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Abstract

While Named Entity Recognition (NER) is a001
widely studied task, making inferences of enti-002
ties with only a few labeled data (i.e., few-shot003
NER) has been challenging. Correspondingly,004
the N -way K-shot NER task is proposed to005
recognize entities in the given N categories006
with only K labeled samples for each cate-007
gory. Existing methods treat this task as a se-008
quence labeling problem, while this paper re-009
gards it as an entity span classification prob-010
lem and designs a Biaffine Span Representa-011
tion (BSR) method to learn contextual span de-012
pendency representation to fit into the classifi-013
cation algorithm. The BSR applies a biaffine014
pooling module to establish the dependencies015
of each word on the whole sentence and to re-016
duce the dimension of word features, thus, the017
span representation could gain contextual de-018
pendency information to help improve recog-019
nition accuracies. Experimental study on four020
standard NER datasets shows that our pro-021
posed BSR method outperforms pre-trained022
language models and existing N -way K-shot023
NER algorithms in two types of adaptations024
(i.e., Intra-Domain Cross-Type Adaptation and025
Cross-Domain Cross-Type Adaptation). No-026
tably, F1 value has increased by an average of027
13.77% and 18.30% on the 5-way 1-shot task028
and the 5-way 5-shot task, respectively.029

1 Introduction030

As a fundamental task in the Natural Language031

Processing (NLP) area, Named Entity Recogni-032

tion (NER) is mainly about extracting the bound-033

aries and categories of entities in the given sen-034

tences, which can provide helpful information035

for down-stream tasks like text classification (Lee036

et al., 2018), event detection (Popescu et al., 2011),037

question answering (Lee et al., 2007), and more.038

The current state-of-the-art models (Yamada et al.,039

2020; Straková et al., 2019; Sohrab and Miwa,040

2018; Yu et al., 2020) have made progress in en-041

tity classification by applying pre-trained mod-042

els and neural network architectures. These well- 043

performed deep learning models require extensive 044

and high-quality manually labeled data. However, 045

these data might not be readily available due to 046

factors including the lack of domain knowledge 047

from human annotators, high cost of annotating the 048

large-scale data, or the restriction of privacy and 049

security (Lu et al., 2020). Therefore, the Few-Shot 050

learning task is proposed to recognize unlabeled in- 051

stances (query set) according to only a few labeled 052

samples (support set) (Lu et al., 2020). 053

To tackle the Few-Shot NER problem, various 054

types of methods have already been designed in- 055

cluding prototype-based methods, noisy supervised 056

pre-training methods, self-training methods, and 057

meta-learning methods (Hofer et al., 2018; Fritzler 058

et al., 2019; Huang et al., 2020). These methods 059

usually apply a transfer learning strategy to learn 060

information from other rich-resource domains to 061

overcome the shortage of samples in the target do- 062

main, which brings a label-discrepancy problem. 063

Recently, Li formulated aN -wayK-shot NER task 064

to recognize entities in the given N categories with 065

only K labeled entities for each category (Li et al., 066

2020a). This task requires the same size of label 067

categories for the source domain and the target do- 068

main to explore the establishment of shared mod- 069

els during transfer learning. Li tackled this task 070

in the sequence labeling framework, which needs 071

to label each word according to various labeling 072

schema (Li et al., 2012) including “BIO” (Begin- 073

ning, Inside, Outside) and “BIOES” (Begin, Inside, 074

Outside, End, Single). 075

In this paper, we reformulate the N -way K-shot 076

NER task as an entity span classification problem to 077

simplify the task. Rather than labeling each word 078

with entity types and entity boundaries, we just 079

need to determine which type each span belongs 080

to. To improve the classification accuracy, we note 081

that the dependency between words within an entity 082

span and words outside this entity span can help 083

1



to recognize entities. Take the sentence “Parkin-084

son’s disease is a brain disorder” as an example,085

“Parkinson’s disease” has a dependency on “brain086

disorder” and can help to recognize span “brain dis-087

order” as a “Disease” entity. To characterize this088

dependency during the entity span representation089

learning, we design a Biaffine Span Representa-090

tion (BSR) method by applying a biaffine pooling091

module to establish the dependencies of each word092

on the whole sentence and reduce the dimension093

of word features. Thus, the span representation094

could gain contextual dependency information to095

help improve recognition accuracies. After obtain-096

ing the representation, we classify entity spans into097

entity categories by a FeedForward Neural Net-098

work (FFNN) classifier. Experiments on four NER099

datasets show significant improvements of our BSR100

method over pre-trained language models and ex-101

isting N -way K-shot learning algorithms in terms102

of F1 value.103

The rest of this paper is organized as follows.104

Section 2 states the N -way K-shot problem in the105

NER task and explains existing Few-Shot learning106

methods and entity annotation frameworks in NER.107

Section 3 details our BSR model for the N -way K-108

shot NER task. Following the experimental study109

in Section 4, we conclude this paper in Section 5.110

2 Background111

This section first introduces the Few-Shot Named112

Entity Recognition (NER) problem and the N -113

way K-shot scenario. Then, we discuss current114

Few-Shot learning methods in NER. Finally, we115

detail two frameworks to generate entity label se-116

quences in NER, namely, the sequence-labeling-117

based framework and the entity-span-based frame-118

work.119

2.1 Problem Statement120

The Few-Shot NER problem aims to build a model121

F : S → Y with sentences S as the input and122

entity label sequences Y as the output, where the123

input sentences S only contain a few instances of124

entities. The N -way K-shot NER task puts con-125

straints on the general Few-Shot NER by limiting126

the size of entity type set Y to N for the input127

sentences S. Therefore, it just needs to fine-tune128

the model learned on other rich-resource domains129

when applying the transfer learning strategy. The130

formal descriptions are as follows.131

Suppose Si and Sj are the sentences in the132

source domain i and the target domain j, respec- 133

tively. The sizes of entity types in Si and Sj are 134

both fixed asN . Sj is further divided into a support 135

set Ssptj and a query set Sqryj . The N -way K-shot 136

NER task first trains a model on Di = {Si,Yi}, 137

where Yi is corresponding label sequences of Si. 138

Then it makes adaptations on Sj , i.e., it first fine- 139

tunes the model on Dspt
j = {Ssptj ,Yspt

j } and then 140

predicts the label sequences for Dqry
j = {Sqryj }, 141

where Yspt
j is the corresponding label sequences 142

of Ssptj and each entity type in Ssptj only contains 143

K entities. We call Dspt
j as the N -way K-shot set- 144

ting. There are two fundamental rules for datasets 145

in domain i and j: 146

• The entity types inDi are different from types 147

in Dj : Yi ∩ Yj = ∅. 148

• The entity types in Dspt are the same as 149

types in Dqry, but sentences appear in Dspt 150

will NEVER appear in Dqry : Y spt = 151

Y qry, Sspt ∩ Sqry = ∅. 152

2.2 Few-Shot NER methods 153

The N -way K-shot NER task is a newly presented 154

Few-Shot NER setting. There are only a few works 155

on it. Li first investigated it and built a model that 156

can be effectively adapted to new tasks by updating 157

a small set of low-dimensional parameters (Li et al., 158

2020a). As Few-Shot NER methods could also be 159

adjusted on this new task, we also reviewed related 160

works on these methods. 161

Many Few-Shot NER methods are based the 162

transfer learning strategy, which aims at training 163

models from source domains and making adap- 164

tations on the target domain; that is, training the 165

model F : Sj → Yj that maps sentences S to 166

labels Y in target domain j based on the model 167

learned in source domain i. The target domain j 168

only contains a few labeled sentences, while the 169

source domain i can have plenty of labeled data 170

(Yang et al., 2021; Ding et al., 2021). These meth- 171

ods face the challenge that the model may need to 172

be trained from scratch on the target domain j and 173

the information of label dependencies learned in 174

source domains might be unsuitable for the target 175

domain (Hou et al., 2019). 176

Meta-learning-based methods are another type 177

of methods, which aim at training models by a few 178

samples and applying them to new tasks directly, 179

without retraining from scratch. Meta-learning 180

can be categorized as metric-based methods that 181

2



need to calculate the distance between training sam-182

ples’ centers and test samples (Snell et al., 2017),183

memory-based methods that need to store and main-184

tain input representations in an external memory185

(Florez and Mueller, 2019), and optimization-based186

methods that need to split tasks into masses meta-187

tasks (Finn et al., 2017; Li et al., 2020a).188

Besides, some other Few-Shot learning strate-189

gies are also designed. Li regarded NER as a190

logical rule extraction problem. They utilized a191

weakly supervised named entity tag as a seed rule192

and designed a dynamic label selection method to193

generate new rules and build new tags (Li et al.,194

2021). Jiang combined the weakly labeled data195

with the strongly labeled data during training and196

suppressed the extensive noise data to make infer-197

ences (Jiang et al., 2021). Tong learned the seman-198

tics hid in the “O” label to improve results (Tong199

et al., 2021). Ma used prompt-based models to deal200

with Few-Shot NER tasks (Ma et al., 2021).201

2.3 Sequence Labeling and Entity Span202

NER tasks require to obtain the label sequences203

for entities. Above section reviews related models204

for Few-Shot NER. After training the models, we205

should also transfer the model outputs into label206

sequences. Currently, there are mainly two widely207

used frameworks for generating label sequences,208

namely, the sequence-labeling-based framework209

and the entity-span-based framework. When apply-210

ing different frameworks to formulate the problem,211

the NER models should also be adjusted accord-212

ingly.213

The sequence-labeling-based framework can be214

defined as: for the input sentence s with n tokens,215

denoted by s = {w1, . . . , wn}, assign each to-216

ken wi a label li which belongs to the pre-defined217

entity type set Y and generate a label sequence218

y = {l1, . . . , ln} ∈ Y . To locate the boundaries219

of entities in s, many sequence labeling schema220

have been proposed to add extra tags for labels in221

y (Lin et al., 2020; Kruengkrai et al., 2020; Tabas-222

sum et al., 2020). For example, in the “BIO” se-223

quence labeling schema, words in non-entities will224

be labeled as “O”, and the label of the word in the225

start location of an entity will be added with a “B-”226

whereas other locations in this entity will be added227

with a “I-”. To be specific, the example sentence228

“Parkinson’s disease is a [brain disorder]Disease.”229

will be annotated as “O, O, O, O, B-Disease, I-230

Disease”. Therefore, methods in this framework231

need to label both entity types and entity bound- 232

aries. Besides, as the labels are added word by 233

word, these methods are hard to handle nested NER 234

(some entities are within an entity) tasks, for ex- 235

ample, it is uneasy to label the “[brain]BodyPart” 236

entity within the “[brain disorder]Disease” entity in 237

the example sentence. The extracted outer entities 238

(“brain disorder”) will also affect the performance 239

of the recognition of inner entities (“brain”). 240

The entity-span-based framework splits sen- 241

tences into several entity spans, where each span is 242

a span of tokens {wp, . . . , wq} (16p6q6n), and 243

then calculates classification results ŷ ∈ Y for each 244

entity span. For example, the entity span “brain dis- 245

order” in the example sentence will be labeled as 246

“Disease”, the entity span “brain ” will be labeled as 247

“BodyPart” and the entity span “disease is a” will 248

be labeled as “O”. In this way, the entity span for- 249

mulation converts NER tasks into multi-class clas- 250

sification problems rather than determining entity 251

types and entity boundaries like sequence-labeling- 252

based methods (Joshi et al., 2020; Yamada et al., 253

2020; Yu et al., 2020). Comparatively speaking, 254

entity-span-based methods simplify the task and 255

may achieve better performances, although they 256

may increase the time complexity. This is also the 257

reason we try to use entity span to formulate the 258

N -way K-shot NER task. 259

3 Methodology 260

In this section, we justify the intuition of the BSR 261

model and explain details about the BSR model. 262

Afterwards, we introduce the training and adapting 263

process of the BSR model. 264

3.1 Biaffine Span Representation 265

Following the entity span framework, we formulate 266

the N -way K-shot NER task as an entity span 267

classification problem. After inputting sentences, 268

we learn the span representation and then train a 269

classifier to determine entity types. Therefore, the 270

span representation plays an essential role. 271

As mentioned in the introduction section, we 272

note that the dependency between words within 273

an entity span and words outside this entity span 274

can help to recognize entities, just as “Parkinson’s 275

disease” can help to recognize span “brain disorder” 276

as a “Disease” entity for the sentence “Parkinson’s 277

disease is a brain disorder”. To characterize these 278

dependencies, we apply a biaffine pooling module, 279

an idea similar as Yu’s work (Yu et al., 2020), how- 280
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Figure 1: The whole architecture of our BSR model.
Words in the sentence will first be embedded by BERT
and the hidden features will then be learned by a BiL-
STM layer. To get the dependency representation be-
tween an entity span (words in blue) and their surround-
ing words, we deploy a biaffine pooling module, which
consists of a biaffine layer and a pooling layer. Finally
the span representation is fit into a FFNN classifier.

ever, they only established the dependency between281

the head and the tail for each entity span to make282

classification for general NER tasks. Besides, we283

also perform dimension reduction in the biaffine284

pooling module to improve the generalization of285

our BSR model forN -wayK-shot learning. Figure286

1 shows an overview of the whole architecture.287

We first use BERTbase (Devlin et al., 2018) to288

get word embedding vector wi for each word in289

sentence s and create entity mask Ms for each290

entity span. Here, wi ∈ Rd where d is the result di-291

mension of BERTbase andMs = {0, 1}l where l292

denotes the number of words in the sentence. After293

that, a BiLSTM layer is applied to learn sentence294

representations. LetHf (i) andHb(i) respectively295

denote forward and backward results obtained by296

the BiLSTM layer for wi in s.297

We then need to learn the contextual depen-298

dency representation for each span, which is ac-299

complished by a biaffine pooling module in our300

BSR model. In this module, a biaffine layer is first301

used to compute a lf × lb × r sentence representa-302

tion tensorRs for each sentence s:303

Rs = Hf
ᵀ U1

s Hb + (Hf ⊕ Hb)
ᵀ U2

s + b (1)304

where r is a low-dimensional space, lf ∈ Rl is305

the forward word representation, lb ∈ Rl is the306

backward word representation, U1
S is a h× r × h 307

tensor with h as the dimension ofHf orHb, U2
S is 308

a 2h× r matrix, and b is the bias. 309

In Figure 1, Rs is represented as a l × l matrix 310

and each element in the matrix is a dependency 311

feature vector in the low-dimensional space, i.e., 312

Rs(i, j) means the biaffine dependency score of 313

the ith word on the jth word. 314

After the biaffine layer, we adopt two pooling 315

strategies to obtain the span dependency represen- 316

tation including the average pooling and the max 317

pooling. The average pooling is used to calculate 318

the average dependency scores of each word on the 319

whole sentence, while the max pooling is to extract 320

the max vector within each span to highlight the 321

important features of each word in this span. The 322

max pooling is only performed on words within the 323

same span, therefore, we add a mask operation in 324

the average pooling for convenience. We mask the 325

words that are not in the span to get average span 326

dependency scores Spans ∈ Rl×Rr by Hadamard 327

product of entity maskMs and average sentence 328

representation MEAN(Rs) : 329

Spans = MEAN(Rs) ◦ Ms (2) 330

Finally we utilize a FFNN to classify entity span 331

categories. 332

3.2 Training and Adapting Algorithm 333

Algorithm 1 summarizes the procedures of using 334

our BSR model to train and adapt on source domain 335

i and target domain j. 336

When training the BSR model on the 337

source domain i, named task Ti, we initial- 338

ize parameters and sample a batch of subsets 339

{Dm
i = {Smi ,Ym

i }}m=1,2,... from {Si,Yi} (line 3 340

to 6). We iteratively train the model on each Dm
i 341

by utilizing gradient descent to optimize model pa- 342

rameters with cross-entropy loss (line 7 to 13). To 343

reduce the training time, we shrink training epochs 344

for subsequent subtasks. 345

For adapting, the trained model is fine-tuned 346

on support dataset Dspt
j from the target domain j, 347

named task Tj (line 17 to 20). Finally, the model 348

is applied to make inference on unlabeled dataset 349

Dqry
j (line 21). 350

4 Experiments 351

In this section, we present our experimental study 352

on the proposed BSR model for the N -way K- 353

shot NER task. We first introduce four public 354

4



Algorithm 1: Training and Adapting of
BSR Model
Source-domain-epoch and target-domain-epoch

mean the training epoch in source domain and target

domain, respectively. Gradient descent∇ is applied

to calculate cross-entropy loss L and optimize model

parameter θ.

1 Training():
2 begin
3 Set learning rate α for task Ti;
4 Initialize BSR model parameter θ;
5 Initialize Source-domain-epoch;
6 Sample batch of subtasks T = {Dmi }m=1,2,...;
7 for Dmi in T do
8 for e in source-domain-epoch do
9 θe = θe−1−α∇θe−1LDm

i
(Ŷmi , Ymi );

10 end
11 decrease source-domain-epoch;
12 end
13 return θ;
14 end
15 Adapting():
16 begin
17 set learning rate β for task Tj ;
18 for e in target domain-epoch do
19 θe = θe−1 − β∇θe−1LDspt

j
(Ŷsptj , Ysptj );

20 end
21 Evaluate Dqryj using the model BSR(θ);
22 return evaluation performance;
23 end

Table 1: Datasets used in experiments

Dataset Domain Types Sentences

OntoNotes Various 18 179,062
GENIA Medical 36 18,546

BioNLP13CG Medical 16 6,018
ManyEnt-53 Various 53 54,021

datasets and several baseline models including pre-355

trained language models and typical few-shot learn-356

ing models. Next, we summarize hyper-parameters357

in the BSR model. And finally, we split the N -way358

K-shot NER task into Intra-Domain Cross-Type359

Adaptation and Cross-Domain Cross-Type Adap-360

tation, and report the experimental results of each361

adaptation.362

4.1 Datasets, Baselines, and Evaluation363

Metric364

We use four standard NER datasets for evaluation365

including OntoNotes (Pradhan et al., 2013), GE-366

NIA (Kim et al., 2003), BioNLP13CG (Nédellec367

et al., 2013), and ManyEnt-53 (Eberts et al., 2020)368

as shown in Table 1. We compare the BSR model369

with the following:370

• Pre-trained Models: We utilize Flair (Akbik 371

et al., 2018), ELMo (Peters et al., 2018), and 372

BERT (Vaswani et al., 2017) models to get 373

word embeddings and build a CRF layer to 374

predict the labels of entities. 375

• ProtoNet (Snell et al., 2017): This is a metric- 376

based meta-learning method for the Few-Shot 377

NER task. It focuses on computing distances 378

between the center points of training samples 379

(prototypes) and test samples. The model is 380

afterwards optimized by calculating cross en- 381

tropy loss between test samples and proto- 382

types. 383

• MAML (Finn et al., 2017): This optimization- 384

based meta-learning method uses a large-scale 385

dataset in the source domain i to optimize 386

model parameters. It can be quickly adapted 387

to new tasks in the target domain j over a 388

few gradient steps. During the training proce- 389

dure, the dataset in domain i is separated into 390

several few-shot subtasks. The loss of each 391

subtask is recorded, and the total loss of all 392

subtasks can optimize the model. 393

• FEWNER (Li et al., 2020a): This is an 394

optimization-based meta-learning method that 395

focuses on theN -wayK-shot NER task. It de- 396

fines two kinds of model parameters: context 397

parameters ϕ and sequence labeling parame- 398

ters θ. In training, the model first updates ϕ 399

by loss of each subtask in the source domain 400

i and updates θ according to ϕ. In testing, it 401

maintains θ and updates ϕ according to the 402

Few-Shot task in the target domain j, and 403

finally makes inference for the task without 404

labels in domain j. The FEWNER achieves 405

SoTA results in several tasks. 406

We utilize F1 = 2 ×Precision ×Recall
Precision + Recall value as 407

the evaluation metric to balance the influence of 408

Precision value and Recall value. 409

4.2 Experiment Settings 410

To encode word into vectors, we use BERTbase 411

which has 12 heads of attention layers and 768 412

word-embedding dimensions. The BiLSTM layer 413

has one hidden layer whose hidden size is 200. The 414

initial states h0 and c0 are initialized randomly. The 415

dimension in the Biaffine layer is 100. We normal- 416

ize the results after the Biaffine layer and utilize a 417

dropout of 0.2. Different from meta-learning-based 418
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Table 2: Intra-Domain Cross-Type Adaptation performance on four datasets (%)

Methods
GENIA
5-way

OntoNotes
5-way

BioNLP13CG
5-way

ManyEnt-53
5-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Flair 9.77 11.44 13.08 17.62 7.26 17.82 11.68 12.93
ELMo 15.21 19.18 13.28 15.53 7.73 21.56 12.85 16.15
BERT 12.02 14.93 11.55 13.14 11.06 24.22 11.52 15.94

ProtoNet 12.34 15.03 12.01 19.33 13.31 21.93 13.78 23.91
MAML 13.73 16.46 10.51 15.10 14.02 25.27 15.17 21.43

FEWNER 23.24 29.19 22.84 39.67 22.55 36.89 25.87 38.01
BSR 25.65 42.56 26.99 54.59 27.33 52.69 30.21 49.00

models (Li et al., 2020a) which need masses of419

subtasks to learn cross domain information, our420

transfer-learning-based BSR model requires less421

subtasks whereas each subtask contains more sen-422

tences. To be specific, the number of subtasks is423

3 and each subtask contains no more than 5000424

sentences. In the training procedure, learning rate425

α for task Ti is 0.00005 and we initialize source-426

domain-epochs to 20 and decrease it by step 4 for427

each subsequent subtask. In the adapting proce-428

dure, learning rate β for task Tj is the same as429

α and the target domain-epochs is 30. In the final430

evaluation procedure, we transfer entity span classi-431

fication results to labeling sequences and calculate432

F1 value.433

4.3 Experimental Results434

We evaluate our BSR model on two types of adap-435

tations including Intra-Domain Cross-Type Adap-436

tation and Cross-Domain Cross-Type Adaptation.437

For Intra-Domain Cross-Type Adaptation, we438

first randomly sample N entity types (N -way) in439

each dataset and select sentences using a sampling440

method (referring to Appendix). Secondly, we441

mask all entities whose types are in N -way to con-442

stitute a source domain dataset Di. Afterwards,443

we further mask all entities whose types are not in444

N -way to generate a target domain dataset Dj to445

ensure rule Yi ∩ Yj = ∅. Although the source do-446

main dataset Di and the target domain dataset Dj447

come from the same original dataset, their entity448

types are different (Intra-Domain Cross-Type).449

For Cross-Domain Cross-Type Adaptation, we450

use the fully labeled dataset in domain i as the451

source domain dataset Di, and fully labeled dataset452

in domain j as the target domain dataset Dj . Di453

and Dj come from different datasets and their en-454

tity types are also different (Cross-Domain Cross-455

Type).456

4.3.1 Intra-Domain Cross-Type Adaptation 457

In this experiment, for each target domain dataset, 458

we sample 5 types (5-way) randomly. Afterwards, 459

we apply the dataset generation method mentioned 460

in appendix A to generate a Few-Shot support 461

dataset Dspt
j = {Ssptj ,Yspt

j }, and finally, we con- 462

struct a Few-Shot query dataset Dqry
j by randomly 463

sampling 5000 sentences from {Sj − Ssptj }. 464

Table 2 shows the average F1 results of Intra- 465

Domain Cross-Type Adaptation over 10 itera- 466

tions with different random seeds. For the GE- 467

NIA dataset, the backbone of the word embed- 468

ding method in baseline models is the combina- 469

tion of Glove and character-level-CNN introduced 470

in the original paper (Li et al., 2020a), whereas 471

for other datasets is the learnable BERT model. 472

Our BSR model achieves the state-of-the-art re- 473

sults and improves F1 value on FEWNER by 474

2.41%, 4.15%, 4.78%, 4.34% in 1-shot setting, 475

and 13.37%, 14.92%, 15.80%, 10.99% in 5-shot 476

setting for GENIA, OntoNotes, BioNLP13CG, and 477

ManyEnt datasets, respectively. The results of the 478

average F1 value in baseline models show that 479

the BERT model performs better than Glove and 480

character-level-CNN in the 5-shot setting when 481

used as the backbone layer. However, the advan- 482

tage of the BERT model becomes slighter when it 483

comes to 1-shot setting. 484

All the results of 5-shot are better than those of 1- 485

shot, and BSR model has a prominent improvement 486

from 1-shot to 5-shot in comparison with the base- 487

line models. Results on the GENIA dataset show 488

lower F1 values than on other datasets. We suppose 489

the reason is due to the imbalance label type distri- 490

bution. For example, the type “RNA_N/A” appears 491

only 15 times in the whole GENIA dataset whereas 492

the type “protein_molecule” appears 21,632 times. 493

For dataset ManyEnt-53, the least frequent entity 494

type is “military collective” which appears 985 495

times and the most frequent entity type is “human” 496
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Table 3: Cross-Domain Cross-Type Adaptation performance on three datasets to BioNLP13CG (%)

Methods
GENIA→ BioNLP13CG OntoNotes→ BioNLP13CG ManyEnt-53→ BioNLP13CG

5-way 5-way 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Flair 10.53 12.49 8.37 9.15 8.09 13.95
ELMo 10.39 11.45 10.76 11.85 13.36 19.12
BERT 13.36 15.15 9.15 9.98 15.38 18.87

ProtoNet 14.05 15.38 8.34 8.93 16.26 26.42
MAML 14.98 17.34 9.22 10.57 16.05 24.79

FEWNER 22.46 27.94 13.09 15.46 17.20 25.67
BSR 35.99 49.12 38.73 52.78 32.93 50.41

which appears 21,888 times.497

4.3.2 Cross-Domain Cross-Type Adaptation498

In this experiment, for each target domain dataset,499

we sample 5 types (5-way) randomly. After-500

wards, we apply the dataset generation method501

mentioned in appendix A to generate a Few-Shot502

support dataset Dspt
j = {Ssptj ,Yspt

j }, and finally,503

we construct a Few-Shot query datasetDqry
j by ran-504

domly sampling 5000 sentences from {Sj − Ssptj }.505

We let BioNLP13CG as the target domain j and506

other datasets as the source domain i, and de-507

sign three adaptations: GENIA→ BioNLP13CG,508

OntoNotes→ BioNLP13CG, and ManyEnt-53→509

BioNLP13CG, respectively.510

Table 3 shows the average F1 value results511

of Cross-Domain Cross-Type Adaptation dur-512

ing 10 experiments with different random seeds.513

In GENIA → BioNLP13CG and OntoNotes →514

BioNLP13CG adaptations, the backbone of word515

embedding method in baseline models is the com-516

bination of Glove and character-level-CNN, from517

original paper (Li et al., 2020a). And for ManyEnt-518

53 → BioNLP13CG adaptation the backbone519

of word embedding method is learnable BERT520

model. BSR method achieves state-of-the-art re-521

sults and improves F1 value on FEWNER by522

13.53%, 25.64%, 15.73% in 1-shot setting, and523

21.18%, 37.32%, 27.74% in 5-shot setting for these524

adaptations, respectively. The FEWNER model525

shows that the inference performance in target do-526

main j is affected by the source domain i: the527

result F1 value is higher when source domain i528

and target domain j are medical in GENIA →529

BioNLP13CG adaptation. However, the F1 value530

is lower when source domain i and target j are dif-531

ferent in OntoNotes→ BioNLP13CG adaptation.532

Experiment results show BSR has a more stable re-533

sult in three adaptations compared with FEWNER:534

the F1 value is not influenced by source/target do-535

mains and remains at approximately 50%. 536

4.3.3 Ablation study on Intra-Domain 537

Cross-Type Adaptation 538

Table 4 reports an ablation analysis on Intra- 539

Domain Cross-Type adaptation using the 540

BioNLP13CG dataset. We evaluate the different 541

sub-components and parameter settings of the 542

proposed BSR model including the biaffine layer 543

and the BiLSTM layer; the different dimensions 544

of BERT model hidden status to get different 545

word embedding vectors; the different numbers 546

of subtasks during the training procedure; the 547

different numbers of initial target-domain-epochs 548

during the training procedure. 549

Table 4: Ablation study on Intra-Domain Cross-Type
Adaptation with dataset BioNLP13CG

1-shot 5-shot
Origin model 27.33 52.69

w/o BiLSTM layer 1.61 ↓ 3.48 ↓
w/o biaffine layer 2.81 ↓ 2.42 ↓

BERT hidden status dimension : 128 -7.71 ↓ -14.01 ↓
BERT hidden status dimension : 256 -3.87 ↓ -6.59 ↓
BERT hidden status dimension : 512 -2.97 ↓ -3.23 ↓

Training subtask T num : 1 -3.05 ↓ -5.77 ↓
Training subtask T num : 5 +4.72 ↑ -0.34 ↓
Training subtask T num : 7 -1.91 ↓ -3.52 ↓
Training subtask T num : 9 +0.95 ↑ +1.47 ↑

initial source-domain-epochs : 10 -3.37 ↓ -1.51 ↓
initial source-domain-epochs : 15 +1.13 ↑ -2.21 ↓
initial source-domain-epochs : 25 -2.24 ↓ -2.68 ↓
initial source-domain-epochs : 30 -2.00 ↓ -1.92 ↓

We remove the biaffine layer and compare it with 550

the original model. As shown in Table 4, the model 551

without the biaffine layer could also outperform 552

the sequence labeling baseline models, whereas the 553

F1 value decreases 2.81% and 2.42% in the 5-way 554

Intra-Domain Cross-Type Adaptation with 1-shot 555

and 5-shot setting, respectively. We also replace the 556

BiLSTM layer with two linear layers and compare 557

it with the original model. The F1 value of the new 558
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Figure 2: The average F1 value from 10 times experi-
ments with different random seed for four adaptations
with different dimensions of BiLSTM hidden status

model decreases 1.61% and 3.48% in the 5-way559

Intra-Domain Cross-Type Adaptation with 1-shot560

and 5-shot setting, respectively.561

It is observed that BERT with a lower hidden562

status dimension (128, 256, and 512) could not out-563

perform the initial setting (768), and the average F1564

value increasingly grows with the increase of hid-565

den status dimensions. We suppose a lower param-566

eter number in BERT would learn less information567

from the training datasets. In this specific adap-568

tation, we find that when increasing the number569

of subtasks (e.g., 9 subtasks), the accuracies only570

increase a little with the cost of prolonging training571

time. After balancing accuracies and training time,572

we decide to use a small subtask number. Further,573

the number of source-domain-epochs could not ex-574

ert a tremendous influence on results. The model575

has already fit the subtasks in the source domain576

with training epochs less than 10.577

Figure 2 shows the performance on different578

BiLSTM hidden status in a 5-way 5-shot setting579

on four adaptations. The experiment settings are580

the same as in Section 4.2, except that the hyper-581

parameter BiLSTM hidden status is adjusted dy-582

namically (from 80 to 300). Moreover, we also583

decrease the initial source-domain-epochs to 10584

for less training time. Every experiment for each585

adaptation is executed 10 times and the average F1586

value is calculated. The result on GENIA dataset587

is the worst among all four adaptations and the588

average F1 value has a declining trend with the589

increasing dimension of BiLSTM hidden status.590

Figure 3 shows the performance on different591

numbers of target-domain-epochs in a 5-way 5-592

shot setting on four adaptations. Experiment set-593

tings are the same as in Section 4.2 except that the594
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Figure 3: The average F1 value from 10 times experi-
ments with different random seed for four adaptations
with different numbers of target-domain-epochs

hyper-parameter target-domain-epochs is dynam- 595

ically adjusted (from 0 to 40). Results in Figure 596

3 show that the average F1 values of four adap- 597

tations become almost stable after executing 10 598

target-domain-epochs, and this supports our as- 599

sumption that the model requires fewer training 600

epochs during the testing procedure. 601

5 Conclusion 602

This paper treats theN -wayK-shot NER task as an 603

entity span classification problem and proposes the 604

BSR method to learn the entity span representation 605

for tackling this task. More specifically, we calcu- 606

late contextual dependency score of entity spans 607

with their surrounding words in the sentence and 608

use FFNN to classify the span representation gener- 609

ated by the biaffine pooling module. We then eval- 610

uate BSR with four standard NER datasets based 611

on two kinds of adaptations: Intra-Domain Cross- 612

Type Adaptation and Cross-Domain Cross-Type 613

Adaptation. Experimental results show that the pro- 614

posed BSR model learns the features through fewer 615

labeled entities and outperforms other pre-trained 616

models and Few-Shot learning baseline models. 617

Our future work is to identify features that cause 618

the model to make wrong predictions. 619
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A N way K shot dataset sampling 794

method 795

In Few-Shot NER problems, the input sentence 796

might contain several entities with different types 797

and boundaries. Therefore there is a high possibil- 798

ity that the number of entities and categories do not 799

match the N -way and the K-shot setting. For ex- 800

ample, the selected sentence may contain the entity 801

whose category does not belong any of the given N 802

entity types, or the selected sentence contains the 803

entity whose type in support dataset has enough 804

K-shot entities. Thus, select K sentences for each 805

type in Y spt randomly to generate support dataset 806

Sspt is not suitable for N -way K-shot NER task. 807

We propose a sampling method to gain Ssptj 808

in the following way: we only select sentences 809

that contain the entity type in N -way and mask 810

entities in other types until all N -way have at 811

least K-shot entities. Algorithm 2 shows the 812

detailed sampling method. The result is, Ssptj 813

will contain several sentences, and at least one 814

type has K entities and others may have more 815

than K entities. For example, when it comes 816

to the 2-way 1-shot configuration, the sentence 817

“Positron emission tomography in a case of 818

[intracranial hemangiopericytoma]Cancer.” will 819

be selected. But the sentence “A significant 820

diminution of [tumor]Cancer size and weight 821

was observed in the drug-treated animals.” will 822

not be selected because “Cancer” label already 823

meet requirement of 1-shot in previous sentence. 824

But the sentence “The presence of activat- 825

ing [TSH− R]Gene_or_gene_product mutations 826

has also been demonstrated in differentiated 827

[thyroid carcinomas]Cancer.” will be selected 828

because there is a “Gene_or_gene_product” 829

label. Thus, there will be 1-shot of 830

“Gene_or_gene_product” entity and 2-shot 831

of ‘Cancer” entity in Ssptj . 832
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Algorithm 2: N-way K-shot Support Set
Sampling
STATISTICS(Yj) calculates the total number of la-

bels for each type in Yj . NUMBER(y,Yj) means the

total number of the specific label type y in Yj .

1 Input: Dataset Dj = {Sj , Yj}, label type Yj , K
2 Output: support set Dsptj = {Ssptj ,Ysptj }
3 Ssptj , Ysptj ← ∅, ∅;
4 while ∃ n ∈ STATISTICS(Ysptj ), n < K do
5 types← l, if NUMBER(l, Ysptj ) < K,

∀ l ∈ Yj
6 s← a sentence sampled from Dj ;
7 y ← the corresponding label sequence;
8 if y ∩ types 6= ∅ then
9 Dsptj ∪ {s, y};

10 end
11 end
12 return Dsptj
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