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Abstract

The difficulty of partial multi-view multi-label
learning lies in coupling the consensus of multi-
view data with the task relevance of multi-label
classification, under the condition where partial
views and labels are unavailable. In this paper,
we seek to compress cross-view representation to
maximize the proportion of shared information to
better predict semantic tags. To achieve this, we
establish a model consistent with the information
bottleneck theory for learning cross-view shared
representation, minimizing non-shared informa-
tion while maintaining feature validity to help
increase the purity of task-relevant information.
Furthermore, we model multi-label prototype in-
stances in the latent space and learn label correla-
tions in a data-driven manner. Our method outper-
forms existing state-of-the-art methods on multi-
ple public datasets while exhibiting good compati-
bility with both partial and complete data. Finally,
we experimentally reveal the importance of con-
densing shared information under the premise of
information balancing, in the process of multi-
view information encoding and compression.

1. Introduction
Throughout the years, we have been consistently pursuing
the evaluation or decision-making of target objects based on
multiple angles, levels, and diversities of information (Luo
et al., 2023; Xiao et al., 2024; Luo et al., 2021; Liu et al.,
2023d). In the field of data analysis and pattern recogni-
tion, multi-view learning is being used to enhance various
machine learning tasks due to its powerful potential for rep-
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resentation learning (Wu & Goodman, 2018; Wang et al.,
2023). Whether it is the classification or regression tasks
based on multi-modal data with significant modal discrep-
ancy, or the feature learning on multi-feature data originat-
ing from the same modality, they can all be unified under
the theoretical framework of multi-view learning, which
focuses on extracting and utilizing semantic invariance to
facilitate downstream decision-making (Hwang et al., 2021;
Zeng et al., 2023).

In recent years, traditional multi-view learning methods,
especially multi-view representation learning methods, have
been gradually replaced by deep multi-view learning net-
works, thanks to the powerful mapping capabilities of deep
neural networks that surpass manual feature extraction
(Wang et al., 2022; Liu et al., 2023e;f). For instance, some
works employ deep autoencoders to extract view-specific
features and uses contrastive learning to aggregate cross-
view semantic representations in a high-level feature space
(Xu et al., 2022; Liu et al., 2023a; 2024). Castrejon et al.
attempted to learn a modality-independent shared represen-
tation for cross-modal scene images using convolutional
neural networks (Castrejon et al., 2016). Wen et al. em-
ployed feature-weighted fusion to achieve consistent repre-
sentation learning in the embedding space (Wen et al., 2023).
In addition, Lee et al. proposed to learn task-relevant infor-
mation while minimizing the mutual information between
shared view representation and original data (Lee & Van der
Schaar, 2021). It is evident that a core motivation of multi-
view learning theory is to eliminate or reduce redundant
information or uncertainty in single-view representation by
utilizing and exploiting multi-view shared information. As
research on multi-view learning advances, a more general
and challenging scenario, in which partial views of some or
all of the data are missing, has emerged as a new research
hotspot, and we refer to tasks based on such settings as
incomplete multi-view learning (Liu et al., 2022; 2023c).

Reflecting on the developmental trajectory of multi-view
learning, we clearly observe that from unsupervised multi-
view clustering tasks to supervised multi-view classification
tasks, multi-view learning is evolving towards a close in-
tegration with downstream tasks. In this paper, our focus
is on a specific and complex supervised task: multi-label
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classification. The combination of multi-view learning and
multi-label classification greatly satisfies the demands of
real-world application scenarios (Li & Chen, 2022).

Different from single-label learning, the important charac-
teristic of multi-label classification is to model both the
relationship between samples and labels, as well as the cor-
relation among labels (Bai et al., 2022). Existing works
in explicitly modeling label correlation can be categorized
into the following strategies: (1) Calculating the conditional
probability between category pairs based on the statistical
information of the dataset as a priori knowledge of label cor-
relation (You et al., 2020; Ma et al., 2021). (2) Dynamically
learn label correlations in traditional convex optimization or
neural network feedback training (Zhu et al., 2017). Another
representative kind of method focuses on directly learning
the mapping of each category in the latent space, trying to
directly obtain classification results or enhance the discrim-
inative ability of joint embeddings through the interaction
between label and sample embeddings (Bai et al., 2022;
Hang & Zhang, 2021). Similar to incomplete multi-view
learning, label incompleteness is also incorporated into the
problem setting to be more consistent with real situations.

Aiming at the above complex problem of partial multi-view
multi-label classification (PMvMLC), our solution consists
of two main parts: (1) Maximizing the proportion of shared
information in the multi-view fusion representation. (2)
Enhancing the task relevance of multi-label classification
and multi-view shared information. Specifically, on the one
hand, we assume that the shared information among views
expresses all cross-view commonalities, including the high-
est level of semantic invariance (the description regarding
semantic objectives should possess uniqueness across dif-
ferent views). Then, we take the variational autoencoder
(VAE) as the framework of representation learning, and em-
ploy the information bottleneck theory to model the shared
information of multi-view data, to approximate the ideal
multi-view shared representation while minimizing the non-
global shared private information of any view. On the other
hand, we model multi-label prototype instances in the latent
space to enhance the task relevance of the multi-label shared
information. Specifically, we employ encoders to model
the distribution of label prototypes, and then actively facili-
tate the integration of these label prototypes with samples’
embedding representations, guided by prior supervisory in-
formation.

Overall, we name our Semantic Invariance learning and
Prototype modeling based method SIP and our contributions
can be summarized as follows:

• We propose an information bottleneck based frame-
work for PMvMLC that combines the learning of multi-
view semantic invariance with the learning of multi-
label prototype representations. Besides, our method

can handle arbitrary view and label missing scenarios,
demonstrating strong scalability.

• In contrast to existing works, we advocate that task-
relevant information can be effectively compressed by
extracting shared information across multiple views.
Our proposed information bottleneck based frame-
work effectively alleviates the challenges in extracting
shared information from the partial multi-view data.

• Our method model the label prototypes in latent space
via a data-driven approach, which effectively couples
multi-view representation learning and multi-label clas-
sification tasks.

• Our method achieves leading performance on five com-
plete or incomplete multi-view multi-label datasets,
and the semantic invariance learning framework has
good scalability for other multi-view learning tasks.

2. Preliminary
Given dataset containing n labeled samples ({x(v)}mv=1, y)
with m views, in which v-th view of any sample is x(v) ∈
Rdv and corresponding label y ∈ {0, 1}c with c categories.
Furthermore, we set V, |V| ≤ m as the observed view set
and thus the multi-view data can be defined as {x(v)}v∈V
in the missing-view setting. Similarly, for the partial label
setting, we let U , |U| ≤ c denotes the set of known tags. Our
goal is to learn the cross-view representation z on {x(v)}v∈V
({x} for short), and accurately predict the categories of {x}
according to z.

To achieve this, inspired by the work (Federici et al., 2020),
we can give the following proposition:

Proposition 2.1. If z holds all the information
shared by all views, z can adequately predict y.

In other words, semantic information is included in the in-
formation shared by multiple views. Therefore, learning
multi-view shared information has the opportunity to reduce
the impact of individual view or partial views’ private in-
formation on the prediction task while fully maintaining
semantic information.

3. Method
3.1. Learning Shared Information via Information

Bottleneck Principle

Proposition 2.1 explains that learning shared information is
necessary to obtain task-relevant semantic information. On
this basis, we further narrow the scope of z so that it only
contains shared information across views, and we can show
the following:
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Corollary 3.1. Let z contains and only contains
the shard information of all available views, then
conditional mutually information I({x̄}; z|x(v)) = 0,
where {{x̄}, x(v)} = {x}.

The Corollary 3.1 gives the necessary condition to obtain
the ideal z. If we pursue the minimization of I({x̄}; z|x(v))
alone, it will inevitably lead to the collapse of the informa-
tion of z. Therefore, considering that the information of
cross-view representing z is derived from raw multi-view
data {x(v)}v∈V , we build the goal of maximizing mutually
information I(x(v), z) and give the following constrainted
optimization problem:

max
1

|V|
∑
v∈V

I(x(v); z)

s.t.,
1

|V|
∑
v∈V

I({x̄}; z|x(v)) = 0

(1)

Problem (1) can be converted to the following form using
the Lagrange multiplier method:

max
1

|V|
∑
v∈V

(I(x(v); z)− βI({x̄}; z|x(v))) (2)

where β ≥ 0 is the Lagrange multiplier. Observing Eq.
(2), it is formally consistent with the information bottleneck
theory, β can also be regarded as the trade-off coefficient to
balance the effectiveness and compactness of information.
Furthermore, the former in Eq. (2) aims to maintain the
amount of information learned from the original data in
z, and the latter aims to compress the information in z to
exclude multi-view non-shared information. For the former
term, we have the lower bound:

I(x(v); z)

=

∫ ∫
p(x(v), z) log

p(x(v)|z)
p(x(v))

dx(v)dz

=

∫
p(x(v))

∫
p(z|x(v)) log p(x(v)|z)dx(v)dz +H(x(v))

≥
∫

p(x(v))
∫

p(z|x(v)) log p(x(v)|z)dx(v)dz

(3)
where p(·) denotes the probability density function. Here,
since Eq. (3) is intractable, we approximate p(x(v)|z) using
a stochastic decoder qv(x(v)|z) whose output can be denoted
as x̂(v), and then we can get a new variational lower bound

of I(x(v); z) for maximization:

I(x(v); z)

≥
∫

p(x(v))
∫

p(z|x(v)) log p(x(v)|z)dx(v)dz

=

∫
p(x(v))

∫
p(z|x(v)) log qv(x(v)|z)dx(v)dz+∫

p(x(v))
∫

p(z|x(v)) log p(x(v)|z)
qv(x(v)|z)

dx(v)dz

≥Ex(v)∼p(x(v))

[ ∫
p(z|x(v)) log qv(x(v)|z)dz

]
(4)

For the latter term in Model (2), we have following opti-
mization objective:

I({x̄}; z|x(v))

=

∫ ∫
p({x}, z) log

p({x}, z)p(x(v))

p({x})p(z, x(v))
d{x}dz

=

∫ ∫
p({x}, z) log

p(z|{{x}})
p(z|x(v))

d{x}dz

(5)

Apparently, Eq. (5) is also computationally difficult. In our
paper, we utilize two stochastic encoders to approximate the
distribution, i.e., rv(z|x(v)) ≈ p(z|x(v)). rv(z|x(v)) :=
N (fv

µ(x(v)), fv
σ2(x(v))I), where fv

µ(·) and fv
σ2(·) denote

the encoders for the mean and variance in v-th view, re-
spectively. I is the unit matrix. Then we can get following
variational upper bound:

I({x̄}; z|x(v))

=

∫ ∫
p({x}, z) log

p(z|{{x}})rv(z|x(v))
p(z|x(v))rv(z|x(v))

d{x}dz

=

∫ ∫
p({x}, z) log

p(z|{x})
rv(z|x(v))

d{x}dz+∫ ∫
p({x}, z) log

rv(z|x(v))

p(z|x(v))
d{x}dz

≤
∫

p({x})DKL(p(z|{x})∥rv(z|x(v)))d{x}

=E{x}∼p({x})[DKL(p(z|{x})∥rv(z|x(v)))]

(6)

where DKL(·||·) means the Kullback-Leibler divergence.

In combination with Eqs. (4) and (6), for Eq. (2), our
optimization objective is naturally converted to minimize
its upper bound:

LIB =
1

|V|
∑
v∈V

[
− Ez∼p(z|{x}) log q

v(x(v)|z)

+ βDKL(p(z|{x})∥rv(z|x(v)))
] (7)

With the optimization objective Eq. (7), an important ques-
tion is how to obtain the joint posterior p(z|{x}) of multiple
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Figure 1: Our main framework of SIP. The upper part represents the partial multi-view shared information learning, and
the lower part represents the data-driven label prototypes learning. In the upper part, we utilize the auto-encoders as the
backbone, and the PoE category to fuse multiple views. In the lower part, label embeddings are extracted by a simple
encoder and are aligned with the multi-view fusion feature.

views. Considering that we expect the shared information in
the multi-view joint distribution to come from all views, i.e.
each view provides the same shared information to p(z|{x}),
we adopt the product-of-expert (PoE) (Hinton, 2002) with
one-vote property to obtain the multi-view joint posterior.
And then, following work (Wu & Goodman, 2018), we
define the multi-view joint posterior as follows:

p(z|{x}) ∝ p(z)
∏
v∈V

p(z|x(v)) := r(z)
∏
v∈V

rv(z|x(v)) (8)

where r(z) is defined as a standard Gaussian distribution
r(z) := N (0, I) for a vanilla implementation. We expect
the fusion view to show as much of the commonality of all
views as possible. Moreover, the PoE fusion could preserve
the probability distribution properties of representations,
which is crucial for calculating our information theory based
objective function.

3.2. Learning Label Prototype Representation

With the cross-view joint distribution, a simple way is to
directly build a neural network as classifier to model the
mapping of sample’s latent space representation to the cor-
responding multi-label. However, as mentioned in the in-
troduction, considering label correlation is an important
difference between multi-label learning and single-label
classification. Previous methods either use the pre-trained

word-vector model to directly obtain label embeddings (Ma
et al., 2021), or introduce prior label correlation to supervise
the learning of label embeddings (You et al., 2020; Hang
& Zhang, 2021). These methods lack flexibility and adapt-
ability in modeling label-label relationship, especially in the
case of missing labels. Motivated by the work (Bai et al.,
2022), we tend to adopt a data-driven manner to learn the
prototype representation of labels.

Similar to cluster centers, label prototypes are regarded as
the projection of semantic targets in the embedding space,
and well-trained label prototypes can help the model capture
more discriminative information for multi-label classifica-
tion. In this paper, to explicitly model the expression of the
label’s semantic concept, we attempt to deploy a stochastic
encoder to fit the distribution of each category prototype,
i.e., li ∼ N (µi, σ

2
i I), where µi and σ2

i are the mean and
variance output by the encoders gµ(bi) and gσ2(bi). bi ∈ Rc

is an available tensor initialized as an one-hot vector whose
i-th bit is 1. Next, we sample s times from the distribu-
tion of li using the reparameterization trick to obtain the
representation of label prototype in the latent space:

l0i =
1

s

s∑
d=1

(µi + σi ⊙ δd) (9)

where δd means d-th sampling from the standard Gaussian
distribution and ⊙ denotes Hadamard product.
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After initially modeling the distribution of each label proto-
type in the latent space, we further consider the correlation
among labels. Generally, the occurrence of a particular la-
bel may indicate the co-occurrence of other labels that are
associated with it and we define this phenomenon as label
correlation. Introducing label correlation helps to avoid
treating multi-label classification as simply multiple binary
classification problems. However, manually designing and
calculating label correlations based on statistical methods
lacks flexibility, and thus we expect samples to play a domi-
nant role in modeling label prototypes. Intuitively, a label
prototype should represent the geometric center of samples
belonging to that category. To do this, we enforce the label
prototypes to move closer to their corresponding samples
by minimizing the distance between prototypes and samples
in the Euclidean space. Specifically, we sample the cross-
view representation z0 like Eq. (9) and its corresponding
label prototypes {l0j |j ∈ C}, where C means the set of posi-
tive known labels belonging to z0, and then minimize their
distance in the Euclidean space:

LPA = ∥ 1

|C|
∑
j∈C

l0j − z0∥22 (10)

where LPA is our prototype aggregation loss. According to
Eq. (10), the label prototypes that appear at the same time
will be close to the cross-view representation of the sample,
which indirectly promotes the correlation learning between
label prototypes.

3.3. Multi-Label Classification and Objective Function

The purpose of learning discriminative label prototypes is
to obtain better classification results. Existing works predict
the probability that a sample belongs to each category by cal-
culating the inner product of label and sample embeddings
(Bai et al., 2022). However, we argue that manually spec-
ifying the sample-label distance measure relies too much
on experience. In this paper, we propose to measure the
similarity between the sample and label prototypes via a
simple neural network:

pi = ω(fc(z
0 ⊚ l0i )) (11)

where ⊚ denotes concatenation operation, fc is a sample
fully connected layer, and ω(·) is the Sigmoid activation
function. Finally, we get the prediction probability pi that
the sample is labeled as i-th category. Of course, our objec-
tive function also includes a multi-label cross-entropy loss,
which endows the entire multi-label learning model with the
maximum task relevance. The cross-entropy loss LCE for
each sample-prediction pair is expressed as:

LCE =
1

|U|
∑
i∈U

[yi log pi + (1− yi) log(1− pi)] (12)

where yi means the positive or negative mask of i-th cate-
gory in y. Considering that some labels are unknown, we
ignore the items corresponding missing tags when calculat-
ing the cross-entropy loss. This simple and effective way
can reduce the impact of label uncertainty on task correla-
tion learning as much as possible.

At this point, we simply add the objective functions of our
various parts to get the following overall optimization ob-
jective:

L = LIB + αLPA + LCE (13)

where α is a trade-off coefficient and our loss function is
defined in single sample case.

Review the above three parts, i.e., shared information learn-
ing, label prototype learning, and multi-label classification,
in which the shared information learning is self-supervised
and other parts are supervised learning. A natural idea is to
conduct the self-supervised learning as a pre-training pro-
cedure for supervised learning (Khosla et al., 2020). How-
ever, in our scenario, the shared information obtained by
self-supervised learning closely acts on task-relevant label
prototype learning, so executing these two types of tasks
simultaneously in a joint framework will not cause signif-
icant performance degradation, while maintaining better
reproducibility.

Algorithm 1 shows the training process of the proposed
mode. Note that during training, we adjust the network
parameters by minimizing the objective function, including
the parameters {bi}ci=1 used to generate the label prototypes,
while in the test phase, our label prototypes do not update
as the input changes.

4. Experiments
4.1. Experimental Settings

Datasets: In line with previous works (Liu et al., 2023a; Tan
et al., 2018; Li & Chen, 2022; Liu et al., 2023b), we adopt
five widely recognized multi-view multi-label databases in
our experiments, i.e., Corel5k (Duygulu et al., 2002), Pas-
cal07 (Everingham et al., 2009), ESPGame (Von Ahn &
Dabbish, 2004), IAPRTC12 (Henning et al., 2006), and
MIRFLICKR (Huiskes & Lew, 2008). There are six dis-
tinct features, i.e., GIST, HSV, DenseHue, DenseSift, RGB,
and LAB, in the five databases. More information of the
five datasets refers to the appendix. Incomplete multi-
view partial multi-label data preprocessing: Following
existing works (Tan et al., 2018; Li & Chen, 2022; Liu
et al., 2023a), to simulate missing data setting in real sce-
nario, we need to generate partial multi-view multi-label
data based on the five mentioned complete multi-view multi-
label datasets. The process involves randomly disabling
50% of the instances from each view, ensuring that at least
one view remained available, and randomly eliminating 50%
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Table 1: Experimental results of nine methods on the five datasets with 50% missing-view rate and 50% missing-label rate
(the bottom right digit is the standard deviation). The average ranking on the six metrics is shown at ‘Ave.R’.

Data Metric C2AE GLOCAL CDMM DM2L LVSL iMVWL NAIM3L DICNet SIP

C
or

el
5k

AP 0.2270.008 0.2850.004 0.3540.004 0.2620.005 0.3420.004 0.2830.008 0.3090.004 0.3810.004 0.4180.009
1-HL 0.9800.002 0.9870.000 0.9870.000 0.9870.000 0.9870.000 0.9780.000 0.9870.000 0.9880.000 0.9880.000
1-RL 0.8040.010 0.8400.003 0.8840.003 0.8430.002 0.8810.003 0.8650.005 0.8780.002 0.8820.004 0.9110.003
AUC 0.8060.010 0.8430.003 0.8880.003 0.8450.002 0.8840.003 0.8680.005 0.8810.002 0.8840.004 0.9130.003
1-OE 0.2460.016 0.3270.010 0.4100.007 0.2950.014 0.3910.009 0.3110.015 0.3500.009 0.4680.007 0.4890.016
1-Cov 0.5960.016 0.6480.006 0.7230.007 0.6470.005 0.7180.006 0.7020.008 0.7250.005 0.7270.011 0.7870.009
Ave.R 8.83 6.33 2.83 6.83 3.83 6.83 4.33 2.17 1.00

Pa
sc

al
07

AP 0.4850.008 0.4960.004 0.5080.005 0.4710.008 0.5040.005 0.4370.018 0.4880.003 0.5050.012 0.5550.010
1-HL 0.9080.002 0.9270.000 0.9310.001 0.9280.001 0.9300.000 0.8820.004 0.9280.001 0.9290.001 0.9310.001
1-RL 0.7450.009 0.7670.004 0.8120.004 0.7610.005 0.8060.003 0.7360.015 0.7830.001 0.7830.008 0.8300.004
AUC 0.7650.010 0.7860.003 0.8380.003 0.7790.004 0.8320.002 0.7670.015 0.8110.001 0.8090.006 0.8500.005
1-OE 0.4380.008 0.4430.005 0.4190.008 0.4200.011 0.4190.008 0.3620.023 0.4210.006 0.4270.015 0.4640.018
1-Cov 0.6800.010 0.7030.004 0.7590.003 0.6920.004 0.7510.003 0.6770.015 0.7270.002 0.7310.006 0.7830.006
Ave.R 7.17 5.33 2.83 6.67 3.83 8.83 4.83 4.00 1.00

E
SP

G
am

e

AP 0.2020.006 0.2210.002 0.2890.003 0.2120.002 0.2850.003 0.2440.005 0.2460.002 0.2970.002 0.3110.004
1-HL 0.9710.002 0.9820.000 0.9830.000 0.9820.000 0.9830.000 0.9720.000 0.9830.000 0.9830.000 0.9830.000
1-RL 0.7720.006 0.7800.004 0.8320.001 0.7810.001 0.8290.001 0.8080.002 0.8180.002 0.8320.001 0.8490.002
AUC 0.7770.006 0.7840.004 0.8360.001 0.7850.001 0.8330.002 0.8130.002 0.8240.002 0.8360.001 0.8530.002
1-OE 0.2620.018 0.3170.005 0.3960.005 0.2940.006 0.3890.004 0.3430.013 0.3390.003 0.4390.007 0.4550.007
1-Cov 0.4970.011 0.4960.006 0.5740.004 0.4880.003 0.5670.005 0.5480.004 0.5710.003 0.5930.003 0.6280.005
Ave.R 8.67 7.33 2.33 7.50 3.67 6.17 4.33 1.83 1.00

IA
PR

T
C

12

AP 0.2240.007 0.2560.002 0.3050.004 0.2340.003 0.3040.004 0.2370.003 0.2610.001 0.3230.001 0.3310.006
1-HL 0.9650.002 0.9800.000 0.9810.000 0.9800.000 0.9810.000 0.9690.000 0.9800.000 0.9810.000 0.9800.000
1-RL 0.8060.005 0.8250.002 0.8620.002 0.8230.002 0.8610.002 0.8330.002 0.8480.001 0.8730.001 0.8850.003
AUC 0.8070.005 0.8300.001 0.8640.002 0.8250.001 0.8630.001 0.8350.001 0.8500.001 0.8740.000 0.8860.002
1-OE 0.3000.031 0.3780.007 0.4320.008 0.3400.006 0.4290.009 0.3520.008 0.3900.005 0.4680.002 0.4630.009
1-Cov 0.5230.009 0.5340.003 0.5970.004 0.5290.004 0.5970.004 0.5640.005 0.5920.004 0.6490.001 0.6750.007
Ave.R 9.00 6.33 2.67 7.50 3.33 6.67 5.00 1.83 1.00

M
IR

FL
IC

K
R

AP 0.5050.008 0.5370.002 0.5700.002 0.5140.006 0.5530.002 0.4900.012 0.5510.002 0.5890.005 0.6140.004
1-HL 0.8530.004 0.8740.001 0.8860.001 0.8780.001 0.8850.001 0.8390.002 0.8820.001 0.8880.002 0.8910.001
1-RL 0.8210.003 0.8320.001 0.8560.001 0.8310.003 0.8560.001 0.8030.008 0.8440.001 0.8630.004 0.8770.002
AUC 0.8100.004 0.8280.001 0.8460.001 0.8280.003 0.8440.001 0.7870.012 0.8370.001 0.8490.004 0.8600.003
1-OE 0.5050.020 0.5520.005 0.6310.004 0.5100.008 0.6070.004 0.5110.022 0.5850.003 0.6370.007 0.6620.008
1-Cov 0.5900.005 0.6050.003 0.6400.001 0.6040.005 0.6360.001 0.5720.013 0.6310.002 0.6520.007 0.6780.003
Ave.R 8.17 6.17 3.00 6.83 3.83 8.67 5.00 2.00 1.00

of the positive and negative tags of each sample to generate
the partial multi-label data. The missing views and labels
are filled with ‘0’ value to keep the dimensions unchanged.
Finally, we randomly divide 70% of the entire dataset as
the training set to comprehensively evaluate our proposed
method.

Comparison methods: In our experiments, we select eight
top approaches for comparison with our SIP, namely C2AE
(Yeh et al., 2017), GLOCAL (Zhu et al., 2017), CDMM
(Zhao et al., 2021), DM2L (Ma & Chen, 2021), LVSL (Zhao
et al., 2022), iMVWL (Tan et al., 2018), NAIM3L (Li &
Chen, 2022), and DICNet (Liu et al., 2023a). It must be
emphasized that due to the complexity of our problem setup,
not all of the methods introduced for comparison are perfect
for missing multi-view and partial multi-label settings, such
as C2AE, GLOCAL, CDMM, DM2L, and LVSL. To be
specific, C2AE, GLOCAL, and DM2L can only handle the
single-view partial multi-label case. CDMM and LVSL
are complete multi-view multi-label classification models
without any missing data processing ability. For above five

methods, we have to make some changes to adept them to
our setup: (1) We conduct experiments and record the best
results of each view in single-view methods. (2) We fill the
unavailable instances with mean values of corresponding
view’s available instances for those methods designed for
full multi-view data. (3) We simply regard the unknown tag
as the the negative tag for those methods unable to partial
multi-label data. See the Appendix for more information on
the comparison methods.

Evaluation metrics: Similar to previous works (Tan et al.,
2018; Li & Chen, 2022), in our experiments, we adopt six
popular performance metrics, namely ranking loss (RL),
average precision (AP), Hamming loss (HL), area under
the adaptation curve (AUC), OneError (OE), and Coverage
(Cov) to evaluate our SIP. Note that we record 1-RL, 1-HL,
1-OE, and 1-Cov as the final results so that higher values
mean superior performance in all six metrics.
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AP
[0.31,0.52]

1-HL
[0.97,0.99]

1-RL
[0.87,0.94]

AUC
[0.87,0.94]

1-OE
[0.36,0.62]

1-Cov
[0.73,0.84]

C2AE
GLOCAL
CDMM
DM2L
LVSL
iMVWL
NAIM3L
DICNet
SIP

(a) Corel5k

AP
[0.47,0.66]

1-HL
[0.89,0.94]

1-RL
[0.76,0.89]

AUC
[0.79,0.90]

1-OE
[0.41,0.58]

1-Cov
[0.70,0.85]

C2AE
GLOCAL
CDMM
DM2L
LVSL
iMVWL
NAIM3L
DICNet
SIP

(b) Pascal07

AP
[0.49,0.68]

1-HL
[0.84,0.91]

1-RL
[0.81,0.91]

AUC
[0.79,0.89]

1-OE
[0.52,0.75]

1-Cov
[0.58,0.72]

C2AE
GLOCAL
CDMM
DM2L
LVSL
iMVWL
NAIM3L
DICNet
SIP

(c) MIRFLICKR

Figure 2: Experimental results of nine methods on three full datasets without any missing views or labels. The worst results
are indicated at the center of radar chart, while the best results are represented by the vertexes, considering six evaluation
metrics.

Algorithm 1 Training process of the proposed model

1: Input: Incomplete multi-view data (
{

x(v)
}m

v=1
, y), ob-

served view set V , known label set U , training epochs k
, and trade-off coefficients α, β.

2: Output: The parameters of model.
3: Initialize the parameters {bi}ci=1 as I ∈ {0, 1}c×c.
4: for t = 1, . . . , k do
5: Compute the conditional distribution of cross-view

representation {rv(z|x(v))|v ∈ V} on each available
view by encoders fv

µ(x(v)) and fv
σ2(x(v)).

6: Obtain the distribution of cross-view representation
z by Eq. (8).

7: Sample z0 from distribution of z like Eq. (9).
8: Compute conditional distribution {qv(x(v)|z)|v ∈

V} by z0 and decoders.
9: Compute c conditional distribution of prototype

representation {li ∼ N (gvσ2(bi), g
v
σ2(bi)I)|i =

1, ..., c}.
10: Sample each l0i from corresponding distribution of li

by Eq. (9).
11: Compute total loss: L = LIB + αLPA + LCE .
12: Update the parameters of the model with L;
13: end for

4.2. Experimental Results and Analysis

We compare our SIP with other nine top methods on the
five datasets and show experimental results of the six evalu-
ation metrics in Table 1, where the incompleteness rate of
views and labels are both set as 50%. For a more intuitive
comparison, we also calculate the average ranking of each
method on six metrics (‘Ave.R’). From Table 1, we can give
following observations:

• Compared to the other nine competitors, our SIP
achieves the best performance on all metrics. SIP

ranked first in all datasets, fully verifying its effec-
tiveness on the PMvMLC task.

• We can observe that DICNet and SIP that can handle
incomplete views and partial labels perform better than
others applied only work with missing label or ideal
scenario. This provides insights for the design of multi-
view multi-label classification models in the future.

In the radar chart Fig. 2, to further confirm that our model
has good adaptability to complete multi-view data, we pro-
vide the results of nine methods on three datasets with full
views and labels (refer to Appendix for more results on
other two databases). Clearly, our SIP still achieves com-
petitive performance than other methods, including those
designed for the ideal complete case, demonstrating the
generalization ability of our model.

4.3. Analysis of the Balance in Information Bottleneck
Modeling

Although the overall effectiveness of our SIP is confirmed in
the comparison experiments, in order to further investigate
the mechanism of information bottleneck principle on our
task, we adjust the hype-parameter β in Eq. (7) to study the
effect of each component on cross-view shard information.
For convenience, we name the first part of Eq. (7) as Lrec

and the second part as Lsha. Fig. 3 depicts the curves of AP
value and two losses (Lrec and Lsha) as they vary with β
over the same training epochs on the Corel5k and Pascal07
datasets with half available views and labels.

A clear trend can be seen from the Fig. 3, that is, as the β in-
creases, the Lrec gradually increases and the Lsha gradually
decreases. Reviewing the two components of our LIB , the
first term is responsible for ensuring that the cross-view rep-
resentation z is relevant to the raw data, and the second term
is dedicated to constraining the learned z to contain only

7
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Table 2: Ablation results on two datasets with 50% missing views and 50% missing labels. ‘w/o’ means ‘without’. Lsha and
Lrec denote two terms of LIB .

Method Corel5k Pascal07
AP 1-HL 1-RL AUC 1-OE 1-Cov AP 1-HL 1-RL AUC 1-OE 1-Cov

SIP w/o Lsha Lrec LPA 0.345 0.987 0.874 0.877 0.423 0.729 0.535 0.931 0.813 0.836 0.454 0.763
SIP w/o Lsha LPA 0.383 0.987 0.898 0.901 0.454 0.761 0.547 0.929 0.825 0.847 0.464 0.777
SIP w/o Lrec LPA 0.387 0.988 0.873 0.876 0.469 0.726 0.511 0.931 0.786 0.813 0.440 0.736

SIP w/o LPA 0.415 0.987 0.912 0.912 0.487 0.790 0.549 0.931 0.826 0.847 0.461 0.778
SIP w/o Lrec 0.257 0.987 0.853 0.855 0.290 0.678 0.516 0.931 0.792 0.817 0.443 0.742
SIP w/o Lsha 0.383 0.987 0.898 0.900 0.467 0.762 0.550 0.930 0.827 0.848 0.463 0.780

SIP 0.418 0.988 0.911 0.913 0.489 0.787 0.555 0.931 0.830 0.850 0.464 0.783
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(a) Loss curve on the Corel5k
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(b) Loss curve on the Pascal07
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Figure 3: Impact of different information-balance parameter
β on loss Lrec, Lsha (3a,3b), and AP (3c, 3d). The blue
area shows the standard deviation.
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(b) AP values of test set

Figure 4: Impact of mining shared information on the train-
ing of SIP, shown by the cross-entropy (4a) and AP values
(4b) on the Corel5k with 50% known views and labels.

shared information of available views as much as possible.
When the β is small, the cross-view representation learned
by the model contains a large amount of view-unshared in-
formation, which is quite beneficial for reconstructing the
raw data. When we gradually increase β, it can effectively
increase the proportion of shared information in z, resulting
a reduced Lsha. When β is too large, the model focuses too

much on reducing the non-shared information in z, making
it difficult for z to retain enough information for reconstruc-
tion, which corresponds to the sudden rise of Lrec in Fig.
3a and Fig. 3b after β is greater than 1e0. Combined with
Fig. 3c and Fig. 3d, when β = 1e0, the model achieves
a balance between minimizing the reconstruction loss and
maximizing the proportion of shared information, resulting
in the optimal performance.

4.4. Analysis of Mining Shared Information

In Section 4.3, we discuss the balance between compressing
and maintaining information in the information bottleneck
method. Here, we try to remove shared information learning
and observe what happens during the training process of
the model. Specifically, we set β to 0 and 1 respectively
during training, and then record the cross-entropy loss on the
training set and AP value on the test set after each training
epoch to analyze the impact of β on the model classification
performance. Fig. 4 shows the experimental results on
Corel5k dataset with 50% missing views and labels.

From the figure, learning compact shared information makes
the model’s classification loss during the training phase
converge slower compared to uncompressed. However, al-
though non-shared redundant information accelerates the
fitting of training set, it shows obvious overfitting on the
test set. This phenomenon supports our idea that learning
shared information can improve the model’s ability to ex-
tract high-level semantic information.

4.5. Ablation Study

To evaluate the effectiveness of each component of our SIP,
we conduct extensive ablation experiments on two databases,
namely Corel5k and Pascal07, in which the available rates
of views and labels are both set as 50%. Our objective func-
tion consists of two parts, i.e., LIB and LPA. For LIB , we
split its two items into two parts for ablation experiments,
namely LIB = Lsha+βLrec. The results of ablation exper-
iments are listed in Table 2. It can be observed that the two
components of LIB make a significant contribution to the
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performance of model. For different databases, Lsha and
Lrec show different influence on performance due to the
varying difficulty of exploiting shared information, while
maintaining the balance of effective information. Addition-
ally, we can observe an interesting phenomenon that when
Lrec is removed, adding Lsha does not improve the perfor-
mance but rather leads to a significant performance decrease.
This is because the compression of shared information with-
out ensuring the effective information will cause z to lack
enough information for prediction.

5. Conclusion
In this paper, we assume that the shared information among
views encompasses all cross-view commonalities, includ-
ing the highest level of semantic invariance. The descrip-
tions related to semantic objectives should exhibit unique-
ness across different views. Based on this assumption, we
propose a general semantic invariance learning approach
called SIP for PMvMLC task, which demonstrates good
compatibility with missing views and incomplete labels.
Our method divides the problem of multi-view multi-label
learning into two parts: cross-view representation learning
and multi-label prototype learning. To begin with, hold-
ing the idea that shared information can provide sufficient
conditions for predicting semantic tasks, we utilize the in-
formation bottleneck theory to learn effective information
while minimizing non-shared information in the cross-view
representation, thereby maximizing the shared information
across all views. Additionally, we attempt to drive the learn-
ing of label prototypes using the latent representation of
the data, explicitly modeling label correlations. Finally, we
conduct extensive experiments to validate the effectiveness
of our method, while also discussing in-depth that the key
to the success of our method lies in achieving a balance be-
tween extracting multi-view information and compressing
shared information.
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A. Complete Derivation of Shared Information Learning Model
In this section, we give a detailed derivation of model (2):

max
1

|V|
∑
v∈V

(I(x(v); z)− βI({x̄}; z|x(v))) (14)

For the former term in Model (2), we have:

I(x(v); z)

=

∫ ∫
p(x(v), z) log

p(x(v)|z)
p(x(v))

dx(v)dz

=
[ ∫ ∫

p(x(v), z) log p(x(v)|z)dx(v)dz+∫
p(z|x(v))

∫
p(x(v)) log

1

p(x(v))
dx(v)dz

]
=
[ ∫ ∫

p(x(v), z) log p(x(v)|z)dx(v)dz +H(x(v))
]

(15)

Due to the information entropy H(x(v)) ≥ 0, we have

I(x(v); z)

≥
∫ ∫

p(x(v), z) log p(x(v)|z)dx(v)dz

=

∫
p(x(v))

∫
p(z|x(v)) log qv(x(v)|z)dx(v)dz+∫

p(z)
∫

p(x(v)|z) log p(x(v)|z)
qv(x(v)|z)

dx(v)dz

=

∫
p(x(v))

∫
p(z|x(v)) log qv(x(v)|z)dx(v)dz+∫

p(z)DKL(p(x(v)|z)∥qv(x(v)|z))dx(v)dz

(16)

Since DKL(p(x(v)|z)∥q(x(v)|z)) ≥ 0, we can get:

I(x(v); z)

≥
∫

p(x(v))

∫
p(z|x(v)) log qv(x(v)|z)dx(v)dz

=

∫ ∫
p(x(v), z) log qv(x(v)|z)dx(v)dz

(17)

Besides, we have: ∫ ∫
p(x(v), z)dx(v)dz =

∫ ∫ ∫
p(x(v), {x̄}, z)dx(v)d{x̄}dz

=

∫ ∫
p({x}, z)d{x}dz

(18)

Substitute Eq. (18) into Eq. (17), we can get:

I(x(v); z)

≥
∫ ∫

p({x}, z) log qv(x(v)|z)d{x}dz

=

∫
p({x})

∫
p(z|{x}) log qv(x(v)|z)d{x}dz

=Ex∼p({x})[

∫
p(z|{x}) log qv(x(v)|z)dz]

(19)
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For the latter term in Model (2), we have:

I({x̄}; z|x(v))

=

∫ ∫
p({x}, z) log

p({x}, z)p(x(v))

p({x})p(z, x(v))
d{x}dz

=

∫ ∫
p({x}, z) log

p(z|{{x}})
p(z|x(v))

d{x}dz

=

∫ ∫
p({x}, z) log

p(z|{x})
rv(z|x(v))

d{x}dz+∫ ∫
p({x}, z) log

rv(z|x(v))
p(z|x(v))

d{x}dz

=

∫ ∫
p({x}, z) log

p(z|{x})
rv(z|x(v))

d{x}dz+∫
p({x})

∫
p(z|{x}) log rv(z|x(v))

p(z|x(v))
d{x}dz

=

∫ ∫
p({x}, z) log

p(z|{x})
rv(z|x(v))

d{x}dz+∫
p(x(v))

∫
p(z|x(v)) log rv(z|x(v))

p(z|x(v))
dx(v)dz

(20)

Since ∫
p(x(v))

∫
p(z|x(v)) log rv(z|x(v))

p(z|x(v))
dx(v)dz

=−
∫

p(x(v))DKL(p(z|x(v))∥rv(z|x(v)))dx(v)dz

≤0

(21)

the Eq. (20) have following upper bound:

I({x̄}; z|x(v))

≤
∫ ∫

p({x}, z) log
p(z|{x})
rv(z|x(v))

d{x}dz

=

∫
p({x})DKL(p(z|{x})∥rv(z|x(v)))d{x}

=E{x}∼p({x})[DKL(p(z|{x})∥rv(z|x(v)))]

(22)

By combining Eq. (19) and Eq. (22), we get the loss function corresponding to Model (2):

LIB =
1

|V|
∑
v∈V

[
− Ez∼p(z|{x}) log q

v(x(v)|z)

+ βDKL(p(z|{x})∥rv(z|x(v)))
] (23)

B. PoE Fusion and Sampling
Formulation of PoE fusion:

µpoe =

∑
v∈V µv

1
σ2
v∑

v∈V
1
σ2
v
+ 1

,

σ2
poe =

1∑
v∈V

1
σ2
v
+ 1

,

(24)
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Table 3: Detailed information about five multi-view multi-label datasets in our experiments.

Dataset # Sample # Label # View # Label/#Sample

Corel5k 4999 260 6 3.40
IAPRTC12 19627 291 6 5.72
ESPGame 20770 268 6 4.69
Pascal07 9963 20 6 1.47

MIRFLICKR 25000 38 6 4.72

where µpoe and σ2
poe are the fused mean and variance of multiple views, respectively. µv and σ2

v mean the v-th view’s mean
and variance, respectively. Then, we have p(z|{x}) ∼ N (µpoe, σ

2
poeI).

Like Eq. (9), we sample z0 from distribution p(z|{x}):

z0 =
1

s

s∑
d=1

(µpoe + σpoe ⊙ δd). (25)

C. Statistics for Five Datasets
In this section, we give details of the five datasets used in the experiment in Table 3.

D. Statistics for Eight Competitors
In this section, we give details of the eight comparison methods in Table 4.

Table 4: Simple information of eight comparison methods. ‘Multi-view’ denotes the method is designed for multi-view data;
‘Missing-view’ and ‘Missing-label’ represent their compatibility with missing views and partial labels.

Method Sources Multi-view Missing-view Missing-label

C2AE AAAI ’17 # # !

GLOCAL TKDE ’17 # # !

CDMM KBS ’20 ! # #

DM2L PR ’21 # # !

LVSL TMM ’22 ! # #

iMVWL IJCAI ’18 ! ! !

NAIM3L TPAMI ’22 ! ! !

DICNet AAAI ’23 ! ! !

E. Extra Experimental Results on Five Full Datasets.
In this section, we show the results of nine methods on two datasets without any missing views and labels in Fig. 5.

F. Implementation Details
In the experiments, we set parameters as the values recommended in their codes or papers for all competitors. For our
SIP, the batch size is 128, the dimension of latent feature is 512, learning rate is set as 0.001 for all five datasets and the
Stochastic Gradient Descent (SGD) optimizer is employed to train the model. The sampling times are set as 10 for z0 and l0i .
Our encoder mainly consists of six Fully connected (FC) layers and the last three layers share parameters, while the decoder
mainly consists of three FC layers. To avoid randomness, we repeat experiments for all methods multiple times and report
the mean and variance in the final results. All the experiments are run on the ubuntu system with a 3090 GPU and pytorch
2.1.1 framework.
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(a) ESPGame
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(b) MIRFLICKR

Figure 5: Experimental results of nine methods on the two full datasets without any missing views or labels. The worst
results are indicated at the center of radar chart, while the best results are represented by the vertexes, considering six
evaluation metrics.

G. Limitations
Although our method has demonstrated effectiveness in PMvMLC task, providing insights on utilizing shared information
for prediction, there are limitations that restrict the broader application. A challenge is evaluating the assumption that
shared information is sufficient for accurate predictions, especially when dealing with heterogeneous multi-view data with
highly modality difference, such as text, images, and audio. Besides, many techniques have been developed for estimating
information capacity, there remains potential to improve accuracy by employing more sophisticated estimators.
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