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ABSTRACT

We consider problems where multiple predictions can be considered correct, but
only one of them is given as supervision. This setting differs from both the re-
gression and class-conditional generative modelling settings: in the former, there
is a unique observed output for each input, which is provided as supervision; in
the latter, there are many observed outputs for each input, and many are provided
as supervision. Applying either regression methods and conditional generative
models to the present setting often results in a model that can only make a single
prediction for each input. We explore several problems that have this property
and develop an approach, TIM, that can generate multiple high quality predictions
given the same input and achieves a reduction of the Fréchet Inception Distance
(FID) by 19.6% on average compared to the baseline.

1 INTRODUCTION

Supervised learning is centred around prediction. In the classification or regression setting, only a
single label/target is assumed to be correct, and the goal is to predict the label with high confidence
or generate a prediction that is as close as possible to the target. In settings such as multi-label
prediction or class-conditional generative modelling, there could be multiple prediction targets for
the same input that are all correct. For example, in class-conditional generative modelling, the input
is the class label and all data points that belong to that class are correct prediction targets. Multiple
prediction targets for the same input are given as supervision, and the goal is to generate all such
prediction targets for the same input (class label).

In this paper, we consider a different problem setting with the following properties: (1) for the same
input, there could be multiple prediction targets that are correct, but (2) only a single prediction
target per input is given as supervision. The goal is still to generate all prediction targets for the
same input. See Table 1 for a comparison of the problem setting we consider to other common
settings. Note that we focus on the case of continuous prediction targets and leave discrete labels to
future work.

When do such prediction problems arise? They often come up in inverse problems, which require
generating more information from less information, including information that cannot be derived
from the input. The problem essentially requires us to generate alternatives that were never observed,
so a natural question is why it should be possible at all. After all, if there were a valid alternative
output that was never realized, how do we know whether it exists, and why should the model generate
such an alternative if there is no indication that it exists? The answer lies in an observation that holds
true across many natural problems: which of the many valid prediction targets is observed is usually
arbitrary, and so while a valid alternative for the current input may not be observed, we expect an
analogous version of it for some other input to be observed. Therefore, the hope is for the model to
generalize across different inputs to produce the full range of alternative predictions for all inputs.

Extending GAN-based approaches to the one-to-many prediction has proven to be challenging (Isola
et al., 2017; Zhu et al., 2017) – due to mode collapse, the generator tends to generate identical
samples for the same input and ignores the latent noise. A recent method (Li* et al., 2020) takes
a different approach by extending an alternative generative modelling technique known as Implicit
Maximum Likelihood Estimation (IMLE) (Li & Malik, 2018). While it shows promise in terms
of generation diversity, it exhibits several major limitations: (1) the fidelity of generated images is
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Problem Setting Label Type Prediction Supervision

Regression Continuous One-to-one One-to-oneClassification Discrete

Class-conditional Generative Modelling Continuous One-to-many One-to-manyMulti-label Prediction Discrete

Present Setting Continuous One-to-many One-to-one

Table 1: Comparison of the problem setting we consider to other common settings.

lacking, (2) it used a different dedicated architecture for each of the two tasks it considered, which
limits its applicability to other tasks, (3) a large number of samples need to be drawn during training
to attain high generation quality, which slows down training.

In this paper, we propose a new method called Tower Implicit Model (TIM) which produces different
alternative predictions for the same input and addresses the aforementioned issues. Our contribution
is three-fold:

1. We improve the quality of generated images significantly by leveraging cues at multiple
scales and introducing intermediate supervision

2. We devise a single unified architecture that works well for a diverse range of tasks and is
easily extensible to different output resolutions

3. We propose a new sampling scheme for IMLE which attains significantly greater efficiency

We demonstrate TIM significantly outperforms the prior method (Li* et al., 2020) in terms of both
quality and diversity on a variety of tasks. Moreover, we show TIM achieves superior image quality
compared to leading task-specific methods.

2 AN ILLUSTRATIVE EXAMPLE USING MNIST

(a) Samples (b) KDE

Figure 1: Example unseen input digits and outputs from our method. Top row is the input, middle
row is the predictions and bottom row is the original images. Video is also available in supplemen-
tary materials.

To illustrate the problem setting, we will start with a simple illustrative example using MNIST. We
consider the problem of predicting from the first ten principal components of a data point the values
of the remaining ones. The input is the image reconstructed from the first ten coordinates on the
PCA basis and the observed output is the original image.

This prediction problem is inherently one-to-many, but only one-to-one supervision is available.
Specifically, given the first ten coordinates of a real data point, there are many possible ways to fill
in the values of the remaining coordinates that will result in plausible MNIST digits. However, only
one of these is observed, namely the original real data point.

To illustrate what the unobserved alternatives could be, we visualize the results of our method (the
details of which will be discussed later) in Figure 1a. All the predictions share the same first ten
coordinates, but differ in the remaining ones. As shown, all predictions are plausible, but differ from
the original images.
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We can visualize the marginal distribution over the 11th and 12th coordinates of the predictions and
compare to those of the real data point. As shown in Figure 1b, the real data point lies in a high
density region of the prediction distribution, suggesting the method is able to predict the real data
point (or at least the 11th and 12th coordinates). Note that there is only a single data point we can
observe for the given input, because other data points in the dataset have different coordinates along
the first 10 principal components and therefore differ from the given input.

As a proxy for other data points that could have been observed for the given input, we visualize
ten data points whose first 10 principal components are the closest to the given input. While they
technically do not match the given input (because the first 10 principal components are different from
the given input), they are hopefully similar to unobserved alternatives and can therefore give us a
sense of how the unobserved alternatives would be distributed. As shown, the prediction distribution
has moderately high density at most of these points, indicating that they can be predicted by the
method.

3 BACKGROUND

In ordinary one-to-one prediction, the model is a function f✓ parameterized by ✓ that maps the
input to the prediction. To support one-to-many prediction, one can add a latent random variable
as an input, so now f✓ takes in both the input x and a latent noise vector z drawn from a standard
Gaussian N (0, I) and produces an image by as output. In the language of generative models, f✓ is
known as a generator. To train such a model, we can use a conditional GAN (cGAN), which adds a
discriminator that tries to tell apart the observed output y and the generated output by. The generator
is trained to make its output by seem as real as possible to the discriminator. Unfortunately, after
training, f✓(x, z) produces the same output for all values of z because of mode collapse, making
conditional GANs ill-suited to the present problem setting. Intuitively, this happens because making
by as real as possible would push it towards the observed output y, so the generator tries to make its
output similar to the observed output y for all values of z.

In (Li* et al., 2020), an alternative technique is proposed to train the generator network f✓, which
is known as conditional IMLE (cIMLE). Rather than trying to make all outputs generated from
different values of z similar to the observed output y, it only tries to make some of them similar
to the observed output y. The generator is therefore only encouraged to map one value of z to
the observed output y, and reserve other values of z to other reasonable outputs that are not in
the training dataset. This makes it possible to produce non-deterministic prediction. Also, unlike
cGANs, cIMLE does not use a discriminator and therefore does not require adversarial training,
which makes training more stable. The following training objective takes the following form:

min
✓

Ez1,1,...,zn,m⇠N (0,I)

"
nX

i=1

min
j2{1,...,m}

d(f✓(xi, zi,j),yi)

#
,

where d(·, ·) is a distance metric, m is a hyperparameter, and xi and yi are the ith input and observed
output in the dataset.

Unfortunately, in (Li* et al., 2020), a different generator network was used for each task, thereby
limiting its applicability more generally to other tasks. Moreover, the generated outputs have low
fidelity and lack fine details, especially when compared to one-to-one methods like cGANs, raising
the question of whether cIMLE can produce images of comparable fidelity to cGANs despite hav-
ing no discriminator. In this paper, we address these issues and answer the latter question in the
affirmative.

4 METHOD

4.1 LEVERAGING MULTIPLE SCALES

Images contain structure at different scales, and it is important to both leverage cues at multiple
scales in the input image and produce realistic global structure and fine details in the output image.
To this end, we devise a meta-architecture suited to modelling structure at multiple scales. This
high-level theme of multi-scale processing isn’t new and has been used by many methods in various
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Figure 2: Our TIM model consists of multiple modules, each of which operates on 2⇥ the resolution
of previous one.

contexts, e.g.: (Denton et al., 2015; Newell et al., 2016; Karras et al., 2017; Chen & Koltun, 2017;
Park et al., 2018). What is interesting is the precise way this is done in order to enable intermediate
supervision and hierarchical sampling, which are described below. It turns out both are critically
important to achieving high fidelity generation, which is validated by an ablation study in Sect. 5.3.

In our architecture (shown in Figure 2), we have a sequence of modules, each of which handles an
input image of a particular resolution and outputs an image of the same resolution. We downsample
the input image repeatedly by a factor of 2 to obtain a set of input images at different resolutions
and feed them into different modules. Each module takes a latent code whose spatial dimensions
correspond to its resolution and the upsampled output of the module for the next lowest resolution
as input. Note that this architecture generalizes to varying levels of resolution, since we can simply
add more modules for high-resolution outputs.

We add supervision to the output of each intermediate module to encourage similarity between the
generated image and the real image. Effectively, the distance metric in cIMLE is chosen to be the
sum over perceptual distances between the output of each module and the real image downsampled
to the same resolution. We choose LPIPS (Zhang et al., 2018) as our perceptual distance metric.

4.2 HIERARCHICAL SAMPLING

Recall that for each input, cIMLE generates many samples and tries to make one of them similar
to the observed output. The samples that are not selected correspond to the other possible outputs
that are unobserved. So, the more samples that are generated during training, the more modes of
the output distribution cIMLE can model. While we would ideally like to use many samples during
training, generating samples is expensive, and so in practice, we can only generate just enough
samples for cIMLE to learn effectively. This forces a tradeoff between the number of samples and
performance, which is less than ideal.

Figure 3: Comparison of sample efficiency of hierarchical sampling (HS) to vanilla sampling (which
samples latent codes for different modules independently). The relative disparity of the required
number of samples needed to achieve the same LPIPS distance to the observed output with/without
HS is shown, where the number of required samples for HS is normalized to 1. The reported results
are averaged over 10 independent runs. As shown, as the number of samples used per module
increases in the case of HS, more samples are needed by vanilla sampling to match the distance
attained by HS.

To get around this conundrum, we propose a novel sampling strategy, known as hierarchical sam-
pling. Because cIMLE only uses the sample that is closest to the observed output for training, the
key idea is to sample close to the region of the latent code space that is likely to be close to the
observed output. This avoids generating samples that are unlikely to be selected, thereby increasing
the effective number of samples without actually generating all of them.
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Figure 4: Details of the architecture backbone. See Figure 5a for the inner workings of RRDB
blocks.

(a) Residual-in-Residual Dense Block (RRDB) (b) Dense Block

Figure 5: (a) Inner workings of Residual-in-Residual Dense Blocks (RRDBs), which comprises of
dense blocks (details in (b)). � is the residual scaling parameter. (b) Inner workings of dense blocks.

To this end, we generate samples for different modules successively, each of which operates at
different resolutions. In the first stage, we sample latent codes for the first module, generate low-
resolution images from them using the first module and select the latent code whose generated
image is closest to the observed output downsampled to the appropriate resolution. In the next
stage, we condition on the latent code of first module by setting it to the latent code selected in
the previous stage. We sample latent codes for the second module and generate images at the next
higher resolution from them using the first and second modules. In subsequent stages, we repeat the
analogous procedure for the later modules. Note that this procedure is only used at train time; at test
time, the latent codes for different modules are sampled independently because the goal at test time
is to generate all possible outputs, including those that are unobserved.

We validate the improved sample efficiency of hierarchical sampling in Figure 3. We compare the
number of samples required to obtain the same level of LPIPS distance to the observed output, with
and without hierarchical sampling. As shown, vanilla sampling requires 2 to 8 times more samples
than hierarchical sampling to reach the same LPIPS distance, and the difference becomes larger as
the number of samples used for each module in hierarchical sampling increases.

4.3 UNIFIED MODEL ARCHITECTURE

In the generative modelling literature, architecture design has played an important role in advancing
image fidelity (Radford et al., 2015; Reed et al., 2017; Vahdat & Kautz, 2020b), and different types
of generative models have different optimal choices of architecture due to differences in the goal
(mode seeking vs. mode covering) and training objective (adversarial vs. non-adversarial).

Prior cIMLE architectures are unable to generate fine details, so to generate high fidelity images,
we design a new architecture for cIMLE. Unlike prior cIMLE architectures (Li* et al., 2020), the
proposed architecture performs well across a broad variety of image synthesis tasks; in fact, the
single proposed architecture significantly outperforms prior task-specific architectures, as shown
later in Sect. 5.

In each module, the backbone architecture comprises of two branches, a main branch consisting of
residual-in-residual dense blocks (RRDB) (Wang et al., 2018b) and an auxiliary branch consisting
of a sequence of dense layers, known as a mapping network (Karras et al., 2019b), that produces
scaling factors and offsets for different channels in output produced by each RRDB. In Figure 5,
we show the inner workings of each RRDB, which is made up of dense blocks and residual con-
nections. Unlike traditional RRDB, which comes without normalization and deliberately removes
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Figure 6: Visualization of different samples generated by our method (TIM) and the input for super-
resolution. As shown, TIM generates different high quality textures for example on the edge of the
butterfly’s wing.

batch normalization in particular, we apply weight normalization (Salimans & Kingma, 2016) to all
convolution layers.

Figure 7: Visualization of different samples generated by our method (TIM) and the input for image
colourization. As shown in the figure, in addition to common colours, TIM also produces a variety of
colours, such as green bananas and plums. Similarly, generating parrots with different body colours
also shows the power of TIM in terms of multimodality.

The precise design of the architecture is essential to achieving high image fidelity across various
tasks. For example, we found the default number of blocks and channels in (Wang et al., 2018b) to
work poorly with IMLE, and needed to increase the number of channels and decrease the number of
blocks at the same time. Arriving at the sweet spot in the space of architectures required thorough
experimentation. As we will show in Sect. 5 and the appendix, the combination of the design motifs
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(a) Input (b) TIM

Figure 8: Visualization of different samples generated by our method (TIM) and the input for image
decompression. As shown, TIM output successfully removes most artifacts and predicts diverse
textures.

leads to a substantial improvement in generated image fidelity compared to prior architectures. We
also include an ablation study of different components to show the effectiveness of each in Sect. 5.3.

5 EXPERIMENTS

We apply our method to four different one-to-many prediction tasks, namely 16⇥ single image
super-resolution, image colourization, image decompression and image synthesis from scene lay-
outs. We compare to the leading one-to-many prediction method based on IMLE, cIMLE (Li* et al.,
2020), which serves to validate our main contributions, namely improving the fidelity, generality
and efficiency of IMLE-based methods. As a secondary comparison, we also compare to the lead-
ing task-specific one-to-many method for each task, to demonstrate potential impact in a broader
context. Where a task-specific one-to-many method does not exist for a task, we compare instead to
the leading one-to-one method. Where there are a large number of methods that fit the criterion, we
picked the leading method with publicly available implementation based on leaderboard rankings in
challenges and recent survey papers (Zhang et al., 2020; Anwar et al., 2020).

5.1 QUANTITATIVE RESULTS

In one-to-many prediction, diversity of predictions is most important, since without diversity, one-
to-many prediction becomes the same as one-to-one prediction. We evaluate output diversity using
faithfulness-weighted variance (Li* et al., 2020) and LPIPS diversity score (Zhu et al., 2017). LPIPS
diversity score is the average LPIPS distance between different output samples for the same input,
whereas faithfulness-weighted variance is the LPIPS distance between the output samples and the
mean, weighted by the consistency with the target output measured by a Gaussian kernel. The kernel
bandwidth parameter � trades off the importance of consistency vs. diversity.

We evaluate perceptual quality of predictions using the Fréchet Inception Distance (FID) (Heusel
et al., 2017), since classical metrics like PSNR and SSIM do not capture perceptual quality
well (Ledig et al., 2017).

We compare the perceptual quality and output diversity in Tables 2, 3 and 4. As shown in Table 2,
TIM outperforms both the one-to-many prediction baseline, cIMLE, and specialized one-to-one pre-
diction baselines, in terms of FID. As shown in Tables 3 and 4, TIM outperforms the one-to-many
prediction baseline, cIMLE, in terms of faithfulness-weighted variance at all bandwidth parameters
and LPIPS diversity score for all tasks. Comparisons to one-to-one prediction baselines in terms
of faithfulness-weighted variance are not shown explicitly because their faithfulness-weighted vari-
ances are zero. These comparisons indicate that TIM is able to produce more realistic and diverse
images than the baselines.

5.2 QUALITATIVE RESULTS

We show the results of our method and the input for super-resolution in Figure 6, colourization in
Figure 7 and image decompression in Figure 8. Results for image synthesis from scene layouts and
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Super-Resolution Image Decompression
TIM cIMLE RFB-ESRGAN TIM cIMLE DnCNN

FID 16.75 27.34 19.56 72.75 100.48 109.38

Colourization
TIM cIMLE Zhang et al. Iizuka et al. Larsson et al.

FID 33.19 36.38 57.95 85.88 47.44

Table 2: Comparison of fidelity of generated images, measured by the Fréchet Inception Distance
(FID) between the observed images and the samples generated by our method (TIM) and the leading
IMLE-based and task-specific baselines. Lower values of FID are better. We compare favourably
relative to the baselines.

Super-Resolution Image Decompression Colourization
� TIM cIMLE TIM cIMLE TIM cIMLE Zhang et al.

0.3 .0572 .0548 .0513 .0493 .124 .105 .0789
0.2 .00586 .00522 .00380 .00314 .0621 .0456 .0318
0.15 .000344 .000273 .000223 .000132 .0284 .0179 .0110

Table 3: Comparison of faithfulness weighted variance of the samples generated by our method
(TIM) and other one-to-many baselines on different tasks. Higher value shows more variation in
the generated samples that are faithful to the original image. � is the bandwidth parameter for the
Gaussian kernel used to compute the faithfulness weights.

comparisons to the baselines are included in the appendix. As shown, TIM generates high quality
and diverse results.

5.3 ABLATION STUDY

We incrementally remove (1) hierarchical sampling (HS), (2) mapping network (MN), (3) interme-
diate supervision (IS), (4) weight normalization (WN). As shown in Figure 9 and Table 5, each
component is critical to achieving best results.

6 RELATED WORK

The proposed problem setting is related to multi-label prediction (Hsu et al., 2009) and mixture
regression (Wedel & Kamakura, 2000). Both aim to predict multiple targets. In the former, the
labels are usually discrete and multiple labels per input are given as supervision. In the latter, while
the labels are continuous, a fixed number of modes is assumed for every input.

In terms of the underlying technique, the proposed approach relies on implicit generative mod-
els, and so related are work on autoregressive models (Salimans et al., 2017; van den Oord et al.,
2016b;a), VAEs (Kingma & Welling, 2014; Vahdat & Kautz, 2020a; Child, 2020; Razavi et al.,
2019), GANs (Goodfellow et al., 2014; Karras et al., 2019a; Brock et al., 2019; Karras et al., 2020),
normalizing flows (Dinh et al., 2017; Kobyzev et al., 2020; Kingma & Dhariwal, 2018), energy
based methods (Ackley et al., 1985; Du & Mordatch, 2019; Nijkamp et al., 2019; Zhao et al., 2021;
Xie et al., 2021a;b), score-based models (Song & Ermon, 2019; Ho et al., 2020; Jolicoeur-Martineau
et al., 2021) and IMLE (Li & Malik, 2018; Li* et al., 2020).

Super-Resolution Image Decompression Colourization
TIM cIMLE TIM cIMLE TIM cIMLE Zhang et al.

LPIPS Score .180 .168 .276 .236 .0364 .0334 .0108

Table 4: Comparison of LPIPS diversity score of the samples generated by our method (TIM) and
other one-to-many baselines on different tasks. Higher value shows more variation in the generated
samples.
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(f) Full Model (g) No HS (h) No HS, MN (i) No HS, MN, IS (j) No HS, MN, IS, WN

Figure 9: Visualization comparison of two tasks: 16⇥ super-resolution (first row) and image decom-
pression (second row) as we gradually remove (1) hierarchical sampling (HS), (2) mapping network
(MN), (3) intermediate supervision (IS), (4) weight normalization (WN).

Full Model No HS No HS, MN No HS, MN, IS No HS, MN, IS, WN

SR 16.75 17.70 18.58 21.66 22.51

DC 72.75 81.24 84.57 99.54 102.82

Table 5: Comparison of Fréchet Inception Distance (FID) of two tasks: super-resolution (SR) and
image decompression (DC) by gradually remove (1) hierarchical sampling (HS), (2) mapping net-
work (MN), (3) intermediate supervision (IS), (4) weight normalization (WN).

There is a large body of work on task-specific methods. For super-resolution (Yang et al., 2014;
Nasrollahi & Moeslund, 2014; Wang et al., 2020), most consider upscaling factors of 2�4⇥ and are
based on direct regression (e.g.: (Dong et al., 2014)) or conditional GANs (e.g.: (Ledig et al., 2017)).
Hence, they are one-to-one prediction methods. For colourization (Anwar et al., 2020), many are
one-to-one methods and differ mostly in the architecture (e.g.: (Iizuka et al., 2016; Larsson et al.,
2016)). A notable exception is (Zhang et al., 2016), which discretizes the colour space and learns a
marginal distribution over the per-pixel colours. Image decompression is often treated as a denoising
problem (Tian et al., 2018); most methods are based on direct regression and are one-to-one. They
differ mostly in architecture (e.g.: (He et al., 2016; Zhang et al., 2017)). For image synthesis from
scene layouts, most methods are one-to-one and GAN-based (e.g.: (Sun & Wu, 2019; Wang et al.,
2018a)). Notable exceptions include (Chen & Koltun, 2017) (mixture of regression-based) and (Li*
et al., 2020) (IMLE-based).

7 CONCLUSION

In this paper, we considered a setting where prediction is inherently one-to-many, but where super-
vision is only one-to-one. This differs from traditional settings like regression or class-conditional
generative modelling – in the former, both prediction and supervision are one-to-one, whereas in the
latter, both are one-to-many. We developed an improved method for this challenging problem based
on the conditional IMLE (cIMLE) framework and addressed three main issues of the prior cIMLE-
based approach: image fidelity, task-specific architectures and sample efficiency. We proposed a
new method, TIM, which is a single architecture that can be applied to a broad variety of tasks. The
modularity of the architecture allows us to devise a novel hierarchical sampling scheme for IMLE,
which improves the sample efficiency. Finally, we demonstrate our single architecture can generate
significantly higher fidelity output images without compromising on diversity.
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8 ETHICS STATEMENT

Because TIM can be applied to a broad range of tasks, its societal impact depends on the applications
that it is used for. While most applications are harmless, it could be potentially used for tasks like
demosaicing which have privacy or copyright implications.

9 REPRODUCIBILITY STATEMENT

We include our source code in the supplementary material.
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Aäron van den Oord, Nal Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks.
ArXiv, abs/1601.06759, 2016b. 8

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional gans. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 8798–8807, 2018a. 9

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy, Yu Qiao,
and Xiaoou Tang. Esrgan: Enhanced super-resolution generative adversarial networks. CoRR,
abs/1809.00219, 2018b. 5, 6

Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning for image super-resolution: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. 9

Michel Wedel and Wagner A Kamakura. Mixture regression models. In Market segmentation, pp.
101–124. Springer, 2000. 8

Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, and Ying Nian Wu. Cooperative training
of fast thinking initializer and slow thinking solver for conditional learning. IEEE transactions

on pattern analysis and machine intelligence, PP, 2021a. 8

Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun Zhu, and Ying Nian Wu. Learning cycle-
consistent cooperative networks via alternating mcmc teaching for unsupervised cross-domain
translation. In AAAI, 2021b. 8

Chih-Yuan Yang, Chao Ma, and Ming-Hsuan Yang. Single-image super-resolution: A benchmark.
In Proceedings of European Conference on Computer Vision, 2014. 9

12



Under review as a conference paper at ICLR 2022

K. Zhang, W. Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser: Residual
learning of deep cnn for image denoising. IEEE Transactions on Image Processing, 26:3142–
3155, 2017. 9

K. Zhang, Shuhang Gu, Radu Timofte, Taizhang Shang, Qiuju Dai, Shengchen Zhu, Tong Yang,
Yandong Guo, Younghyun Jo, Sejong Yang, Seon Joo Kim, Lin Zha, Jiande Jiang, Xinbo Gao,
Wen Lu, Jing Liu, Kwangjin Yoon, Taegyun Jeon, Kazutoshi Akita, Takeru Ooba, Norimichi
Ukita, Zhipeng Luo, Yuehan Yao, Z. Xu, Dongliang He, Wenhao Wu, Yukang Ding, Chao Li,
Fu Li, Shilei Wen, Jianwei Li, Fuzhi Yang, Huan Yang, Jianlong Fu, Byung-Hoon Kim, JaeHyun
Baek, J. C. Ye, Yuchen Fan, Thomas S. Huang, Junyeop Lee, Bokyeung Lee, Jungki Min, Gwan-
tae Kim, Kanghyu Lee, Jaihyun Park, Mykola Mykhailych, Haoyu Zhong, Yukai Shi, Xiaoju
Yang, Zhijing Yang, Liang Lin, Tongtong Zhao, Jinjia Peng, Huibing Wang, Zhi Jin, Jiahao Wu,
Yifu Chen, Chenming Shang, Huanrong Zhang, Jeongki Min, S HrishikeshP., Densen Puthussery,
and V JijiC. Ntire 2020 challenge on perceptual extreme super-resolution: Methods and results.
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 2045–2057, 2020. 7

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European Con-

ference on Computer Vision, pp. 649–666. Springer, 2016. 9

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 586–595, 2018. 4

Yang Zhao, Jianwen Xie, and Ping Li. Learning energy-based generative models via coarse-to-fine
expanding and sampling. In ICLR, 2021. 8

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and Eli
Shechtman. Toward multimodal image-to-image translation. In Advances in Neural Information

Processing Systems, pp. 465–476, 2017. 1, 7

13




