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Abstract

While Named Entity Recognition (NER) is a
widely studied task, making inferences of enti-
ties with only a few labeled data (i.e., few-shot
NER) has been challenging. Correspondingly,
the V-way K-shot NER task is proposed to
recognize entities in the given N categories
with only K labeled samples for each cate-
gory. Existing methods treat this task as a se-
quence labeling problem, while this paper re-
gards it as an entity span classification prob-
lem and designs a Biaffine Span Representa-
tion (BSR) method to learn contextual span de-
pendency representation to fit into the classifi-
cation algorithm. The BSR applies a biaffine
pooling module to establish the dependencies
of each word on the whole sentence and to re-
duce the dimension of word features, thus, the
span representation could gain contextual de-
pendency information to help improve recog-
nition accuracies. Experimental study on four
standard NER datasets shows that our pro-
posed BSR method outperforms pre-trained
language models and existing N-way K -shot
NER algorithms in two types of adaptations
(i.e., Intra-Domain Cross-Type Adaptation and
Cross-Domain Cross-Type Adaptation). No-
tably, F; value has increased by an average of
13.77% and 18.30% on the 5-way 1-shot task
and the 5-way 5-shot task, respectively.

1 Introduction

As a fundamental task in the Natural Language
Processing (NLP) area, Named Entity Recogni-
tion (NER) is mainly about extracting the bound-
aries and categories of entities in the given sen-
tences, which can provide helpful information
for down-stream tasks like text classification (Lee
et al., 2018), event detection (Popescu et al., 2011),
question answering (Lee et al., 2007), and more.
The current state-of-the-art models (Yamada et al.,
2020; Strakova et al., 2019; Sohrab and Miwa,
2018; Yu et al., 2020) have made progress in en-
tity classification by applying pre-trained mod-

els and neural network architectures. These well-
performed deep learning models require extensive
and high-quality manually labeled data. However,
these data might not be readily available due to
factors including the lack of domain knowledge
from human annotators, high cost of annotating the
large-scale data, or the restriction of privacy and
security (Lu et al., 2020). Therefore, the Few-Shot
learning task is proposed to recognize unlabeled in-
stances (query set) according to only a few labeled
samples (support set) (Lu et al., 2020).

To tackle the Few-Shot NER problem, various
types of methods have already been designed in-
cluding prototype-based methods, noisy supervised
pre-training methods, self-training methods, and
meta-learning methods (Hofer et al., 2018; Fritzler
et al., 2019; Huang et al., 2020). These methods
usually apply a transfer learning strategy to learn
information from other rich-resource domains to
overcome the shortage of samples in the target do-
main, which brings a label-discrepancy problem.
Recently, Li formulated a N-way K -shot NER task
to recognize entities in the given IV categories with
only K labeled entities for each category (Li et al.,
2020a). This task requires the same size of label
categories for the source domain and the target do-
main to explore the establishment of shared mod-
els during transfer learning. Li tackled this task
in the sequence labeling framework, which needs
to label each word according to various labeling
schema (Li et al., 2012) including “BIO” (Begin-
ning, Inside, Outside) and “BIOES” (Begin, Inside,
Outside, End, Single).

In this paper, we reformulate the N-way K -shot
NER task as an entity span classification problem to
simplify the task. Rather than labeling each word
with entity types and entity boundaries, we just
need to determine which type each span belongs
to. To improve the classification accuracy, we note
that the dependency between words within an entity
span and words outside this entity span can help



to recognize entities. Take the sentence “Parkin-
son’s disease is a brain disorder” as an example,
“Parkinson’s disease” has a dependency on “brain
disorder” and can help to recognize span “brain dis-
order” as a “Disease” entity. To characterize this
dependency during the entity span representation
learning, we design a Biaffine Span Representa-
tion (BSR) method by applying a biaffine pooling
module to establish the dependencies of each word
on the whole sentence and reduce the dimension
of word features. Thus, the span representation
could gain contextual dependency information to
help improve recognition accuracies. After obtain-
ing the representation, we classify entity spans into
entity categories by a FeedForward Neural Net-
work (FFNN) classifier. Experiments on four NER
datasets show significant improvements of our BSR
method over pre-trained language models and ex-
isting N-way K -shot learning algorithms in terms
of F} value.

The rest of this paper is organized as follows.
Section 2 states the /N-way K -shot problem in the
NER task and explains existing Few-Shot learning
methods and entity annotation frameworks in NER.
Section 3 details our BSR model for the N-way K-
shot NER task. Following the experimental study
in Section 4, we conclude this paper in Section 5.

2 Background

This section first introduces the Few-Shot Named
Entity Recognition (NER) problem and the N-
way K-shot scenario. Then, we discuss current
Few-Shot learning methods in NER. Finally, we
detail two frameworks to generate entity label se-
quences in NER, namely, the sequence-labeling-
based framework and the entity-span-based frame-
work.

2.1 Problem Statement

The Few-Shot NER problem aims to build a model
F : 8§ — Y with sentences S as the input and
entity label sequences ) as the output, where the
input sentences S only contain a few instances of
entities. The N-way K-shot NER task puts con-
straints on the general Few-Shot NER by limiting
the size of entity type set Y to /N for the input
sentences S. Therefore, it just needs to fine-tune
the model learned on other rich-resource domains
when applying the transfer learning strategy. The
formal descriptions are as follows.

Suppose S; and S; are the sentences in the

source domain ¢ and the target domain j, respec-
tively. The sizes of entity types in S; and S; are
both fixed as N. §; is further divided into a support
set S;” " and a query set S;". The N-way K-shot
NER task first trains a model on D; = {S;, i},
where ); is corresponding label sequences of S;.
Then it makes adaptations on S, i.e., it first fine-
tunes the model on D}” b= {s;¥ ", Y5} and then

predicts the label sequences for D;fzy = {5/},

where yjp " is the corresponding label sequences
of S* " and each entity type in S’ " only contains
K entities. We call D}” " as the N-way K -shot set-
ting. There are two fundamental rules for datasets
in domain ¢ and j:

o The entity types in D; are different from types
inD;:Y; NY; = @.

e The entity types in D*P! are the same as
types in D?"Y, but sentences appear in D!
will NEVER appear in D9 yspt =
Yoy, SN S = @,

2.2 Few-Shot NER methods

The N-way K-shot NER task is a newly presented
Few-Shot NER setting. There are only a few works
on it. Li first investigated it and built a model that
can be effectively adapted to new tasks by updating
a small set of low-dimensional parameters (Li et al.,
2020a). As Few-Shot NER methods could also be
adjusted on this new task, we also reviewed related
works on these methods.

Many Few-Shot NER methods are based the
transfer learning strategy, which aims at training
models from source domains and making adap-
tations on the target domain; that is, training the
model F : §; — ); that maps sentences S to
labels ) in target domain j based on the model
learned in source domain ¢. The target domain j
only contains a few labeled sentences, while the
source domain ¢ can have plenty of labeled data
(Yang et al., 2021; Ding et al., 2021). These meth-
ods face the challenge that the model may need to
be trained from scratch on the target domain j and
the information of label dependencies learned in
source domains might be unsuitable for the target
domain (Hou et al., 2019).

Meta-learning-based methods are another type
of methods, which aim at training models by a few
samples and applying them to new tasks directly,
without retraining from scratch. Meta-learning
can be categorized as metric-based methods that



need to calculate the distance between training sam-
ples’ centers and test samples (Snell et al., 2017),
memory-based methods that need to store and main-
tain input representations in an external memory
(Florez and Mueller, 2019), and optimization-based
methods that need to split tasks into masses meta-
tasks (Finn et al., 2017; Li et al., 2020a).

Besides, some other Few-Shot learning strate-
gies are also designed. Li regarded NER as a
logical rule extraction problem. They utilized a
weakly supervised named entity tag as a seed rule
and designed a dynamic label selection method to
generate new rules and build new tags (Li et al.,
2021). Jiang combined the weakly labeled data
with the strongly labeled data during training and
suppressed the extensive noise data to make infer-
ences (Jiang et al., 2021). Tong learned the seman-
tics hid in the “O” label to improve results (Tong
etal., 2021). Ma used prompt-based models to deal
with Few-Shot NER tasks (Ma et al., 2021).

2.3 Sequence Labeling and Entity Span

NER tasks require to obtain the label sequences
for entities. Above section reviews related models
for Few-Shot NER. After training the models, we
should also transfer the model outputs into label
sequences. Currently, there are mainly two widely
used frameworks for generating label sequences,
namely, the sequence-labeling-based framework
and the entity-span-based framework. When apply-
ing different frameworks to formulate the problem,
the NER models should also be adjusted accord-
ingly.

The sequence-labeling-based framework can be
defined as: for the input sentence s with n tokens,
denoted by s = {wi,...,w,}, assign each to-
ken w; a label [; which belongs to the pre-defined
entity type set Y and generate a label sequence
y = {li,...,l,} €Y. To locate the boundaries
of entities in s, many sequence labeling schema
have been proposed to add extra tags for labels in
y (Lin et al., 2020; Kruengkrai et al., 2020; Tabas-
sum et al., 2020). For example, in the “BIO” se-
quence labeling schema, words in non-entities will
be labeled as “O”, and the label of the word in the
start location of an entity will be added with a “B-”
whereas other locations in this entity will be added
with a “I-”. To be specific, the example sentence
“Parkinson’s disease is a [brain disorder|p; . ce-
will be annotated as “O, O, O, O, B-Disease, I-
Disease”. Therefore, methods in this framework

need to label both entity types and entity bound-
aries. Besides, as the labels are added word by
word, these methods are hard to handle nested NER
(some entities are within an entity) tasks, for ex-
ample, it is uneasy to label the “[brain|p 4 pay”
entity within the “[brain disorder]p, ...~ entity in
the example sentence. The extracted outer entities
(“brain disorder”) will also affect the performance
of the recognition of inner entities (“brain”).

The entity-span-based framework splits sen-
tences into several entity spans, where each span is
a span of tokens {wp, ..., wy} (1<p<g<n), and
then calculates classification results ¢ € Y for each
entity span. For example, the entity span “brain dis-
order” in the example sentence will be labeled as
“Disease”, the entity span “brain ” will be labeled as
“BodyPart” and the entity span “disease is a” will
be labeled as “O”. In this way, the entity span for-
mulation converts NER tasks into multi-class clas-
sification problems rather than determining entity
types and entity boundaries like sequence-labeling-
based methods (Joshi et al., 2020; Yamada et al.,
2020; Yu et al., 2020). Comparatively speaking,
entity-span-based methods simplify the task and
may achieve better performances, although they
may increase the time complexity. This is also the
reason we try to use entity span to formulate the
N-way K-shot NER task.

3 Methodology

In this section, we justify the intuition of the BSR
model and explain details about the BSR model.
Afterwards, we introduce the training and adapting
process of the BSR model.

3.1 Biaffine Span Representation

Following the entity span framework, we formulate
the N-way K-shot NER task as an entity span
classification problem. After inputting sentences,
we learn the span representation and then train a
classifier to determine entity types. Therefore, the
span representation plays an essential role.

As mentioned in the introduction section, we
note that the dependency between words within
an entity span and words outside this entity span
can help to recognize entities, just as ‘“Parkinson’s
disease” can help to recognize span “brain disorder”
as a “Disease” entity for the sentence “Parkinson’s
disease is a brain disorder”. To characterize these
dependencies, we apply a biaffine pooling module,
an idea similar as Yu’s work (Yu et al., 2020), how-
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Figure 1: The whole architecture of our BSR model.
Words in the sentence will first be embedded by BERT
and the hidden features will then be learned by a BiL-
STM layer. To get the dependency representation be-
tween an entity span (words in blue) and their surround-
ing words, we deploy a biaffine pooling module, which
consists of a biaffine layer and a pooling layer. Finally
the span representation is fit into a FFNN classifier.

ever, they only established the dependency between
the head and the tail for each entity span to make
classification for general NER tasks. Besides, we
also perform dimension reduction in the biaffine
pooling module to improve the generalization of
our BSR model for N-way K-shot learning. Figure
1 shows an overview of the whole architecture.

We first use BERTY, . (Devlin et al., 2018) to
get word embedding vector w; for each word in
sentence s and create entity mask M for each
entity span. Here, w; € R? where d is the result di-
mension of BERT e and M, = {0, 1} where [
denotes the number of words in the sentence. After
that, a BILSTM layer is applied to learn sentence
representations. Let H (i) and H; () respectively
denote forward and backward results obtained by
the BiLSTM layer for w; in s.

We then need to learn the contextual depen-
dency representation for each span, which is ac-
complished by a biaffine pooling module in our
BSR model. In this module, a biaffine layer is first
used to compute a [y X [, X r sentence representa-
tion tensor R for each sentence s:

Rs= H UL Hp + (Hy ® Hp)TUZ+Db (1)

where 7 is a low-dimensional space, If € R! is
the forward word representation, [, € R! is the

backward word representation, Ug isahxrxh
tensor with / as the dimension of H ; or H,, U% is
a 2h X r matrix, and b is the bias.

In Figure 1, R is represented as a [ X [ matrix
and each element in the matrix is a dependency
feature vector in the low-dimensional space, i.e.,
Rs(i, j) means the biaffine dependency score of
the i*"* word on the j** word.

After the biaffine layer, we adopt two pooling
strategies to obtain the span dependency represen-
tation including the average pooling and the max
pooling. The average pooling is used to calculate
the average dependency scores of each word on the
whole sentence, while the max pooling is to extract
the max vector within each span to highlight the
important features of each word in this span. The
max pooling is only performed on words within the
same span, therefore, we add a mask operation in
the average pooling for convenience. We mask the
words that are not in the span to get average span
dependency scores Span, € R x R” by Hadamard
product of entity mask M and average sentence
representation M EAN (R;) :

Spang = MEAN(Rs) o M; 2)

Finally we utilize a FFNN to classify entity span
categories.

3.2 Training and Adapting Algorithm

Algorithm 1 summarizes the procedures of using
our BSR model to train and adapt on source domain
1 and target domain j.

When training the BSR model on the
source domain ¢, named task 7;, we initial-
ize parameters and sample a batch of subsets
(D" ={S", V" 1 o, from {S;, Vi} (line 3
to 6). We iteratively train the model on each D}"
by utilizing gradient descent to optimize model pa-
rameters with cross-entropy loss (line 7 to 13). To
reduce the training time, we shrink training epochs
for subsequent subtasks.

For adapting, the trained model is fine-tuned
on support dataset D" " from the target domain 7,
named task 7; (line 17 to 20). Finally, the model
is applied to make inference on unlabeled dataset
D;?Ty (line 21).

4 Experiments

In this section, we present our experimental study
on the proposed BSR model for the N-way K-
shot NER task. We first introduce four public



Algorithm 1: Training and Adapting of
BSR Model

Source-domain-epoch and target-domain-epoch
mean the training epoch in source domain and target
domain, respectively. Gradient descent V is applied
to calculate cross-entropy loss £ and optimize model

parameter 6.

1 Training():

2 begin

3 Set learning rate « for task 7;;

4 Initialize BSR model parameter 6;

5 Initialize Source-domain-epoch;

6 Sample batch of subtasks T' = {D]" }
7 for D;" in T do

8

9

for e in source-domain-epoch do

O = Oe—1—aVe,_, Lom(V", V)

m=1,2,...°

10 end

11 decrease source-domain-epoch;

12 end

13 return 6;

14 end

15 Adapting():

16 begin

17 set learning rate /3 for task 7;;

18 for e in target domain-epoch do

19 O = Oce_q — BVgeflllDJs_pt (y;pt7 y;pt);
20 end

21 Evaluate D" using the model BSR(0);
22 return evaluation performance;

23 end

Table 1: Datasets used in experiments

Dataset Domain Types Sentences
OntoNotes Various 18 179,062
GENIA Medical 36 18,546
BioNLP13CG  Medical 16 6,018
ManyEnt-53 Various 53 54,021

datasets and several baseline models including pre-
trained language models and typical few-shot learn-
ing models. Next, we summarize hyper-parameters
in the BSR model. And finally, we split the N-way
K -shot NER task into Intra-Domain Cross-Type
Adaptation and Cross-Domain Cross-Type Adap-
tation, and report the experimental results of each
adaptation.

4.1 Datasets, Baselines, and Evaluation
Metric

We use four standard NER datasets for evaluation
including OntoNotes (Pradhan et al., 2013), GE-
NIA (Kim et al., 2003), BioNLP13CG (Nédellec
et al., 2013), and ManyEnt-53 (Eberts et al., 2020)
as shown in Table 1. We compare the BSR model
with the following:

e Pre-trained Models: We utilize Flair (Akbik
et al., 2018), ELMo (Peters et al., 2018), and
BERT (Vaswani et al., 2017) models to get
word embeddings and build a CRF layer to
predict the labels of entities.

e ProtoNet (Snell et al., 2017): This is a metric-
based meta-learning method for the Few-Shot
NER task. It focuses on computing distances
between the center points of training samples
(prototypes) and test samples. The model is
afterwards optimized by calculating cross en-
tropy loss between test samples and proto-

types.

o MAML (Finn et al., 2017): This optimization-
based meta-learning method uses a large-scale
dataset in the source domain ¢ to optimize
model parameters. It can be quickly adapted
to new tasks in the target domain j over a
few gradient steps. During the training proce-
dure, the dataset in domain ¢ is separated into
several few-shot subtasks. The loss of each
subtask is recorded, and the total loss of all
subtasks can optimize the model.

e FEWNER (Li et al., 2020a): This is an
optimization-based meta-learning method that
focuses on the N-way K -shot NER task. It de-
fines two kinds of model parameters: context
parameters ¢ and sequence labeling parame-
ters 6. In training, the model first updates ¢
by loss of each subtask in the source domain
1 and updates 6 according to (. In testing, it
maintains 6 and updates ¢ according to the
Few-Shot task in the target domain j, and
finally makes inference for the task without
labels in domain j. The FEWNER achieves
SoTA results in several tasks.

We utilize F} = 2 5 TZ Zf;’j;oi Ef;cﬁ” value as

the evaluation metric to balance the influence of
Precision value and Recall value.

4.2 Experiment Settings

To encode word into vectors, we use BERT}¢¢
which has 12 heads of attention layers and 768
word-embedding dimensions. The BiLSTM layer
has one hidden layer whose hidden size is 200. The
initial states hg and cg are initialized randomly. The
dimension in the Biaffine layer is 100. We normal-
ize the results after the Biaffine layer and utilize a
dropout of 0.2. Different from meta-learning-based



Table 2: Intra-Domain Cross-Type Adaptation performance on four datasets (%)

GENIA OntoNotes BioNLP13CG ManyEnt-53

Methods 5-way 5-way 5-way 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Flair 9.77 11.44 13.08 17.62 7.26 17.82 11.68 12.93
ELMo 15.21 19.18 13.28 15.53 7.73 21.56 12.85 16.15
BERT 12.02 14.93 11.55 13.14 11.06 24.22 11.52 15.94
ProtoNet 12.34 15.03 12.01 19.33 13.31 21.93 13.78 2391
MAML 13.73 16.46 10.51 15.10 14.02 25.27 15.17 2143
FEWNER 23.24 29.19 22.84 39.67 22.55 36.89 25.87 38.01
BSR 25.65 42.56 26.99 54.59 27.33 52.69 30.21 49.00

models (Li et al., 2020a) which need masses of
subtasks to learn cross domain information, our
transfer-learning-based BSR model requires less
subtasks whereas each subtask contains more sen-
tences. To be specific, the number of subtasks is
3 and each subtask contains no more than 5000
sentences. In the training procedure, learning rate
« for task 7; is 0.00005 and we initialize source-
domain-epochs to 20 and decrease it by step 4 for
each subsequent subtask. In the adapting proce-
dure, learning rate 3 for task 7; is the same as
« and the target domain-epochs is 30. In the final
evaluation procedure, we transfer entity span classi-
fication results to labeling sequences and calculate
Fy value.

4.3 Experimental Results

We evaluate our BSR model on two types of adap-
tations including Intra-Domain Cross-Type Adap-
tation and Cross-Domain Cross-Type Adaptation.

For Intra-Domain Cross-Type Adaptation, we
first randomly sample NV entity types (N-way) in
each dataset and select sentences using a sampling
method (referring to Appendix). Secondly, we
mask all entities whose types are in /N-way to con-
stitute a source domain dataset D;. Afterwards,
we further mask all entities whose types are not in
N-way to generate a target domain dataset D; to
ensure rule Y; N Y; = &. Although the source do-
main dataset D; and the target domain dataset D;
come from the same original dataset, their entity
types are different (Intra-Domain Cross-Type).

For Cross-Domain Cross-Type Adaptation, we
use the fully labeled dataset in domain ¢ as the
source domain dataset D;, and fully labeled dataset
in domain j as the target domain dataset D;. D;
and D; come from different datasets and their en-
tity types are also different (Cross-Domain Cross-

Type).

4.3.1 Intra-Domain Cross-Type Adaptation

In this experiment, for each target domain dataset,
we sample 5 types (5-way) randomly. Afterwards,
we apply the dataset generation method mentioned
in appendix A to generate a Few-Shot support
dataset Dj-p t = {S;p ¢ yjp t}, and finally, we con-
struct a Few-Shot query dataset D}"* by randomly
sampling 5000 sentences from {S; — S;” ‘.

Table 2 shows the average F results of Intra-
Domain Cross-Type Adaptation over 10 itera-
tions with different random seeds. For the GE-
NIA dataset, the backbone of the word embed-
ding method in baseline models is the combina-
tion of Glove and character-level-CNN introduced
in the original paper (Li et al., 2020a), whereas
for other datasets is the learnable BERT model.
Our BSR model achieves the state-of-the-art re-
sults and improves F); value on FEWNER by
2.41%, 4.15%, 4.78%, 4.34% in 1-shot setting,
and 13.37%, 14.92%, 15.80%, 10.99% in 5-shot
setting for GENIA, OntoNotes, BioNLP13CG, and
ManyEnt datasets, respectively. The results of the
average F7 value in baseline models show that
the BERT model performs better than Glove and
character-level-CNN in the 5-shot setting when
used as the backbone layer. However, the advan-
tage of the BERT model becomes slighter when it
comes to 1-shot setting.

All the results of 5-shot are better than those of 1-
shot, and BSR model has a prominent improvement
from 1-shot to 5-shot in comparison with the base-
line models. Results on the GENIA dataset show
lower F values than on other datasets. We suppose
the reason is due to the imbalance label type distri-
bution. For example, the type “RNA_N/A” appears
only 15 times in the whole GENIA dataset whereas
the type “protein_molecule” appears 21,632 times.
For dataset ManyEnt-53, the least frequent entity
type is “military collective” which appears 985
times and the most frequent entity type is “human”



Table 3: Cross-Domain Cross-Type Adaptation performance on three datasets to BioNLP13CG (%)

GENIA — BioNLP13CG OntoNotes — BioNLP13CG ManyEnt-53 — BioNLP13CG

Methods 5-way 5-way 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Flair 10.53 12.49 8.37 9.15 8.09 13.95
ELMo 10.39 11.45 10.76 11.85 13.36 19.12
BERT 13.36 15.15 9.15 9.98 15.38 18.87
ProtoNet 14.05 15.38 8.34 8.93 16.26 26.42
MAML 14.98 17.34 9.22 10.57 16.05 24.79
FEWNER 22.46 27.94 13.09 15.46 17.20 25.67
BSR 35.99 49.12 38.73 52.78 32.93 50.41

which appears 21,888 times.

4.3.2 Cross-Domain Cross-Type Adaptation

In this experiment, for each target domain dataset,
we sample 5 types (5-way) randomly. After-
wards, we apply the dataset generation method
mentioned in appendix A to generate a Few-Shot
support dataset D" = {s;¥ t i "1, and finally,
we construct a Few-Shot query dataset D}'¥ by ran-
domly sampling 5000 sentences from {S; — S;” 2%
We let BioNLP13CG as the target domain j and
other datasets as the source domain ¢, and de-
sign three adaptations: GENIA — BioNLP13CQG,
OntoNotes — BioNLP13CG, and ManyEnt-53 —
BioNLP13CG, respectively.

Table 3 shows the average Fi value results
of Cross-Domain Cross-Type Adaptation dur-
ing 10 experiments with different random seeds.
In GENIA — BioNLP13CG and OntoNotes —
BioNLP13CG adaptations, the backbone of word
embedding method in baseline models is the com-
bination of Glove and character-level-CNN, from
original paper (Li et al., 2020a). And for ManyEnt-
53 — BioNLP13CG adaptation the backbone
of word embedding method is learnable BERT
model. BSR method achieves state-of-the-art re-
sults and improves F; value on FEWNER by
13.53%, 25.64%, 15.73% in 1-shot setting, and
21.18%, 37.32%, 27.74% in 5-shot setting for these
adaptations, respectively. The FEWNER model
shows that the inference performance in target do-
main j is affected by the source domain i: the
result F} value is higher when source domain i
and target domain j are medical in GENIA —
BioNLP13CG adaptation. However, the F value
is lower when source domain ¢ and target j are dif-
ferent in OntoNotes — BioNLP13CG adaptation.
Experiment results show BSR has a more stable re-
sult in three adaptations compared with FEWNER:
the £ value is not influenced by source/target do-

mains and remains at approximately 50%.

4.3.3 Ablation study on Intra-Domain
Cross-Type Adaptation

Table 4 reports an ablation analysis on Intra-
Domain Cross-Type adaptation using the
BioNLP13CG dataset. We evaluate the different
sub-components and parameter settings of the
proposed BSR model including the biaffine layer
and the BiLSTM layer; the different dimensions
of BERT model hidden status to get different
word embedding vectors; the different numbers
of subtasks during the training procedure; the
different numbers of initial target-domain-epochs
during the training procedure.

Table 4: Ablation study on Intra-Domain Cross-Type
Adaptation with dataset BioNLP13CG

1-shot  5-shot

Origin model 27.33  52.69

w/o BiLSTM layer 1.61) 348

w/o biaffine layer 281) 242
BERT hidden status dimension : 128 | -7.71 | -14.01 |
BERT hidden status dimension : 256 -3.87 | -6.59 |
BERT hidden status dimension : 512|-2.97 | -3.23 |
Training subtask T num : 1 -3.05) -5.771
Training subtask T num : 5 +4.72 1 -0.34]
Training subtask T num : 7 -1914 -352)
Training subtask T num : 9 +09571T +1.471
initial source-domain-epochs : 10 |-3.37 | -1.51]
initial source-domain-epochs : 15 [+1.13 17 -2.21]
initial source-domain-epochs : 25 |-2.24 | -2.68 |
initial source-domain-epochs : 30 |-2.00 -1.92]

We remove the biaffine layer and compare it with
the original model. As shown in Table 4, the model
without the biaffine layer could also outperform
the sequence labeling baseline models, whereas the
F value decreases 2.81% and 2.42% in the 5-way
Intra-Domain Cross-Type Adaptation with 1-shot
and 5-shot setting, respectively. We also replace the
BiLSTM layer with two linear layers and compare
it with the original model. The F value of the new
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Figure 2: The average F} value from 10 times experi-
ments with different random seed for four adaptations
with different dimensions of BiLSTM hidden status

model decreases 1.61% and 3.48% in the 5-way
Intra-Domain Cross-Type Adaptation with 1-shot
and 5-shot setting, respectively.

It is observed that BERT with a lower hidden
status dimension (128, 256, and 512) could not out-
perform the initial setting (768), and the average [
value increasingly grows with the increase of hid-
den status dimensions. We suppose a lower param-
eter number in BERT would learn less information
from the training datasets. In this specific adap-
tation, we find that when increasing the number
of subtasks (e.g., 9 subtasks), the accuracies only
increase a little with the cost of prolonging training
time. After balancing accuracies and training time,
we decide to use a small subtask number. Further,
the number of source-domain-epochs could not ex-
ert a tremendous influence on results. The model
has already fit the subtasks in the source domain
with training epochs less than 10.

Figure 2 shows the performance on different
BiLSTM hidden status in a 5-way 5-shot setting
on four adaptations. The experiment settings are
the same as in Section 4.2, except that the hyper-
parameter BILSTM hidden status is adjusted dy-
namically (from 80 to 300). Moreover, we also
decrease the initial source-domain-epochs to 10
for less training time. Every experiment for each
adaptation is executed 10 times and the average F}
value is calculated. The result on GENIA dataset
is the worst among all four adaptations and the
average I value has a declining trend with the
increasing dimension of BiLSTM hidden status.

Figure 3 shows the performance on different
numbers of target-domain-epochs in a 5-way 5-
shot setting on four adaptations. Experiment set-
tings are the same as in Section 4.2 except that the

0.5
04
8031/
E] Ly
Z ookt --4- Many—BioNLP13CG
BT ---- Onto—BioNLP13CG
--e- BioNLP13CG
o1y | GENIA
| S

0
0246 810121416182022242628303234363840
the different target-domain-epoch during adaptation procedure

Figure 3: The average F; value from 10 times experi-
ments with different random seed for four adaptations
with different numbers of target-domain-epochs

hyper-parameter target-domain-epochs is dynam-
ically adjusted (from 0 to 40). Results in Figure
3 show that the average Fj values of four adap-
tations become almost stable after executing 10
target-domain-epochs, and this supports our as-
sumption that the model requires fewer training
epochs during the testing procedure.

5 Conclusion

This paper treats the N-way K -shot NER task as an
entity span classification problem and proposes the
BSR method to learn the entity span representation
for tackling this task. More specifically, we calcu-
late contextual dependency score of entity spans
with their surrounding words in the sentence and
use FFNN to classify the span representation gener-
ated by the biaffine pooling module. We then eval-
uate BSR with four standard NER datasets based
on two kinds of adaptations: Intra-Domain Cross-
Type Adaptation and Cross-Domain Cross-Type
Adaptation. Experimental results show that the pro-
posed BSR model learns the features through fewer
labeled entities and outperforms other pre-trained
models and Few-Shot learning baseline models.
Our future work is to identify features that cause
the model to make wrong predictions.
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A N way K shot dataset sampling
method

In Few-Shot NER problems, the input sentence
might contain several entities with different types
and boundaries. Therefore there is a high possibil-
ity that the number of entities and categories do not
match the N-way and the K-shot setting. For ex-
ample, the selected sentence may contain the entity
whose category does not belong any of the given N
entity types, or the selected sentence contains the
entity whose type in support dataset has enough
K -shot entities. Thus, select K sentences for each
type in Y *P! randomly to generate support dataset
S*P is not suitable for N-way K-shot NER task.

We propose a sampling method to gain S;” ¢
in the following way: we only select sentences
that contain the entity type in /N-way and mask
entities in other types until all N-way have at
least K -shot entities. Algorithm 2 shows the
detailed sampling method. The result is, S;” t
will contain several sentences, and at least one
type has K entities and others may have more
than K entities. For example, when it comes
to the 2-way 1-shot configuration, the sentence
“Positron emission tomography in a case of
[intracranial hemangiopericytomal, ...~ Will
be selected. But the sentence “A significant
diminution of [tumor].,, . size and weight
was observed in the drug-treated animals.” will
not be selected because “Cancer” label already
meet requirement of 1-shot in previous sentence.
But the sentence “The presence of activat-
ing  [TSH — RGene_or_gene_product  Mutations
has also been demonstrated in differentiated
[thyroid carcinomas|c,, ...~ Will be selected
because there is a “Gene_or_gene_product”
label. Thus, there will be 1-shot of
“Gene_or_gene_product” entity and 2-shot
of ‘Cancer” entity in S;” g



Algorithm 2: N-way K-shot Support Set
Sampling

STATISTICS(Y) calculates the total number of la-
bels for each type in Y;. NUMBER(y,Y;) means the
total number of the specific label type y in Y;.

Input: Dataset D; = {S;, Y;}, label type Y;, K
Output: support set Djs-pt = {S;pt, yjpf}
S Y o, @
while 3n € STATISTICS(V;™), n < K do
types < [, if NUMBER(l, Y;*') < K,
Vi ey
s < a sentence sampled from Dy;
y < the corresponding label sequence;
if y N types # o then
D U {s, y}s

J

R W N =

e ® 9 &

end
end
return D;."” t

11



