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Abstract

Creation of a synthetic dataset that faithfully rep-
resents the data distribution and simultaneously
preserves privacy is a major research challenge.
Many space partitioning based approaches have
emerged in recent years for answering statistical
queries in a differentially private manner. However,
for synthetic data generation problem, recent re-
search has been mainly focused on deep generative
models. In contrast, we exploit space partitioning
techniques together with noise perturbation and
thus achieve intuitive and transparent algorithms.
We propose both data independent and data de-
pendent algorithms for ϵ-differentially private syn-
thetic data generation whose kernel density resem-
bles that of the real dataset. Additionally, we pro-
vide theoretical results on the utility-privacy trade-
offs and show how our data dependent approach
overcomes the curse of dimensionality and leads
to a scalable algorithm. We show empirical util-
ity improvements over the prior work, and discuss
performance of our algorithm on a downstream
classification task on a real dataset.

1 INTRODUCTION

Publishing data of a highly sensitive nature in domains of
finance or health, carries a risk of compromising privacy
of individuals and therefore a breach of privacy regulations
(e.g. HIPPA, FCRA, GDPR). This limitation can be poten-
tially circumvented by the use of synthetic data. However,
synthetic data per se is not inherently private [Jordon et al.,
2022]. In this paper, we study the problem of publishing a
synthetic dataset that faithfully represents the original data
whilst at the same time does not comproimise privacy of
individuals in the original.

Preserving privacy of individuals while publishing a dataset

Figure 1: Data dependent partitioning in R2. Our data depen-
dent algorithm achieves more refined partitioning in densely
populated areas and thus better utility of DP synthetic data.

for public use is a known challenge [Balog et al., 2018]. A
de facto standard for privacy is differential privacy (DP),
which is widely used in the literature and in practice. Many
existing works aim to preserve quality of differentially pri-
vate answers for a certain class of queries [Mohammed et al.,
2011, Xiao et al., 2014, Hardt et al., 2012]; see Zhu et al.
[2017] for a survey. However, a more general problem stud-
ies the release of a differentially private synthetic dataset
that can be used for downstream tasks without additional
privacy leaks. Recent work mainly applied generative ad-
versarial networks (GAN) [Goodfellow et al., 2014] and
utilized divergence metrics such as Jensen-Shannon diver-
gence and Wasserstein distance as a metric of quality to
compare synthetic and original datasets [Park et al., 2018,
Torkzadehmahani et al., 2019, Jordon et al., 2019, Xie et al.,
2018, Frigerio et al., 2019, Papernot et al., 2016, 2018]. An-
other class of utility metrics is based on kernels e.g., distance
in reproducing kernel Hilbert space (RKHS) or similarly
maximum mean discrepancy (MMD), see Section 1.3.1 for
a detailed discussion. The advantage of kernel based metrics
is that they compare two probability measures in terms of
all possible moments [Harder et al., 2021] and thus capture
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a wide class of statistical properties of the dataset.

We propose algorithms that for an input dataset output its
differentially private synthetic counterpart. The key tech-
niques used in this work are space partitioning [Ram and
Gray, 2013] and noisy perturbation. Similar ideas have been
used in the literature for designing differentially private sta-
tistical query algorithms and histogram release applications,
e.g., [Qardaji et al., 2013, Xiao et al., 2014, Zhang et al.,
2016]. However, naive implementation of space partitioning
techniques for DP dataset release problem suffers from the
curse of dimensionality. We show how our data-dependent
approach solves this issue and also leads to scalable algo-
rithms. As our method is based on the simple idea of space
partitioning, the advantage in comparison to the state of the
art generative models is interpretability of our algorithms.

1.1 RELATED WORK

Prior work which consider similar settings to ours is rela-
tively sparse. The closest are Balog et al. [2018] and Harder
et al. [2021], although the latter is more focused on labeled
data as well as image data. Both of these papers aim to
release a dataset that is close to the original one in terms
of kernel RKHS distance while preserving privacy. Balog
et al. [2018] presents two algorithms. Their first algorithm
either needs a small fraction of the dataset to be publicly
available, or reweights a sampled set of points from the
support of the underlying distribution. The requirement on
the public input data represents a limitation which we over-
come. Their second algorithm is based on random features
and an iterative gradient based optimization procedure to
apply reduced set method which has the twin issues of be-
ing slow in high dimensions and also suffers from the lack
of interpretability. Harder et al. [2021] improved upon this
work and achieved better results, and in particular for lower
dimensions, say 5, but not when the dimensions are much
higher. Their approach relies on deep generative model to
minimize MMD, and thus again suffers the lack of inter-
pretability. None of these works provides theoretical results
on the utility-privacy trade-off. Our algorithms are transpar-
ent which enables us to provide theoretical guarantees on
utility. Our data dependent algorithm achieves good utility
in high dimensions.

1.2 OUR CONTRIBUTION

Inspired by locality sensitive hash functions and nearest
neighbor search algorithms introduced by Indyk and Mot-
wani [1998], our approach is based on space partitioning
schemes and in particular KD-trees Friedman et al. [1977].
Our goal is to output a synthetic dataset that imposes similar
kernel density on the space as the input data, and does not
compromise privacy of the input. Intuitively, if we partition
the space into small sections (bins) and preserve the ratio of

points after noise addition (for the purpose of privacy) we
will approximately preserve the kernel density. Based on this
idea, we introduce two algorithms that yield ϵ-differentially
private synthetic data outputs. Our data independent ap-
proach, Algorithm 1, implements a naive version of the idea
and naturally suffers from the curse of dimensionality. Our
data dependent algorithm, Algorithm 2, overcomes this and
achieves better utility. Our main contributions are:

• We provide an upper bound on utility loss of our data
independent algorithm for a general setting of unknown
distribution of input data (Theorem 3 and Theorem 5).
We improve the bound for a special case of input data
from a mixture of Gaussians in Rd (Theorem 6).

• Our data dependent algorithm achieves smaller number
of empty bins and more refined partitioning in densely
populated areas which yields better utility. We over-
come the curse of dimensionality using an implicit
sampling of empty bins (Theorem 7 and Theorem 8).

• Unlike previous approaches [Balog et al., 2018, Harder
et al., 2021], we do not rely on black box methods,
and thus achieve interpretability which is important in
many practical settings. In addition, we do not require
a fraction of input dataset to be public.

• In Section 4 we show how: (i) our algorithms outper-
form algorithms by Balog et al. [2018], (ii) our data
dependent algorithm overcomes curse of dimensional-
ity, (iii) empirical utility loss compares to our theoret-
ical bound from Theorem 6, (iv) performance of our
algorithms on downstream binary classification task
compares with Harder et al. [2021].

1.3 BACKGROUND

We give an introduction to MMD and differential privacy.

1.3.1 Kernel Density Estimates and RKHS distance

For a (unweighted) dataset P ⊂ Rd and a kernel K :
Rd × Rd → R, the kernel density (KD) with respect
to P is defined at any point x ∈ Rd as KDK

P (x) =
1
|P |

∑
p∈P K(x, p). If P is equipped with weights such

that
∑

p∈P wp = 1, then kernel density is given by
KDK

P (x) =
∑

p∈P wpK(x, p). For ease of notation, we
will often write KDP (·) instead of KDK

P (·). For the two
datasets P and Q, ℓ∞ distance of two KDs is defined as
∥KDP − KDQ∥∞ = supx∈Rd |KDP (x) − KDQ(x)|. If K
is positive definite, then K(p, x) can be represented as an in-
ner product in RKHSHK . That is, there is ϕK : Rd → HK

such that ϕK(x) = K(x, ·). For a positive definite kernel
K, if ϕK is injective then MMD is given by

MMD(P,Q) =
√
κ(P, P ) + κ(Q,Q)− 2κ(P,Q) (1)



where κ(P,Q) = 1
|P |

1
|Q|

∑
p∈P

∑
q∈Q K(p, q) represents

a kernel metric between two datasets. It is possible to convert
between bounds on ℓ∞-distance of KDs and MMD. More
precisely, MMD(P,Q) ≤ ϵ implies ∥KDP − KDQ∥∞ ≤ ϵ,
and also ∥KDP − KDQ∥∞ ≤ ϵ implies MMD(P,Q) ≤√
2ϵ. Further details can be found in Phillips and Tai [2020]

and Harder et al. [2021]. We present theoretical analysis
on utility guarantees in terms of bounds on KD distance,
whilst in experiments we rely on MMD due to the ease of
computation.

1.3.2 Differential Privacy

Differential privacy (DP) [Dwork et al., 2006] has become a
de facto standard to quantify privacy leakage. It provides the-
oretical guarantees that potential adversary with the knowl-
edge of the output is not able to distinguish whether a par-
ticular individual was present in the input dataset.

Definition 1. [Dwork et al., 2014] A randomized mecha-
nismM : Xn → Y is ϵ-differentially private if for any two
datasets D,D′ ∈ Xn that differ in only one entry, we have

∀C ⊆ Y, P(M(D) ∈ C) ≤ eϵP(M(D′) ∈ C). (2)

Standard way to achieve ϵ-DP is to employ Laplace mecha-
nism, i.e., add Laplace noise to the output. More precisely,
for a function f computed on sensitive data D, we intro-
duce MLap(D, f(.), ϵ) = f(D) + Lap(0,∆f/ϵ), where
∆f = maxD,D′ ∥f(D) − f(D′)∥1 is the ℓ1 sensitivity of
f with respect to change of a single entry in the dataset
(D,D′ ∈ Xn are two neighboring datasets, i.e., that they
differ in only one entry) and Lap denotes Laplace distribu-
tion parametrized by the mean and scale. Post-processing
property of ϵ-DP guarantees that composition of any data
independent function with the output of ϵ-DP mechanism
is also ϵ-DP, i.e., it does not incur additional privacy leaks
[Dwork et al., 2014]. This means that differentially private
synthetic data can be safely used for downstream tasks.
Composition of ϵ-DP guarantees that combination of ϵ1-
DP algorithm M1 and ϵ2-DP algorithm M2 defined by
M1,2 = (M1,M2) is (ϵ1 + ϵ2)-DP [Dwork et al., 2014].

2 PROBLEM FORMULATION

We are given a multidimensional numerical dataset P =
{p1, p2, . . . , pn} of n records in Rd. Our task is to de-
sign a differentially private algorithm that outputs (possibly
weighted) dataset Q = {(q1, w1), . . . , (qm, wm)} where
qi ∈ Rd, wi ∈ R+, such that for any x ∈ Rd

KDK
P (x) ≈ KDK

Q (x),

where K is some positive definite kernel. The closeness
of KDP and KDQ in ℓ∞-distance implies that relying on

Q instead of P leads consistent estimation of population
statistics of original dataset P (see Balog et al. [2018] for
discussion) i.e., synthetic dataset Q faithfully represents
the original P . In other words, both ℓ∞-distance of KDs
and MMD represent good utility measures when evaluat-
ing quality of synthetic datasets. In the rest of the paper,
for simplicity of presentation we focus on Gaussian kernel

K(x, p) = e−
∥x−p∥22

2σ2 . It is however straightforward to adapt
our analysis to a wider class of kernels.

3 OUR ALGORITHMS

We propose two algorithms for synthetic data generation in
the next sections: (i) Data independent (ii) Data dependent.

3.1 DATA INDEPENDENT

In this section, we present data independent algorithm for
synthetic dataset release with DP guarantees. Inspired by the
widely used idea of space partitioning, we want to partition
the space into a number of bins, e.g., J cubes of width w.
Then we count the number of points inside each bin and
present these counts on a J-dimensional vector. Any single
data point can affect this vector at most by a constant in
terms of ℓ1 distance. In other words, it has a bounded ℓ1
sensitivity with respect to any two neighbouring datasets
(see Section 1.3.2). Thus, we can employ Laplace mecha-
nism in order to achieve ϵ-DP. Bins with the noisy count
below input threshold t will be removed i.e., filtered out.
The algorithm outputs the dataset consisting of centers of
the bins that survived filtering step and the corresponding
noisy point counts. See Algorithm 1.

Algorithm 1 Data independent binning

1: procedure DATAINDEPENDENT(P, ϵ, t, w)
2: ▷ P is the original dataset, ϵ is privacy budget
3: ▷ t is filtering threshold, w is bin width
4: R← the edge length of the axes aligned hypercube

that encompasses P
5: Apply binning using bins of width w

6: J ← (R/w)
d

▷ Number of bins
7: v ∈ RJ ← vector of point counts bin by bin
8: c1, c2, . . . , cJ ← centers of bins
9: ṽ← v + Lap( 2ϵ IJ×J) ▷ Noisy point counts

10: For any i ∈ [J ], if ṽi < t, then ṽi ← 0
11: ▷ Filtering step: Removing bins below t
12: Output Q := {(ci, ṽi) for i ∈ [J ] if ṽi > 0}

First we prove that the output of Algorithm 1 is differentially
private. Then, we analyze the performance of Algorithm 1
when t = 0 in terms of the worst-case utility-privacy trade-
off, i.e. the case of a general input dataset where we do
not impose any assumptions on its distribution. Finally, we



present the utility-privacy trade-off of Algorithm 1 for the
special case of input data coming from a mixture of Gaus-
sians with a positive filtering threshold. Theorems 3 and 5
give clues on how to set up width w and threshold t in order
to achieve better utility.

3.1.1 Differential privacy

Theorem 2 (DP). Output of Algorithm 1 is ϵ-DP.

Proof. Note that bins centers are picked independently of
the input data.1 For J-dimensional point counts (line 7 of
Algorithm 1) v and v̂ corresponding to two datasets P and
P̂ that differ in exactly one element, we have ||v− v̂||1 ≤ 2.
Thus, the ℓ1-sensitivity is at most 2, and we can get ϵ-DP by
adding Lap(2/ϵ) noise to each entry of the J dimensional
embedding (line 9). Post processing feature gives that re-
moving bins with noisy counts less than threshold t (line
10) does not yield additional privacy leaks.

3.1.2 Worst-case utility-privacy trade-off (t = 0 case)

We now analyze the worst case utility of Algorithm 1, i.e.,
the general case when we do not impose any assumptions
on the distribution of the input dataset P .

Theorem 3 (Worst-case trade-off of Algorithm 1). Suppose
that dataset P lies on an axes aligned hypercube of edge
length R in Rd. Let δ > 0 be such that

(
R
w

)d
< ϵn

4 log 1
δ

.
Then Algorithm 1 outputs ϵ-DP dataset Q such that

sup
x∈Rd

|KDQ(x)− KDP (x)| ≤
2

ϵn
4J log 1

δ

− 1
+

w

2

√
d

e
,

with probability at least 1− δ, where J =
(
R
w

)d
.

Proof sketch. For a detailed proof see Section B of Sup-
plementary Material. Theorem 2 guarantees that the output
of Algorithm 1 is ϵ-DP. Let P ′ := {(c1, v1), . . . , (cJ , vJ)},
where v, c are defined as in line 7 and 8 of Algorithm 1,
respectively. We have the following sources of error.

• Rounding to the bin centers. We prove that
supx∈Rd |KDP ′(x)− KDP (x)| ≤ w

√
d

2
√
e

.

• Adding noise and removing negatively weighted
bins. We prove supx∈Rd |KDQ(x) − KDP ′(x)| ≤

8J log 1
δ

ϵn−4J log 1
δ

as a consequence of upper bound on J .

Triangle inequality over the sources of error completes the
proof.

1Here we impose a mild assumption that any two neighboring
datasets will be in the same axes aligned hypercube.

For t = 0, Algorithm 1 suffers some obvious shortcomings.
If data is well spread, there will be many bins with small
number of points. After Laplace noise addition, correspond-
ing point counts would often be negative and consequently
the bins would be removed. On the other hand, with prob-
ability 0.5 empty bins would exhibit positive noisy point
counts and would thus falsely be represented in the output.
Both aspects hurt utility. A natural way to overcome these
shortcomings is to increase the cut-off threshold. This ap-
proach is particularly well suited if we know that (most)
non-empty bins are densely populated.

3.1.3 Beyond worst-case utility-privacy trade-off
(t > 0 case)

For appropriate non-zero threshold, we present utility-
privacy trade-off in the case of a general input, i.e. with
no assumptions on input distribution.

Definition 4. For t > 0, bins with noiseless count less
(greater than or equal) than t will be called t-light (t-heavy).

Theorem 5 (Beyond worst-case trade-off of Algorithm 1).
Suppose that input dataset P lies on an axes aligned hyper-
cube of edge length R in Rd. Assume that δ > 0 is such that(
R
w

)d ≤ 1
δ . For t = 8

ϵ log(1/δ), let M and m be the total
number of t/2-heavy bins and the total number of points
in 3t/2-light bins, respectively. Then, Algorithm 1 outputs
ϵ-DP dataset Q such that

sup
x∈Rd

|KDQ(x)− KDP (x)| ≤
ϵm+ 8M log 1

δ

ϵn− ϵm− 4M log 1
δ

+
m

n

+
w
√
d

2
√
e
,

with probability at least 1− δ.

Proof sketch. For detailes see Section C of Supplementary
Material. Theorem 2 guarantees that the output of Algo-
rithm 1 is ϵ-DP. Let P ′ := {(c1, v1), . . . , (cJ , vJ)}, where
v, c are defined as in lines 7 and 8 of Algorithm 1. We have
the following sources of error.

• Rounding to the bins centers. We prove that
supx∈Rd |KDP (x)− KDP ′(x)| ≤ w

√
d

2
√
e

.

• With probability 1− δ/2, all bins that are removed in
filtering step are 3t/2-light. Thus, there are at most
m points that are filtered out which contributes to
supx∈Rd |KDP ′(x)− KDQ(x)| by at most m

n .

• With probability 1− δ/2, all bins that survive filtering
step are t/2-heavy. Before noise addition step, number
of points in these bins is at least n −m and at most
n. As there are at most M such bins, the total noisy
count in these bins is at least n − m − 4M

ϵ log( 1δ )



and at most n + 4M
ϵ log( 1δ ). This yields additional

ϵm+8M log(1/δ)
ϵn−ϵm−4M log(1/δ) term for the upper bound.

Union bound and triangle inequality over the sources of
error complete the proof.

The threshold t in Theorem 5 depends on privacy level ϵ,
and so both M and m depend on ϵ. With no assumptions on
distribution of P , it is not possible to provide meaningful
bounds on M and m. We next study a special case.

3.1.4 Mixture of Gaussians input data

We analyze performance of Algorithm 1 for the special case
of input data from multivariate Gaussian distribution. More
precisely, we consider dataset P of n records in Rd with
Gaussian distribution N (c, σ2I), c ∈ Rd i.e., from density

f(X = x) = 1
(2πσ2)d/2

e−
||x−c||22

2σ2 . This straightforwardly
generalizes to a mixture of multivariate Gaussians.

Theorem 6 (Gaussian trade-off using Algorithm 1). Sup-
pose that input dataset P lies on an axes aligned hyper-

cube of edge length R in Rd. If n ≥
(

w
σ
√
2π

)d

, for δ > 0

such that n
(logn)d/2

≥ 16 · log 1
δ · (

12σ
w )2 and threshold

t = 8
ϵ log(1/δ), Algorithm 1 outputs ϵ-DP dataset Q s.t.

sup
x∈Rd

|KDQ(x)− KDP (x)| ≤
8(log 1

δ )
1/3 · e−

d
3 (log

w
σ
√

2π
−2)

(ϵn)1/3

+
16 log 1

δ · (
12σ
w )d(log n)d/2

ϵn

+
w
√
d

2
√
e
,

with probability at least 1− δ.

Proof sketch. For a detailed proof see Section D of Sup-
plementary Material. This is a special case of Theorem 5.
The Gaussian distribution assumption enables us to provide
upper bounds on the number of t/2-heavy bins m, and total
number of points in 3t/2-light bins M , for t = 8

ϵ log(1/δ).
Loosely speaking, in this case majority of points lives within
densly populated areas, and so there are neither too many
points in the light bins nor the number of heavy bins is too
large.

In Section 4 we compare empirical MMD to the bound
(O(ϵn)−1/3) from Theorem 6. Results suggest that lower
bound is smaller which is in line with results from Duchi
et al. [2013] where the gap is of order O(n−1/2). Their
setting is different as they study local differential privacy
in the context of distribution estimation (not synthetic data
release). We also highlight recent work of Kamath et al.
[2018] on DP learning parameters of multivariate Gaussian

distribution. Their approach learns parameters and is thus
not directly comparable as we output a dataset.

3.2 DATA DEPENDENT ALGORITHM

In the general case, data independent approaches suffer from
the curse of dimensionality. The reason is that as opposed
to traditional applications of hash functions, we need to
keep track of empty bins in order to treat them similarly
to non empty ones, as a bin that is empty with respect to
P is not necessarily empty with respect to a neighbouring
dataset. In high dimensions, this makes the data independent
binning impractical, as there are typically many empty bins.
Moreover, in densely populated areas finer grid would incur
smaller error due to the rounding to the centers, and thus
yield a higher utility.

We propose differentially private algorithm based on adap-
tive binning i.e., recursive partitioning of the space. Before
we proceed, we introduce notion of a decision tree. We
assume arbitrary but fixed enumeration of d dimensions
denoted by i where i ∈ [d]. The root of the tree is character-
ized by the initial dataset P , the center c and the the edge
R of the smallest axis aligned cube that contains whole P ,
and axes 0 to split along. If decision at the root is to pro-
ceed with recursion (we discuss decision making below),
we proceed as follows. Initial recursion splits the dataset
along axes 0 and divides the corresponding edge of the cube
in two equal R/2 parts which results in the creation of two
children nodes. Each of them is characterized by a fraction
of the dataset that ended up in the corresponding part, center
and the radius of the new cube that contains that fraction
of the dataset, and new axes to cut along. The new axes to
cut along is always previous axes +1 i.e., the next axes in
ordering [d]. The recursion proceeds on the newly created
nodes, subject to a positive decision on whether to recurse
further. Nodes on which recursion does not proceed do not
have any children and represent leaves.

Note that due to the data dependent aspect, we need to
ensure that adaptive binning is differentially private. Thus,
each decision on whether to recurse or not has to be based
on noisy point counts. By composition property of DP, if
there are l levels of data dependent decisions in the decision
tree, one needs to guarantee ϵ′/l-DP for each recursion,
so that once binning algorithm terminates we achieve ϵ′-
DP. Note that the output of adaptive binning is partitioning
of the space, not the synthetic dataset, and thus once the
binning is done we are in the setting from the beginning
of Algorithm 1. That is, in order to release differentially
private synthetic dataset, we have to obtain noisy versions
of the point counts bin by bin and output bins that pass
certain threshold. By ensuring a ϵ′′-DP for this part of the
procedure, one will achieve (ϵ′ + ϵ′′)-DP guarantee for the
whole algorithm by the composition property of DP. Before
we formally introduce adaptive binning, we discuss some



desirable settings.

Avoiding large bins In high dimensions, we will fre-
quently observe large bins where recursion stops due to
small noisy point counts. This would however yield large
error due to rounding to the center, since the bin has large
edge lengths. Thus it would be beneficial to have the al-
gorithm run bin splitting independently of data for a few
rounds, e.g., until it reaches a maximum edge length for
all bins below some threshold s1. After that, the algorithm
would run in data dependent regime. Note that the depth of
data independent part in this setting is h = d log2(R/s1),
and up until that level there are no privacy leaks.

Avoiding decision trees with large depth Privacy cost
of adaptive binning is determined by the number of data
dependent levels in decision tree. Thus, even if noisy point
counts are large, it might be beneficial to stop the recursion
once the number of data dependent levels passes certain
threshold. Equivalently, we stop the recursion over a bin
when its maximal edge length is below certain threshold
s2, regardless of the value of the noisy point count. In this
setting, the maximum tree depth is h′ = d log2(R/s2), and
having in mind above discussion, number of data dependent
levels is at most h′ − h = log2(s1/s2).

Algorithm 2 formally describes our adaptive binning. More
precisely, it identifies the root of the tree as discussed above,
and passes it to Algorithm 3 (discussed below). Lines 3
- 4 identify the boundaries of the dataset along each of d
dimensions, line 5 identifies the center of the cube, and
line 6 the edge of the cube that contains the whole dataset.
Axes for next split is set to 0, and the root node is passed to
Algorithm 3 . Finally, Algorithm 3 implements differentially

Algorithm 2 Adaptive binning

1: procedure ADAPTIVE-BINNING(P, ϵ′, τ)
2: ▷ dataset P , DP budget ϵ′,cut off level τ
3: For any i ∈ [d], lowi ← minp∈P (pi)
4: For any i ∈ [d], highi ← maxp∈P (pi)

5: For any i ∈ [d], ci ← lowi+highi
2

6: w ← maxi(highi − lowi)
7: curr-axis← 0 ▷ axis the bin will be cut along
8: node← NODE(P, c, w, curr-axis)
9: RECURSIVE-BINNING(node, ϵ′, τ)

private recursive binning. It takes as an input a node, total
privacy budget (until the recursion stops), threshold for the
noisy point counts, and the maximum and minimum allowed
edge lengths of final bins. The output of the algorithm is the
set of bins. According to previous discussion, the algorithm
will recurse if either noisy point count is larger than the
threshold, or the bin’s largest edge is too large (line 5), with
the exception of that if the largest edge is too small (line
7), recursion stops regardless of the value of the noisy point

count. If recursion proceeds, the current node is split in the
two and recursion proceeds on each of them.

Algorithm 3 Recursive binning

1: procedure RECURSIVE-BINNING(NODE, ϵ′, τ, s1, s2)
2: ▷ Node to recurse on, DP budget ϵ′, threshold τ
3: ▷ max and min edge length for final bins s1 and s2
4: P, c, w, curr-axis← node
5: if |P | ≤ τ+LAP(2(h′−h)/ϵ′) and the bin’s largest

edge length ≤ s1 then return
6: ▷ h′ − h = d log2(s1/s2) is the max depth of data

dependent part of the tree
7: if the bin’s largest edge length < s2 then return
8: Pℓ, Pr ← ∅, ∅
9: for p ∈ P do

10: if pcurr−axis ≤ ccurr-axis then Pℓ ← Pℓ ∪ {p}
11: else Pr ← Pr ∪ {p}
12: cℓ, cr ← c, c
13: cℓ,curr−axis ← ccurr−axis − w/4
14: cr,curr−axis ← ccurr−axis + w/4 ▷ coordinates of

newly formed bins centers
15: if curr-axis = d− 1 then w ← w/2

16: node.left← NODE(Pℓ, cℓ, w, (curr-axis + 1)%d)
17: RECURSIVE-BINNING(node.left, ϵ′, τ)
18: node.right← NODE(Pr, cr, w, (curr-axis + 1)%d)
19: RECURSIVE-BINNING(node.right, ϵ′, τ)

Theorem 7. For any dataset P , ϵ′ > 0, τ > 0, s1, s2 > 0,
Algorithm 2 returns a tree such that the set of bins deter-
mined by its leaves is ϵ′-differentially private.

Proof. Data dependent part of the decision tree for this al-
gorithm has maximum depth h′ − h = d log2(s1/s2). Each
neighboring dataset affects only one root to leaf path, and
thus it is enough to consider maximal privacy loss incurred
along a single path to the leaf. Also, since the ℓ1 sensitivity
of the point counts is 1, it suffices to add LAP(2(h′−h)/ϵ′)
noise to each decision condition in order to guarantee ϵ′-
differential privacy for the entire path. Two neighboring
datasets differ in the point counts in at most two paths.

Theorem 8 (DP of Data Dependent algorithm). For a
dataset P and ϵ′ > 0, let c1, . . . , cJ ∈ Rd denote cen-
ters of bins corresponding to the leaves of tree output by
Algorithm 2, and v ∈ RJ be the vector of corresponding
point counts in each bin. If c1, . . . , ck and v are passed to
line 9 of Algorithm 1 with ϵ′′ > 0, then the final output of
Algorithm 1 is ϵ′ + ϵ′′-DP dataset Q.

Proof. Consequence of composition property of DP.



3.2.1 Implicit sampling of empty bins

As already discussed, number of empty bins grows expo-
nentially in dimension and this represents a challenge as we
need to treat empty bins in a same manner as non empty
ones for the purpose of achieving DP. Thus, efficient imple-
mentation of our algorithms would avoid storing all bins
and iterating through them for the purpose of noise addition
and filtering. We utilize idea exploited in Cormode et al.
[2011], to implicitly implement the noise addition and fil-
tering on empty bins. This benefits both data independent
Algorithm 1 (see Section E.1 of Supplementary Material)
and data dependent Algorithm 2 (discussed below).

Lemma 9. Explicit implementation of noise addition and
filtering on empty bins as per Algorithm 4 is equivalent to
the implicit implementation provided in Algorithm 5 .

See Section F of Supplementary Material for proof. In Algo-
rithm 5, CONDITIONALLAP(2/ϵ, t) denotes a random vari-
able with Laplace distribution conditioned on being greater
than or equal to t.

Algorithm 4 Explicit implementation

1: for any empty bin do
2: η ← LAP(2/ϵ)
3: if POINTCOUNT(bin) + η = 0 + η ≥ t then
4: add this bin center with weight η to the output

Algorithm 5 Implicit implementation

1: K ← the number of empty bins
2: p← Pr[LAP(2/ϵ) ≥ t]
3: m← BINOM(K, p)
4: sample m empty bins out of K empty bins without

replacement
5: for each sampled empty bin do
6: η ← a sample of CONDITIONALLAP(2/ϵ, t)
7: add this bin center with weight η to the output

3.2.2 Implicit sampling in the data dependent
Algorithm 2

The union of the set of empty and non empty bins given as
output of Algorithm 2 coincides with the set of leaves in the
tree of recursion decisions. The question is, whether from
the information on the number of data independent levels h,
and paths from the root to the leaves corresponding to non
empty bins, one can recover the remaining set of leaves i.e.,
those corresponding to the empty bins. In this section, we
prove that this is possible for a large enough cut off threshold
τ (see line 5 in Algorithm 3) which guarantees that with
high probability the algorithm does not partition empty bins
further in the data dependent part of the algorithm. See

Figure 2: Tree with h = 2 and h′ = 5. Black nodes are non-
empty bins, gray nodes are empty bins we need to sample.

Figure 2 for an illustration of a decision tree, and Section F
of Supplementary Material for proof of Lemma 10.

Lemma 10. Let h′ and h denote total depth and the depth
of data independent part of the tree, respectively. If the
threshold τ in line 5 of Algorithm 3 is set to be greater than

2(h′ − h)

ϵ′
log

(
1

δ
·
(
2h + n(h′ − h)

))
,

then with probability 1 − δ the adaptive binning will not
divide any empty bin.

Theorem 11. If we pick threshold τ in line 5 of Algorithm 3
as per Lemma 10, then storing information on the number of
data independent levels h and paths to leaf nodes that rep-
resent non empty bins, enables implicit sampling of empty
bins as per Algorithm 5.

Proof. Lemma 10 guarantees that no empty bin is recursed
on. Thus, each parent node has at most one child correspond-
ing to an empty bin. In particular, for each two non-empty
bins (black nodes in Figure 2 ) we can identify their com-
mon ancestor and the number of empty bins (gray nodes
in Figure 2) between them. Thus, set of empty bins can be
recovered from the encoding of non empty bins. See Section
F of Supplementary Material for details.

4 EXPERIMENTS

We provide experimental results on both of our proposed
algorithms in various settings.

Privacy-utility trade-off First, we show improvements
using our data independent Algorithm 1 over both algo-
rithms of Balog et al. [2018] on a mixture of Gaussians
dataset in dimension 2. The comparison is presented in
Figure 3a, where a considerable improvement is achieved,
in all regimes of privacy budget ϵ and dataset size. For a
5-dimensional mixture of Gaussians dataset, although our
data independent algorithm is unable to outperform the al-
gorithms of Balog et al. [2018], our data dependent algo-
rithm overcomes the curse of dimensionality and it achieves
lower error rates using smaller number of synthetic data
points. This improvement for all regimes of privacy levels



101 102

Synthetic dataset size

10 4

10 3

10 2

10 1

100

Di
st

an
ce

 in
 R

KH
S

Data Independent Alg,  = 0.1
BTS alg 1,  = 0.1
BTS alg 2,  = 0.1
Data Independent Alg,  = 1
BTS alg 1,  = 1
BTS alg 2,  = 1

(a)

101 102 103 104

Synthetic dataset size

10 2

10 1

100

Di
st

an
ce

 in
 R

KH
S

Data Dependent Alg, epsilon = 0.1
BTS alg 1, epsilon = 0.1
BTS alg 2, epsilon = 0.1
Data Dependent Alg, epsilon = 1
BTS alg 1, epsilon = 1
BTS alg 2, epsilon = 1

(b)

101 102 103

Synthetic dataset size
10 1

100

Di
st

an
ce

 in
 R

KH
S

Data Dependent Alg, epsilon = 0.1, dim=10
Data Dependent Alg, epsilon = 0.1, dim=20
Data Dependent Alg, epsilon = 0.1, dim=50
Data Dependent Alg, epsilon = 1, dim=10
Data Dependent Alg, epsilon = 1, dim=20
Data Dependent Alg, epsilon = 1, dim=50

(c)

Figure 3: (Left) Algorithm 1 vs Balog et al. [2018] in dimension 2. (Middle) Our Data Dependent Algorithm vs Balog et al.
[2018] in dimension 5. (Right) Data Dependent Algorithm in high dimensions.

is presented in Figure 3b. For both settings, we use datasets
utilized in Balog et al. [2018] (see Section G.1 of Supple-
mentary Material for details). Figure 3c confirms that our
data dependent algorithm achieves low errors for high di-
mensions and various privacy regimes, and thus overcomes
curse of dimensionality.

Tightness of bound from Theorem 6 Theorem 6 pro-
vides the upper bound on utility loss of Algorithm 1 for
samples from multivariate Gaussian. When bins are such
that the error w

√
d

2
√
e

arising from rounding to centers is neg-

ligible, for ϵ ≫ 1
n the bound scales as O

(
(ϵn)−1/3

)
. Fig-

ure 4 shows empirical MMD for various privacy levels vs.
O
(
(ϵn)−1/3

)
benchmark and suggests that there might be

a gap and our bound can be improved. See Section 5 for
further discussion.
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Figure 4: Utility loss of Algorithm 1 for various privacy bud-
gets, and input of 100, 000 samples from standard Gaussian
for various dimensions. It stabilizes regardless of privacy
budget due the error of rounding to centers.

Classification task on real data We evaluate performance
of our data dependent algorithm on downstream binary clas-
sification task on a real tabular dataset. We rely on credit
card fraud detection dataset used in Harder et al. [2021] and
compare our data dependent algorithm with their DP-MERF.
We follow their experimental setup to train 12 classifiers

on synthetic data and evaluate their performance on orig-
inal data. See Section G.4 of Supplementary Material for
more detailed setup and results. Our algorithm does not
outperform DP-MERF in terms of ROC values which is
not surprising as we do not rely on deep generative mod-
els. However, our performance degrades slower as privacy
increases (Figure 5).
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Figure 5: Comparison of our Data Dependent Algorithm
and DP-MERF on downstream classification task. ROC
degradation is represented as a ratio of ROC corresponding
to a specified ϵ budget and ROC for ϵ = 10.

Optimal size of bins We explore what combination of
widths and weights of bins minimizes MMD between syn-
thetic data and the sample (regime with no privacy). For
1-dimensional standard Gaussian input, we consider syn-
thetic data given by a mixture of uniforms. More precisely,
synthetic data consists of centers of 2k + 1 bins of a given
width, symmetrically arranged around the mean. Figure 6
shows KL and MMD between standard Gaussian and mix-
ture of uniforms [Rustamov, 2021], as well as sample MMD
for a Gaussian sample of size 100, 000. For appropriately set
width, sample MMD is getting small which indicates that
binning approach has potential to yield good utilities. For
more details and derivation of optimal widths and weights
see Section H of Supplementary Material.



For additional experiments, see Sections G.2 and G.3 of
Supplementary Material.
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Figure 6: 1-dimensional standard Gaussian vs 11-mixture
of uniforms and various widths.

5 CONCLUSIONS AND FUTURE WORK

We proposed an interpretable and efficient algorithms for
differentially private synthetic data generation, where data
takes multidimensional numerical form. We provide theo-
retical bounds in various settings and empirically validate
our algorithm performance in terms of both simulated and
real-world datasets.

Our algorithms can be extended to tabular data character-
ized by mixed numerical and categorical columns, as each
category within a column corresponds to a bin along that
dimension. However, this setting does not benefit from our
theoretical guarantees on the utility (e.g. Theorem 3) which
we measure in terms of kernel density metrics defined on
Rd. Moreover, our data dependent approach does not handle
the curse of dimensionality problem as the total number of
bins grows exponentially with the number of categorical
columns. This is due to the fact that in mixed numerical and
categorical settings there is no straightforward way to merge
or split categories depending on point counts, as it is the
case with bins in Rd. It is an interesting future direction to
combine our methods for numerical columns with a differ-
ent method along categorical columns in order to achieve
scalable solution in such setting.

Another interesting direction is to resolve the question of
the theoretical utility-privacy guarantees for our data depen-
dent algorithm. This is challenging in the data dependent
setting as it is not easy to provide meaningful bounds on
the total number of bins. Furthermore, we conjecture that
one can improve upon our bounds using more sophisticated
LSH functions, e.g., projection based LSHs such as Datar
et al. [2004], Andoni and Indyk [2006]. This direction needs
novel techniques in order to handle empty bins. For the
special case of Gaussian multivariate distribution, we leave
it as future work to compare our algorithms to existing re-
sults on DP, e.g., Kamath et al. [2018] who provide DP
learning of distribution parameters. Lower bounds for our

space-partitioning approach also remain open, in particular
whether our bound from Theorem 6 can be improved to be
of the form O(n−1/2) as suggested by results of Duchi et al.
[2013].

Disclaimer This paper was prepared for informational
purposes by the Artificial Intelligence Research group of
JPMorgan Chase & Co and its affiliates (“J.P. Morgan”),
and is not a product of the Research Department of J.P.
Morgan. J.P. Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness,
accuracy or reliability of the information contained herein.
This document is not intended as investment research or in-
vestment advice, or a recommendation, offer or solicitation
for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or
to any person, if such solicitation under such jurisdiction or
to such person would be unlawful.
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