Under review as a conference paper at ICLR 2026

FOREST-BASED GRAPH LEARNING FOR
SEMI-SUPERVISED NODE CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing Graph Neural Networks usually learn long-distance knowledge via stacked
layers or global attention, but struggle to balance cost-effectiveness and global re-
ceptive field. In this work, we break the dilemma by proposing a novel forest-based
graph learning (FGL) paradigm that enables efficient long-range information propa-
gation. Our key insight is to reinterpret message passing on a graph as transportation
over spanning trees that naturally facilitates long-range knowledge aggregation,
where several trees—a forest—can capture complementary topological pathways.
Theoretically, we demonstrate that as edge-homophily estimates improve, the
induced distribution biases towards higher-homophily trees, which enables gen-
erating a high-quality forest by refining a homophily estimator. Furthermore, we
propose a linear-time tree aggregator that realizes quadratic node-pair interactions.
Empirically, our framework achieves comparable results against state-of-the-art
counterparts on semi-supervised node classification tasks while remaining efficient.
Codes are available at https://anonymous.4open.science/r/FGL/.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Wu et al., 2020; |Chen et al., [2020b; [Thomas et al., [2022)) attract
much attention in recent years due to their expressivity in solving various graph-related tasks (e.g.,
node and graph classifications (Feng et al., [2020; Xie et al.|[2022) or clustering (Bianchi et al.| [2020)),
link prediction (Yun et al., [2021)), and anomaly detections (Dong et al., [2025)), with also many
applications in, e.g., texts (Wang et al., | 2024b)), images (Nazir et al.,|2021; |Guan et al., 2022), and
traffic (Jiang & Luo,2022). Despite their popularity and successes, most GNNSs restrict receptive fields
to 2-/3-hop local neighborhoods and focus on nearby information aggregation while ignoring distant
knowledge, which would limit their real-world application scopes when dealing with challenging
tasks where long-range interactions are critical and necessary. For example, as discussed in Sec.[A.T]
the imbalance of densities or degrees often causes insufficient local knowledge for some nodes, which
becomes more severe under graph heterophily and risks further over-fitness from label scarcity. In
this paper, we focus on semi-supervised node classifications to underscore labeling challenges.

To facilitate long-distance interactions, existing works have devoted much effort and can be generally
categorized into two different architectures: (1) Deep local models (e.g., deep GNNs (Chen et al.|
2022c; [Li et al., [2019} |Chen et al., |2020a)) expand the global receptive fields by stacking multiple
local layers, with each considering only first-order information. (2) Shallow global models (e.g.,
Global Graph Transformers (Ying et al.l 2021} [Kreuzer et al., 2021))) integrate 1 or 2 non-local
aggregating operators (e.g., global attentions), encapsulating all pairwise node interactions in a single
layer. Unfortunately, most of them suffer from high time and space complexities (Li et al.,[2021; Wu
et al., |2022), due to excessive unparallelizable layers (former) or quadratic node-pair interactions
(latter). Recently, few prior works attempt to mitigate complexities via some sparsity techniques
such as Adaptive Selection (Chen et al., 2022bj [Wu et al., [2022) and Graph Rewiring (Shirzad et al.,
2023)). Yet, they sacrifice global coverage and have to make selections, and thus either risk dropping
some important node interactions or heavily rely on extra sophisticated selection strategies. Overall,
such methods fail to simultaneously address comprehensive long-range knowledge extraction and
cost-effectiveness, which is rooted in the inherent limitation of existing learning paradigms.

Such a graph learning dilemma urges us to rethink existing paradigms and explore an alternative that
breaks the unavoidable trade-off between cost-effectiveness and a global receptive field. The

https://anonymous.4open.science/r/FGL/

Under review as a conference paper at ICLR 2026

essential observation is that these paradigms view a graph as a fusion of structures, whose total costs
can be calculated as follows:

Total cost = (cost per structure) x (number of structures). ()

Thus, when modeling with local primitives—first-order neighborhoods (L1 et al., 2019) or short
random walks (Zhang et all [2020)—the per-structure cost is low, but numerous such struc-
tures are required for covering long distances. In contrast, global operators (Ying et al., [2021)
can reduce the number of structures, yet at the expense of prohibitive per-structure cost due
to dense pairwise interactions. Based on the above analysis, we naturally raise a question:
Does there exist a structure that simultaneously controls these two factors? To answer this question,
we recognize that a spanning tree is the minimal subgraph connecting all nodes. Therefore, under
limited structure counts, such a tree is the simplest structure that achieves global coverage (Fig.[I),
indicating that it may be more suitable for long-range propagation. Furthermore, we suggest using a
forest (tree set), since a single spanning tree may be insufficient to capture all topological knowledge.

In this paper, we propose forest-based graph learning
(FGL), a novel paradigm that models information
propagation on a graph as transport on a forest of
spanning trees, economically achieving global cov-
erage. To obtain a high-quality forest, we expect to
sample the trees from a distribution biased towards
homophilous trees. Theoretically, we demonstrate
that as edge-homophily estimates improve, the in-
duced tree distribution asymptotically approaches the
ideal one. Accordingly, we propose a tree sampler, Figure 1: Our paradigm (right) utilizes the
based on a well-trained edge-homophily estimator, to most sparse structures of a graph, i.e., span-
enable generating several spanning trees with higher ning trees, to aggregate global messages
homophily via the weighted Wilson algorithm (Wil{ against the prior paradigms (left).

son, |1996)). Besides, we design a general tree aggre-

gator by deriving two recursions on trees, which propagates global messages in linear running
time. Additionally, a post-hoc mean operator is adopted as our tree fuser to merge knowledge from
different trees. These components constitute our full framework, as illustrated in Fig.

Our contributions are summarized as follows: 1. New Paradigm: We introduce a forest-based
graph learning paradigm FGL, which can comprehensively capture long-range knowledge with high
efficiency. 2. Theoretical Insight: We establish a rigorous asymptotic relationship between the
accuracy of the edge-homophily estimator and the quality of the induced tree distribution, which
reveals that refining the estimator provably yields a better tree distribution. 3. Effective Approach:
We propose 1) a homophily estimator-based tree sampler, which generates homophilous trees with
higher probability; and 2) a general tree aggregator that conducts quadratic pairwise node interactions
with only linear complexities. 4. Experimental Results: Our framework achieves competitive results
against state-of-the-art counterparts in semi-supervised node classifications with higher efficiency,
e.g., 11.90% and 16.14% average relative gains against GCNII and DIFFormer (representative Deep
GNN and Graph Transformer), respectively.

2 RELATED LITERATURE

Deep Local Models. Deep Graph Neural Networks (GNNs) expand their receptive fields by iteratively
stacking local aggregators, enabling fine-grained control over neighborhood information at each
layer |Yang et al.| (2020); |[Fang et al.| (2023)); |Chen et al.| (2020a). This depth provides strong
expressiveness but comes with notable drawbacks: sequential computation limits parallelism, higher
time/space complexities, and the risk of over-smoothing. To mitigate over-smoothing, various
strategies have been explored, including normalization layers Zhao & Akoglu| (2020); |Zhou et al.
(2021);|Yang et al.|(2020), random dropping techniques|Rong et al.|(2020b); Huang et al.| (2020); Fang
et al.| (2023)), and skip connections|Li et al.|(2019); |Chen et al.|(2020a); Luan et al.| (2019); | Xu et al.
(2018). Despite these improvements, deep local models inherently rely on step-wise neighborhood
aggregation, which prevents efficient global message passing and parallelization.

"Here, a tree aggregator is to aggregate intra-tree messages, while a tree fuser merges the inter-tree messages.

Under review as a conference paper at ICLR 2026

Step | Step 11 Step 111 Step IV

Forest-based Graph Learning g g Tree Fuser =

1 .

. , OmEg Wi

: H' W i

Pre- Tree Tree \] :
processing Sampler Aggregator i | ;
1 .

. 1

1 .

N 1

1 .

N 1

Pre-processing

1
; a
} Graph :
! Augmenter }
! .
i !
i !
1 1

Original ! Augmentid
GraphG ! Graph G
| S e A SOPUP . | ______
| ¥ :
! - I I
: % Define I. ________________________________ _i
s i i
3 Tree Sample ! ooe :
- Distribution | = : ;
i Pg(T) i]
Homophily : :
. Tree T Tree T, .
Estimator p R K i

Tree Sampler

Figure 2: Our framework contains 4 key steps: (I) Pre-processing first augments the vanilla graph;
(II) Tree Sampler then generates multiple spanning trees from a derived distribution; (III) Tree
Aggregator efficiently propagates messages (H in Eq.[9) over each tree next; and (IV) Tree Fuser
finally integrates the aggregated messages from all trees into unified embeddings H'.

Shallow Global Models. Graph Transformers (GTs) adopt a contrasting perspective: instead of
gradual local aggregation, they model direct pairwise interactions among nodes, often in just a
few global layers Min et al.| (2022); [Hussain et al.| (2022)); [Ying et al.| (2021)). This shallow global
paradigm (G ~ = — y,) allows rapid global communication but typically incurs quadratic
complexity. To improve scalability, recent works either sparsify interactions via sampling or pruning
(e.g., Gophormer [Zhao et al| (2021)), NodeFormer (2022), Exphormer
(2023)), or simplify attention mechanisms to reduce computation (e.g., SGFormer[Wu et al.|(2024),
GOAT (2023))). While these strategies address efficiency, they often lose structural bias,
motivating the use of positional encodings [Ying et al.| (2021)); [Chen et al.| (20224) or walk-based
formulations|[Zhang et al(2020). However, designing encodings that are both expressive and efficient
remains challenging.

Tradeoff Between Local and Global Models. Deep Local Models excel at capturing fine-grained
neighborhood structures but struggle with scalability and long-range dependencies. In contrast,
Shallow Global Models enable efficient global message propagation with fewer layers, but often
overlook nuanced local structures or incur high complexity without careful approximation. Hybrid
designs attempt to combine both perspectives[Wu et al.| (2021)); Rong et al.| (2020a)); [Kreuzer et al.
(2021). In contrast, we analyze the essential limitation of existing learning paradigms and propose a
novel forest-based paradigm that enables efficient long-range modeling along with natural structural
knowledge preservation, addressing this dilemma from a more fundamental perspective.

3 PRELIMINARY

Notatlons Let G = (V, E) be an unweighted graph with n nodes V' = {v;}_; and m edges
= {e;;}. The graph is represented by a feature matrix X € R"*4 and an adjacency matrix
A e {0, 1}"X” where Aij = 1 if and only if (v;,v;) € E. We also define the normalized adjacency

matrix A = D~ 3 (A+I)D™ 2 , where D is the degree matrix of A + I.

Problem Formulation. In semi-supervised node classification, a subset of nodes V;, C V has labels
yi € {0,1,...,c— 1}, while the remaining nodes are unlabeled. The goal is to learn node embeddings
H"" € R™*? such that a simple linear predictor can be applied to H”' to predict node labels for all
v; € V, leveraging both labeled and unlabeled nodes.

Under review as a conference paper at ICLR 2026

4 METHOD

Existing paradigms suffer from the trade-off between cost-effectiveness and a global receptive
field. To obtain global coverage, deep local models with small local structures require stacking a
large number of structures, while shallow global models with large complex structures incur high
per-structure computational costs. In this work, we introduce an intermediate-level structure—the
tree—that offers a principled way to balance this trade-off, exhibiting a new learning paradigm. A
tree connects all nodes in a graph in a cost-efficient and non-redundant manner.

We build on this insight to propose the Forest-based Graph Learning (FGL) framework illustrated
in Fig. 2] which is composed of four key components: (1) Pre-processing, which augments the
original input graph to facilitate downstream computation; (2) Tree Sampler, which derives a target
distribution over spanning trees and generates multiple trees accordingly; (3) Tree Aggregator,
which performs message passing along each individual spanning tree; and (4) Tree Fuser, which
integrates the aggregated messages from all sampled trees into a unified representation.

4.1 PRE-PROCESSING

Real-world graphs are often not connected, which hinders the subsequent spanning tree sampling
process. To address this issue, we begin by computing pseudo-labels for each node, denoted as
Y’ € R™*¢. For heterophilous graphs, we employ a simple feed-forward layer, Y/ = o(XW)
whereas for homophilous graphs, we use a GCN layer, Y’ = U(AX W). The learnable parameters
W € R¥*¢ are optimized on the labeled nodes using the standard cross-entropy loss. We then
construct an augmented graph G by leveraging the pseudo-labels. For each node, we use its pseudo-
label representation ¢’ € R'*€ to identify its k nearest neighbors. If an edge does not already exist
between the node and one of these neighbors, we introduce a new edge.

This pre-processing step offers two key benefits at the same time. First, it ensures graph connectivity,
which is necessary for subsequent spanning tree sampling. Second, it increases the homophily
ratio—the proportion of edges linking nodes with similar class labels—which has been shown to
improve performance in semi-supervised node classification (Chien et al., 2021)).

4.2 TREE SAMPLER

To generate a high-quality forest composed of several spanning trees, we identify two essential
principles: 1) homophily ratios: Since we target node classification, it is a critical measure on graphs
and thus can be naturally transferred to trees. 2) diversity: if these trees tend to overlap, then the
forest would be degraded into a single tree, which may be insufficient to cover all the topological
knowledge of a graph, therefore necessitating diversity.

Therefore, we expect to sample the trees independently from a distribution Pg (7') biased towards
trees with high homophily ratios. We assume each tree 7" has a score s(7") that can be calculated as
the product of edge scores s(e), thereby defining the tree distribution on a graph as follows:

S(T) _ HeET 5(6)
Yrcas(T) Ypcglleerse)

The only remaining step is to determine the edge scores s(e). Our main idea is to assign higher scores
to those homophilous edges and lower scores to heterophilous edges, which intuitively improves
the probabilities assigned to homophilous trees. We justify this intuition in Sec.[4.6]by theoretically
demonstrating that this scoring strategy can induce a distribution biased towards higher-homophily
trees (Theorem [2)). Therefore, we introduce a homophily estimator to find those homophilous edges
and assign higher scores to them. Here, we implement this homophily estimator via local attention:

exp (QiK, /\/c) .
i—j — 5 v 5 14 3
TS v e QK Ve S)

where Q = XWq, K = XWg,and V. = X Wy with learnable Wq, Wy, Wy, € R¥*¢_ N denotes
the first-order neighborhood of node ¢ € V. We train the local graph attention by minimizing
the cross-entropy loss with targets Y’. Thus, the edge score s(e) for e = (4,7) is defined by
s(e) = (aj—; + j—;) /2. Finally, our tree sampler generates Ny independent spanning trees from
P#(T') via the algorithm of |Wilson| (1996) in nearly O(n) time per-tree.

Pe(T) = @

4

Under review as a conference paper at ICLR 2026

Sv = ngg({Sxi'sz} U {g(Hv)}) H;/ = M+(SWM¥(H;F(1(V) JSU))

: Information flow: a/_ ___________ - Information flow: ‘.’
N son — father Svo oy (
S) ! Vo P father — son i
A TR ' ' o=i® |
cut :] ?
[
i !
; \.\ _9 psub)
(a) (b) (©

Figure 3: Illustration of the tree aggregator. The red node denotes the root, and the blue node indicates
the focal node. (a) Red dashed lines depict the bottom-up computation of .S, while blue dashed lines
represent the computation of H) . (b)(c) Detailed computations along the focal edge are shown.

4.3 TREE AGGREGATOR

The tree aggregator f/(fgﬂ)g over tree 1" with root r is defined as fgz,; : H € R4y H' € R},
which is designed based on a general message aggregator fag, (-). The idea is rooted in a key
observation: for neighboring nodes w,v on tree T, the globally merged messages targeting them
differ only at one edge direction (visualized in Fig.[3). Leveraging this observation can facilitate
efficient tree propagation by any general faq, (-) that satisfies: given two message sets A, B with
possible auxiliary information (e.g., weights), if merging A into B getting .S, then there always exists
two operators M/~ (+) to make the following sufficient properties hold.

ngg (S) = M+ (ngg (B)) ngg (A))) Property (I): Combine

4
fage (B) = M7 (fages (S), fags (A)), Property (II): Disentangle @

where M/~ ((i, E') denote adding vector btod or deleting b from @, which are allowed unsymmet-

rical via auxiliary information. These identified properties do not sacrifice the generality of fagg (-).
Indeed, many popular auto-regressive sequence models and first-order GNN aggregators can be
adopted, e.g., linear attention Zhou et al.|(2021); Wu et al.|(2024)), linear Recurrent Neural Networks
(RNNs) (2024), and State Space Models (SSMs) Sarem et al|(2024); Zhang et al.| (2025);

(2024) as well as non-linear variants (Sec.[A.6), thus highlighting its generality.
Based on these properties, we can theoretically derive a general tree aggregator fg; high-levelly via

two recursions in Theorem[I] The proof and further explanation can be found in Sec.[B.I]of Appn.

Theorem 1. Given a tree T with a root r € V, each node v € V has a subtree TéSUb) with nodes
V) C V. Denote the father node and the children nodes of v on tree T as Fa (v) and Child (v).

Let S, represent the aggregated message at node v from all messages from V,,(S“b). Then, given
any message aggregator fagg (-) satisfying Properties (I) and (Il) as well as function g (-), our tree

aggregator fg)g : H — H' € R"*% can be always derived as two recursions via operators Mt/ ~:
VueV, Su=fag ({Sohecniaw U9 ()}), Recursion) (5)
VoeV, H,=M" (Sv, M~ (Hﬁa(@),su)) , H. =5, Recursion (II) 6)

where H, H' € R"*? denote node embeddings before and after aggregation.

This theorem provides an efficient way to propagate long-distance information on a tree: (1) First, to
calculate S, for each node u € V/, it suffices to collect all distant messages targeting the root once,
by recursively calling fag (-); (2) Then, apart from the root H,. = S,, we can calculate H' for other
nodes efficiently via the operator M~ followed by M.

Implementation Despite the strong generality, we still prioritize a linear variant for simplicity and
ease of implementation. Specifically, adopting faze and M™ as weighted sums, M~ as weighted
difference, and g as a linear transformation, we implement Eq. [5|and Eq. [f]as follows:
VueV, Su= Y (Gvsu-Wa) S+ Wp-H, €RY, @)
veChild(u)

Under review as a conference paper at ICLR 2026

Vove ‘/v Hll) = Sv + aFa(1))—>v : WA : (Hlli‘a(v) - av—)Fa(v) . WA : Sv) S Rd7 (8)

where W4 € R%*4 and W5 € R?*? are learnable matrices. The local attentions {@i—;}i,; (defined
in Eq.[3) are utilized to enhance the impact of homophilous edges and weaken heterophilous edges.

Acceleration and Extensions Note that parallelization can be conducted both between trees and
between aggregations inside a single tree. For higher parallelization, we can intuitively make a rooted
tree shallower yet wider to support many threads working together by selecting its centroid as the
root. Furthermore, there exist different greedy strategies for nodes’ priority for different recursions
(Eq.[5]and Eq. [f)) to reduce the waiting time of threads. We discuss their specific implementations
in Sec. [D] of Appn. Due to space limits, we will discuss more on several potential extensions of
the above tree aggregators in Sec. [C| of Appn., which includes how to: (1) efficiently integrate a
global linear attention to the framework similar to ' Wu et al.| (2024)) and conveniently incorporate
the kernel decomposition techniques (e.g., Random Feature |Likhosherstov et al.| (2022)) to improve
the expressivity of attention; (2) conduct fine-grained propagation control, such as discounting
or truncating the distance, similar to some deep GNNs |Xu et al.| (2018)); (Chen et al.| (2020a); (3)
generalize forests to eliminate the need for Recursion (II), i.e., Eq. @

4.4 TREE FUSER

Motivated by prior work |Wu et al.|(2024); |[Kreuzer et al.| (2021)); [Wu et al.| (2021), we utilize a local
module to supplement local knowledge to mitigate the local sparsity of trees. Thus, the tree fuser first
computes the local information H from input features X, which is formalized as below:

—~ Kp
H=(pAg+hat+(1—Fi—f) Lixn) XWy R, ©)
where 51 + B2 < 1, K, < 2 are hyper-parameters and Wy are training parameters.

The tree fuser then computes the results of N different tree aggregators, H (k) = f,(ng’ig') (H), ke

[1, Nr]. For each H "(k) | the tree fuser normalizes each row to 1 using the Ly-norm for numerical
stabilization. Afterwards, the tree fuser averages all the tree aggregators as global information:

H’ = Mean ({RowNorm (Hl(k)> }ke[l N]) e R™¥4, (10)
, Nt

Subsequently, the tree fuser uses a residual connection controlled by the hyper-parameter v € [0, 1]
to balance local and global information, which can be formulated as follows:

H'=(1-~)-H +~-H. (11)
The H" are final node embeddings that can be fed into a linear predictor for node classification.
4.5 COMPLEXITY ANALYSIS

The comprehensive time and space complexities per epoch are linear against the number of nodes and
edges, i.e., n and m, as well as hidden dim d. Specifically, suppose we sample and utilize N trees.
Each pre-training epoch costs O ((n + m) d) time and space. Each training epoch of the student
requires only O ((n + m) K d) time and space, which can be further parallelized.

4.6 THEORETICAL DISCUSSION

In this subsection, we provide theoretical justification for a rigorous asymptotic relationship between
the accuracy of the edge-homophily estimator and the quality of the induced tree distribution.
Formally, we define P5(T) =[], ;7 s(eij)/ > orcaIle, e s(ei;), where the edge score is given
by s(e;;) = p if nodes ¢ and j share the same label (a homophilous edge), and s(e;;) = ¢ otherwise
(a heterophilous edge). Based on this formulation, we establish the following result:

Theorem 2. Let G be any connected graph, and define the expected edge homophily ratio under the
score ratio A = p/q > 0 as:

Rg(A)=E [R(T)],

T~ PP
G

where h(T) is the edge homophily ratio of tree T. Then there exists a Ag > 0 such that:

* Monotonicity. If A > A’ > Ag, then R5(A) > Ra(A).

Under review as a conference paper at ICLR 2026

Table 1: The results of performance comparison (with the best bolded and the runner-ups underlined)

Method ‘ Category ‘ Cora Citeseer Pubmed Actor Cornell Texas Wisconsin Arxiv Flickr ‘ Avg. Rank
MLP Classic 58.30 58.68 72.94 35.62 72.70 77.84 79.61 32.84 42.01 14.11
GCN GNN 82.06 71.60 79.58 27.88 5351 69.19 57.25 53.77 38.40 14.89
GAT GNN 82.84 72.28 78.52 28.71 55.14 68.65 58.82 55.73 40.32 12.78

GraphSAGE GNN 81.40 71.68 78.50 36.24 63.78 75.14 76.08 51.42 41.42 11.00
SuperGATgp, GNN 82.70 72.50 81.30 30.18 54.59 69.73 58.04 51.52 36.24 13.22
APPNP GNN 84.10 72.14 80.02 3347 61.08 71.35 65.10 55.60 43.07 9.22
ClusterGCN GNN 82.04 70.08 77.26 29.66 49.73 63.24 62.35 53.35 39.58 16.89
GraphSAINT GNN 82.00 70.30 77.36 29.55 48.65 63.78 61.96 53.55 35.26 17.67
Pairnorm DeepGNN 66.24 44.20 72.12 2433 40.68 41.08 52.94 54.58 31.41 22.56
Nodenorm DeepGNN 80.14 65.74 78.64 29.74 40.00 66.49 48.24 54.22 44.11 16.33
Meannorm DeepGNN 79.54 72.16 73.06 25.46 25.41 61.62 52.94 20.37 42.40 19.67
DropEdge DeepGNN 81.69 71.43 79.06 26.38 5297 64.86 60.78 39.23 32.11 18.33
GCNII DeepGNN 85.34 73.24 79.88 34.64 74.61 69.19 70.31 51.91 41.79 8.78
ShadowGNN DeepGNN 8232 70.06 77.30 29.45 51.35 64.32 62.35 53.35 37.59 17.00
GT GT 77.58 66.96 76.48 37.15 61.62 74.60 71.76 OOM OOM 15.57
SAN GT 77.60 68.64 76.62 37.79 63.24 75.14 77.25 OOM OOM 13.00
Graphormer GT 63.08 61.08 OOM OOM 62.70 76.76 72.16 OOM OOM 15.40
ANS-GT GT 77.68 64.16 77.98 38.29 74.92 76.22 76.47 41.83 21.86 13.22
Nodeformer GT 79.02 69.66 76.06 34.80 68.11 77.84 76.47 39.47 40.31 13.11
NAGphormer GT 79.51 67.34 78.32 3733 63.78 71.89 66.27 52.00 38.59 13.44
GOAT GT 83.18 71.99 79.13 37.66 64.32 76.76 73.33 52.46 35.53 9.11
Exphormer GT 82.77 71.63 79.46 35.53 62.16 75.68 70.98 41.12 22.79 12.67
SGFormer GT 82.38 71.82 80.64 37.80 68.65 78.92 80.00 45.73 40.13 722
DIFFormer GT 83.32 74.46 78.16 3451 60.00 68.11 63.92 53.60 44.25 10.56
TDGNN GT 8535 73.78 80.20 32.84 35.68 61.35 46.86 OOM 3825 15.00
GraphMamba \ Mamba \ 54.36 58.98 70.90 36.05 74.05 77.29 80.39 33.59 42.30 \ 13.89
Ours \ Forest \ 85.46 74.42 81.00 39.88 83.24 91.89 86.27 56.47 47.22 \ 1.22

* Upper Bound. For all A > Ao, R5(A) < 11— %, where NHCC(@) denotes

the number of homophilous connected components of G.

* Asymptotic Tightness. As A — 400, Rz(A) — 1 — %_(?H
Theorem shows that, for a given graph @, as the ratio A = p/q increases, Pg(T') gradually shifts
toward homophilous trees. Moreover, the upper bound of Rz (A) is determined by the number of

homophilous connected components in G, which reflects the inherent structural limitation of the
graph. In the limit A — +o00, R5(A) approaches this structural bound. In other words, assigning
a higher score p > 0 to homophilous edges and a lower score ¢ > 0 to heterophilous edges drives
Pg(T) toward the maximum level of edge homophily permitted by the graph.

5 EXPERIMENTS

This section verifies the effectiveness of the proposed method in the semi-supervised node clas-
sification task via extensive experiments. Due to space limits, some experimental details such as
environments, dataset statistics, algorithm implementation details, hyperparameter optimization
strategy and configurations, and some visualizations are moved to Sec.|[K]of Appn.

Benchmarks and Baselines The experiments include nine real-world benchmarks, covering two
types: (1) homophilous graphs: Cora, Citeseer, Pubmed (Sen et al.| 2008)), and OGBN-ArXiv (Hu
et al.;2020) at a large node scale; (2) heterophilous graphs: Flickr (Zeng et al.,[2019)), Texas, Wis-
consin, Cornell (Pei et al.,2020a)), and Actor (Tang et al.,[2009). Their full statistics are detailed in
Tab. [/|of Appn. For a fair comparison, semi-supervised data splits are adopted for OGBN-ArXiv
and Flickr (Sec.[K.2), and other datasets strictly follow the standard public splits in (Kipf & Welling|
2017). Twenty-six counterparts are selected for a thorough comparison, including: (1) classic
method: MLP; (2) seven GNNs: GCN (Li et al.|[2019), GAT (Velickovi¢ et al.,[2018), GraphSAGE,
SuperGATyp, (Kim & Oh| 2021), APPNP (Gasteiger et al., 2019a), ClusterGCN (Chiang et al.| [2019)
and GraphSAINT (Zeng et al., [2019)); (3) six Deep GNNs: Pairnorm (Zhao & Akoglu,2020), Node-
norm (Zhou et al.;|2021)), Meannorm (Yang et al.,|2020), DropEdge (Rong et al., 2020b), GCNII (Chen
et al.,[2020a) and ShadowGNN (Zeng et al.l 2021)); (4) eleven Graph Transformers: GT (Dwivedi &
Bresson, [2020), SAN (Kreuzer et al.,2021), Graphormer (Ying et al.,[2021)), ANS-GT (Zhang et al.,
2022), NodeFormer (Wu et al., |2022), GOAT (Kong et al., 2023)), NAGphormer (Chen et al., 2022b),
Exphormer (Shirzad et al.,[2023), SGFormer (Wu et al.| 2024), DIFFormer (Wu et al., [2023)), and
TDGNN (Qu et al., 2020); (5§) Mamba: GraphMamba (Wang et al.,[2024a),

Comparative Experiments All experiments run with ten different initializations. We report mean
accuracy in Tab.[T| with also their standard deviations in Tab.[I0]of Appn. We empirically show our
framework has significant advantages for both homophilous and heterophilous datasets: against GT,
DIFFormer, GCN, and GCNII, the mean accuracy is relatively increased by 16.2%, 16.1%, 24.5%

Under review as a conference paper at ICLR 2026

Cora Accuracy
Pubmed Accuracy
Actor Accuracy

Number of Trees Ny v Number of Trees Ny : : Number of Trees Ny

(a) Cora (b) Pubmed (c) Actor

Figure 4: Model performance with varying number of trees Nr.

+ Standard Deviation

O~ Mean Accuracy ‘

Mean Accuracy
Mean Accuracy
_ MeanAccuracy

oo m 0 a0 > g oo o 0 o e e

(a) Cora (b) Pubmed (c) Actor

Figure 5: Effect of homophily estimator accuracy (p is the average score assigned to homophilous edges).

Table 3: The results of ablation studies.

No. ‘ Method ‘ Cora Citeseer Pubmed Actor Cornell Texas Wisconsin ArXiv Flickr
(¢)] w.o. Global Submodule 80.00 71.63 76.13 34.73 75.68 82.88 83.92 55.05 39.63
?2) w.o. Local Submodule 82.18 71.55 77.48 35.08 74.77 69.93 75.49 54.92 32.17
3 Uniform Tree Sampling 83.63 72.32 78.45 36.13 72.97 82.58 84.80 55.11 42.77
4 Single Homophily-guided Tree 83.73 72.58 78.55 36.32 76.35 84.83 85.29 55.17 42.96
5) ‘ FGL - Ours ‘ 85.46 74.42 81.00 39.88 83.24 91.89 86.27 56.47 47.22

and 11.9%, respectively. Particularly on Wisconsin, we obtain 20.2%, 35.0%, 50.7%, and 22.7%
relative gains. Against recent models like TDGNN, ShadowGNN, and GraphSAINT, our framework
also shows significant relative gains of 39.3%, 24.8%, and 27.0%, respectively. These performance
gains are attributed to our ability to effectively capture long-distance knowledge, thus highlighting
the potential of the proposed forest-based paradigm, even under label scarcity.

Ablation Studies We conduct ablation studies in Tab.[3land Table 2: Running time comparison
drop or substitute key parts. For convenience, we refer to Eq.[9] (sec/epoch)
and Eq[I0|as Local and Global Submodules, respectively. We

Method ‘Cora Citeseer Pubmed Flickr ArXiv

(1) drop Global Submodules to verify its long-range modeling

Titve GT 0.011 0.014 0254 OOM OOM
capability; (2) drop Local Submodules to test the effects Qf SAN |0165 0154 0201 OOM OOM
supplementing local knowledge; (3) Sample trees from a uni- Graphormer [0.433 0639 OOM OOM OOM

. : . - 45 A 3.43 A .
form distribution and apply the attention weighting mechanism — (opor |11 290 24 TTe M
from Eq[7}{8]; (4) sample only a single tree to explore the po- NAGphormer 0022 0,044 0031 0835 1.560
tential of multi-tree fusion. Comparing (4) vs. (3) reveals that gxphormer |0086 0.175 0348 1112 1948
sampling a single tree from the homophily-guided distribution ~ SGFormer |0.010 0011 0.021 " 0.051 0.114

. .. . DIFFormer |0.029 0.030 0.047 0297 0.545
outperforms multiple random trees, emphasizing the impor- GraphSAINT|0013 0022 0030 0.658 0951

tance of homophily-based tree sampling. Comparing (1)(2) VS. ~ paimorm 0053 0071 0647 0320 1387
(5) shows the significance of each submodule. Comparing (5) Nodenorm 00130032 0285 0310 1357

. . . Meannorm |0.012 0.030 0.279 0.296 1.461
vs. (4) shows sampling multiple trees (a forest) can consiS- Dropedge |0017 0017 1231 1244 1491

tently surpass a single tree from our distribution, confirming GCNIl_ 0066 0033 1306 1373 2843

that a forest can effectively capture more comprehensive and Ours |0.005 0019 0020 0079 0246

complementary topological knowledge.

Hyper-Parameter Studies We conduct several hyper-parameter studies in Sec. [J.T|Here, due to space
limits, we focus only on the impact of the tree number N7 on performance in Fig.[d] which reveals
an optimal range of 6 to 10 trees across different datasets, highlighting our efficient coverage of
global knowledge. In Fig.[d] the performance first consistently rises and then fluctuates or decreases,
meaning that our framework covers the essence of the graph structure with only a few trees, and
more trees provide marginal benefits and risk redundancy, highlighting our efficiency due to a lower
number of structures in the calculation of the total cost, i.e., Eq.

Efficiency Comparison Besides the theoretical complexity analysis in Sec. .5] we compare the
practical running time in Tab. 2] where our method runs faster than baselines in most cases. For
example, compared with recent GTs like ANS-GT and GOAT, which require over 1 second per epoch
on small graphs and dozens of seconds on large graphs, our method runs in under 0.02 seconds on
small graphs and 0.246 seconds on ArXiv. Even against efficient GTs like DIFFormer and deep
GNNs like GCNII, our method shows 2 to 5 times speedup. While a few baselines run slightly faster

Under review as a conference paper at ICLR 2026

Table 4: Comparison of different homophily estimators.

No. ‘ Model ‘ Cora Citeseer Pubmed Actor Cornell Texas Wisconsin ArXiv Flickr

(A)
(B)

7842 69.62 76.64 3533 7297 7297 82.35 4765 38.36
75.18 6578 7432 3487 7027 75.00 73.04 5345 40.90

Non-attention auxiliary module (NAAM)
Naive attention based estimator

(&) Two-stage (NAAM + attention) estimator 81.40 70.30 78.68 36.20 78.38 83.78 82.75 53.99 43.30
D) FGL (Uniform) 7840 73.13 71.54 34.47 71.62 70.27 74.51 52.30 41.05
(E) FGL (Naive attention) 81.60 7338 75.10 3556 7432 75.00 76.75 53.63 41.61
F) ‘ FGL (2-stage) - Ours ‘ 8546 7442 81.00 39.88 83.24 91.89 86.27 56.47 47.22

than ours, their performance is generally worse than ours, since they overlook some critical structural
knowledge due to over-simplified designs. Compared with these baselines with strong performance,
we have the highest efficiency, highlighting the advantages of the linear complexities and higher
parallelizability of the proposed forest-based learning paradigm.

Homophily Estimator Comparison To explore the effects of different homophily estimators, we
compare six variants in Tab. [} (A) Non-attention auxiliary module (NAAM) via single-layer GCN
for homophilous graphs or MLP for heterophilous graphs to generate pseudo-labels; (B) Naive
attention based estimator via a single local graph transformer layer where attention coefficients serve
as bidirected average edge homophily scores; (C) 2-stage homophily estimation that first generates
pseudo-labels via non-attention estimator, then uses these labels to guide the training of attention-
based estimator for more stable homophily scores; (D) FGL (Uniform) as baseline that samples trees
uniformly; (E) FGL (Naive attention estimator) that uses attention scores from (B) to guide tree
sampling; (F) FGL (2-stage estimator) - Ours, incorporating the full two-stage estimation process
for robust homophily-guided tree sampling. Comparing (B) vs. (E), FGL using an attention-based
estimator performs competitive or better than the standalone attention estimator, demonstrating FGL’S
effective utilization of homophily scores through structured tree aggregation. Comparing (C) vs. (E),
two-stage estimation significantly outperforms FGL with only attention-based estimation in most
cases, confirming that pseudo-labels from non-attention estimators provide valuable supervision to
improve homophily estimation quality, especially under label scarcity. These empirical observations
further support our theoretical analysis (Theorem[2)) and directly confirm the accuracy of the edge
homophily estimator has a positive impact on our final results.

o Ours
0.9052

Interpretability Studies We propose a

3 **Ours*™

7 Random Spanning Troe | strategy to design our tree distribution,

o8 which is justified by Theorem 2] Here, we

2 provide some empirical evidence to under-
©06 0.5662 . .

> R stand our performance gains. Fig. [5]reveals

E‘M that as the accuracy of homophily estima-

2 tor increases, model performance consis-

02 tently improves across all datasets, with

perfect estimation (accuracy is 1) leading

00 . - e . to perfect classification, demonstrating no

Datasets performance bottleneck and motivating the

Figure 6: homophily ratio comparison based on different ~pursuit of high-quality homophily estima-

sampling strategies tors. To further understand the mechanism,

we introduce a global homophily metric
(Sec.[J.2). Fig.[f] shows that trees sampled from our homophily-guided distribution significantly
facilitate higher long-range homophilous information propagation compared to uniform sampling.
Such trees allow the subsequent tree aggregator much easier to capture and exploit beneficial distant
graph information, which fundamentally interprets our performance gains.

6 CONCLUSION

To break the dilemma of existing graph techniques, i.e., the challenging trade-off between complexities
and comprehensive long-distance knowledge, we fundamentally analyze its root cause and propose a
novel forest-based graph learning paradigm. The key insight is to understand a graph as a fusion of
some sampled spanning trees, similar to bagging, since a tree can connect all nodes economically.
We provide a technical framework, where we first induce a tree distribution proven biased towards
homophily, and then efficiently conduct all node-pair interactions in each tree via a general tree
aggregator with linear complexities and higher parallelizability. Compared with deep GNNs or
GTs, our framework has better global coverage and structural understanding, with higher efficiency.
Extensive experiments on semi-supervised node classifications show we can achieve competitive
or even better results than state-of-the-art counterparts. We believe our forest-based paradigm is a
significant step towards the future development of long-distance graph learning.

Under review as a conference paper at ICLR 2026

REFERENCES

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In International Conference on Machine Learning, pp. 874—883.
PMLR, 2020.

Francesco Bonchi, Claudio Gentile, Francesco Paolo Nerini, André Panisson, and Fabio Vitale. Fast
and effective gnn training through sequences of random path graphs. In Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1, pp. 49—60, 2025.

Andrei Z Broder. Generating random spanning trees. In FOCS, volume 89, pp. 442—447, 1989.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469-3489. PMLR,
2022a.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2022b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725-1735, 2020a.

Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and
Zhangyang Wang. Bag of tricks for training deeper graph neural networks: A comprehen-
sive benchmark study. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
DOI:10.1109/TPAMI.2022.3174515, 2022c.

Zhiqgian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Lingfei Wu,
Charu Aggarwal, and Chang-Tien Lu. Bridging the gap between spatial and spectral domains: A
survey on graph neural networks, 2020b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257-266,
2019.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=n6jl7fLxrP.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Xiangyu Dong, Xingyi Zhang, Yanni Sun, Lei Chen, Mingxuan Yuan, and Sibo Wang. Smoothgnn:
Smoothing-aware gnn for unsupervised node anomaly detection. In Proceedings of the ACM on
Web Conference 2025, pp. 1225-1236, 2025.

David Durfee, Rasmus Kyng, John Peebles, Anup B Rao, and Sushant Sachdeva. Sampling random
spanning trees faster than matrix multiplication. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 730-742, 2017.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmessage:
Unifying random dropping for graph neural networks, 2023.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems, 33:22092-22103, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019a.

10

https://openreview.net/forum?id=n6jl7fLxrP

Under review as a conference paper at ICLR 2026

Johannes Gasteiger, Stefan Weillenberger, and Stephan Gilinnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019b.

Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros. On the
trade-off between over-smoothing and over-squashing in deep graph neural networks. In Proceed-
ings of the 32nd ACM International Conference on Information and Knowledge Management,
CIKM 23, pp. 566-576, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701245. doi: 10.1145/3583780.3614997. URL https://doi.org/10.1145/
3583780.3614997.

Caterina Graziani, Tamara Drucks, Monica Bianchini, Thomas Gértner, et al. No pain no gain: More
expressive gnns with paths. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

Yonghang Guan, Jun Zhang, Kuan Tian, Sen Yang, Pei Dong, Jinxi Xiang, Wei Yang, Junzhou Huang,
Yuyao Zhang, and Xiao Han. Node-aligned graph convolutional network for whole-slide image
representation and classification. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18813—-18823, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-smoothing
for general graph convolutional networks, 2020.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655-665, 2022.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert
Systems with Applications, 207:117921, nov 2022. doi: 10.1016/j.eswa.2022.117921. URL
https://doi.org/10.1016%2Fj.eswa.2022.117921.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535-547, 2019.

George Karypis and Vipin Kumar. A software package for partitioning unstructured graphs, partition-
ing meshes, and computing fill-reducing orderings of sparse matrices. University of Minnesota,
Department of Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN,
38, 1998.

Jonathan A Kelner and Aleksander Madry. Faster generation of random spanning trees. In 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pp. 13-21. IEEE, 2009.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with
self-supervision. In International Conference on Learning Representations, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, 2017.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning, pp.
17375-17390. PMLR, 2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618-21629, 2021.

11

https://doi.org/10.1145/3583780.3614997
https://doi.org/10.1145/3583780.3614997
https://doi.org/10.1016%2Fj.eswa.2022.117921

Under review as a conference paper at ICLR 2026

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9267-9276, 2019.

Guohao Li, Matthias Miiller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437-6449, 2021.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Sigiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
conference on machine learning, pp. 13242—-13256. PMLR, 2022.

Valerii Likhosherstov, Krzysztof M Choromanski, Kumar Avinava Dubey, Frederick Liu, Tamas
Sarlos, and Adrian Weller. Chefs’ random tables: Non-trigonometric random features. Advances
in Neural Information Processing Systems, 35:34559-34573, 2022.

Zhe Liu, Jinghua Hou, Xinyu Wang, Xiaoqing Ye, Jingdong Wang, Hengshuang Zhao, and Xiang Bai.
Lion: Linear group rnn for 3d object detection in point clouds. Advances in Neural Information
Processing Systems, 37:13601-13626, 2024.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: stronger multi-
scale deep graph convolutional networks. In Proceedings of the 33rd International Conference on
Neural Information Processing Systems, pp. 10945-10955, 2019.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

Gaspard Michel, Giannis Nikolentzos, Johannes F Lutzeyer, and Michalis Vazirgiannis. Path neural
networks: Expressive and accurate graph neural networks. In International Conference on Machine
Learning, pp. 24737-24755. PMLR, 2023.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

Usman Nazir, He Wang, and Murtaza Taj. Survey of image based graph neural networks, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,high-
performance deep learning library. Advances in neural information processing systems, 32:
8024-8035, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020a.
URL https://openreview.net/forum?id=Sle2agrFvSs.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020b.

Liang Qu, Huaisheng Zhu, Qiqi Duan, and Yuhui Shi. Continuous-time link prediction via temporal
dependent graph neural network. In Proceedings of The Web Conference 2020, WWW 20, pp.
3026-3032, New York, NY, USA, 2020. ISBN 9781450370233. doi: 10.1145/3366423.3380073.
URLhttps://doi.org/10.1145/3366423.3380073!

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559-12571, 2020a.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-

lutional networks on node classification. In International Conference on Learning Representations,
2020b.

12

https://openreview.net/forum?id=S1e2agrFvS
https://doi.org/10.1145/3366423.3380073

Under review as a conference paper at ICLR 2026

Mudar Sarem, Tarek Jurdi, Laya Albshlawy, and Ebrahim Massrie. Improving long text classification
based on selective state space model (mamba). In 2024 IEEE 17th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pp. 32-38. IEEE, 2024.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp- 31613-31632. PMLR, 2023.

Henan Sun, Xunkai Li, Zhengyu Wu, Daohan Su, Rong-Hua Li, and Guoren Wang. Breaking the
entanglement of homophily and heterophily in semi-supervised node classification. In 2024 IEEE
40th International Conference on Data Engineering (ICDE), pp. 2379-2392. IEEE, 2024.

Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit of
graph neural networks by improving the assortativity of graphs with local mixing patterns. In
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
1541-1551, 2021.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 807-816, 2009.

Josephine M Thomas, Alice Moallemy-Oureh, Silvia Beddar-Wiesing, and Clara Holzhiiter. Graph
neural networks designed for different graph types: A survey, 2022.

Domenico Tortorella and Alessio Micheli. Beyond homophily with graph echo state networks. arXiv
preprint arXiv:2210.15731, 2022.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024a.

Kunze Wang, Yihao Ding, and Soyeon Caren Han. Graph neural networks for text classification: A
survey. Artificial Intelligence Review, 57(8):190, 2024b.

David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 296-303,
1996.

David Bruce Wilson and James Gary Propp. How to get an exact sample from a generic markov
chain and sample a random spanning tree from a directed graph, both within the cover time. In
SODA, pp. 448-4577. Citeseer, 1996.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387-27401, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Dif-
former: Scalable (graph) transformers induced by energy constrained diffusion. arXiv preprint
arXiv:2301.09474, 2023.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Simplifying and empowering transformers for large-graph representations. Advances
in Neural Information Processing Systems, 36, 2024.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266—13279, 2021.

13

Under review as a conference paper at ICLR 2026

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

Yicheng Xiao, Lin Song, Shaoli Huang, Jiangshan Wang, Siyu Song, Yixiao Ge, Xiu Li, and
Ying Shan. Mambatree: Tree topology is all you need in state space model. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=W8rFsaKrim.

Yu Xie, Shengze Lv, Yuhua Qian, Chao Wen, and Jiye Liang. Active and semi-supervised graph
neural networks for graph classification. IEEE Transactions on Big Data, 8(4):920-932, 2022. doi:
10.1109/TBDATA.2021.3140205.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453-5462, 2018.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
over-smoothing in deep gens, 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877-28888, 2021.

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 34:13683-13694, 2021.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2019.

Hanging Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
1d=dOMt HWYONZ.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Xiangyu Zhang, Qiquan Zhang, Hexin Liu, Tianyi Xiao, Xinyuan Qian, Beena Ahmed, Eliathamby
Ambikairajah, Haizhou Li, and Julien Epps. Mamba in speech: Towards an alternative to self-
attention. /IEEE Transactions on Audio, Speech and Language Processing, 2025.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171-21183,
2022.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint arXiv:2110.13094,
2021.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020.

Yilun Zheng, Jiahao Xu, and Lihui Chen. Learn from heterophily: Heterophilous information-
enhanced graph neural network. arXiv preprint arXiv:2403.17351, 2024.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng.
Understanding and resolving performance degradation in deep graph convolutional networks.
Proceedings of the 30th ACM International Conference on Information & Knowledge Management,
pp. 2728-2737, 2021.

14

https://openreview.net/forum?id=W8rFsaKr4m
https://openreview.net/forum?id=W8rFsaKr4m
https://openreview.net/forum?id=d0MtHWY0NZ
https://openreview.net/forum?id=d0MtHWY0NZ

Under review as a conference paper at ICLR 2026

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793-7804, 2020.

15

Under review as a conference paper at ICLR 2026

A DISCUSSIONS

In this section, we will provide extensive discussions on some different aspects of our framework,
including some intuitions and motivations as well as theoretical insights.

A.1 DISCUSSION ON DEGREE IMBALANCE AND THE MERITS OF LONG-DISTANCE
KNOWLEDGE

In real-world graphs, degree/density imbalance is a common phenomenon, where a small number
of nodes have many connections while most nodes have only a few connections, especially in, e.g.,
social networks, citation networks, and biological graphs. For example, in social media, a few
influential users may have thousands of followers, but most of the others have limited neighbors.
Degree imbalance biases graph learning algorithms to focus on highly connected nodes and ignore
low-degree nodes. More severely, it fundamentally worsens overfitting in graph learning. Low-degree
nodes in the training set face a significant issue. Constrained by training objectives, they must fit their
labels, but their limited local knowledge may not be enough. With sufficient expressivity, they will
use noisy information for fitting to achieve their learning goal and reduce their training losses. Since
noise varies among nodes, classification rules learned from noise cannot generalize to unseen nodes,
thus causing overfitting issues. On the other hand, for low-degree or low-density nodes in the test set,
the limitation of local knowledge poses another challenge. Graph learning models rely on training
data to learn classification rules to generalize. However, for those unseen low-degree nodes in the test
set, even well-trained models struggle to generalize, since their valuable knowledge on which the
generalizable rule is based is insufficient, directly causing misclassification.

Therefore, distant information becomes crucial. By supplementing the scarce local information of
low-degree nodes, it helps models understand these nodes better, capture global graph context, and
learn general patterns, thus reducing overfitting. In summary, distant knowledge is critical in graph
learning, especially under degree or density imbalance. Even when local information seems sufficient,
integrating distant knowledge can partly improve performance, which is currently underestimated.

A.2 DISCUSSION ON AGGREGATING BEHAVIOR COMPARISON AMONG DIFFERENT
PARADIGMS

We find that our tree-based paradigm and some other counterparts can be rewritten in a united
path-decomposition form with different path weighting strategies, which is shown below:

Definition 1. Define the path-decomposition of a graph learner or aggregator as follows:

HYy = Agg ({Hu}uey) = D > H, w(p) PE(P), (12)
ueV P(u—v)EG:
Po=u—p1—r—PE=0
where w (P) = Hle Wp, 1 —p; With Wy, is the weight of directed edge © — y and PE (p) is an
extra path-based positional encoding beyond vanilla pair-wise relative positional encoding.

We find that: (1) Infinite-layer deep local SGC, deep local GT, or infinite-step random walk ag-
gregation all have this form, with w,_,, as values in the normalized adjacency matrix/transition

matrix/layer-shared attention coefficients, and PE (p) = Hf:o PE (p;), where PE (p;) is the sum of
the discounted edge weight product in all circles of any length. This shows that these methods focus
more on local environmental importance of a path, e.g., densities or degrees of nodes contained in
it. (2) Tree-Set (i.e., Forest) Layer also has this form, with PE (p) as the sum of weight products
of all spanning trees of the graph obtained by merging path p into a single node. This shows that
our paradigm focuses more on global transport importance of a path, i.e., how connectivity or
communication this path can facilitate if it is built as a highway with no communication cost along it.

We provide the detailed derivations in Sec. [B.4]of Appn.

A.3 DISCUSSION ON OVER-SMOOTHNESS ALLEVIATION OF OUR PARADIGM

In this subsection, we provide a theoretical discussion on the relationship between our graph learning
paradigm and the over-smoothing issues. Our analysis can be divided into two parts: (1) Analysis on

16

Under review as a conference paper at ICLR 2026

the over-smoothness of fixed-distance aggregation; (2) Analysis on the over-smoothness of infinite-
distance (i.e., comprehensively global) aggregation. This analysis not only highlights one of the
merits of our paradigm, but also provides some novel insights for alleviating over-smoothing issues
from the perspective of the aggregating operators themselves as well as their adaptive aggregating
scopes.

We first consider the first case, i.e., fixed distance, which is based on similar theoretical evidence as
those deep GNNs from, e.g., Rong et al.|(2020b) or |(Chung|(1997).

Lemma 1 (Chung (1997)). Let G = (V, E) be a connected graph with its diameter D(G) > 4.
Then the second smallest eigenvalue Ay (G) of its normalized Laplacian matrix satisfies:

\/(maxvev dy) —1 2 2
M (@) s1-2- (1_ D(G)) D@y

(13)

where Ay (G) is also known as the spectral gap of the graph G.

This lemma provides an upper bound for the spectral gap for a graph G. The next lemma shows how
A2 (G) can connect to the over-smoothness.

Lemma 2 (Chung|(1997)). Let P be an ergodic random walk transition matrix, where G is connected
and non-bipartite, let T be its stationary distribution, and let f be any initial distribution. For any

s € NT, we have:

_g)\/ Max; \/E
min /dj’
where N = \o (G) if 1 — Xy > Ay (G) — 1, and 2 — Ay otherwise. P = D™LA is the random

walk transition matrix. For any initial node distribution f :V — Rwith) .\, f(v) = 1, the node
RANXx1

IfTP° —w|| <e (14)

distribution after k steps is given by f " P¥, where f € is the vector of initial distributions such
that £(3) is the function evaluated on the ith node. The random walk is ergodic when there is a unique
stationary distribution 7 satisfying that lim,_, . f "P* = 7 |Chung|(1997).

Therefore, we can compute the value of s such that ||f T P* — w|| < € as follows:

1

5>)
Vlog (max; v/)

(15)

eming 4/d;
where we can always add self-loops with weights d., for node v € V to make X' = Xy (G).
Theorem 3. Let G = (V, E) be a connected graph with vertex degrees {d,, },cv, maximum degree

M = maxyey dy, and diameter D(G) > 4. For any spanning tree T = (V, E1) of G, denote the

degree of vertex v in T as dg,T), its maximum degree as Mp = max,cy dg)T), and its diameter as
D(T) > D(G). Let s(G) and s(T') be the number of steps required for node distributions in G and
T to be within e of their stationary distributions, respectively. Based on Lemmal[l|and Lemma[2] we
have the lower bounds of s (-): (1) For graph G:

S(G) > ! (16)

- \/Mfl 2 2 maxi\/di ’
(1 2 (1 - D(G)) + D<G)) log (eminj\/dj)

and (2) for its spanning tree T':

1
(1—2.\/1‘TT—1(1— 2)+ 2)10 o a7
Mr DTy) T D1y) 108 —ral
J j

Since spanning tree T satisfies: (1) Degree constraint: dg,T) <d, forallv € V, implying Mp < M;
(2) Diameter extension: D(T) > D(G) > 4, the monotonicity analysis of the bounds of s with
respect to M yields: T has a tighter (larger) lower bound of s(T) against that of G. Since a larger s
indicates more steps are needed before distributions approach the stationary node distribution of
the Markov Chain. Thus, for fixed-distance aggregation, the spanning tree structure I’ can alleviate
over-smoothing issues.

s(T) >

7)

17

Under review as a conference paper at ICLR 2026

“suonoanp Surdrow a1soddo 10 JuaIyIp M Ing (- ‘+) |}y 101e10do SY) SZINN YOIIM JO 10q ‘SB[NWLIOJ 0] JO SUOTIRALISP
o) Moys ATpo[relop SISy 9oy], “MOJj UONBULIOJUT AU} JO UOTIOAIIP) SAJ0USP @ <— 1 dul] prjos an[q Suof ayy 1eys 210N "(0g] 'ba) enuwioy 1oyoue soALIop YoIyMm (g
anjq “2°1) a Jo yeyy ojur (;vﬁ pa1 ©2'1) (a) e = M WoIj uoneuULIOJur o) SuISIow Aq ‘JFr “2°1 ‘o 9pou ojur S9SesSAU [eqO[3 [2I0}) AI0ISAT UBD oM ‘(2 +— n = (a)e]
2°1) UOS <— IoY[Je] M om_uo A oy yorQ Ppe 9m JT () "MO[} UONBUWLIOJUT 3Y) JO UOTOAIIP Y} SAIOUIP N 4— a dul] paysep pa1 Suof ayy ey AoN ‘(1¢]ba) enuwioy
QUO SAALIOP YOIYM A?v@rww pai1¢2°1) (a)weq Jo 1eyy ojul (g anjq “2°7) @ Wolj uonewIojur ay) Jurdiow £q <(@)ed 1 21 ‘(@) e = N 9pou ojul sa3essaw [eqo[3 [e10)
o) 2103591 UBD oM ‘(N = (@) BJ 4— a *2°1) I9YIR] <— UOS 1M 93P A Y} Jjovq PPe am JT (3) "UONOAIIP $I1 JO MO[UopeuLIofuT AUk Juasaidar jou soop duI| Yor[q
oy ye AoN “diysuonerar sty sIYSYSIY AP1o1dxa aur] paysep Yor[q YL, ‘@ JpOU PUB N 9pOU U9MmIq dIYSUOIIB[OI UOS-ISYIR] A SMOUS A[IB[O AI0W 2INIY-qns
sIy L, (§) “(enyq) *g se pAJouIp SI 2 Apou OJUT SUIMO]J SAFBSSAUW [qO[S SUTUTRII 9} [IYM (PaI) ?vm@m Se pajouap sI (a) e = n 9pou ojul Fuimoy seSessouwr [eqo[3
Surturewal ay) ‘@ <> 1 93pa Aoy o) SuMIND I9)JY "2 9POU JO ISY)eJ YY) SWO0Iq [[IM T 9POU * J, 9I) JO JOOI A} SB | D 4 IpOU IYJoue PIA (3) "sasseooid uone3aiide
93essow 3urUIBUWIAI AY) AIISO Pue 93P A Ayl INO M ‘UYJ, (P) “IUSISISUOD UTRWAI SAFP JOYIO [[€ JO SUONIAIP Y] ‘SPIOM IYI0 U (2 <> 1 A3pa) “'2°1) 25pa
A2y 218u1s v fo U01O2.41p 2] ST SMOJJ UOTJBULIOJUI JOUNISIP OM] 9SIY) UM OUIIP ATUO) Ty} 99s A[Jea[d ued am ‘uostredwod ay) wol 1941303 (q) pue (8)
nd op (9) “H WIm 2 9pou Jo saSessour [eqofS T30 Poadxa oY) 9J0UdJ "AFPS YLD JO UOTIOIIP MOJJ UOTIRULIOFUT) dATISqO ATIBIO UBD oM PUE ‘(aul] pijos anjq
Pa10[09) 2 0] SOZeSSAUW [2QO[S PUIS SIPOU JAYIO [[E ‘7, JO J00I Y} Sk 2 IpOou 21]q Y} I (q) *"JH YIIm 1 9pou Jo s9Fessour [eqo[3 [210) pa3dadxa au Ajoua(] 95p9
[OB? JO UOTJOIIP MO} UONBULIOJUT 9} QAIISQO A[IEI[O UBD M PUR ‘(2Ul] paysvp pad PAIO[0D) N 0] SITBSSIW [BqO[F PUIS SOPOU JAYIO [[B ‘.7, JO JOOI A} Se N 9pou
pa4) PIA () "A[0AN0adsal ‘anjq pue pat paIofod AIe YIIYm ‘@ pue n sapou A9y Surroqysrau jo Ired e IOPISUOD ¢ 7, 991) B UIALL) "sda)s [BIASS IA sdiysuone[ar
0M] 953U} JO UOTIBALIOP U} JBIISUOWAP A\ “1X3) Urew) uoE *09§ Ul paqLIOSap H ‘bg wcmg ‘b)) se[nu1o} uorsINo9I 9y} JO UonENSNI[I PI[IeIap YL, :/ T

G @) @

a
a Szb_

\
i
i
i
i
i

N

41001 ynum diysuonefal
= 05-1aU3.) SBI0UBP MOLIE SIL| L

13y1R) UOS
- uos « Jayey
ﬁﬁ &W.:M‘v +,~\<.”\w=

N
A (@)D4 _ @pay, ~ & :mojy uonewiou]
& :mo)) uonewiou| (‘s s) 0= HoN " ¢

~ A\ === -

@

1nd
"n

,h---

18

Under review as a conference paper at ICLR 2026

The proof can be found in Sec. [B.3]of Appn.

We then consider the second case, i.e., infinite distance. Recall Eq.[30]and Eq.[31]provided in Sec.
and the illustration on their derivations in Fig.

H}, = M (S0, Shug) (18)

Fago) = M (Skageys S0). (19)

where M™ (-, -) is a directional merging operator, merging the right term into the left term. Note
that the term .S, and S’Fa(v) denoting knowledge from different parts in the graph G (the sub-tree of

node v and its complement, Fig. E]), which means that there is nearly no over-lapped (or intersected)
information among them. Therefore, it is reasonable to suppose that: ||Sg,) — Sul|2 is not small,

which gives:
”H}/?a(v) o H1/1||2 = HM+ (Sva S{?a(v)) - M* ({?a(v)’ S“)

This equation implies that the difference between the node embeddings of a pair of neighboring
nodes can be bounded by the extent of asymmetry. Since the M™ (-,) can be specifically designed
by practitioners, we have the opportunity to directly alleviate the over-smoothness. For the simplest
example, we set M™ (a, b) = 3a + b, and thus we obtain:

[H o) — Hyll2 = H (3Sv + S{?‘a(v)) - (3*9%&(1)) + Sy)

S{:a(v) = S

‘2 . (20)

‘2 1)

:2.’ (22)

2
Since we assume that ||Sg,) — Sol|2 is not small (i.e., the two terms inside it have non-trivial
differences because they aggregate information of completely different sets of nodes, illustrated in
Fig.[7), the over-smoothness can be naturally controlled. Yet, for traditional deep GNNs with very
deep layers, the differences between H|, and H, are bounded by embeddings from the last layer,
which already have too many similarities due to overlapping or even the same global scope, intuitively

improving the risk of over-smoothness.

A.4 DISCUSSION ON PROPAGATION BOTTLENECK ALLEVIATION OF OUR PARADIGM

In this subsection, we briefly discuss how our framework alleviates the propagation bottleneck. When
the knowledge is propagated along the edge of a single tree, it would be discounted with distance
or even blocked when the distance becomes too long. To address this issue, we integrate several
trees (N trees), i.e., a forest, rather than a single tree. Furthermore, we can additionally integrate a
simple local shallow GNN (i.e., several local layers) before and/or after the proposed global layer
(i.e., Forest Layer in Fig.[2).

Suppose we have Ny trees and add K7, /2 local sub-layers before and after our global layer, re-
spectively. One message from node v to node u has only a single path in a tree with the distance
dist™ (v, u). After improving, the number of candidate paths becomes K - d?%%, where d is as-
sumed to be the average degree of all nodes on a graph. Furthermore, the distance can be significantly
shortened as follows:

dist{Tkdeen <) (4) (23)
= min (dist(G) (v,v") + dist ‘D (u, ') + min_dist™) v’)) , (24
v’: dist(%) (v,0") <K, /2 ke(l, K]

u’s dist(®) (u,u V<KL /2
which means that the message from v to u can first select a K1, /2-order neighbor on the vanilla graph,
then be quickly sent to another neighbor v’ of u, and finally be propagated from u’ to u. The overall
path is: v — v/ — v/ — u, which mimics the real-world transport strategies, where people walk into
a highway system and walk outside it.
The distance dist 7%} #€1. K1) can be shortened to the minimum value, i.e., the length of their shortest
path in the vanilla graph, i.e., dist(@) (u,v), since:

distUTebrer <) (4 4) > dist @ (v, 0') + dist(D (u, v') + dist @ (v, v") > dist' @ (v, u), (25)

19

Under review as a conference paper at ICLR 2026

where v/, v’ are the optimal nodes of the last equation. When improving the value of K, the
above distance tends to approach the optimal value, if K, > D(G) and letting v’ = v’. This case
deteriorates into a traditional deep GNN, propagating knowledge only via stacking local layers.
Thus, from the perspective of propagating distance, our framework can be viewed as an interpolation
between deep GNNs and shallow global counterparts. Moreover, with some graph augmentation
tricks, e.g., Expander|Shirzad et al.|(2023) or a prediction-based one (Sec.[L)), the shortest path length
on the vanilla graph can be further reduced, which means the distance can be adjusted into appropriate
values between a large interval. Therefore, we can find a good K, and Nt to adjust those distances
to the most appropriate values. Note that too large K, and N can nearly address the propagation
bottleneck, but with extra computational overhead. Also, it would make over-smoothness severe due
to their essential trade-off reported in|Giraldo et al.| (2023). Thus, we keep K7 < 2and Ny < 15
(N < 6 for larger graphs), and empirically obtain competitive performance.

A.5 DISCUSSION ON THE MOTIVATION OF OUR ATTENTION-BASED ESTIMATOR

In this subsection, we will detail our motivation for the design of an attention-based edge weight or
homophily estimator, as well as a discussion on its impact on future attention exploitation, which will
essentially provide an explanation of our performance gain from a very high-level perspective, even
though we utilize the most basic auxiliary models to guide the training of local attention learning.

We expect to sample spanning trees from a tree distribution defined via scores defined based on a
homophily estimator. In the node classification tasks, the quality of a homophily estimator is assumed
to be positively proportional to its performance (despite the fact that it is not the only factor related to
the performance). Therefore, we hope the auxiliary models to have better performance. Attention
coefficients tend to measure the utility of the information of one object on the learning of another one,
which is intuitively a good implementation of the above-mentioned homophily estimator. However,
under label scarcity in the semi-supervised settings, attention-based models risk over-fitting issues
due to their strong expressivity, which would deteriorate their performance as well as their quality of
attention. To address this issue, before learning effective attention coefficients, we expect to adjust
or polish the way of pre-training the attention-based auxiliary models, i.e., 71. Yet, how to better
pre-train this auxiliary model 77 is quite a big problem, which may be significantly beyond our work.
But we can consider this problem at a high level and utilize a simple trick: use another pre-training
process before the training of 77 and inject some valuable knowledge K into the latter. The extra
knowledge K, can be viewed as some extra guidance, hints, or rules (e.g., the pseudo-labels or
predictions from 7). The attention learning will be generalized as a conditional training, i.e., with
Ko, we extract new knowledge K; from 7;. We trust the ability of the model 77, but sometimes it
may suffer from some issues due to some reasons. The outputs Ky have the potential to stabilize
its training. Also, Kq can be extracted from another model 7. For our case, the K can be simply
set to the predictions, i.e., the node label predictions from the previous auxiliary model 7g. The
intuition is that this K¢ can supplement the supervision, which has effects on alleviating over-fitting
issues. As evidenced in our estimator comparison experiments (i.e., Tab. d), the introduction of K
can effectively improve the performance of the attention-based model 77 in most cases.

A.6 DISCUSSION ON THE GENERALITY OF THE MESSAGE AGGREGATOR

Despite the restrictions posed on fag, (-) due to the discovered properties, we show fag, (-) can still
be quite general. To see this, recall the fact that many aggregators are designed with a weighted sum
of transformed embeddings (including attention) followed by a simple element-wise activation. If the
activation is an identity map, then the linearity perfectly admits the properties (Eq. d). Besides, if it is
non-linear and invertible, we can first invert S, and H, llz‘a(v) easily in Eq. (the first arguments in M ™

and M ™), and then repose non-linearity after M™. Moreover, for those non-invertible non-linear
activation functions o (-), we can use a trick, i.e., only storing before-activation values into Sq[,b] and

H ggv) to avoid invertibility and then reposing non-linearity as follows:

] — rIb] [b] . /
VueV, sP=yl ({a (SU)}UECM(U) u{g (Hu)}> . Recursion (I) (26)

voeV, B =Mt (s, o (M (Y, o (s1)))), Reursonan’ @7

20

Under review as a conference paper at ICLR 2026

voeV, Hj=o(BM), s,=o(sM), sl ()=0(fau). 28)

This insight allows almost all famous first-order local aggregators fagg (-), including many local
attention-based GNNs and typical RNNs, even beyond linearity.

A.7 DISCUSSION ON THE INSIGHTS OF EXPRESSIVITY

Recall that the expressive power of GNNSs typically refers to their ability to discriminate whether two
given graphs are isomorphic or not. Thus, the first natural question is whether the proposed framework
can successfully identify two given isomorphic graphs. Here, we consider two graphs, G1 = (V1, E7)
and Gy = (Vk, E3), with exactly the same number of nodes and edges (i.e., |V1| = |Va| and
|E1| = | E2]). Provided that they are isomorphic, there must exist a bijective function ¢ : V4 — V3
such that I{(u,v) € E1} = I{(p(u), p(v)) € Es} for any u,v € V4, where I{-} is the indicator
function. In other words, these two graphs, G; and G, look exactly the same, up to a node relabeling.
Assume that our paradigm encodes a graph G = (V, E) into an embedding H(G) € R?, where
H(G) = Pool ({H, (G).}uev> and H,(G) = Epp. (o) [fzgg (v)] with fggg (v) € [gd denoting
the global message obtained via node v by the tree 7T'. Therefore, we can successfully identify that
these two graphs GG and G5 are isomorphic, since H(G1) = H(G2). To see this, considering
any spanning tree 77 = (V, Ep,) C G, there must exist a corresponding tree T C G5, where
Ty = ¢ (Th) = (V,¢ (ET,)), such that 77 and T5 are isomorphic and the position of node v in

T, is symmetrically the same as that of node ¢ (v) in T5. Thus, we have fggg (v) = f};zg (p(v)),
and consequently we can obtain that for any node v € V, H,(G1) = H () (G2), due to the fact

that Er, wp,.(Gy) [fg;g (v)} = Eqn,~pr(as) {fgzg (¢ (v))} This concludes the proof of H(G1) =
H(G3), showing the ability of the proposed framework to identify isomorphic graphs.

Besides, we can further provide some insights into the ability to identify non-isomorphic graphs. We
present two example graphs, GG; and G, that are not isomorphic and can be successfully identified by
our paradigm, yet fail to be identified by typical GNNs. One case is that: let G; be a six-node circle
and G2 be two three-node circles with all node features assigned scalars 1s (we call this case Case
A). For typical GNNs, including GIN, their expressive/discriminative powers are restricted within
1-WL, which is a theoretical framework for encoding graphs based on iterative local aggregations
and hashing. In this case, by mathematical induction, each node in each graph has intrinsically the
same color set of first-order neighbors (e.g., {1, 1}), and thus they will be colored exactly the same
after hashing at each iteration in the 1-WL test algorithm (e.g., all nodes are colored with 1), which
implies that both of GG; and G5 obtains the same graph encoding, i.e., the multi-set {1,1,--- ,1},
and cannot be distinguished. More high-levelly, since 1-WL gains global power by local stacking, it
works well for local structures, but may fail at some simple global structural recognitions. We know
that graphs can be viewed as approximated discrete manifolds. From the perspective of manifolds,
local structures do not directly imply the global topology, and how such local structures are organized
still matters. That is why 1-WL techniques fail to deal with Case A. In contrast, Graph Transformers
(GTs) directly conduct global aggregations and have the potential to address this case. Yet, without
sophisticated positional or structural encodings (PEs or SEs), GTs fail to capture such long-distance
topological knowledge (e.g., connectivity, connected components, or communities). It would produce
node embeddings 1s for all nodes (i.e., H(G1) = H(G3) = Pool ({1,1,---,1}) for each graph),
and thus still fail to discriminate graphs in case A. Therefore, it necessitates a complex PE for GTs,
such as Laplacian-based encodings, which, nevertheless, would result in a higher complexity to
achieve such a stronger power. But in our paradigm, taking any spanning tree (with edges weights 1)
for each connected component of the graphs, we can efficiently obtain H(G1) = Pool ({6,6,--- ,6})
and H(G3) = Pool ({3,3, -+ ,3}), which easily distinguishes these two graphs G and G5 without
the necessity of any hand-craft high-complexity PEs or SEs. This case can be generalized to any
two non-isomorphic k-regular graphs G; and G2 (Case B), where each node has the same degree k.
Similarly, by mathematical induction, 1-WL will still produce the same encoding for both G; and
G2, and thus fails to discriminate them. And GTs still require sophisticated PEs/SEs to encode subtle
structural differences. But our FGL can implicitly encode such differences into edge probabilities in
a tree (i.e., p(e), denoting how likely an edge e would appear in a spanning tree), and then affect the
probabilities of propagating paths. The sensitive probabilistic differences will naturally differentiate
the passed node messages and make final graph encodings distinct. This insight shows the potential
of our FGL to surpass the expressive power of typical GNNs.

21

Under review as a conference paper at ICLR 2026

A.8 DISCUSSION ON DEALING WITH DENSE GRAPH

It is not practical for us to utilize only several trees (e.g., K trees) to comprehensively capture all
topological information of a densely connected graph, such as a graph with n nodes and O(n?)
edges. In other words, it would unavoidably cause some information loss in this situation. The
intuition is that it seems not enough for these trees to well represent first-order neighborhoods, since
K trees cover only K - n degrees (K < n), but the total node degree positively correlates to the
number of edges, i.e., O(n?) edges. However, we can straightforwardly mitigate the information loss
by increasing the number of trees, K, with extra complexities no more than the number of edges
O(n?). The reason is that in this situation, the graph itself would become the essential bottleneck
of complexities, and thus, there are no efficient ways to process it without any information loss.
Moreover, we empirically find that adding only a few trees may be sufficient to cover the main
information. That is to say, the number of trees utilized for a dense graph can be sublinear in the
number of nodes, n, with a very limited extra computational burden compared to the graph itself.
To show this clearly, we introduce a dense graph and empirically test the relationship between the
number of trees and the final performance. We construct the graph by adding many edges to the Cora
dataset (100 extra edges for each node), while maintaining the vanilla edge homophily rate p (adding
a homophilous edge with probability p and a heterophilous edge with probability 1 — p). The results
are shown in Sec. [J.6] We observe that the addition of extra trees can further improve performance
compared to using only a few. However, introducing too many trees cannot improve performance and
may even slightly degrade it, as they introduce redundancy and would increase the risk of overfitting
or over-smoothing issues. Therefore, even dealing with a very densely connected graph, a limited
number of trees would be enough to encode the essential structural knowledge, without the need to
introduce too many trees.

A.9 DISCUSSION ON A CASE WHERE OUR PARADIGM MIGHT UNDERPERFORM

Here, we supplement a discussion with a case where our paradigm might underperform. The case
would be a highly disconnected graph with too sparse edges. This graph has too many connected
components (O(n) components), and each of them is very small in size (O(1) nodes per component).
In this graph, our paradigm might fail to extract valuable long-distance knowledge and thereby
degrade the final performance, possibly due to its heavy dependence on the pre-processing stage to
address the high dis-connectivity. Yet, notably, deep GNNs still have this limitation, while GTs might
have some merits in avoiding this issue.

B PROOFS AND DERIVATIONS

B.1 PROOF FOR THEOREM/I]

Recall the design of our tree aggregator f,«(x?g’ it is designed based on a general message aggregator
fage (). Any fage (-) can be applied here if it satisfies the following two sufficient properties:

VS, A B, st,S=BUA BNA=10:
fage (S) = MT (fagg (B), fage (A)), Property () (29)
fags (B) = fagg (S\ A) = M7 (fagg (S), fagg (A)), Property (II)
where A, B, S are sets of messages (e.g., node embeddings).
Two merging operators M ™ ((z’, 5) and M~ (Ei, g) denote adding (or deleting) vector b to (or from)

vector d@. Note that the M*/~ (-,-) can utilize auxiliary information and thus are allowed to be
unsymmetrical.

Then, we provide the proof of Theorem [I]as follows:

Proof. Let fg; : H — H' € R"*? denote our general tree aggregator, where H, H' € R"*¢
denote the node embeddings before and after aggregation. Let node € V' is the root node of tree 7T'.

First, we prove Recursion (I). Consider a node u € V': the notation S, denotes the combination of
all messages from the subtree T,°*?) (nodes V,*"™). Note that all such messages will either pass

22

Under review as a conference paper at ICLR 2026

through one of the children nodes Child () (denoted as v) or be generated from w itself (i.e., g(H,)).
Provided that node u has K, children on tree 7', we can classify the aforementioned messages into
K, + 1 categories. At each one of the first K, categories (aussming passing through the child v),
messages are merged into S,. Merging these K, + 1 catergories, i.e., {Su},connaq) Y 19(Hu)},
which naturally derives Recursion (I), concluding the proof. Therefore, one can easily pre-process all
S, for all v € V with the simple recursion, i.e., Recursion (I). Then, we will assume that all .S,, are
known.

Second, we prove Recursion (II). Recalling the observation we found in Sec. d.3]and the intuitive
visualization in Fig. |7} we can obtain: the globally merged message at node v (i.e., H)) and that at
its father node Fa (v) (i.e., Hy,) differ only at the direction of one edge e = (v, Fa (v)). In other

words, the messages arriving at node v partially pass the edge Fa (v) — v, and those at node Fa (v)
partially pass v — Fa (v). Thus, if we delete the edge e, the left messages at nodes v and Fa (v)

(denoted as S, and S{:‘a(v)) are from a subtree T.°"™ (i.e., nodes V,*") and from its complement

set (i.e., nodes V\V,, SUb)), respectively. It means that H, and HI/:‘a('u) are formed by exactly the same
two parts with different merging directions, which can be formulated as follows:

H}, = M (S0, Shug) (30)
Hiy(py = MT (S]/F‘a(v)7 Sv) : (31)

The above insight allows us to derive an recursion that directly connects H/ and H. ﬁ“a(v)- Provided
with .S, according to Properties (I) and (II), we can first inverse Eq. [31|easily to calculate Sfra(v)

from Hp, ,, by taking M~ (-, S,) at both of its sides:
S%‘a(v) = M- (M+ (%‘a(’u)? Sv)) Sv) =M" (Hll?a(vy Sv) . (32)
Note that we can combine Properties (I) and (II), which implies that:
M~ (M*(p, q), q) =p. (33)

In other words, if we first add ¢ into p (obtaining p + ¢) and then subtract q from p + ¢, then we will
obtain p itself, showing the invertability of M™ and M ™.

Then, injecting Eq. [32]into Eq. [30|provides us with Recursion (II), i.e., Eq.[34}
VoeV, H =M+ (SU, M (Hga(v), s)) . Recursion (II) (34)

Putting these two parts together concludes the whole proof of this theorem. [

B.2 PROOF FOR THEOREM [2]

Recall the theorem we present in Sec. .6 of the main text, which justifies the quality of the specifically
designed tree distribution, i.e., trees sampled from it tend to preserve the first-order homophily ratios.
Next, we provide its proof.

Theorem . Let G be any connected graph, and define the expected edge homophily ratio under
the score ratio A = p/q > 0 as:

RA(A) :=E

é [R(T)],

TPPD
G

where h(T) is the edge homophily ratio of tree T. Then there exists a Ag > 0 such that:
e Monotonicity. If A > A’ > Ay, then
Rs(A) > Ra(A).
e Upper Bound. For all A > A,

~

NHCC(G) — 1
n—1

R4

a(A) < 1-

)

where NHCC(CA?) denotes the number of homophilous connected components of G.

23

Under review as a conference paper at ICLR 2026

o Asymptotic Tightness. As A — +0o0,
NHCC(G) — 1

Ra(A) — 1— 1

Proof. Based on an introduced homophily indicator function I"°™° (-) denoting wether an edge is
homophilous, we can define the first-order homophily ratio of a tree T' of size n (assuming it is

sampled from a graph G = (V, E) of n nodes and m edges), i.e., h(T), as follows:

h(T) _ 1 . Z]Ihomo (6) , (35)

n—1
ecT

where [1°™° (¢ = (u ¢+ v)) = 1 if node labels Y, = Y,, ['™° (¢ = (u <+ v)) = 0 otherwise.
Denote as T (G) the space/set of all spanning trees of the graph GG, where we suppose G is connected.
For convenience, we also define n*(T), n~ (T) € N as the numbers of edges in the tree T that are
homophilous and heterophilous, respectively. Therefore, based on their definitions, we immediately
have:

VTeT(é), 2t (T)+n (T) =n— 1, (36)
1) =) 1(e). (37
ecT

Recall the definition of the designed tree distribution Pg’ » @) (T) (0 < g < p < 1) conditioned on the
graph G:

H(homo) (e) ql_]I(homo)(e)

G H TP
VI eT (G) Py = e - -
G ZT’ET(@) HeGT/ p]I(l)(e) . ql—H<h @

where p > 0 is the score we assign for the homophilous edges, ¢ > 0 is the score for the heterophilous
edges, and we assume ¢ < p. Then we can analyze the expected homophily ratio as follows:

(38)

By pi 0) (1 (T)] = S PP O(T) - h(T) (39)
TeT(G)
(T
n—1
TeT()
= Z -t (T) (41)
TeT(G
(homo) (homo)
1 T (e) . ,1-1 (e)
R “eeq;’ G LY
TGT() T/eT() ecT' P q
(42)
(homo) e _ y(homo) e
1 ZTGT(é) [Leer P (). "t () n*(T) 03
Tl e e O g6 @)
Due to the fact that: (home) (homo) N ~
H P! (€) . g1t =pn (D). gn (1), (44)
ecT
Injecting Eq.[44]into Eq. @3] we can obtain:
) L (@)t (T
| Sresg) 7" nt (T)
Frrg o MO =y T) @

24

Under review as a conference paper at ICLR 2026

According to Eq.[36] we have:
n(T)=n-1-n"(T). (46)

Injecting this into Eq.[45] we can obtain the following formula:

1 ZTGT(@) .pn+ (T) . qn717n+ (T) . ’n,+ (T)

ETNPC%P’ 9 (7) [h(T)] = n_1 ZT/ET(G) prt (T7) . gn=1-n*(T") 47)
We can cancel out the term ¢" ! and then get:
+ _nt
By pi o [0 ()] = 1 Yrer(a) P <T)+ : q/ n*(T) . n+ (T) us)
~e n—1 ZT’G’E(@) pr (I gt (T
n*(T)
_ 1 Zrer(d) (5) @ (49)

n—1)n+(T’)

2rien(@) <§

Let A = g > 1, then we have:

S rer(@ AnT(T) Lt (T)
)=y Tg:;r(é) N G0

Observing this formula, we find that we can treat both the numerator and the denominator as
polynomials of the variable A > 1. Moreover, they have different coefficients for different terms: all
the terms of the denominator have exactly the same coefficient, i.e., 1, while the term A (T) of the
numerator has the coefficient n™ (T'), which hints at us to disentangle the constant.

E

(P, @)
T~Pg (T)

Denote the maximum value of n* (T') as n;}, . and the number of n* (T') among all trees T in

T (é) as N (n™ (T)), formally:

N(no)z#{T:Teﬂr(é),n+(T):n0}, (51)
Max = max n' (T). (52)
TeT(G)

Based on these notations, we can reformulate Eq. @] as follows:
1 .Zkzo)‘k'k'N(k)
n—1 Zkzo AR N (k)

. Kmax -
We can disentangle the constant W = kmax = NI from

max max

E [h(T)] = (53)

T~PE D(T)

For N(k) > 0, kmax = N,f o
the above equations:

1 Zk>0/\k-k-N(k)
E pq h(T)| = N~ NE = 54
TwPé’)(T)[()] n—1 < max max+ ZkzOAk'N(k) ()
_ 1 N +Zkzo)\k'k'N(k)_ZkEO)‘k'N(k)'Nx—rtax
n—1 max Y ko A N (k)
(35)
1 A(NE k)N (k
R (W A T MR L) 56
n—1 Zkzo/\k'N(k)
_ Lo + Zo§k<N$ax AR (N = k) - N (k) . 57)
n—1 max > o<kenit, AN (k)
Observed from the above equation, the order of the numerator » v+ Ne(NE —k)-N (k) is
less than IV, , but the order of the denominator <h<NE Ak N (k) is exactly Nt . Therefore,

max

25

Under review as a conference paper at ICLR 2026

the order of the numerator is less than the order of the denominator. Thus, intuitively, as A — 400,
the growth rate is much faster than that of the numerator. There must exist a constant A\ satisfying
AR (NS —k) N (k)
NEN (k)

Eo§k<N$ax

that when A\ >), the fraction part of the above formula decreases as

0<k<Nifax
A increases. Thus, the proof of part (1) of the theorem concludes.

To prove parts (2) and (3) of the above theorem, we should further prove that:

NJax ~
m_1—(NHCC (G)—1)/(n—1). (58)
It immediately follows if and only if:

Nifux == NHCC (G). (59)

max

Suppose the graph G has N n = NHCC (@) numbers of homophilous connected components

(i.e., considering only the homophilous edges) C1,---,Cn,. N

s 1s the maximum value of
N (T) = Y o 1(hom) (e). This fact means that N}, is the sum of weights contained in the

maximum spanning tree of the graph G with the weights 1(h™°) (¢). Considering the Kruskal’s
algorithm 7| we sort all edges of G according to their weights, which means that all edges e with

[(hemo) (¢) = 1 will be considered first. The rest of the edges with 0 weights have no influence on
the answer to the maximum spanning tree question.

All edges with weights 1 are divided into Nz components. Each component has a mutually indepen-
dent solution. The answer of the component C; (i € [1, Ng]) is obviously |C;| — 1, since adding
any further edge will cause a circle. Therefore, we have:

NH NH
N = (1G] = 1) = |Ch| = Nip = n — Ny = n — NHCC (G) , (60)
k=1 k=1
which shows that Eq. [59]follows.
Injecting Eq.[59]into Eq.[57|concludes the proof of the theorem. O

B.3 PROOF FOR THEOREM[3]

In this subsection, we provide the rigorous proof for Theorem [3] which is heavily based on the
monotonicity analysis of s with Respect to Maximum Degree M.

Proof. According to Lemma[I] and Lemma [2] we can derive the following formula for the lower

bound of s (-):

6> L (61)

v M — max; Vd;
(1 2 : (1 %) 12)) log (Eminj @)
where M = max,cy d, and D = D(G) > 4.

First, simplify the denominator part involving M:

VM —1 2 2
12-M(1D>+D
2(vVM —1) 2 2
:1_M(1_D>+D
7M72(\/M71)+4(\/M71)+ 2
M MD D
_ M-2VM+2 4/M-4+2M
M * MD

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

26

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

Under review as a conference paper at ICLR 2026

D(M —2v/M +2) + 4/M — 4+ 2M

MD
Thus, the formula for s can be rewritten as:
s> MD . (62)
(D(M — 2¢/M +2) + 4V/M — 4+ 2M) log <m>
To analyze the monotonicity of s with respect to M, define:
MD 63)

YT DM — 2V 1 2) + 4/ — 4t 2M’
and compute its derivative ;—AZ.

Using the quotient rule (%)/ = %, where u = M D andv =D(M —2vM +2) + 4V M —
4+ 2M:

First, compute v’:

v = di {D(M—2\/M—|—2) +4\/M—4+2M}
1 2
=D(l-—=|+—=+2
M) VM
Then, compute 3’
, D-v—MD- v
Yy =——>%5
v
D[D(M = 2VM +2) + 4/M —4+2M] - MD [D (1- A7) + & +2]
— — .

Simplifying the numerator:
Numerator = D?>M — 2D*V M + 2D? + 4DV M — 4D + 2DM

D 1
—-MD?*+MD-— —2MD-—— —2MD

vM VM
= (D? — D*)M + (—2D? + D®> + 4D — 2D)V'M + 2D? — 4D
= (=D? +2D)VM +2D? — 4D
= —D(D —2)V'M +2D(D — 2)
= D(D —2)(2—VM).

Thus, the derivative simplifies to:

, D(D —2)(2 — VM)
YT (DM = 2VM +2) + 4V — 4+ 2M)2

(64)

Given D > 4, we have D — 2 > 0 and D > 0. The sign of ¢’ is determined by 2 — v/ M:

e When M <4,2—+vVM >0 = 4 > 0,s0y is increasing.
e When M =4,2— VM =0 = y' =0, so y reaches a critical point.

e When M > 4,2 — VM <0 = 3’ <0,so0y is decreasing.

27

Under review as a conference paper at ICLR 2026

Therefore, the lower bound of s first increases and then decreases with respect to the maximum
degree M, reaching its peak at M = 4. In our case, we typically have M > 4 since there exist some
nodes with larger degrees than other nodes. Besides, we have a graph augmentation before graph
learning, which has an effect on improving the maximum degree of nodes, making it more likely to
satisfy M > 4.

Then, to analyze monotonicity of y on D, write:

MD
= . 65
Y7 DM —2VM 1 2) + 2M 1 4V — 4 (0)
By the quotient rule, the derivative is:
d MM +4vVM —4
4y _ (2M +) (66)

_ .
b [D(M — 2V/T +2) + 2M + 4V/3T — 4

For M > 1, since 2M + 4v M — 4 > 2 > 0, it follows that U% > 0. Therefore, y is monotonically
increasing in D.

Putting two monotonic analyses together concludes the proof of the theorem. O

B.4 DERIVATIONS OF PATH DECOMPOSITIONS FOR SOME PARADIGMS

Recall several formulas in Sec.[A.2]of Appn.:

Hy = Agg({Hu}uev) =) > H, - w(p) - PE(p). (67)
ueV PEPu—v(G):

p=(Po—p1—>+-—pr=0)
s.t. po=u,pr=0v

Here, w(p) is the path weight for a path p = (po, p1, . - ., Pk):

k
wp) =[] wp, 1 =p,» (68)
j=1

where w;_, is the weight of the directed edge + — y. And PE(p) is an extra path-based positional
encoding beyond vanilla pair-wise relative positional encoding:

PE(p) = fpath—PE(ﬁ7 G, {wzy}) (69)

B.4.1 OTHER PARADIGMS

Infinite-layer deep local SGC, deep local GT, or infinite-step random walk aggregation all have
this form (Equation equation [67). The "infinite-layer" or "infinite-step" nature implies that the
summation Zﬁe?’u% @) in Equation equationconsiders all paths (walks) of any length &k from
to v. For these models, the components are identified as:

(1) The edge weights w,_,, used in Equation equation [68]are specified as:

¢ For Infinite-layer SGC (Simple Graph Convolution): w,_,, = S,,, where S is the

normalized adjacency matrix (e.g., S = D~ '/2AD~1/2 with A = A + I). The path
weight becomes wsgc(p) = Hle Sp,_.p,;- The full aggregation often takes a form like
H' = (3272, B°S*) Hiy or (I — 8S) ™! Hi,. The sum over paths in Def. 1, when combined
with the PE term, captures this.

¢ For Infinite-layer deep local GT (Graph Transformer/Attention): w,_,, = oz;h;red,

representing a layer-shared attention coefficient for information flowing from x to y (where y

is the target node in the attention mechanism). The path weight is wgr(p) = Hle oz;};“‘;j{l .

28

Under review as a conference paper at ICLR 2026

* For Infinite-step random walk aggregation: w;_,, = T, an entry from the probability
transition matrix T', where T, = P(next node = y|current node = x). The path weight
becomes wrw (p) = Hle Ty, ,p,- This corresponds to the probability of traversing the

path p. Aggregations like those based on Personalized PageRank Z;io BT inherently
sum over weighted paths.

(2) The path-based positional encoding PE(p) for a path p = (pg, p1, - . ., px) is given by a product
of node-specific positional encodings for all nodes along the path:

k
PE(p) = | [PE(p)- (70)
1=0

Each node-specific positional encoding PE(p;) is defined as the sum of the discounted edge weight
product in all circles (cycles) C' of any length L that pass through node p;. Let C(p;, G) be the set
of all simple cycles containing node p; in graph G. It can be formulated as follows:

PE(pi) = > dLe) | I wess - (71)
Cec(pi,G) (z,y)eE(C)

where E(C) are the directed edges forming the cycle C, L¢ is the length (number of edges) of cycle
C, and §(L¢) is a discount factor that depends on the length of the cycle (e.g., §(L¢) = 1< for
some 0 < v < 1). The edge weights w,_,,, in this context are the same as those defined above for
SGC, GT, or RW respectively. This structure (Equations equation|/0|and equation demonstrates
that these methods focus more on local environmental importance of a path, e.g., densities or degrees
of nodes contained in it, as captured by the properties of cycles involving nodes on the path.

B.4.2 OUR PARADIGM

Tree-Set (i.e., Forest) Layer also has this form (Equation equation , with PE(p) as the sum of
weight products of all spanning trees of the graph obtained by merging path p into a single node.

Let G}; be the graph obtained by contracting the path p = (po, .. .,px) into a single supernode
vp. The edges incident to v are derived from edges incident to any p; € p in G. Let T(G})
be the set of all spanning trees in G7;. For each spanning tree 7' € T(GY), its weight product is
W(T) = [l.e B(T) w’,, where w/, are the (possibly re-defined) edge weights in 7.

The path positional encoding is:

PE(D)= Y W(T)= > (H w;>. (72)

TET(G)) TET(G)) \e€Er

This shows that this paradigm focuses more on the global transport importance of a path, i.e., how
connectivity or communication this path can facilitate if it is built as a highway with no communication
cost along it.

C EXTENSIONS OF OUR TREE AGGREGATOR

In this section, we will introduce some extensions of our tree aggregator in Sec.[4.3] which not only
shows the potential of the proposed general aggregator, but also reveals how it can be technically
combined with other popular techniques, exhibiting some possible future research directions on
general graph learning.

C.1 INTEGRATED WITH GLOBAL ATTENTIONS

Based on kernel decomposition, i.e., k(z,y) = f(x)T - f(y). We can easily inject global linear
and even general attention paradigm into our aggregator. In the attention mechanism, k(Q, K)V =
F(Q)f(K)TV. Thus, we can treat f(K)TV as messages fed into the aggregator. Note that () need
to conduct tensor product with f(K)?'V. Dimension reduction can be further utilized to reduce the
memory consumption.

29

Under review as a conference paper at ICLR 2026

C.2 FINE-GRAINED PROPAGATION CONTROL

In this subsection, we design fine-grained propagation control, such as discounting or truncating the
distance, which can make the tree aggregators more flexible and better filter the possible distant noise.

We can discount the distance by introducing a discounting weight and multiplying it by the edge
weight. We can truncate the distance by introducing an extra variable to store how distant the currently
embedding aggregates information.

C.3 GENERALIZE FORESTS

In this subsection, we generalize forests to eliminate the need for Recursion (II). We can generalize
the forests to the Directed Acyclic Graphs (DAGs) forests. Each time, we randomly sample one
directing solution for each edge and form a DAG. And use a similar tree aggregator to aggregate
distant messages and conduct fusion for them. Yet, it needs extra sampling strategy and tools for
DAGs, which is still under-developped.

D ACCELERATIONS OF OUR TREE AGGREGATOR
In this section, we introduce some tricks to accelerate our tree aggregator.

D.1 SELECTING CENTROID AS ROOT

We can select the centroid node as the root to conduct the recursions on trees rather than choose the
node 0, since the width of the rooted tree would be larger and the depth of the rooted tree would be
smaller. This would facilitate higher parallelizability. For example, when we conduct leaf-to-root
recursion, multiple threads can be better utilized. The centroid node can be found via two Depth-First
Searches, which are efficient.

D.2 DIFFERENT GREEDY STRATEGIES FOR DIFFERENT RECURSIONS

Our recursions can use greedy strategies to improve parallelizability. When conducting leaf-to-root
recursion, we can calculate the depth dep (v) and sub-tree depth dep®™™ (v) of each node v. We

treat dep®"™) (v) as the first key-words and treat dep (v) as the second key-words to sort all nodes.
When conducting root-to-leaf recursion, we can use dep (v) as the only keyword. We can assign
nodes for threads one by one based on 7 mod IV, where N is the number of threads.

E DETAILS OF BLOCK ACCELERATION OF TREE SAMPLER

As described in Sec. [4.2]in the main text and Sec. [G|of Appn. as well as Algorithm [2] we follow
some Theoretical Computer Science previous works Wilson| (1996) and adopt a random walk-
based spanning tree sampler. It can sample a random tree exactly from the given tree distribution
with linear running times in most cases. However, when dealing with larger graphs, a linear time
complexity is sometimes not enough to satisfy practical requirements. The essential reason is that
the parallelizability is based on the specific input graph structure. When the graph becomes more
dense, a single thread may have a shorter life period, and more threads are needed. Yet, when more
threads simultaneously work at nearby locations in a graph, they may interfere with each other. For
example, supposing that two threads produce two paths p; and p» after circle/loop stripping, p; and
P2 can intersect many times. To maintain the correctness of this sampler, we must drop some parts
of these paths, which definitely causes computational waste to some extent. More severely, as the
multi-threaded working paradigm proceeds, the under-explored area in the graph becomes much
localler (akin to some smaller connected components), and in a nearby environment, the number of
threads must be reduced (otherwise the useless walk/path would frequently occur), which reduces the
parallelizability.

In this section, we propose a simple trick (i.e., Algo[3), which calls the vanilla Tree Sampler (i.e.,
Algo[2) with some extra tools and intuitively improves its parallelizability with only limited precision
sacrifice. In other words, we propose to conduct approximate sampling with ignorable deviations, yet

30

Under review as a conference paper at ICLR 2026

make better use of modern architectural advantages. We describe some specific details in Algo. 3] for
the convenience of implementation. Furthermore, we provide detailed explanations of the algorithmic
pseudo-code in Sec. |Ejof Appn.

The key idea is to identify some unimportant edges in the original graph and attempt to drop them
or at least some of them. If the graph can be divided into several disconnected parts, we are then
allowed to conduct a separate tree sampling for each of them.

How to integrally achieve this end poses a challenge, especially considering we expect to minimize
the number of dropped edges. To demonstrate our motivation more clearly, we consider solving the
problem starting from a simple greedy strategy. Since we already know the importance score of
each edge, i.e., s (recall Sec.[4.2)), a natural heuristic greedy strategy is to sort all edges by the edge
scores ascendingly and then drop the edges one by one until the number of connected components
achieving the pre-defined number, e.g., K 5. However, the significant issue of the greedy strategy is
that to achieve the number K 5, we may risk dropping too many edges. Despite the fact that some of
these dropped edges are low-score, the cumulative effect cannot be ignorable. To understand this,
consider the following example with Kz = 2. Suppose that we have an n-sized random tree 7" which
is uniformly sampled from an n-sized complete graph. We label all edges in 7" with edge scores 1.
Assuming n is even, we can find the two centroid nodes of the tree 7" and denote them as nodes u
and v. Cutting the edge u <> v would cause the tree 7" to become two parts. We denote the left node
set and the right node set with notations Viese € V' and Viigne € V. We then continuously add edges
with uniform random edge scores between 0 and 1 — € (i.e., s (¢) ~ Uniform (0, 1) and 0 < € < 1)
to the Viege-induced subgraph (denoted Giet:) and the Viigne-induced subgraph (denoted Gigne) until
both of them becoming complete graphs. Next, we consider the solution derived from the above
greedy strategy for the constructed graph G. It will drop all the edges with scores smaller than 1,
i.e., all the edges that are added after sampling the initial tree 7', and then drop one of the edges in
T'. An obvious issue of this method is that the sum of all the dropped edges would be too large to
ignore their cumulative effects. In fact, the expected sum of the dropped edges is O (nz) On the
other hand, the optimal solution of the constructed graph G is obvious, i.e., deleting the single edge
u +> v with the total edge scores equaling 1 (i.e., O (1)). From another perspective, we expect the
obtained two components are relatively balanced, i.e., |Viegt| = |Vright\. The optimal solution follows
this requirement, yet the greedy strategy may fail to achieve this, due to the randomness of the sorting
algorithm for those edges with exactly the same scores.

Therefore, based on the above analysis, we can outline the conditions that we expect the graph
division technique to holistically satisfy: (1) The divided parts are expected to be maximally balanced.
(2) The number of dropped edges is expected to be minimal. (3) The sum of scores of the dropped
edges is expected to be minimal. We notice that these conditions are almost the merits of some
graph cut techniques, e.g., METIS library [Karypis & Kumar| (1998)), which is treated as an operator
(denoted as GraphCut (+)) called in the first step of our algorithm.

After obtaining the several components split via GraphCut (-), we call Algo. to separately sample
a tree for each component and then we obtain several trees 71, - - - , Tk, . However, how to merge
them and how to consider the dropped edges remain challenging. To this end, we propose to collapse
each component to a single node labeled with the component label (i.e., the block number, labeled,
e.g., between 1 and K). Then all edges between these components (i.e., blocks) can be re-labeled
with their end nodes’ block numbers and will become multi-edges connecting two newly labeled
nodes. For example, a vanilla edge 73 <> 254 would become 4 <> 7, where 73 and 254 are two
vanilla node labels as well as 4 and 7 are two block numbers (i.e., two new labels of merged/collapsed
new nodes, 73 comes from 4-th block, and 254 comes from 7-th block). Along this way, we can obtain
a highly collapsed small graph with exactly K g nodes and many edges coming from vanilla edges
connecting two different blocks/components. We call this new graph G’. It contains no self-loops
since we drop all intra-block vanilla edges (note that when sampling 77, ---, Tk, we retain only
these edges and drop all the other edges). It also contains many edges that connect two same pair
of nodes (new nodes), which we call multi-edges. We then merge a multi-edge (containing many
edges) into a single edge, with its edge weight as the sum of vanilla edge weights. Here, our idea is
to sample a tree for this new graph G’, and then down-sample a selected tree edge (corresponding to
a multi-edge before merging) into a vanilla edge contained in the corresponding multi-edge. This
process can be proven equivalent to directly sampling a tree for the new graph with repeating edges
that have different edge weights, where the latter cannot be conveniently implemented via directly
calling Algo. [

31

Under review as a conference paper at ICLR 2026

The edge down-sampling process requires us to simultaneously conduct multiple (exactly Kp)
sampling operations from variable-length categorical distributions. For example, we are required to
parallelizably sample a z from the categorical distribution [1, 1, 1] and at the same time, sample a y

20 40 4
from another distribution with different length, e.g., [3 4]. This makes GPU-level parallelization

inconvenient. The challenge can be addressed via a Gur;beftrick, described below. We first normalize
the edge weights in each first-order neighborhood to construct each categorical distribution. This
step can be done via a Scatter_Add operator to efficiently calculate the sum of first-order edge
weights. Then, we compute the log values for all probabilities and add element-wise Gumbel random
variables, i.e., v = —log (—log (t)), t ~ Uniform (0, 1). Next, the most key step is to conduct a
Scatter_ArgMax (-) operator to allow the sampling distribution to have different lengths, which is
significantly beyond vanilla ArgMax (-) after some operation such as . reshape (-). Through these
steps, we can efficiently conduct edge down-sampling and obtain a new tree with vanilla node labels
(between 1 and n). We call this tree Tj. Merged with other obtained trees, i.e.,T1, ,- -, Tk, we

can obtain the final tree T = M ({Tk’}ke[o, KB]) .

F DETAILS OF ALGORITHMS

In this section, we provide several algorithmic pseudo-codes to support the detailed implementations
of our main framework, as well as some discussions in other sections of this Supplementary Mate-
rials. In each algorithm, we will shortly provide a description of this algorithm, the input/output,
important hyper-parameters, learnable parameters, and other notes on, e.g., some extra definitions
or clarifications of symbols or operators, as well as some tools called from another library. In the
corresponding subsection of one algorithm, we will provide line-by-line explanations to detail the
specific implementation, including some notable points.

F.1 ALGORITHM OF OUR FRAMEWORK

We provide a detailed introduction part by part in Sec.] of the main text. Next, we will provide an
algorithmic pseudo-code (i.e., Algo.[I)) to connect these parts from a more holistic perspective for a
better understanding.

Furthermore, we will provide a line-by-line description for this algorithmic pseudo-code (i.e., Algo.[I)
as follows:

* Line 1 extracts some knowledge from the non-attention-based model 7 via pretraining. In
our implementation, for simplicity, we select a single-layer GCN/MLP for our 7 to show
our true potential (rather than based on powerful candidates). Also, K is treated as direct
node predictions, i.e., node label prediction probabilities. Other implementations may also
be acceptable or better.

e Line 2 augments the vanilla graph into an augmented variant, based on the extracted
predictions K (note it is optional). The main motivation is to make the graph connected
and to improve the initial homophily ratio or its NHCC (especially for heterophilous graphs
). A simple top-k augmentation is enough to achieve this end (Sec. [C).

* Line 3 extracts new knowledge K; from the attention-based model 7; based on the old yet
necessary auxiliary information Ky. The detailed motivation for why we need additional old
information Ky to extract new knowledge K; can be found in Sec.[4.2] of the main text and
Sec.[A.5] In our implementation, the new knowledge is modeled as attention coefficients of
the module 77, and thus it can also be viewed as a kind of attention learning.

* Line 4, based on the knowledge K, defines a tree distribution conditioned on the graph G,
ie., P@ (T)

* Line 5 — 7 separately sample a tree from the tree distribution Pg (7). We sample N trees
in total and these trees can be viewed a iid. sample of size Np from the distribution.

* Line 8 inputs the vanilla graph G as well as its feature matrix X into our Local Submodule
(Sec. of our architecture, and we obtain the node embedding matrix H € R™*4.

* Line 9 — 11 separately fed the sampled tree T}, as well as the embedding matrix H into
the tree aggregator, and obtain new embeddings H (k) ¢ R"*d The tree aggregator will

32

Under review as a conference paper at ICLR 2026

aggregate distant messages on each tree independently. In other words, H (k) depends only
on the k-th tree.

e Line 12 fuses all these node embeddings from different trees into single ones, i.e., H' €
R"™*4, We directly implement the operator Fuse (-) via a simple post-hoc mean fusion. Yet,
note that other sophisticated alternatives are options, too.

* Line 13 represents a residual connection governed by a hyper-parameter y € [0, 1], which
controls the trade-off between the local knowledge and global knowledge.

33

Under review as a conference paper at ICLR 2026

Algorithm 1 Algorithm of Our Framework

Description: The holistic architecture of our FGL framework mainly contains four critical steps.

Input: an input graph G = (V, E) with feature matrix X € R™*/ and normalized adjacency matrix

A, the node labels in the training set Y7, a graph augmenter Aug (G; K) (to augment graph with
some auxiliary information K), a non-attention-based graph layer 7, an local attention-based graph
layer 77, training operator Train (7" | K) returning the outputs or predictions of the trained auxiliary
modules (e.g., 7o and 77) where auxiliary information K may contain both training labels and
training inputs as well as testing inputs, a tree distribution definer Define (-), and some key technical

components including Tree Sampler TreeSampler (), Tree Aggregators fg; (+), and Tree Fuser
Fuse (+).
Output: node embeddings H" € R"*¢

Hyper-Parameters:
81, P2, the hyper-parameters in our Local Submodule (Eq. E]);
v, the residual coefficient;
K1 < 2, the number of sub-layers of our Local Submodule;
N, the number of sampled trees

Trainable-Parameters: learnable parameters in Local and Global Submodules as well as auxiliary
modules (layers), i.e., 7o and T3

Note: For brevity, here we aim to present the high-level idea, and detailed text descriptions are
provided in Sec. 4 of the main text.

I: Ko « Train (7 | G, Y1)
2: G+ Aug (G; Ky)

> The main motivation is to make the graph connected and to improve the initial homophily
ratio or its NHCC. A simple top-k augmentation is enough to achieve this end.

3: Ky « Train (71 | Ko, G, YL)
4: Pz (T) < Define (Ky)
> Define a tree distribution based on the knowledge K; (Sec.[d.2).
for each k € [1, Nr] do
Ty, < TreeSampler (P (+))

G
end for

H(*LOC&l(X; 51, 52, G, Kl, KL) ERnXd
for k € [1, Nr] do

10: H'®) 50 (H) € R

11: end for

12: H' + Fuse <{H/(k)}

A A

c Rnxd
ke[l, Nr]

> We directly implement the operator Fuse (-) via a simple post-hoc mean fusion. Yet, note
that other sophisticated alternatives are options, too.

13: H' < - H' + (1 —v)-H € R"*4
14: return H' € R"*d

34

Under review as a conference paper at ICLR 2026

F.2 ALGORITHM OF TREE SAMPLER

Recall the brief description of the utilized tree sampler in Sec. and a more detailed introduction in
Sec.[Glof Appn. To facilitate a better understanding, in this subsection, we will provide an algorithm
pseudo-code as well as line-by-line explanations for the convenience of implementations or some
possible future extensions and improvements.

We give an explanation of Algorithm[2]as follows:

Lines 1 computes the transition matrix of a Markov Chain defined based on edge weights
s = {sc} . according to Eq.

Lines 2 randomly generate a node permutation a[-] with its first element as the root of the
sampled tree in the graph.

Lines 3 — 5 initialize the arrays Next[-] and InTree[-]. The former denotes a temporary
linked array pointing from the leaf nodes to the root node of the sampled tree (we treat the
temporary tree as a rooted tree with root node a[0]). The latter denotes whether a node v is
contained in the current (rooted) sampled tree.

Line 6 takes the root node a[0].

Line 7 — 23 finds a node v € V that is not in the current tree and starts a new walk (recall
the above-mentioned Markov Chain) from the node v (until encountering a node already
in the current tree). The walk would contain some repeated nodes, and we should strip all
circles or loops to obtain a path. Finally, we take all the nodes and edges, and merge them
into the tree node and tree edge sets, respectively.

Line 8 — 11 attempt to identify a new node that is not in the current tree to start a new walk.

Line 12 — 16 sample a walk step by step (each time sampling a node in a categorical
distribution) and record this walk in the way of Next pointers. Notably, the iteratively
sampling operations implicitly strip all the loops or circles by substituting the old Next (u)
with a new value, considering this point from the perspective of a linked array, and obtain a
directed path. The walk (or the directed path) will end at a node that is already contained in
the current tree, i.e., InTree[v] = True.

Line 17 — 22 add all nodes and edges in the path into the tree node set and the tree edge
set, respectively.

Line 24 returns the sampled tree.

35

Under review as a conference paper at ICLR 2026

Algorithm 2 Algorithm of Tree Sampler

Description: Given a positively weighted directed graph G, define a tree distribution conditioned on
graph G as Pg (T), with the unnormalized score equaling to the product of all edge weights in a tree
(Recall Eq. in the main text). Return a spanning tree of graph G sampled from Pg (T'). Check
Sec.[F2)for the line-by-line explanations of this algorithm.

Input: a graph G = (V, E) with first-order neighborhoods { N, } .., (or equivalently the adjacency
list of 7), edge weights s = {s (€)},. Where e € E is a undirected edge of graph G

Output: the tree T ~ Pg (T) with T = (Vr, Er), where V and E7 denote its node set and its
(undirected) edge set, respectively

Note: (1) Next [v] is a "next" pointer directing the next node after node v, noting that it implicitly
includes a loop-striping process. The Next [-] operator with a Head node defines a linked array,
representing a random walk. Since it implicitly includes a loop-stripping process, the above random
walk is essentially a path. InTree [v] € {True, False} denotes whether node v is in the current tree.

(2) This tree sampler can be highly parallelized via, e.g., the OpenMP library at
https://www.openmp.orqg/. Besides, it can naturally support simultaneously sampling
multiple trees. We also provide a block acceleration trick (Algo. [3), which can further improve its
parallelizability with only an ignorable deviation from standard sampling.

1: Calculate a Markov Chain (transition matrix) based on the edge weights s, recalling Eq.

s(e=(i ¢ j))

Pt = omea st SO 7
2: Generate a random permutation of V- = {wvg, vy, --+, vp_1}, Le., a[], where n = |V].
3: foreachv € V do
4: Next [v] + —1, InTree [v] + False
5: end for
6: InTree [a [0]] + True, Vr <+ {a[0]}, Er <0
7: for each ¢ € [0,n — 1] do
8: v < alt], wvo < v
9: if InTree [v] then
10: Continue
11: end if
12: while InTree [v] = False do
13: u < Sample (u; {pvﬁu}uem)
14: Next [v] u
15: VU
16: end while
17: while InTree [vg] = False do
18: InTree [vg] < True
19: Vr Vi U {vo}
20: Er + Ep U {vg <> Next [vo]}
21: vg < Next [vg]

22: end while
23: end for

24: return T < (Vp, E7)
36

https://www.openmp.org/

Under review as a conference paper at ICLR 2026

F.3 ALGORITHM OF BLOCK ACCELERATION OF TREE SAMPLER

As introduced in Sec.[E] we propose a block acceleration tree to improve the parallelizability of the
tree sampler (see Algorithm 2, which can be efficiently and conveniently implemented via Tensor
operations (using Torch library https://pytorch.org/) as well as some other tools.

We give an explanation of Algorithm 3]as follows:

Line 1 call the GraphCut operator to cut the graph into several blocks and return the block
numbers of all n nodes in V', where BlockNo (v) denotes the block number of node v € V.
The motivation can be found in Sec. [El for details.

Line 2 calculates the new edge index of the graph G with new node labels, i.e., block
numbers.

Lines 3 — 6 obtain the edge index and the corresponding edge weights inside each block.

Line 7 obtains the edge mask indicating all edges between blocks. These edges are essentially
edges in G’, but note the node labels.

Line 8 — 9 obtain vanilla edges and weights between blocks.
Line 10 relabel the between-block edges (i.e., the edge index) inside G’ (recall Sec. ELI)

Line 11 merges a multi-edge into a single edge. The weight of the single edge is the sum of
the edge weights of vanilla edges contained in this multi-edge.

Line 12 — 14 calls the operator TreeSampler (-) to separately sample a tree for each block,
including the special block 0, which takes blocks as new nodes.

Line 15 — 16 compute the row index of each related edge positioned in the edge index
of the tree Tj, which is also the ID of a multi-edge. Each related edge is contained in a
multi-edge and can be numbered with the ID of the multi-edge. In other words, Index [i] = j
represents the i-th related edge (relabeled with the respective block number) corresponds to
the j-th tree edge in block 0 (i.e., TreeBlock[0]). Each tree edge in TreeBlock[0] (i.e., an
above-mentioned single multi-edge) corresponds to many relabeled edges (called related
edges).

Line 17 selects all the related edges. The edge index has many repeating rows, e.g.,
[3, 5], [3, 5], [3, 5], where 3 and 5 denote the 3-th and the 5-th collapsed nodes (i.e., block
numbers). Note that they represent different vanilla edges.

Line 18 selects those edge weights. Different repeating rows in the edge index may have
different edge weights, since they are essentially different edges, yet with the same pair of
end node block numbers.

Line 19 calculates the edge weight of a multi-edge as the sum of all the related edges it
contains. For example, there are 7 numbers of [3, 5]s with edge weights sq, - - - , g, and
then they will be merged into a single edge (a multi-edge) with the weight s = Z?:O ;.
Now, there is only one copy of [3, 5].

Line 20 represents a normalization operation, which can calculate n categorical distributions
with possibly different lengths.

Line 21 represents a Gumbel sampling step. We calculate the log values and add inde-
pendently sampled Gumbel variables to them. Please refer to Jang et al| (2016) for a
detailed introduction to Gumbel sampling or the Gumbel Softmax trick, which is popular
for categorical sampling.

Line 22 is the most key step. We utilize the operator Scatter_ArgMax (-) to select the
maximum element for each group simultaneously, which is typically much more efficient
than those less-optimized simple variants of practitioners.

Line 23 concatenates all the trees from different blocks (i.e., Tp, - - - Tk ;) into a single tree
T, which is our sampled tree.

Line 24 returns the tree 7T'.

37

https://pytorch.org/

Under review as a conference paper at ICLR 2026

G DETAILS OF EFFICIENT TREE SAMPLER

Restricting the tree distribution into such a parametric class (Eq.[2) has another benefit, i.e., it has
a deep connection with extensive prior studies on random spanning trees in Theoretical Computer
Science |Wilson| (1996)); [Broder (1989)); [Kelner & Madry| (2009); |[Durfee et al.| (2017)); Wilson &
Propp| (1996). Sampling such trees conditioned on a given graph can be achieved via different
techniques, e.g., determinant calculation/Matrix Tree Theorem, random walk Wilson| (1996), and
effective resistance |[Durfee et al.|(2017). For simplicity and implementation convenience, we follow
the study Wilson| (1996) and adopt a random walk-based tree sampler (demonstrated in Algorithm [2)).
It maintains real-time tree node and edge sets Vi and Er, and at each iteration, find a node v ¢ Vi
and start a new random walk W, from v (i.e., W,, = (v — v; — v9 — --- — v’)) until encountering
anode v’ € V. The walk W, is produced following the Markov Chain induced from the edge scores
s={s(e)}.cq le:

Picsj = s (e (“_”)), e [0,1]. (74)

Ze/:(u—)k)Eé 5(6)

After loop stripping, all nodes and edges contained in W,, = LoopStrip (W,) are merged into V-
and Er, respectively. More details are provided in Algorithm[2] This sampler is simple and efficient
with only O (7 (p)) running time, where 7 (p) denotes the expected hitting time of two random nodes
u,v € V sampled from stationary distribution 7, of the Markov Chain p (Eq. :

7(p) = EBuem, [Step (u = 0) | = Y mp(u) - mp(v) - Step (u — v), (75)
u,veV

where Step (u — v) denotes the expected number of steps for a random walk from node « to (hit)
node v at the first time. As pointed out in [Wilson| (1996)), O (7 (p)) ~ O (|V]) for most random
graphs, which is much faster than their cover time (typically O (|V|log|V])). Notably, it can also
be parallelized and sample multiple trees simultaneously. Moreover, we propose a further optional
block acceleration when dealing with very large graphs (detailed in Algorithm [3|and Sec. [E|of Appn.)
with a Graph Cut technique and Gumbel-Softmax edge down-sampling, which sacrifices only some
unimportant low-score edges.

38

Under review as a conference paper at ICLR 2026

H SET OF MOTIVATION EXPERIMENTS

In this section, we will provide some motivation experiments, whose results will justify some parts of
the design of our framework.

H.1 STUDIES ON EFFECT OF HOMOPHILY ESTIMATION ON GENERALIZABILITY

Based on Fig.[§] it can be clearly seen that as the accuracy rate of the homophilous estimator increases,
the performance on all our datasets is consistently and continuously growing. Moreover, in extreme
cases, when the homophilous estimator has absolute performance (with an accuracy rate of 1), the
precision of all datasets also reaches 1. Thus, it can be proved that when we find a better homophilous
estimator, we can obtain better generalization performance, and there is no bottleneck. Therefore, it
tells us to pursue the quality of the homophilous estimator rather than randomness.

10 =OF Mean Accuracy
+ Standard Deviation

10 0 Mean Accuracy
+ Standard Deviation

> >
) o
© © 08
£ <
3 3
206 207
(= c
3 3
204 EUG
05
0.2
04
00 o1 02 03 04 05 06 07 08 09 10 09 10
(a) Cora (b) Pubmed
1.0
<O~ Mean Accuracy 10 <Or Mean Accuracy
0o + Standard Deviation + Standard Deviation
09 s
08 >
o Qo8
S ©
507 5
g gor
<Cos <
c c
g gDS
05
= =
05
04
04
03
0.0 01 02 03 04 05 06 07 08 09 1.0 03 0.0 0.1 02 03 04 05 06 07 08 0.9 1.0
P P
(c) Actor (d) Cornell

Figure 8: Effect of homophily estimator accuracy on model performance

39

Under review as a conference paper at ICLR 2026

H.2 EFFECTS OF PREDICTION-BASED GRAPH AUGMENTATION ON NHCC

We conduct a study on how the graph augmentation affects the values of NHCC. As illustrated in
Fig. [0l the distillation-based top-k augmentation strategy (Sec. [)) can effectively improve the NHCC
values (i.e., the number of homophilous connected components), which are the theoretical upper
bounds of our designed ideal tree distributions.

150 —0— NHCC 1400 —o— NHCC
120
1200
100
(& (&)
(&) Q 1000
I I
z =z
60 800
40
600
20
1 10 20 40 60 100 200 1 10 20 40 60 100 200
Enhanced edge count (per node) Enhanced edge count (per node)
(a) Cora (b) Pubmed
20
2000 ﬂ —o— NHCC'
18 —————
1750
16
1500
1
©Q 1250 (&)
‘I’ %] 12
2 1000 §
10
750
8
500
250 ¢
o
1 10 20 40 60 100 200 N 1 10 20 40 60 100 200
Enhanced edge count (per node) Enhanced edge count (per node)
(c) Actor (d) Cornell

Figure 9: Variation of NHCC with graph augmentation edge numbers. Discussed in Sec.

40

Under review as a conference paper at ICLR 2026

H.3 STUDIES ON DEGREE IMBALANCE ISSUE OF SIGMOID EDGE ESTIMATOR

There is an important alternative comparison for the definition of tree distribution scores mentioned
in in Sec. 4.2] of the main text. If we modify the score definition to sample based on the edge weights
of the embedded inner product sigmoid, the generated tree will face a serious degree imbalance
problem. This imbalance phenomenon stems from the fact that the sigmoid function tends to generate
a polarized weight distribution, resulting in some nodes receiving excessive connections and attention
while others are ignored or marginalized.

The proposed tree sampling distribution can effectively alleviate this problem and achieve an improve-
ment in degree balance of nearly 40% for most moderate-sized graphs. In terms of implementation,
we adopt the variance of the node degrees on the tree as the key metric to measure the degree balance,
i.e., the smaller the variance value, the more uniform the degree distribution between nodes and the
more balanced the tree structure. Formally, the metric of node degree imbalance can be formulated as

follows:
V(dcgrcc) — \/|1‘/| . Z (dv _ d)27 (76)
veV

where d,, is the degree of node v € V and d= |17‘ ZveV dy.

Fig.[I0]indicates that the spanning tree generated by the traditional sigmoid sampling method based
on the embedded inner product has a relatively high degree variance, reflecting a serious structural
imbalance. Sampling trees from this distribution significantly reduces this variance, leading to more
uniform node connections in the tree structure. The improvement of this degree balance not only
helps to avoid deviations in the process of information aggregation, but also ensures that each node in
the network can obtain relatively fair information dissemination opportunities and the richness of
information, thereby enhancing the expressive ability and generalization performance of the overall
model.

25

3 Ours
271 Sigmoid of Inner Product of Embedding

- N
o S

Degree Variance
3

Actor Pubmed Cornell

Datasets

Figure 10: Degree variance comparison of two sampling methods on four datasets. The solid columns
represent the method we proposed, and the diagonal columns represent the sampling method based
on the sigmoid value of the inner product between node embeddings.

41

Under review as a conference paper at ICLR 2026

I MORE DISCUSSIONS OF EXPERIMENTS OF EFFICIENCY COMPARISONS

In Table 2] we present a comparison of the running times of different models across multiple datasets.
These datasets encompass graph-structured data of varying scales and complexities, facilitating a
comprehensive evaluation of each model’s efficiency. As observed in Table[2] our method achieves the
fastest running times across all evaluated datasets. Specifically, several GTs (GT, SAN, Graphormer)
encounter out-of-memory issues on larger graphs like Flickr and ArXiv, while our method scales
efficiently to these datasets. For computationally intensive methods like ANS-GT and GOAT, which
require over 1 second per epoch even on small graphs and escalate to 20-50+ seconds on larger
datasets, our method maintains sub-0.02 second runtime on small graphs and only 0.246 seconds on
ArXiv. Even when compared to recent efficient GTs like SGFormer and DIFFormer, or deep GNNs
like GCNII, our method demonstrates 2-5x speedup across different dataset scales. This outcome
aligns with the theoretical complexity analysis conducted in Sec.[.4] affirming that our method holds
a computational complexity advantage in practice.

J SUPPLEMENTARY EXPERIMENTS

In this section, we provide some supplementary experimental results for a better understanding of our
graph learning paradigm and framework.

J.1 HYPER-PARAMETER STUDIES

In our experimental implementation, there are several key hyper-parameters that have a significant
impact on the model’s performance. First, there is the tree quantity parameter N, which determines
the number of trees included in the forest model. Under a certain quantity, the prediction performance
of the model will improve as the value of N7 increases. However, when Ny reaches a certain quantity,
the performance improvement will stop or even decline, and the computational complexity will also
increase accordingly. Therefore, it is necessary to find the optimal balance point between model
performance and computational efficiency.

Secondly, there are the parameters $; and 5. These two parameters jointly adjust the contribution
weights of different sub-models in the All-In-One Local Layer. 3; controls the influence intensity of
the first GCN, while (35 regulates the contribution degree of the attn model. By adjusting the propor-
tional relationship of these two parameters, the optimal fusion among different model components
can be achieved, thereby improving the overall prediction accuracy.

Finally, there is the residual parameter . It is responsible for balancing the importance weights
between the Forest Layer and the Local Layer. A larger « value will enhance the influence of the
Forest Layer, making the model focus more on long-range information. And the smaller v value
will highlight the role of the Local Layer, allowing domain information to have a more significant
proportion.

42

Under review as a conference paper at ICLR 2026

J.1.1 THE STUDY ON THE NUMBER OF TREES, i.e., N1

In the experiment on the number of trees K, we tested the impact of different numbers of trees on the
model performance on four different datasets. To ensure the fairness and reliability of the results, we
conducted experiments on five random seeds and calculated the mean and variance, which are all
reflected in Fig.[T1]

The experimental results show that the number of optimal trees on different datasets is not fixed,
but it often falls within the range of 6 to 10. We find that there is an obvious trade-off relationship
in the number of trees: When the number of trees is too small, the model faces the problem of
insufficient information richness and is unable to fully capture the complex patterns in the data; When
the number of trees is too large, it is difficult to ensure that each tree maintains a high quality standard.
Trees of lower quality will aggregate incorrect information to nodes, thereby leading to a decrease
in the overall prediction accuracy. It can be clearly observed from the line graph of the experiment
that the performance curves of all datasets show a similar trend: The model performance gradually
improves with the increase in the number of trees, and begins to decline after reaching the peak. It is
worth noting that while the performance declines, the variance of the model’s prediction results often
increases accordingly, which further confirms that the negative impact of too many low-quality trees
can reduce the robustness of the model.

oo oez
<O~ Mean Accuracy <O~ Mean Accuracy
+ Standard Deviation + Standard Deviation
o8t
oss >
1)
oy g
gow 5.
3 3]
I}
Q os <
< 3
L g
2 8
o S
X o
ore
s om
2 0 o 10 2 1 0 0 2 . . . o
Number of Trees Nt Number of Trees Nt
(a) Cora (b) Pubmed
<O~ Mean Accuracy - <O~ Mean Accuracy
+ Standard Deviation + Standard Deviation ‘
08
>0
Fry 8
© hd
5o >
° Sow
) <
< =
= [}
2 Son
$ <]
< o
036 076
0ss 7
' 2 B . s 0 T2 . 0 0 2 “ " .
Number of Trees Nt Number of Trees Nt
(c) Actor (d) Cornell

Figure 11: Model performance with varying number of trees.

43

Under review as a conference paper at ICLR 2026

J.1.2 THE STUDY ON THE HYPER-PARAMETERS OF LOCAL SUBMODULE, i.e., 81, 2

In the in-depth study of the parameters 3; and 35, we discovered an important phenomenon: Different
types of datasets show obvious preference differences for the architecture design of the Local Layer,
and this preference pattern directly reflects the inherent graph structure characteristics of each dataset.

Two completely different optimization modes can be clearly observed from the experimental results
of the Fig.[T2] For the two homophilous graph datasets, PubMed and Cora, the model performance
shows a significant positive correlation with the value of 3; - the higher the proportion of 31, the better
the model performance. It is particularly notable that when 5, and 35 approach 0 simultaneously,
the performance of both datasets has decreased significantly. The fundamental reason for this
phenomenon lies in that at this time, the Local Layer degenerates into the traditional multi-layer
Perceptron (MLP) structure, and MLP is unable to effectively handle the strong correlations and
neighborhood dependencies among nodes in homophilous graphs.

. 0.8540 00 .
.- -
. orron 02
nnnnn

o687

B2

Mean Accuracy
B2
o o
PR

Mean Accuracy

07889

05212

0.9
07748
04380

o5 os o7 o e 1o 00 01 02 03 04 05 06 07 08 09 10
By By

(a) Cora (b) Pubmed

sz

nnnn

vvvvv

Mean Accuracy
Mean Accuracy

B

B

(c) Actor (d) Cornell

Figure 12: Heat map of the influence of parameters (51 and /32 on the model performance of the four
datasets. (a) Cora dataset, (b) PubMed dataset, (c) Actor dataset, (d) Cornell dataset. The depth of
the color represents the average accuracy rate. The horizontal axis is $; and the vertical axis is 3.

In sharp contrast, the two heterophilous graph datasets, Cornell and Actor, exhibit completely
opposite optimization characteristics. Both of these two datasets achieve the best performance under
the condition that 51 and 5 are both 0, fully demonstrating that the heterophilous graph structure
is more suitable for using MLP as the architectural choice for the Local Layer. This is because in
heterophilous graphs, adjacent nodes often belong to different categories. Traditional graph neural
networks are prone to interference from neighborhood noise, while MLP can better capture the feature
information of the nodes themselves.

Further analysis also revealed the differences in sensitivity among the datasets: The Actor dataset
was more sensitive to the changes in the ratios of 5, and B3 compared to the Cornell dataset, and the

44

Under review as a conference paper at ICLR 2026

performance degradation was more significant when the parameters deviated from the optimal values.
Relatively speaking, our method shows stronger robustness on the Cornell dataset and has a larger
fault-tolerant range for parameter selection.

J.1.3 THE STUDY ON THE RESIDUAL COEFFICIENT, i.e., ¥

The parameter -y, as a key parameter in the model, is responsible for balancing the weight distribution
between the remote information (Forest Layer) and the short-range information (Local Layer).
Through systematic experiments on the dataset, we observed consistent and significant forms and
patterns of performance changes.

Based on the observation of Fig.[T3] whether it overly relies on short-range information or overly
emphasizes long-range information, it will lead to a significant decline in the model performance.
The performance curves of all datasets show a similar inverted U-shaped trend (with different peaks) :
As the vy value increases, the model performance gradually improves first, reaches a peak at a certain
specific proportion, and then begins to decline. This phenomenon fully proves that a balance point
needs to be found between long-range information and short-range information in order to further
exert the performance of the model. However, even if the overall trend remains consistent, we can

0.86 0.82

—O0— Mean Accuracy —O0— Mean Accuracy
0.85 + Standard Deviation 0.81 + Standard Deviation
0.84 5050
>
o g
© =]
S o83 Gom
3 <
<. Zon
s £
o
o o
081 E 0.77
080 076
0.79 0.75
0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 09 10 0.0 0.1 0.2 03 04 05 06 0.7 0.8 0.9 1.0
Alpha Residual y Alpha Residual y
(a) Cora (b) Pubmed
041 0.86
—O— Mean Accuracy —O— Mean Accuracy
0.40 + Standard Deviation 0.84 + Standard Deviation
>0 Zoe
3038 © 080
3 o
< <
e 037 o
[
2 c
° =
< 0.36 8 0.76
0.35 0.74
0.34 072
0.0 0.1 02 03 04 0.5 0.6 07 08 09 1.0 0.0 0.1 0.2 03 04 05 06 07 0.8 09 10
Alpha Residual y Alpha Residual y
(c) Actor (d) Cornell

Figure 13: The curves of the model performance varying with the parameter ~y on the four datasets.
(a) Cora dataset, (b) PubMed dataset, (c) Actor dataset, (d) Cornell dataset. The purple solid line
represents the average accuracy rate, and the blue shaded area represents the range of standard
deviations.

clearly observe that different datasets have different degrees of dependence on long-range information
and short-range information. This difference reflects the inherent graph structure characteristics of
each dataset. For example, the Actor dataset shows a stronger dependence on remote information
compared to other datasets, and its optimal ~ value is significantly biased towards remote information.
This preference may stem from the fact that the long-distance dependency relationships among nodes
in the Actor dataset are more important, and a tree structure is needed to capture a broader global
pattern.

45

Under review as a conference paper at ICLR 2026

J.1.4 THE STUDY ON THE HIDDEN DIMENSION HYPER-PARAMETER, i.e., d

In this subsection, we investigate the sensitivity of our model to the hidden dimension d by conducting
experiments with four different settings: d = 128, d = 256, d = 512, and d = 1024. Across all
three datasets (i.e., Cora, PubMed, and Citeseer), the accuracy curves remain extremely stable, with
fluctuations within only 0.5% — 1.0%. This consistency demonstrates that our model is highly
insensitive to the variations of the hidden dimension d and does not rely on delicate hyperparameter
tuning, making it robust and easy to deploy in practical, large-scale scenarios.

Hidden Dimension Study

90.01
Cora
875 —eo— Pubmed
—eo— Citeseer
85.0

N
wv
T

Accuracy (%)
~ [e4) o)
~ o
w o

~
w
o

7251

70.0

128 256 512 1024
Hidden Dimension

Figure 14: Hidden Dimension Study

46

Under review as a conference paper at ICLR 2026

J.2 INTERPRETABILITY STUDIES

Based on the theoretical proof of Theorem [2] we have verified that trees sampled from our tree
distribution can obtain theoretical guarantees on the first-order homogeneity. In this section, we hope
to further conduct in-depth research and explain the internal mechanism of the model performance
improvement, and reveal the essential principle of performance growth by directly analyzing the
quantity of long-range information aggregated by nodes and the validity of this information.

To quantify the benefit of this kind of information aggregation, we introduce a metric of global
homogeneity. This metric can be directly achieved through our Forest Layer - the calculation can be
completed simply by passing the one-hot encoding of the node as input into the network.

It can be clearly observed from the experimental results of Fig. [T3]that in all scenarios, the trees sam-
pled from our distribution exhibit significantly higher remote homophilous information aggregation
capabilities. This phenomenon indicates that our method can capture and utilize the long-distance
information in the graph more effectively, thereby aggregating into more feature representations
with discriminative value. It is precisely because of this enhanced remote information aggregation
capability that our model can achieve better performance on various datasets.

[**Ours**
[ZZZ2 Random Spanning Tree

0.8

homophily ratio

0.2

0.0
Datasets

Figure 15: homophily ratio comparison based on different sample method

This analysis not only verifies and explains the effectiveness of our method from an empirical
perspective, but also reveals the fundamental reason for the performance improvement from the
perspective of information theory - that is, the more full utilization of valuable remote information is
achieved through the improved sampling strategy.

J.3 NODE EMBEDDING VISUALIZATIONS

We plot some node embeddings produced by ours, SGC, and original features in Fig.[T6 Observed
from Fig.[I6] our framework can obtain a much clearer gap between node embeddings from different
node classes, i.e., between-class embedding margins. It partly explains the performance gain of ours
against some counterparts.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

i
i

5,
Y ?Vf.

Original Features on Cora

GCN on Cora

Original Features on Citeseer

GCN on Citeseer

Original Features on Pubmed

GCN on Pubmed

Original Features on Wisconsin

GCN on Wisconsin

Ours on Wisconsin

Figure 16: Scatter plots of original features and embeddings output via GCN and our method on
real-world benchmarks Cora, Citeseer, Pubmed, and Wisconsin.

48

Under review as a conference paper at ICLR 2026

J.4 NOISY-FEATURE NODE CLASSIFICATION TASKS

To evaluate model robustness, we introduce a task called Noisy-Feature Node Classification, where
we inject Gaussian noise (5%, 10%, 15%) into the input node features and observe how classification
accuracy varies under increasing perturbation. We visualize the results in Fig. [[7]and Fig. [I§]to
facilitate a clear comparison. By comparing accuracy trends across different models, we assess
whether our method maintains performance more effectively than existing baselines under node
feature noise. Across all three benchmark datasets -CORA, PUBMED, and CITESEER - our framework
exhibits significantly stronger robustness to feature noise with various levels (i.e., 5%, 10%, 15%)
compared with existing baselines. While all comparative methods show rapidly degrading accuracies
as noise level increases, our framework consistently maintains a clear and stable performance
superiority. For example, on CORA and PUBMED, the advantage is clear: even at the highest noise
level (15%), our model retains 0.631 and 0.646 accuracy respectively, far above the second-best
models, whose performance typically falls into the [0.37,0.49] range. This indicates that our method
is substantially less sensitive to perturbations in node features. The trend is similar in CITESEER,
where accuracy remains above 0.44, while other models are much lower, and NodeFormer collapses
severely due to its instability under noise. The bar plots (see Fig. ??) clearly illustrate that although
all models naturally decline with increasing noise, ours declines much more gracefully, preserving a
significantly higher accuracy. Overall, the results demonstrate that the proposed method possesses
superior noise resilience and thus can maintain high discriminative power with valuable knowledge
even when node features are heavily corrupted.

49

Under review as a conference paper at ICLR 2026

2646 Noise Level: 5%
2647 = meannorm

2648 oo o= Jodetormer
2649 = gcur::paimorm
2650 o

2651
2652
2653
2654
2655
2656
2657 wl
2658

2659 o
2660

2661

e Noise Level: 10%

2663 N meannorm
. =
2665 : gcur::paimorm
2666 07y
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677 (b) Noise Level: 10%

2678

2679 W meannorm
2680 0.8r e difformer

= nodeformer
2681 W gcn+pairnorm

2682 07 —
2683
2684 oer
2685
2686
2687
2688
2689
2690

2691
2692 02 CORA PUBMED CITESEER

0.6

PUBMED CITESEER

(a) Noise Level: 5%

0.6

0.5

0.4}

0.3

02 CORA PUBMED CITESEER

Noise Level: 15%

0.5F

0.4

0.3

2693 (c) Noise Level: 15%

2694

2695 Figure 17: Robustness Comparison under Feature Noise of various levels on Cora, Pubmed, and
2696 Citeseer

2697

2698

2699

50

Under review as a conference paper at ICLR 2026

4
©

Noise
= 0.05
= 0.1
= 0.15

Accuracy
o o o ° o °
N w e w o ~

o
i

o
o

Accuracy
o o ° o o °
N w S w o ~

o
i

o
o

Noise
. 0.05
= 0.1
== 015

o
w

Accuracy

o
N

2705
2706

2715

2716 Accuracy under Noise - PUBMED

2725

2726

2734

2735 o4

2744 0.0 difformer meannorm nodeformer ours pairnorm
2745 Model

2707

2717 Noise
2727

2736

2746 (c) Citeseer

2708
= 0.05
2718
2737
2747

2700 Accuracy under Noise - CORA
2709
2710
- 0.1
. 0.15
2719
2720
2728 . i
difformer meannorm nodeformer ours pairnorm
2729 Model
2738
2739
2748 Figure 18: Robustness Comparison under Feature Noise of various levels on Cora, Pubmed, and
o749 Citeseer

2701
2702
2703

2711

2712 : _
2713 difformer meannorm noﬁ;grer;ner ours pairnorm
2721

2722

2723

2730 (b) Pubmed

2731

2732 Accuracy under Noise - CITESEER

2740

2741

2742 ot

2750

2751

2752

2704

2714 (a) Cora
2724

2733 05

2753

51

Under review as a conference paper at ICLR 2026

J.5 EXPERIMENTS ON LARGER-SCALE GRAPH BENCHMARK

In this subsection, we supplement experiments on a larger-scale graph dataset, i.e., AMiner-CS,
and report the results in Fig. [T9 and Tab. 5] including final performance comparisons as well as
the efficiency comparisons. Across all comparative baselines, our framework achieves the best
classification accuracy, exceeding the second-best method by a significant margin. In addition to
its superior predictive performance, our approach is also substantially faster, requiring only 0.152
seconds per epoch, which is notably lighter than baseline models such as Difformer and dramatically
more efficient than deep GNN methods like Meannorm and Pairnorm. These results collectively
demonstrate that our method effectively breaks the challenging trade-off between accuracy and
computational efficiency, making it highly suitable for large-scale graph learning scenarios.

0,60+ Accuracy Comparison on AMiner-CS

0.55

Accuracy
o o
S Ul
(9] o

©
»
o

0.35

0.30

Ours Difformer Meannorm Pairnorm Nodeformer

Figure 19: Accuracy comparison on the AMiner-CS dataset.

Table 5: Training speed comparison on AMiner-CS (seconds per epoch).

Method Avg Epoch Time (s)

Difformer 0.2524
Meannorm 1.1620
Pairnorm 1.2253
Nodeformer 0.3771
Ours 0.152

52

Under review as a conference paper at ICLR 2026

J.6 EXPERIMENTS ON HIGHLY CONNECTED GRAPH BENCHMARK

In this subsection, we supplement experiments on a dense graph, i.e., Dense Cora, and report the
results in Fig. Dense Cora is a highly connected graph constructed by adding 100 extra edges
per node while keeping comprehensive homophily rate. Observed from Fig. the accuracy first
increases slightly when the number of trees Nt grows from 10 to 12, but then decreases slightly
as the number of trees N is further enlarged to 15 and 20. In other words, we observe that the
addition of extra trees can further improve performance compared to using only a few. However,
introducing too many trees cannot improve performance and may even slightly degrade it, as they
introduce redundancy and would increase the risk of overfitting or over-smoothing issues. Therefore,
even dealing with a very densely connected graph, a limited number of trees would be enough to
encode the essential structural knowledge, without the need to introduce too many trees.

0.500 Accuracy vs. Number of Trees on Dense CORA Graph

0.875

0.850 //4/__‘

0.825

Accuracy
o
e}
o
o

0.775

0.750

0.725

0.700

6 8 10 12 14 16 18 20
Number of Trees

Figure 20: Accuracy vs. Number of Trees on the Dense cora Graph

J.7 GRAPH CLASSIFICATION TASKS

In this subsection, we supplement some experiments on graph classification tasks on the ENZYMES
dataset. We report the results in Fig.[21] with comparisons against seven baselines. While our method
is primarily designed for node classification, we show that it still achieves the best performance
when directly applied to the graph classification task, surpassing all attribute-based, structure-based,
and kernel-based graph classification baselines. This demonstrates that the learned embeddings
generalize effectively from node-level supervision to whole-graph-level prediction, indicating strong
adaptability, generality, and robustness of our model.

cor Graph Classification Performance Comparison

Accuracy (%)

Attr-base GIN-Attr GCN-Attr Struct-base GraphKernel GIN-Struct GCN-Struct

Figure 21: Graph Classification Accuracy Comparison on the ENZYMES Dataset

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

J.8 COMPARISONS WITH PATH-BASED GNNS

While both our work and some path-based methods (such as PAIN [Graziani et al| (2023)) and
PathNNs [Michel et al (2023))) can expand GNNs’ receptive fields, our forest-based paradigm is
fundamentally distinct. The path-based works rely on enumerating fixed-length paths (with exponen-
tial complexity like O(nD')) and stacking layers (with an additional factor L > 2) to approximate
global coverage. These factors (path numbers, path lengths, and layer numbers) make path-based
graph learning inherently suffer from a severe trade-off between global coverage comprehensiveness
and computational cost. In sharp contrast, our forest-based paradigm enables native pairwise node
interaction in a single layer. It achieves full global coverage in linear time, thereby avoiding complex
structural encoding, layer stacking, and path-length constraints.

In this subsection, we supplement some experimental comparisons with some path-based GNN
baselines on the Cora, Citeseer, and Pubmed datasets. We report the results in Fig. @ with
comparisons against path-based baseline. Compared with PAIN [Graziani et al.| (2023)), our method
consistently achieves higher classification accuracy on all three citation networks. On Cora, Pubmed,
and Citeseer, our model improves the performance from 81.44% to 85.46%, from 79.14% to 81.20%,
and from 71.86% to 74.42%, respectively, demonstrating a clear and stable advantage over PathGNN
across different datasets.

Comparison of PathGNN and Ours

90.01

m PathGNN
87.51 mmm Ours
85.0

o)
N
8]

~
~
u

Accuracy (%)
(o]
o
o

Cora Pubmed Citeseer

Figure 22: Comparison of PathGNN and Ours on Cora, Pubmed, and Citeseer.

54

Under review as a conference paper at ICLR 2026

J.9 COMPARISONS WITH HETEROPHILY GNNS

In this subsection, we supplement some experimental comparisons with some Heterophily-Oriented
GNN baselines on the Actor, Cornell, Texas, and Wisconsin datasets. We report the results in
Tab. [6] From this figure, we can clearly see that our method achieves the highest accuracy on
all four heterophily datasets, outperforming recently proposed heterophily-specific GNNs such as
ADPA (2024), GESN [Tortorella & Micheli| (2022), and HiGNN [Zheng et al| (2024).
The improvements are particularly large on Texas and Wisconsin, where our ¢ reaches 91.89% and
86.27%, substantially surpassing the best existing results and demonstrating its strong capability of
capturing informative structural patterns even under severe heterophily. These results confirm that
our approach generalizes effectively across diverse heterophilous scenarios and consistently provides
state-of-the-art performance.

Table 6: Performance comparison on heterophily datasets (Actor, Cornell, Texas, Wisconsin). The
best result in each column is shown in bold.

Method Actor Cornell Texas Wisconsin
ADPA |Sun et al.|[(2024]) 38.8+0.3 829 4+3.0 83.8 £2.7 81.6 =3.5
GESN [Tortorella & Mlcheli| (]2022[) 3456 £0.76 81.14 +6.00 8431 +4.44 83.33 + 3.81
HiGN |Zheng et al.|(2024) 3721 +£1.35 80.00 £4.62 86.22+4.67 8588 +3.18
Ours 39.88 - 0.43 83.24 +2.02 91.89 + 0.0 86.27 £+ 0.0

55

Under review as a conference paper at ICLR 2026

J.10 COMPARISONS WITH OTHER RANDOM TREE-BASED GNNS

We find a recent work, i.e., [Bonchi et al] (2023), has some similarities with ours, but we are
fundamentally different. Bonchi et al.| (2025)) also introduces the tree structures to the graph learning
domain. However, it is different from our graph learning paradigm in the following perspectives:

(1) Core ideas and main motivations: It introduces random trees mainly to accelerate the local GNN
aggregations, by leveraging the tree sparsity to reduce the average number of neighbors. In contrast,
we aim to break the trade-off between complexities and comprehensive global aggregations, i.e.,
providing insights on how to conduct all pairwise node interactions (achieving global coverage) while
significantly reducing running cost compared to traditional graph learning paradigms (with only
linear complexities), which is more challenging and needs novel fundamental revolutions.

(2) Techniques to sample and utilize trees are different: It samples trees from a uniform distribution,
while our technical framework samples trees from a distribution that theoretically biases towards
homophily, facilitating beneficial node knowledge propagations in a tree. It deals with such trees
via linearization based on path splits or a straightforward depth-first search (DFS) visit order, which
reduces informative neighbors for nodes in a tree and risks introducing noisy neighbors. Moreover,
they focus more on local aggregation and still require layer stacking to cover global receptive fields.
Yet, our work proposes a powerful tree aggregator to explicitly address knowledge propagation
along tree paths, achieving global coverage in a single layer without information loss, while keeping
efficiency.

Furthermore, we supplement some comparative experiments and empirically find that our technical
framework consistently achieves better results compared to GERN-GCNBonchi et al|(2025). The
results are reported in Fig. 23]

Comparison of GERN-GCN and Ours

HEm GERN-GCN
B Ours

90

Accuracy (%)
~ ~ [e}] o]
o (6] o (6]

[o)]
w
T

[e)]
o

Cora Pubmed Citeseer

Figure 23: Comparison of GERN-GCN and Ours

We can observe that our method significantly outperforms GERN-GCN across all three datasets.
On Cora, our model achieves an accuracy of 85.46%, while GERN-GCN achieves only 81.17%.
Similarly, on Pubmed and Citeseer, our method shows clear superiority, with accuracy improvements
of approximately 3.0% and 2.5% respectively. These results highlight that our approach not only
surpasses GERN-GCN in accuracy but also exhibits strong generalization across diverse datasets.

56

Under review as a conference paper at ICLR 2026

K MORE EXPERIMENTAL DETAILS

In this section, more details of the experiments are provided to complement the experiments in the
main text, including the experimental environments or platforms, dataset descriptions, and the specific
hyper-parameter configurations, searching strategies, and searching space.

K.1 EXPERIMENTAL ENVIRONMENTS, PLATFORMS, AND TOOLS

We implement it via Pytorch [Paszke et al.|(2019) and optimize it with Adam Optimizer [Kingma &
Bal (2015). All experiments are performed on an Ubuntu system with a single NVIDIA RTX 46000
GPU (48GB Memory) and 32 AMD EPYC 7543 CPUs.

K.2 DATASET DESCRIPTIONS AND EXPERIMENTAL SETUP

We summarize some important details of all the graph benchmarks in Tab. [7] utilized for evaluation,
including the specific splits. We adopt the standard splits similar to GCN |Kipf & Welling| (2017).
For large-scale graph datasets Flickr and Arxiv, we randomly generated 20 class-balanced data
splits to ensure statistical robustness and report the average results across all splits. This multi-split
evaluation approach mitigates potential bias from single data partitions and provides more reliable
performance estimates. To guarantee fair comparison, all baseline methods were evaluated under
identical experimental conditions, including the exact same 20 data splits, consistent hyperparameter
search spaces, and uniform optimization procedures. This standardized evaluation protocol ensures
that performance differences reflect genuine algorithmic capabilities rather than experimental varia-
tions. Our comprehensive comparison framework eliminates potential confounding factors, enabling
objective assessment of each method’s true performance on these challenging large-scale benchmarks.
Notably, in semi-supervised settings, we have only limited labeled nodes since the labels are quite
expensive to obtain in the real world, which is quite significant in our world, since collecting so many
data samples is already challenging enough, not alone collecting enough labels. In our cross-dataset
rank analysis, we employed a fair ranking methodology to handle Out-of-Memory (OOM) scenarios.
For algorithms without OOM issues, we calculated their average ranking across all nine datasets.
When algorithms encountered OOM errors due to their inherently high space complexity, we excluded
those specific datasets from their ranking calculation to ensure fair performance comparison. For
example, if an algorithm experienced OOM on 2 out of 9 datasets, its final ranking was based on the
average across the remaining 7 datasets. While OOM represents a fundamental scalability limitation
of certain architectures, this approach prevents hardware constraints from skewing our comparative
analysis, focusing instead on actual algorithmic performance.

Table 7: Dataset statistics of nine real-world benchmarks with their splits

Dataset \ Nodes Edges Ave.Degree Features Classes \ train/val/test
Cora 2,708 5,429 4.0 1,433 7 140/500/1000
Citeseer 3,327 4,732 2.84 3,703 6 120/500/1000
PubMed 19,717 44,338 4.5 500 3 60/500/1000
OGBN-ArXiv | 169,343 1,166,243 13.77 128 40 800/800/167743
Texas 183 309 3.38 1,703 5 87/59/37
Wisconsin 251 499 5.45 1,703 5 120/80/51
Cornell 183 295 3.22 1,703 5 87/59/37
Actor 7,600 33,544 8.83 931 5 3648/2432/1520
Flickr 89,250 899,756 10.08 500 7 140/140/88970

57

Under review as a conference paper at ICLR 2026

K.3 HYPER-PARAMETERS

We tune hyper-parameters via a two-stage strategy. For the first stage, we treat a tree as a hyper-
parameter and we tune all of them together. In every stage, we choose the hyper-parameters according
to their best validation performance. After the first stage, we enter the second tuning stage. We
select the best trees based on the best validation results, and then fix the trees and tune the other
hyper-parameters. The search spaces of all meaningful hyper-parameters are listed in Tab.[9] and
we omit some unimportant ones because they are actually robust to model performance. For every
kind of experiment, we search in the space randomly for 200 times in total. Additionally, for
better reproducibility, we report all hyper-parameters configurations used by Ours for comparative

experiments in Tab. 8]

Table 8: The Hyper-parameter Configurations of Ours for semi-supervised node classification tasks

on nine public graph benchmarks.

Dataset

Hyper-parameter Configurations

Cora

Ir = 0.01, epochs = 50, d = 256, Ny = 12,
dropout = 0.9, weight_decay = 0.85, v = 0.7,
B1=1.0,052=0.0, K, =2

Citeseer

Ir = 0.005, epochs = 100, d = 128, Ny =12,
dropout = 0.9, weight_decay = 0.75, v = 0.7,
B1=1.0,p0=0.0,K;, =2

Pubmed

Ir = 0.001, epochs = 100, d = 128, N1 = 6,
dropout = 0.6, weight_decay = 0.0001, v = 0.7,
B1=1.0,62=0.0, K =2

Actor

Ir = 0.01, epochs = 90, d = 128, N = 5,
dropout = 0.9, weight_decay = 0.0, v = 0.9,
61 =0.0,82=0.0,Kr =1

Cornell

Ir = 0.01, epochs = 60, d = 256, Ny = 15,
dropout = 0.7, weight_decay = 0.001, v = 0.3,
B1=0.0, 52 =0.0, K, =2

Texas

Ir = 0.005, epochs = 100, d = 256, N7 = 5,
dropout = 0.5, weight_decay = 0.00001, v = 0.6,
b1 =04, 52 =0.0, K, =2

Wisconsin

Ir = 0.01, epochs = 100, d = 128, N7 = 5,
dropout = 0.6, weight_decay = 0.0, v = 0.1,
B1=02,6,=08 K =1

Ogbn-Arxiv

Ir = 0.0005, epochs = 10, d = 256, Nt = 4,
dropout = 0.8, weight_decay = 0.0, v = 0.5,
B1=04,52=0.6,K,=2

Flickr

Ir = 0.01, epochs = 30, d = 128, Ny =5,
dropout = 0.3, weight_decay = 0.00001, v = 0.6,
B61=1.0,82=0.0, Kp =2

58

Under review as a conference paper at ICLR 2026

Table 9: The Hyper-parameter Search Spaces.

Hyper-parameters Hyper-parameter Search Spaces

Ir 0.01, 0.001, 0.0005

epochs linspace(10, 110, 10), 200
d 64, 128, 256
dropout linspace(0.1, 1, 0.1)

weight_decay linspace(0.6, 0.95, 0.05), 0.0, 0.001, 0.0001, 0.00001

linspace(0.1, 1, 0.1)

|
|
|
|
Nr | 4,5,6,8, 10,12, 15
|
|
|
|
|
|

v

Ba linspace(0.1, 1, 0.1)
B1 linspace(0.1, 1, 0.1)
K 1,2

59

Under review as a conference paper at ICLR 2026

L DETAILS OF PREDICTION-BASED GRAPH AUGMENTATION

As mentioned in Sec. and Sec. [FIof Appn., we introduce a simple graph augmentation to support
our framework. The motivation is basic: we expect to make the vanilla graph G become connected,
and thus we can effectively and conveniently sample trees on the augmented variant. Besides, we
also find that it can also improve the NHCC value of the graph (Sec. [H.2).

In our implementation, we adopt a Maximum Inner Product Search (MIPS) between K, i.e., node
label predictions, which is efficient and easy to implement via the Faiss|[Johnson et al.|(2019) library
(supporting even billion-scale similarity search with GPUs). We conduct top-k selection for each
node (via the metric inner product) on the vanilla graph for simplicity. Further improvement can be
developed to, e.g., consider node specialty (e.g., densities or degrees) and shrink the number of added
graphs. The added edges are merged into the vanilla edge set and drop those duplicated edges. For
reproducibility, we add 12, 10, 15, 15, 10, 5, 8, 8, and 6 edges for each node on datasets ora Citeseer,
Pubmed, Actor, Cornell, Texas, Wisconsin, OGBN-Arxiv, and Flick, respectively. We find that the
hyper-parameter is not a sensitive hyper-parameter and its influence on the generalizability of final
performance is limited. Yet, note that the heterophilous graphs may require a slightly larger value,
since, as highlighted above, it can improve the value of the NHCC for the vanilla graph, which has a
theoretical connection with the upper bound of the tree quality (Sec. [4.6).

M ILLUSTRATION OF COMPARISONS BETWEEN DIFFERENT GRAPH
LEARNING PARADIGMS

We provide a figure (i.e., Fig. to illustrate and compare different graph learning paradigms, e.g.,
neighborhood-based, walk-based, and our forest-based paradigms.

60

Under review as a conference paper at ICLR 2026

Sampling/All

Sampling

(a) Path/Walk-based paradigm (b) Neighborhood-based paradigm

Sampling Fusion

(c) Our Forest-based paradigm

Figure 24: Graph Learning paradigm Comparison: (a) Path/Walk-based paradigm; (b) Neighborhood-
based paradigm; (c) Our Forest-based paradigm.

61

Under review as a conference paper at ICLR 2026

wl i 86T + TT'LY 09°0 F L¥"9S 000 F LT98 000 + 68°T6 0T F vTes €70 T 88°6€ 970 F 0018 6T0 F TrvL 6T°0 + 9v's8 i 152104 i smno
68°¢l i 000 F 0€°Ty 0S°¢€ F 65°€€ YT F 6£°08 IITF 6TLL Y€ F SOvL 0’0 F S0°9¢ 91'l F 06°0L 6€°C F 86'8S €T F 9€¥S i QBN i equieyydein
0061 88’1 F ST'8E Jaee] LY F 98'9% wTF se19 SI'v F 89°¢€ 9L’0 F ¥8'TE €€°0 F 0T08 090 F 8L€L 670 F SE°68 LD NNOJL
9601 980 F STy ¥9°0 F 09°€S LO'T F T6'€9 9TTF 1189 IT1 F 0009 9L'0 F 1S°¥E °E0 F91°8L wo T 9L TS0 F Tees LD JWIOAAIA
wL 67T F €10y 191 F €L°Sy 880 F 0008 IT1 F T6'8L wT F 989 LY'0 F 08'LE 50 F 908 810 F T8'IL 0L'0 F 8¢£C8 1O AUWIOADS
L9l 60°€ F 6LCC 690 F CI'ly 67T F 86'0L ILT F 89°6L wTFore9 790 F £5°6¢ SE'0 F or'6L 61T F €9'1L 8¢'T F LL'T8 1O Towioydxg
e €1°¢ F £6°6¢ Tl F or'es LS'T F €eeL LT F 9L9L 0T F Ter9 160 F 99°LE 8€°0 F €1'6L 9T1 F 66'1L LTT F81°¢8 1O LVOD
Prel 9I'T F 65°8¢ 6T°0 F 00°CS 88'0 F LT99 8’1 F 68'IL 8’1 F 8L'€9 0T0 F €e'LE 07’0 F Te8L 080 F ¥€'L9 060 F 1S°6L LD TowioydoyN
el Wy F 1€0y 80'1 F L¥'6¢ 08'v F L¥'9L ILTF ¥8'LL ITT F 1189 87'0 F 08't¢ 86'0 F 90'9L €1°0 F 9969 LS0 F T0'6L LD A9ULIOJOPON
wel €61 F98'1C 790 F €8'1% 96’1 F LY'9L 97T F TTOL 981 F To'vL 19°0 F 6T'8¢ 8¢l F 86'LL 9I'T F 91'v9 180 F 89°LL 1O LO-SNV
or's1 OO Jaee] 880 F 91'CL 8’1 F9L9L 9TT F 0L'T9 OO Jaee] ¥0°0 F 80°'19 LTO F 80°¢9 LD Jourioydern
00°€l OO Jaee] SLTF STLL 9TT F ¥I'SL 8’1 F ¥T'€9 0T0 F 6L'LE °C0 F T99L °6°0 F ¥9°89 €C0 F 09°LL 1D NVS
LSST OO Jaee] SLTFOLIL 87’1 F 09%L 9TT F 919 0r'0 F SI'LE €1°0 F 8¥'9L 9€°0 F 96'99 TCO F 8S°LL 1D 1D
00°LT 88’1 F 6S°LE T°E0 F seres ¥9'1 F €9 96'C F TEV9 Iee F se1s 80°0 F S¥'6T 0T0 F 0g'LL S1°0 F 90°0L Y0 F TET8 NND doaq NNDMmopeys
8L'8 0€0 F 6L1% 0S'T F 161§ SLY F 1€°0L 959 F 6169 879 F 197L IL0 F v9v¢E L1°0 F 88'6L 8L°0 F ¥TEL 0 F eS8 NNDd22q 1INOD
€81 608 F 11°C¢E 080 F €T6¢ 000 F 8L'09 000 F 98'%9 el F L6'TS 17T F 8¢9C 180 F 90°6L TwLOoF evIL 16'0 F 6918 NNDdoq a8pgdoiq
L9°61 e F orey ¥TO1 F LEOT Y1 F ¥6'CS 0T F 919 el F 1¥'sT 000 F 9¥'ST 90°€ F 90°€L S0 F91°CL 950 F ¥S°6L NNDdoaq wouues|y
€691 LT F 117y L0 F TTHS ¥9'€ F ¥T8¥% 9L'T F 6¥'99 0T F 000% 10'T F vL'6T TS0 F v9°8L 88’1 F ¥L'S9 1S°0 F #1°08 NNDdoaq UWLIOUSpON
9¢ce 9% F 1¥'1¢ 00 F 8S'+S SETT F v6'CS ¥0'81 F 80’1+ 68°C1 F 89°0% 091 F €T 10¢ F creL €T F 0Tvr 8T F ¥T'99 NNDdoaq uuourred
L9L1 €ELTF9TSE Y0 F SS°eS 801 F+96'19 T F 8LE9 16’1 F $9°8% 61°0 F $S°6C ¥T0 F 9¢°LL 170 F 0£0L 070 F 00C8 NNO LNIVSyden
6891 W97 F 8S6¢ Tro F sees €0E F S€T9 wWTF ¥Te9 LTS F eL'6y 61°0 F 99°6C 110 F9TLL 970 F 80°0L 0 F ¥0°C8 NNO NOOIISND
we S8°0 F LOEY o F 09°ss 880 F 01'S9 8’1 F SE'IL 8’1 F 8019 8€°0 F Lv'ee 610 F 2008 o F el €70 F 01'+8 NNO dNddV
wel STy F ¥T9¢ LEO F TSIS LO'T F ¥0'8S 1TT F €L°69 ITT F 65+S STO F 81°0¢ 0S°0 F 0€°18 080 F 0STL 090 F 0L'C8 NNOD A8 ypiadng
0011 680 F ¢’y IT0 F ¢ris 880 F 809L 1TT F vI'SL T F 8L°€9 6€°0 F ¥T9¢ 70 F 058L €10 F 89'1L S0 F or'Is NNOD Hovsydern
8LCl SL'T F Teor 970 F €L'SS 0¥'C F ¢8'8S 87’1 F $9'89 87°0 F ¥1°SS STOF IL'8C T°E0 F TS8L L0 F 8TTL L90 F ¥8'C8 NNOD VD
6871 €TT F 0r'8¢ €0 F LLES STI F STLS 84’1 F 61°69 ITT F 15°¢S LO0 F 88'LT 9T°0 F 8S°6L °e0 F 09°1L 690 F 90°C8 NNOD NOOD
1yl LY'0 F 10Ty 670 F #8°CE 10T F 19°'6L PI'T F ¥8°LL 66’1 F 0L'TL 81°0 F ¢9°6¢ SO0 F ¥6'CL 700 F 8985 I1°0 F 0£°8S JIsse) dTN
ASay i DI ATXTY UISUOISIAN S, [1ouI0) 1010y pawqng 1005911D) ©10D i K103012) i POYIRIN

‘(pourpropun sdn-1ouuni oy} pue papoq 1soq Yy} yIim) uostredwos souewioprad Jo synsaroyy, (0] 9[qeL

62

Under review as a conference paper at ICLR 2026

Algorithm 3 Algorithm of Block Acceleration of Tree Sampler

Description: Given a positively weighted directed graph G, define a tree distribution conditioned on
graph G as Pg (T), with the unnormalized score equaling to the product of all edge weights in a tree
(Recall Eq.[2)in the main text). Return a spanning tree of graph G approximately sampled from

Pg (T') yet with higher parallelizability via a trick called Block Acceleration (Sec. E] and Sec. .
The key idea is to identify a set of unimportant edges with relatively low scores and distinguish them
from other edges by first ignoring and then reconsidering them, which provides a way that first
divides the input graph into several blocks, parallelizably processes intra-block edges, and finally
adds inter-block edges. Check Sec. [F.3]for the line-by-line explanations of this algorithm.

Input: a graph G = (V, E) with its edge index Edgelndex € R™*2 and its edge weights
EdgeWeights € R™*! where m = | E| and we also denote n = |V/|

Output: the tree T ~ Pg (T') with T' = (Vp, Er), where Vi and Ep denote its node set and its
(undirected) edge set, respectively
Hyper-Parameters: K p, the number of blocks

Note: (1) We will call Algorithm with the operator TreeSampler (EdgeIndex, EdgeWeights);

(2) We will call a graph cut technique GraphCut (EdgeIndex, EdgeWeights) (e.g., efficient
METIS Library for implementations), which will return a partition solution of the node set V' of an
input graph G with its edge index and its undirected edge weights;

(3) We denote the operator LookUp (S, X) € N?*! with § € RP** X € R?** to find the row
index of a row X; in S (—1 for rows not contained), assuming no two rows in .S are exactly the same;

(4) We will call two operators Scatter_Add (a, Index) and Scatter_ArgMax (a, Index) from
library torch_scatter, where Index[i] denotes the class number of the i-th row of the matrix a, with
their definions as follows:

la]—1
Scatter_Add (¢, Index) [i] = S I (Index[j] = i) - a[j],
catter_ (a, Index) [i] jzo (Index[j] = i) - a[j] a7
Scatter_ArgMax (a, Index) [i] = argmax;, o<;<|a|¢ Index[j]=i @/J]-

BlockNo < GraphCut (Edgelndex, EdgeWeights) € N™*1

BnLeft, BnRight < BlockNo (Edgelndex[:,0]), BlockNo (EdgeIndex[:, 1])
foreachi € [1, K] do

Mask < (BnLeft = BnRight & BnLeft = i)
EdgelndexBlock|[i], EdgeWeightsBlock]i] + EdgeIndex[Mask], EdgeWeights[Mask]
end for
ZeroMask < (BnLeft # BnRight)
EdgelndexBlockZeroVanilla <— Edgelndex[ZeroMask]
EdgeWeightsBlockZero +— EdgeWeights[ZeroMask]
EdgelndexBlockZeroBlockNo < BlockNo[EdgeIndexBlockZeroVanillal
: EdgelndexBlock[0], EdgeWeightsBlock[0] +— Merge (EdgeIndexBlockZeroBlockNo, EdgeWeightsBlockZero)
: fori € [0, Kp]do
TreeBlock[i] < TreeSampler (EdgeIndexBlock[i], EdgeWeightsBlock]])
: end for
: Index < LookUp (TreeBlock[0], EdgeIndexBlockZeroBlockNo)
: Index + Index [Index > 0]
: EdgeIlndexBlockZeroBlockNoInTree <— EdgeIndexBlockZeroBlockNo[Index]
. EdgeWeightsBlockZeroInTree < EdgeWeightsBlockZero[Index]
: EdgeSum < Scatter_Add (EdgeWeightsBlockZeroInTree, Index)
: EdgeProbabilities + EdgeWeightsBlockZeroInTree / EdgeSum|[Index]

: tmp < log (EdgeProbabilities) + Gumbels, where each element in Gumbels is x =
—log (—log(t)), t ~ Uniform (0, 1)
22: TreeBlock|[0] < EdgeWeightsBlockZeroInTree[Scatter_ArgMax (tmp, Index)]

23: Vp <V, Er < Concat ({TreeBlock[k]
24: return T < (Vp, Er)

W RN

DO DN = = = e e e e e e e

}k 0,K
6%[7 B])

Under review as a conference paper at ICLR 2026

N MORE RELATED WORK
In this section, we will provide more discussions on the literature related to our work.

N.1 GNNS ON HETEROPHILIC GRAPH

While traditional graph neural networks (GNNs) excel at semi-supervised node classification un-
der the homophily assumption, they face challenges in heterophilic graphs—where dissimilar

nodes (with different labels) are often connected—due to misleading message aggregation and

over-smoothing.Existing heterophilic GNNs can be categorized into three main types: aggrega-
tion calibration, graph modification, and other approaches. (1) Aggregation calibration methods

optimize message aggregation to mitigate heterophily’s negative effects while preserving local

topology. H2GCN distinguishes between ego-node and neighbor representations,
combining node embeddings to balance local and global information. ACMGCN

adaptively mixes different frequency signals via low-pass, high-pass, and identity channels, which

successfully separates meaningful information from noise in heterophilic scenarios. (2) Graph modifi-
cation methods adjust the original graph structure to enhance semantic similarity between connected

nodes.Geom-GNN [Pei et al | constructs structural connections via geometric measurements,
preserving topological properties while linking semantically relevant nodes. WRGAT
(2021) learns a new computation graph based on node proximity and local structural similarity,
thereby breaking the constraints imposed by the original edges. GIoGNN|Li et al | captures

node correlations via feature and topology similarity by learning a coefficient matrix, strengthening

connections between semantically similar nodes. DIGL [Gasteiger et al.| (2019b)) utilizes generalized

graph diffusion (e.g., personalized PageRank) to adjust edge weights, thereby promoting connectivity

between nodes with short diffusion distances, aligning with semantic similarity. Other methods

adopt alternative techniques to overcome the limitations of traditional message- passing GNNs on

heterophilic graphs. GESN [Tortorella & Micheli| (2022) employs a reservoir computmg framework,

where node embeddings are generated by an unlearnable recursive message-passing function, thereby

avoiding over-smoothing by controlling the Lipschitz constant to effectively encode structural knowl-
edge. ADPA proposes the AMUD framework to assess how node features interact
with directed topology—it helps determine whether the graph should be modeled as undirected

or directed—and utilizes hierarchical attention to integrate message information across different
scales. HIGNN [Zheng et al| (2024)) defines heterophilous information as the label distribution of each

node’s neighbors, constructs a new adjacency matrix to connect nodes with similar heterophilous

information, and fuses this matrix with the vanilla graph structure to improve performance.

O LLM USAGE STATEMENT

Large language models were employed in this study exclusively for the purpose of linguistic refine-
ment and stylistic enhancement.

64

	Introduction
	Related Literature
	Preliminary
	Method
	Pre-processing
	Tree Sampler
	Tree Aggregator
	Tree Fuser
	Complexity Analysis
	Theoretical Discussion

	Experiments
	Conclusion
	Discussions
	Discussion on Degree Imbalance and the Merits of Long-Distance Knowledge
	Discussion on Aggregating Behavior Comparison among Different paradigms
	Discussion on Over-Smoothness Alleviation of Our paradigm
	Discussion on Propagation Bottleneck Alleviation of Our paradigm
	Discussion on the Motivation of Our Attention-based Estimator
	Discussion on the Generality of the Message Aggregator
	Discussion on the insights of Expressivity
	Discussion on Dealing with Dense Graph
	Discussion on A Case where Our Paradigm might underperform

	Proofs and Derivations
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Theorem 3
	Derivations of Path Decompositions for Some paradigms
	Other paradigms
	Our paradigm

	Extensions of Our Tree Aggregator
	Integrated with Global Attentions
	Fine-Grained Propagation Control
	Generalize Forests

	Accelerations of Our Tree Aggregator
	Selecting Centroid as Root
	Different Greedy Strategies for Different Recursions

	Details of Block Acceleration of Tree Sampler
	Details of Algorithms
	Algorithm of Our Framework
	Algorithm of Tree Sampler
	Algorithm of Block Acceleration of Tree Sampler

	Details of Efficient Tree Sampler
	Set of Motivation Experiments
	Studies on Effect of Homophily Estimation on Generalizability
	Effects of Prediction-based Graph Augmentation on NHCC
	Studies on Degree Imbalance Issue of Sigmoid Edge Estimator

	More Discussions of Experiments of Efficiency Comparisons
	Supplementary Experiments
	Hyper-Parameter Studies
	The Study on the Number of Trees, i.e., NT
	The Study on the Hyper-parameters of Local Submodule, i.e., 1, 2
	The Study on the Residual Coefficient, i.e.,
	The Study on The Hidden Dimension Hyper-Parameter, i.e., d

	Interpretability Studies
	Node Embedding Visualizations
	Noisy-Feature Node Classification Tasks
	Experiments on Larger-Scale Graph Benchmark
	Experiments on Highly Connected Graph Benchmark
	Graph Classification Tasks
	Comparisons with Path-based GNNs
	Comparisons with Heterophily GNNs
	Comparisons with other Random Tree-based GNNs

	More Experimental Details
	Experimental Environments, Platforms, and Tools
	Dataset Descriptions And Experimental Setup
	Hyper-parameters

	Details of Prediction-based Graph Augmentation
	Illustration of Comparisons Between Different Graph Learning paradigms
	More Related Work
	GNNs on Heterophilic Graph

	LLM Usage Statement

