) (3)

where α is the learning rate of the meta-inner loop, and £ is the loss function. In the outer loop of182

meta-learning, the optimization is performed across tasks via stochastic gradient descent (SGD) to183

update the θ. It is obtained as follows:184

θ ← θ − β∇θ

∑
τi∼p(τ)

£τi(fθi) (4)

where β is the learning rate of the meta-outer loop.185

RN: The main two components of RN are a feature extractor and a relation module. The feature186

extractor concatenates the features from the support sets, and the query sets as fφ(xi) and fφ(xj)187

through a function C(fφ(xi), fφ(xj)).188
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The combined features are passed through the relation module to obtain their relation score. It is189

passed through a Sigmoid activation function to obtain the score in a range between 0 to 1. The190

equation for that is provided below:191

ri,j = gϕ(C(fφ(xi), fφ(xj))) (5)

To create the final output, the relation network’s output can also be subjected to extra processing by192

layers, such as a fully connected neural network. Because of this, the relation network is an adaptable193

architecture that may be used for various applications. A mean-square-error (MSE) loss function is194

used to update the network using gradient descent.195

φ, ϕ← argmin

m∑
i=1

n∑
j=1

(ri,j − 1(yi == yj))
2 (6)

Overall Summary: The overall method is summarized in this sector with a diagram for better196

understanding. Figure 1 depicts the steps of the proposed method. We generate the training episodes197

from the unlabeled samples. Here, the NT-Xent loss ? (temperature-scaled SoftMax) is only applied198

on the MAML for the mini-Imagenet dataset. After training the initial model, we save the parameters199

and transfer them to the final model for improved performance. Moreover, the pseudo-code for our200

proposed method is provided in Algorithm 1.201

Figure 1: Steps of the proposed method (a) unlabeled samples for unsupervised learning (b) task
generation for the first classifier (c) classifier for the unsupervised representation learning (d) weights
and biases transfer for the supervised learning (e) supervised learning phase with initialized parameters
form the first model.
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Algorithm 1: Unsupervised representation learning for semi-supervised meta learning

require: unlabeled dataset, U{xi}
require: α, β: learning rate hyperparameters
require: f(A): augmentation function
Initialize random parameter, θ

while not done do
generate episodes, {xi} and create pseudo labels, {yi}
for all {xi, yi} do

update inner loop of meta-learning with custom loss function or hyperparameters
end for
update outer loop of meta-learning with the regular loss function

end while
save weights and biases, θ∗
require: labeled dataset, {xj , yj} ⊑ {xi, yi} Initialize θ∗

do regular meta-learning steps

4 EXPERIMENTS202

4.1 DATA AUGMENTATION FOR UNSUPERVISED REPRESENTATION LEARNING203

We validate our proposed method using two different benchmark datasets in computer vision, Om-204

niglot and mini-Imagenet. Omniglot contains images of handwritten letters from 50 different205

languages. This dataset is suitable for few-shot learning because it has 1623 characters or classes but206

only 20 instances or samples per class. We used 1200 classes for training, 100 classes for validation,207

and the remaining for testing. In input image dimension to the classifier is 1× 28× 28 pixels as all208

are grayscale samples. On the other hand, the mini-Imagenet dataset contains 3×84×84 pixels color209

images. It has a total of 100 classes, each with 600 samples. Here, we use 64 classes for training, 16210

classes for validation, and 20 classes for testing.211

Selecting the most effective data augmentation is an essential part of our research for unsupervised212

learning. We experimented with different augmentation methods on a trial-and-error basis and213

found the SimCLR augmentation with an additional augmentation gave the best output for the mini-214

Imagenet dataset. This section lists the results from different augmentation methods in this research.215

We focus on the mini-Imagenet dataset for the augmentation part because the Omniglot dataset does216

not require heavy data augmentation. We also try to explain why our chosen augmentation works the217

best for our dataset. Table 1 lists the outputs from different augmentation methods using unsupervised218

learning. Note that all the outputs are obtained by re-implementing different methods using our own219

hyperparameters, which may provide different results than other literature.220

Table 1: The test accuracy (%) of unsupervised meta-learning for 5-way 1-shot (5W1S) and 20-way
1-shot (20W1S) classification using mini-Imagenet dataset. For MAML, different temperatures
(denoted by T ) are applied in the meta-inner loop.

Augmentation method MAML RN
5W1S 20W1S 5W1S 20W1S

Auto augment (UMTRA∗) 30.1 (T=1) 9.25 (T=1) 35 935.2 (T=100) 11.65 (T=10)

Resized crop + Gaussian blur + color distortions (SimCLR) 28.4 (T=1) 7.6 (T=1) 32 734.4 (T=100) 11.1 (T=10)

Horizontal flip(p=0.5) + color invert (p=0.5) + resized crop
+ Gaussian blur + color distortions (Ours)

33.8 (T=1) 13.65 (T=1) 39 11.538.2 (T=100) 13.95 (T=10)

∗re-implementation.
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Table 2: The test accuracy (%) of unsupervised meta-learning for 5W1S and 20W1S classification
using Omniglot dataset.

Augmentation method MAML RN
5W1S 20W1S 5W1S 20W1S

Random transformation + zero pixels (UMTRA∗) 48.80 24.94 61.25 35.78
Resized crop + Gaussian blur (SimCLR) 48.93 27.47 66.25 43.13
Random affine transform (30◦) (Ours) 52.83 27.95 69.12 44.37
∗re-implementation.

From Table 1, we observe the outputs from unsupervised learning for various augmentation functions.221

Let us discuss the accuracy of MAML first. First of all, we use the traditional meta-learning where the222

temperature parameter in the meta-inner loop for the SoftMax activation function is 1. A temperature223

of 1 means basically no temperature parameter. For MAML, we discovered that using the optimal224

temperature in the inner loop increased the accuracy of all the augmentation functions. It is because,225

when the temperature is 1, the training classifier overfits a lot due to the query set not being very226

challenging for the support set. When we apply the temperature, the classifier becomes less confident227

of the classes and can learn more features because of the introduced uncertainty. First, we apply the228

auto-augment function for query sample generation, which achieved slightly higher accuracy than the229

SimCLR augmentation function in all cases. Our augmentation function achieved 33.8% and 13.65%230

accuracy, which is the highest of all. We introduce temperature parameters as 100 and 10 for 5-way231

and 20-way, respectively. All the classifier exhibits improved accuracy for the optimal temperature,232

and our proposed method obtained the highest accuracy. The temperature is a hyperparameter that233

shows different performances for different values. In Figure 2 we illustrated the output accuracy from234

different temperatures to select the optimal ones. As observed, temperature 100 and 10 provides the235

highest accuracy for 5-way and 20-way, respectively.236

(a) 5W1S accuracy for different temperatures. (b) 20W1S accuracy for different temperatures.

Figure 2: Effect of different temperatures on test accuracy.

For the RN, we do not modify anything in the classifier architecture; rather, our motivation is to show237

that the proposed method is model agnostic. Nevertheless, our combination of hyperparameters with238

a ResNet-18 ? achieved higher accuracy than MAML for 5-way classification but obtained lower239

accuracy for 20-way classification. The auto-augment method obtained slightly higher accuracy than240

the SimCLR augmentation for both 5-way and 20-way classifications. However, SimCLR performs241

poorly for the 20-way classification and achieves only 7% accuracy. On the other hand, when we242

apply our proposed augmentation method, we obtain the highest accuracy for both 5-way and 20-way243

classifications. Nevertheless, using our proposed method, the RN module achieved higher accuracy244

than the MAML module for 5-way classification and lower accuracy for 20-way. Therefore, it is245

evident that the RN unsupervised meta-learning fails to achieve satisfactory accuracy for a higher246

number of classifications.247

We also present the outputs from the Omniglot dataset in Table 2 to show the domain adaptability of248

our proposed method. In Omniglot, the support samples are quite similar to the query samples. As a249

result, our experiment found that doing any hard augmentation on the samples hurts the performance.250
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Therefore, we perform a minimum augmentation to keep the features intact and yet introduce some251

information in the augmented samples. Moreover, since the samples are grayscale, we could not252

follow the color distortion function from SimCLR. So, we only applied affine transformation within253

30◦ to obtain the best transformation. This transformation distorts the samples slightly but keeps254

the meaning intact. In the case of SimCLR, we only apply resized crop and Gaussian blur as the255

color distortions do not apply to this dataset. Proof of the effectiveness of our method can be found256

in the experimental outputs. In this case, the SimCLR augmentation achieved higher accuracy for257

both MAML and RN in all 5-way 1-shot and 5-way 20-shot classifications. Our proposed method258

achieves the highest accuracy in all comparisons.259

Our proposed method can be technically extended to an n-way 1-shot multi-query classification.260

Because we can generate different augmented samples in each run for multiple query generation.261

However, we found an accuracy drop in our proposed model when applied to multiple queries. We262

suspect it happens because the classifier gets overfit from multiple queries as they are not very visibly263

distinguishable. Table 3 represents outputs from MAML for multiple queries. The accuracy drop264

was significant in all 5-way 5-query and 20-way 5-query shot classifications. Therefore, we do not265

suggest using our method to n-query shot. One should rather apply 1-shot unsupervised learning and266

then transfer the learned parameters to supervised learning. We only applied a 5-way 5-query shot to267

RN and opted out 20-way 5-query shot because it requires substantial computational resources for268

a backbone of ResNet-18. We used a 12GB Nvidia 3080Ti GPU to train our MAML module. For269

the RN module, we used parallel computing on two 12GB Nvidia 3090Ti GPUs and Google Cloud270

Platform GPUs. In the Omniglot dataset, the accuracy drop for 5-way 5-shot and 20-way 5-shot were271

3.68% and 0.73% for MAML and 3.87% and 5.71% for RN. For mini-Imagenet, the drops are 3.04%272

and 1.52% for MAML and 11% for RN (N.B. no experiments conducted for 20W1S5Q RN).273

Table 3: The test accuracy (%) and drop of the proposed unsupervised meta-learning for n-way,
1-shot multi-query.

Dataset MAML RN
5W1S5Q 20W1S5Q 5W1S5Q 20W1S5Q

Omniglot 49.15 (drop 3.68) 27.22 (drop 0.73) 65.25 (drop 3.87) 38.66 (drop 5.71)
mini-Imagenet 32.96 (drop 3.04) 12.43 (drop 1.52) 28 (drop 11) N/A

4.2 SEMI-SUPERVISED META-LEARNING (SSML)274

The second stage is just like regular meta-learning but initialized with the parameters from our275

previous method. In this section, we report our accuracy for the whole process and compare it with276

the traditional method. We conduct the experiments on n-way 1-shot 1-query and 5-shot 5-query for277

different classifiers. Additionally, we show how well the classifier can perform with partially labeled278

data instead of the whole labeled dataset.279

Table 5 presents the accuracy for the original method and our proposed method for the Omniglot280

and mini-Imagenet datasets. We also present the outputs from the Baseline model to emphasize the281

effectiveness of MAML and RN. For Omniglot, our method achieves improved accuracy than the282

original method and proves its model-agnostic ability. In MAML, we observe significantly higher283

accuracy for 1-shot learning and slightly improved accuracy for 5-shot learning in both 5-way and284

20-way setups. Our SSML MAML improves the accuracy of MAML further. In RN, the performance285

improvement is not as significant as in MAML, as the original RN already achieved very high286

accuracy. Nevertheless, we achieve 100% accuracy on 5W1S1Q, which improves from 99.38%.287

However, in both 5W5S5Q, both RN and SSML RN achieved 100% accuracy. We observe a tiny288

improvement for 20-way SSML MAML. In SSML RN, we observe a 4% improvement in accuracy in289

both 5W1S1Q and 5W5S5Q. All the outputs from MAML and RN are re-implemented in our code.290

4.3 TRANSFERABILITY OF SSML291

In this section, we test the transferability of the proposed method on different datasets. We use292

CIFAR-FS ? and tieredImageNet ? datasets for this experiment where we transfer the learned293

representations from miniImageNet dataset. The CIFAR-FS dataset has 100 classes and 600 images294

per class. Train, test validation sets are split into 64, 16 and 20, respectively. The tieredImageNet295
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consists of 608 classes and 779,165 total images. We use 351 classes for training, 97 for validation296

and 160 for testing.297

We initialize SSML MAML with miniImageNet representation and fine-tune on both datasets. The298

outputs are listed in Table 4. In all cases, SSML MAML improves accuracy over MAML. The most299

significant improvement is for CIFAR-FS 5W1S1Q, which is 3.6%. This proves that the proposed300

method can also transfer the learned representations to different domains for improved accuracy.301

Table 4: Transferablity of SSML MAML for different datasets.

Data Method 5W1S1Q 5W5S5Q 20W1S1Q 20W5S5Q

CIFAR-FS MAML 49.6 71.2 25.76 42.16
SSML MAML 53.2 71.73 26.34 42.8

tieredImageNet MAML 48 61.47 19.56 32.35
SSML MAML 48.2 62.04 20.1 33.23

5 CONCLUSION302

In this research, we propose a meta-learning strategy that learns the latent representation from the303

dataset using unsupervised meta-learning and then performs SSML using the learned parameters.304

Unsupervised learning gives a performance boost to supervised learning. Therefore, our method is305

fast adaptive and obtains improved accuracy. Our unsupervised method depends on effective data306

augmentation for query sample generation. Additionally, we visually represent why our proposed307

combination of augmentations is more effective than other augmentations. The temperature-scaled308

SoftMax also plays a vital role in unsupervised classification accuracy. We tested our proposed model309

with two different datasets and models. Our method achieve better test accuracy in all cases than310

the original methods. We also show that our method can retain good accuracy and lower loss when311

trained on partially labeled training samples.312
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Figure 3: Histogram of pixel intensities for different augmentation methods.

A WHY OUR METHOD IS EFFECTIVE374

In Figure 3, we explained why our proposed method works effectively by visualizing the pixel375

intensities from the histograms of augmented images. The histogram analysis shows how much376

uncertainty is introduced in different augmented samples compared to the original samples. In377

both auto augment and SimCLR augmentation, we find the histogram of augmented samples are378

very similar to each other. That means all the augmented samples fail to introduce enough new379

uncertainties in each augmentation. It is essential because a sample can appear often in meta-learning380

in different episodes. So, we must supply query samples with distinguishable features in each run.381

On the other hand, for the proposed augmentation method, we find the histograms have whole new382

pixel intensities for each run. Therefore, the features have new information in each query sample.383

It can also be explained by the uncertainty we introduce in our augmentation function by doing a384

horizontal flip and color invert with a 50% probability for each one. Therefore, our proposed method385

achieves the highest accuracy for unsupervised meta-learning learning.386

B ABLATION STUDY387

Additionally, we highlight that our method can obtain high accuracy or less accuracy loss for partially388

labeled datasets (Table 6). We test our hypothesis on mini-Imagenet only because it contains 600389

samples per class, whereas Omniglot only has 20 samples per class. We randomly select 50% (300)390

and 25% (150) training samples from the mini-Imagenet data and train our classifier to compare the391

proposed and original methods. This time we report the percentage accuracy drop from the main392

output (trained on 100% samples) to have a fair comparison between the original method and SSML. It393

is obtained as ((all labeledaccuracy−partially labeledaccuracy)/all labeledaccuracy)×100%.394

In most outputs, our proposed method has less drop except for SSML RN with 50% and 25% labeled395

data for 5W5S5Q and 5W1S1Q, respectively. In MAML and SSML MAML, for 5W1S1Q, we396

have negative accuracy drop percentages. This is because the accuracy, in fact, increases when we397

train MAML with 50% data in this setup. We hypothesize this improvement is due to the episode398

generation with fewer samples in each class. Some research points out that having a large number of399

meta-training data can counter-intuitively hurt performance. Because of multiple possibilities for400

generating each episode, the probability of all the samples appearing in the episodes will be lower.401
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For example, Triantafillou et al. ? found that having a large meta-dataset hurts the accuracy of the402

mini-Imagenet dataset. Setlur et al. ? showed that having a fixed support set and having less diversity403

can improve accuracy. This new research direction deals with the optimal number of samples in404

meta-training and a more effective way of generating the episodes. We aim to focus on this area in405

our future research.406

Table 5: The test accuracy (%) of the supervised meta-learning for the Omniglot dataset.

Method
Omniglot mini-Imagenet

5-way accuracy 20-way accuracy 5-way accuracy 20-way accuracy
1S1Q 5S5Q 1S1Q 5S5Q 1S1Q 5S5Q 1S1Q 5S5Q

Baseline 86 97.6 72.9 92.3 38.4 51.2 N/A N/A
MAML∗ 93.8 98.3 82.5 92.3 46.8 61.6 18.75 30.4
RN∗ 99.38 100 97.19 99.59 53 64 24.25 N/A

SSML MAML (Ours) 96.44 98.34 83.35 92.72 47.6 61.8 18.88 30.71
SSML RN (Ours) 100 100 97.34 99.69 57 67 25 N/A
∗re-implementation.

Table 6: Accuracy drop (%) of supervised meta-learning for the partially labeled mini-Imagenet
training set.

Method 5-way accuracy 20-way accuracy
1S1Q % Drop 5S5Q % Drop 1S1Q % Drop 5S5Q % Drop

MAML (50% labeled data)∗ 48.2 -2.99 61.45 1.87 18.75 5.07 28.42 6.51
SSML MAML (50% labeled data) 49.4 -3.78 61.04 1.23 17.94 4.98 28.83 6.12

MAML (25% labeled data)∗ 46 1.71 57.4 6.82 16.25 13.33 26.54 12.70
SSML MAML (25% labeled data) 47.2 0.84 58.25 5.74 17.5 7.31 27.05 11.92

RN (50% labeled data)∗ 39 26.42 58.2 9.06 19.75 18.56 N/A N/A
SSML RN (50% labeled data) 43 24.56 59.2 11.64 22.25 11 N/A N/A

RN (25% labeled data)∗ 38 28.3 51.8 19.06 18.75 22.68 N/A N/A
SSML RN (25% labeled data) 40 29.82 54.4 18.81 20.25 19 N/A N/A

∗re-implementation.
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