

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FOREST-BASED GRAPH LEARNING FOR SEMI-SUPERVISED NODE CLASSIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing Graph Neural Networks usually learn long-distance knowledge via stacked layers or global attention, but struggle to balance cost-effectiveness and global receptive field. In this work, we break the dilemma by proposing a novel **forest-based graph learning** (FGL) paradigm that enables efficient long-range information propagation. Our key insight is to reinterpret message passing on a graph as transportation over spanning trees that naturally facilitates long-range knowledge aggregation, where several trees—a forest—can capture complementary topological pathways. Theoretically, we demonstrate that as edge-homophily estimates improve, the induced distribution biases towards higher-homophily trees, which enables generating a high-quality forest by refining a homophily estimator. Furthermore, we propose a linear-time tree aggregator that realizes quadratic node-pair interactions. Empirically, our framework achieves comparable results against state-of-the-art counterparts on semi-supervised node classification tasks while remaining efficient. Codes are available at <https://anonymous.4open.science/r/FGL/>.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Wu et al., 2020; Chen et al., 2020b; Thomas et al., 2022) attract much attention in recent years due to their expressivity in solving various graph-related tasks (*e.g.*, node and graph classifications (Feng et al., 2020; Xie et al., 2022) or clustering (Bianchi et al., 2020), link prediction (Yun et al., 2021), and anomaly detections (Dong et al., 2025)), with also many applications in, *e.g.*, texts (Wang et al., 2024b), images (Nazir et al., 2021; Guan et al., 2022), and traffic (Jiang & Luo, 2022). Despite their popularity and successes, most GNNs restrict receptive fields to 2-/3-hop local neighborhoods and focus on nearby information aggregation while ignoring distant knowledge, which would limit their real-world application scopes when dealing with challenging tasks where long-range interactions are critical and necessary. For example, as discussed in Sec. A.1, the imbalance of densities or degrees often causes insufficient local knowledge for some nodes, which becomes more severe under graph heterophily and risks further over-fitness from label scarcity. In this paper, we focus on semi-supervised node classifications to underscore labeling challenges.

To facilitate long-distance interactions, existing works have devoted much effort and can be generally categorized into two different architectures: (1) Deep local models (*e.g.*, deep GNNs (Chen et al., 2022c; Li et al., 2019; Chen et al., 2020a)) expand the global receptive fields by stacking multiple local layers, with each considering only first-order information. (2) Shallow global models (*e.g.*, Global Graph Transformers (Ying et al., 2021; Kreuzer et al., 2021)) integrate 1 or 2 non-local aggregating operators (*e.g.*, global attentions), encapsulating all pairwise node interactions in a single layer. Unfortunately, most of them suffer from high time and space complexities (Li et al., 2021; Wu et al., 2022), due to excessive unparallelizable layers (former) or quadratic node-pair interactions (latter). Recently, few prior works attempt to mitigate complexities via some sparsity techniques such as Adaptive Selection (Chen et al., 2022b; Wu et al., 2022) and Graph Rewiring (Shirzad et al., 2023). Yet, they sacrifice global coverage and have to make selections, and thus either risk dropping some important node interactions or heavily rely on extra sophisticated selection strategies. Overall, such methods fail to simultaneously address comprehensive long-range knowledge extraction and cost-effectiveness, which is rooted in the inherent limitation of existing learning paradigms.

Such a graph learning dilemma urges us to rethink existing paradigms and explore an alternative that **breaks the unavoidable trade-off between cost-effectiveness and a global receptive field**. *The*

054
055
056
057
058
059
060
061
062
063
064
065
066
067
essential observation is that these paradigms view a graph as a fusion of structures, whose total costs
can be calculated as follows:

$$\text{Total cost} = (\text{cost per structure}) \times (\text{number of structures}). \quad (1)$$

068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
Thus, when modeling with local primitives—first-order neighborhoods (Li et al., 2019) or short random walks (Zhang et al., 2020)—the per-structure cost is low, but numerous such structures are required for covering long distances. In contrast, global operators (Ying et al., 2021) can reduce the number of structures, yet at the expense of prohibitive per-structure cost due to dense pairwise interactions. Based on the above analysis, we naturally raise a question: *Does there exist a structure that simultaneously controls these two factors?* To answer this question, we recognize that a spanning tree is the minimal subgraph connecting all nodes. Therefore, under limited structure counts, such a tree is the **simplest structure that achieves global coverage** (Fig. 1), indicating that it may be more suitable for long-range propagation. Furthermore, we suggest using a forest (tree set), since a single spanning tree may be insufficient to capture all topological knowledge.

084
085
086
087
088
089
090
091
092
093
In this paper, we propose **forest-based graph learning** (FGL), a novel paradigm that models information propagation on a graph as transport on a forest of spanning trees, economically achieving global coverage. To obtain a high-quality forest, we expect to sample the trees from a distribution biased towards homophilous trees. Theoretically, we demonstrate that as edge-homophily estimates improve, the induced tree distribution asymptotically approaches the ideal one. Accordingly, we propose a tree sampler, based on a well-trained edge-homophily estimator, to enable generating several spanning trees with higher homophily via the weighted Wilson algorithm (Wilson, 1996). Besides, we design a general tree aggregator¹, by deriving two recursions on trees, which propagates global messages in linear running time. Additionally, a post-hoc mean operator is adopted as our tree fuser to merge knowledge from different trees. These components constitute our full framework, as illustrated in Fig. 2.

094
095
096
097
Our contributions are summarized as follows: 1. **New Paradigm**: We introduce a forest-based graph learning paradigm FGL, which can comprehensively capture long-range knowledge with high efficiency. 2. **Theoretical Insight**: We establish a rigorous asymptotic relationship between the accuracy of the edge-homophily estimator and the quality of the induced tree distribution, which reveals that refining the estimator provably yields a better tree distribution. 3. **Effective Approach**: We propose 1) a homophily estimator-based tree sampler, which generates homophilous trees with higher probability; and 2) a general tree aggregator that conducts quadratic pairwise node interactions with only linear complexities. 4. **Experimental Results**: Our framework achieves competitive results against state-of-the-art counterparts in semi-supervised node classifications with higher efficiency, e.g., 11.90% and 16.14% average relative gains against GCNII and DIFFformer (representative Deep GNN and Graph Transformer), respectively.

2 RELATED LITERATURE

098
099
100
101
102
103
104
105
106
107
Deep Local Models. Deep Graph Neural Networks (GNNs) expand their receptive fields by iteratively stacking local aggregators, enabling fine-grained control over neighborhood information at each layer Yang et al. (2020); Fang et al. (2023); Chen et al. (2020a). This depth provides strong expressiveness but comes with notable drawbacks: sequential computation limits parallelism, higher time/space complexities, and the risk of over-smoothing. To mitigate over-smoothing, various strategies have been explored, including normalization layers Zhao & Akoglu (2020); Zhou et al. (2021); Yang et al. (2020), random dropping techniques Rong et al. (2020b); Huang et al. (2020); Fang et al. (2023), and skip connections Li et al. (2019); Chen et al. (2020a); Luan et al. (2019); Xu et al. (2018). Despite these improvements, deep local models inherently rely on step-wise neighborhood aggregation, which prevents efficient global message passing and parallelization.

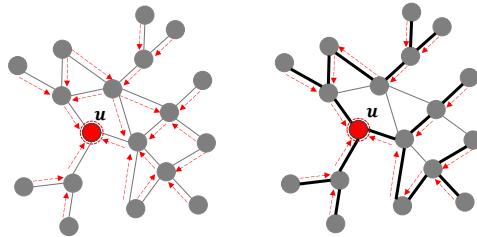


Figure 1: Our paradigm (right) utilizes the most sparse structures of a graph, i.e., spanning trees, to aggregate global messages against the prior paradigms (left).

¹Here, a tree aggregator is to aggregate intra-tree messages, while a tree fuser merges the inter-tree messages.

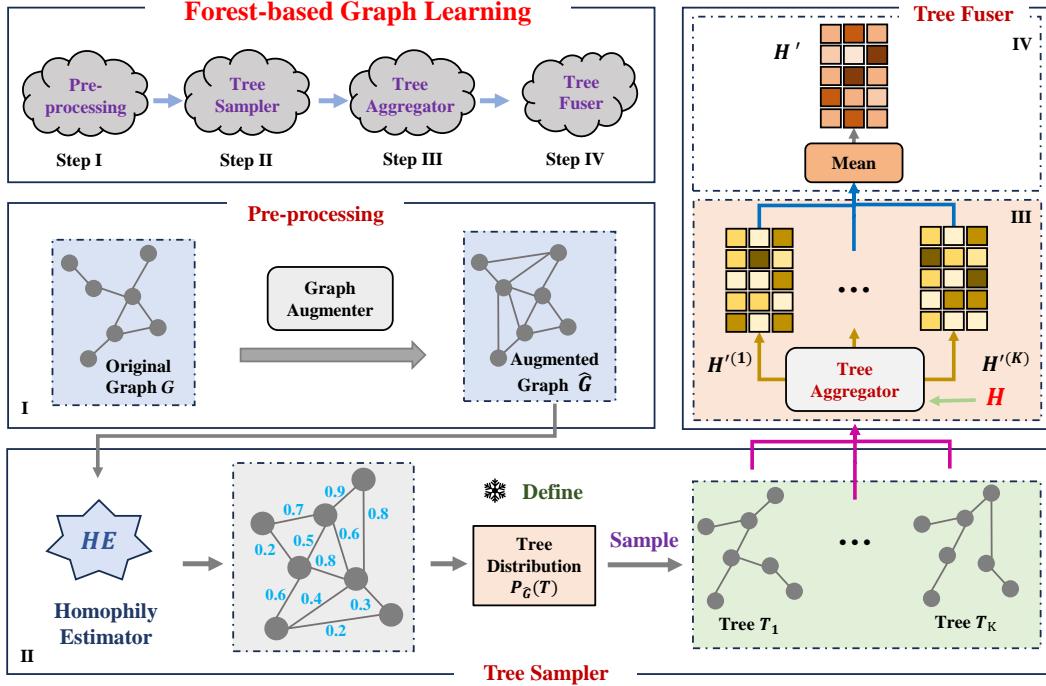


Figure 2: Our framework contains 4 key steps: (I) **Pre-processing** first augments the vanilla graph; (II) **Tree Sampler** then generates multiple spanning trees from a derived distribution; (III) **Tree Aggregator** efficiently propagates messages (H in Eq. 9) over each tree next; and (IV) **Tree Fuser** finally integrates the aggregated messages from all trees into unified embeddings H' .

Shallow Global Models. Graph Transformers (GTs) adopt a contrasting perspective: instead of gradual local aggregation, they model direct pairwise interactions among nodes, often in just a few global layers Min et al. (2022); Hussain et al. (2022); Ying et al. (2021). This shallow global paradigm ($G \approx x \rightarrow y_{x,y \in V}$) allows rapid global communication but typically incurs quadratic complexity. To improve scalability, recent works either sparsify interactions via sampling or pruning (e.g., Gophormer Zhao et al. (2021), NodeFormer Wu et al. (2022), Exphormer Shirzad et al. (2023)), or simplify attention mechanisms to reduce computation (e.g., SGFormer Wu et al. (2024), GOAT Kong et al. (2023)). While these strategies address efficiency, they often lose structural bias, motivating the use of positional encodings Ying et al. (2021); Chen et al. (2022a) or walk-based formulations Zhang et al. (2020). However, designing encodings that are both expressive and efficient remains challenging.

Tradeoff Between Local and Global Models. Deep Local Models excel at capturing fine-grained neighborhood structures but struggle with scalability and long-range dependencies. In contrast, Shallow Global Models enable efficient global message propagation with fewer layers, but often overlook nuanced local structures or incur high complexity without careful approximation. Hybrid designs attempt to combine both perspectives Wu et al. (2021); Rong et al. (2020a); Kreuzer et al. (2021). In contrast, we analyze the essential limitation of existing learning paradigms and propose a novel forest-based paradigm that enables efficient long-range modeling along with natural structural knowledge preservation, addressing this dilemma from a more fundamental perspective.

3 PRELIMINARY

Notations. Let $G = (V, E)$ be an unweighted graph with n nodes $V = \{v_i\}_{i=1}^n$ and m edges $E = \{e_{i,j}\}$. The graph is represented by a feature matrix $X \in \mathbb{R}^{n \times d}$ and an adjacency matrix $A \in \{0, 1\}^{n \times n}$, where $A_{ij} = 1$ if and only if $(v_i, v_j) \in E$. We also define the normalized adjacency matrix $\hat{A} = D^{-\frac{1}{2}}(A + I)D^{-\frac{1}{2}}$, where D is the degree matrix of $A + I$.

Problem Formulation. In semi-supervised node classification, a subset of nodes $V_L \subset V$ has labels $y_i \in \{0, 1, \dots, c - 1\}$, while the remaining nodes are unlabeled. The goal is to learn node embeddings $H'' \in \mathbb{R}^{n \times d}$ such that a simple linear predictor can be applied to H'' to predict node labels for all $v_i \in V$, leveraging both labeled and unlabeled nodes.

162 **4 METHOD**
 163

164 Existing paradigms suffer from the trade-off between cost-effectiveness and a global receptive
 165 field. To obtain global coverage, deep local models with small local structures require stacking *a*
 166 *large number of structures*, while shallow global models with large complex structures incur *high*
 167 *per-structure computational costs*. In this work, we introduce an intermediate-level structure—the
 168 tree—that offers a principled way to balance this trade-off, exhibiting a new learning paradigm. A
 169 tree connects all nodes in a graph in a cost-efficient and non-redundant manner.

170 We build on this insight to propose the **Forest-based Graph Learning (FGL)** framework illustrated
 171 in Fig. 2, which is composed of four key components: (1) **Pre-processing**, which augments the
 172 original input graph to facilitate downstream computation; (2) **Tree Sampler**, which derives a target
 173 distribution over spanning trees and generates multiple trees accordingly; (3) **Tree Aggregator**,
 174 which performs message passing along each individual spanning tree; and (4) **Tree Fuser**, which
 175 integrates the aggregated messages from all sampled trees into a unified representation.

176 **4.1 PRE-PROCESSING**
 177

178 Real-world graphs are often not connected, which hinders the subsequent spanning tree sampling
 179 process. To address this issue, we begin by computing pseudo-labels for each node, denoted as
 180 $Y' \in \mathbb{R}^{n \times c}$. For heterophilous graphs, we employ a simple feed-forward layer, $Y' = \sigma(XW)$
 181 whereas for homophilous graphs, we use a GCN layer, $Y' = \sigma(\hat{A}XW)$. The learnable parameters
 182 $W \in \mathbb{R}^{d \times c}$ are optimized on the labeled nodes using the standard cross-entropy loss. We then
 183 construct an augmented graph \hat{G} by leveraging the pseudo-labels. For each node, we use its pseudo-
 184 label representation $y' \in \mathbb{R}^{1 \times c}$ to identify its k nearest neighbors. If an edge does not already exist
 185 between the node and one of these neighbors, we introduce a new edge.

186 This pre-processing step offers two key benefits at the same time. First, it ensures graph connectivity,
 187 which is necessary for subsequent spanning tree sampling. Second, it increases the *homophily*
 188 *ratio*—the proportion of edges linking nodes with similar class labels—which has been shown to
 189 improve performance in semi-supervised node classification (Chien et al., 2021).

190 **4.2 TREE SAMPLER**
 191

192 To generate a high-quality forest composed of several spanning trees, we identify two essential
 193 principles: 1) *homophily ratios*: Since we target node classification, it is a critical measure on graphs
 194 and thus can be naturally transferred to trees. 2) *diversity*: if these trees tend to overlap, then the
 195 forest would be degraded into a single tree, which may be insufficient to cover all the topological
 196 knowledge of a graph, therefore necessitating diversity.

197 Therefore, we expect to sample the trees independently from a distribution $P_{\hat{G}}(T)$ biased towards
 198 trees with high homophily ratios. We assume each tree T has a score $s(T)$ that can be calculated as
 199 the product of edge scores $s(e)$, thereby defining the tree distribution on a graph as follows:

$$P_{\hat{G}}(T) = \frac{s(T)}{\sum_{T \subseteq \hat{G}} s(T)} = \frac{\prod_{e \in T} s(e)}{\sum_{T \subseteq \hat{G}} \prod_{e \in T} s(e)}. \quad (2)$$

200 The only remaining step is to determine the edge scores $s(e)$. Our main idea is to assign higher scores
 201 to those homophilous edges and lower scores to heterophilous edges, which intuitively improves
 202 the probabilities assigned to homophilous trees. We justify this intuition in Sec. 4.6 by theoretically
 203 demonstrating that this scoring strategy can induce a distribution biased towards higher-homophily
 204 trees (Theorem 2). Therefore, we introduce a homophily estimator to find those homophilous edges
 205 and assign higher scores to them. Here, we implement this homophily estimator via local attention:

$$\alpha_{i \rightarrow j} = \frac{\exp(Q_i K_j^\top / \sqrt{c})}{\sum_{v \in \mathcal{N}(i)} \exp(Q_i K_v^\top / \sqrt{c})}, \quad \forall i, j \in V \quad (3)$$

206 where $Q = XW_Q$, $K = XW_K$, and $V = XW_V$ with learnable $W_Q, W_K, W_V \in \mathbb{R}^{d \times c}$. \mathcal{N}_i denotes
 207 the first-order neighborhood of node $i \in V$. We train the local graph attention by minimizing
 208 the cross-entropy loss with targets Y' . Thus, the edge score $s(e)$ for $e = (i, j)$ is defined by
 209 $s(e) = (\alpha_{i \rightarrow j} + \alpha_{j \rightarrow i}) / 2$. Finally, our tree sampler generates N_T independent spanning trees from
 210 $P_{\hat{G}}(T)$ via the algorithm of Wilson (1996) in nearly $\mathcal{O}(n)$ time per-tree.

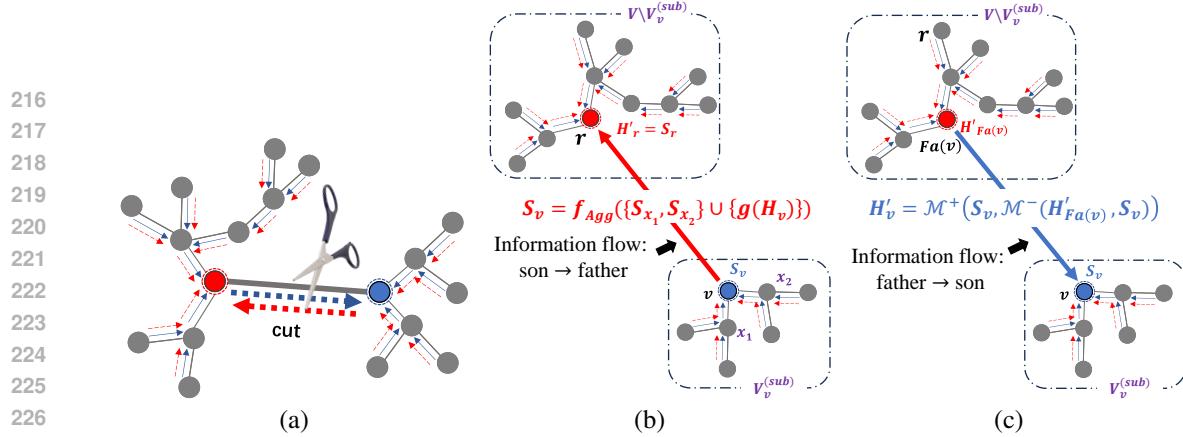


Figure 3: Illustration of the tree aggregator. The red node denotes the root, and the blue node indicates the focal node. (a) Red dashed lines depict the bottom-up computation of S , while blue dashed lines represent the computation of H'_v . (b)(c) Detailed computations along the focal edge are shown.

4.3 TREE AGGREGATOR

The tree aggregator $f_{\text{Agg}}^{(T)}$ over tree T with root r is defined as $f_{\text{Agg}}^{(T)} : H \in \mathbb{R}^{n \times d} \mapsto H' \in \mathbb{R}^{n \times d}$, which is designed based on a general message aggregator $f_{\text{Agg}}(\cdot)$. The idea is rooted in a key observation: for neighboring nodes u, v on tree T , the globally merged messages targeting them differ only at one edge direction (visualized in Fig. 3). Leveraging this observation can facilitate efficient tree propagation by any general $f_{\text{Agg}}(\cdot)$ that satisfies: given two message sets A, B with possible auxiliary information (e.g., weights), if merging A into B getting S , then there always exists two operators $\mathcal{M}^{+/-}(\cdot)$ to make the following sufficient properties hold.

$$\begin{aligned} f_{\text{Agg}}(S) &= \mathcal{M}^+(f_{\text{Agg}}(B), f_{\text{Agg}}(A)), \quad \text{Property (I): Combine} \\ f_{\text{Agg}}(B) &= \mathcal{M}^-(f_{\text{Agg}}(S), f_{\text{Agg}}(A)), \quad \text{Property (II): Disentangle} \end{aligned} \quad (4)$$

where $\mathcal{M}^{+/-}(\vec{a}, \vec{b})$ denote adding vector \vec{b} to \vec{a} or deleting \vec{b} from \vec{a} , which are allowed unsymmetrical via auxiliary information. These identified properties do not sacrifice the generality of $f_{\text{Agg}}(\cdot)$. Indeed, many popular auto-regressive sequence models and first-order GNN aggregators can be adopted, e.g., linear attention Zhou et al. (2021); Wu et al. (2024), linear Recurrent Neural Networks (RNNs) Liu et al. (2024), and State Space Models (SSMs) Sarem et al. (2024); Zhang et al. (2025); Xiao et al. (2024) as well as non-linear variants (Sec. A.6), thus highlighting its generality.

Based on these properties, we can theoretically derive a general tree aggregator $f_{\text{Agg}}^{(T)}$ high-levelly via two recursions in Theorem 1. The proof and further explanation can be found in Sec. B.1 of Appn.

Theorem 1. Given a tree T with a root $r \in V$, each node $v \in V$ has a subtree $T_v^{(\text{sub})}$ with nodes $V_v^{(\text{sub})} \subseteq V$. Denote the father node and the children nodes of v on tree T as $\text{Fa}(v)$ and $\text{Child}(v)$. Let S_v represent the aggregated message at node v from all messages from $V_v^{(\text{sub})}$. Then, given any message aggregator $f_{\text{Agg}}(\cdot)$ satisfying Properties (I) and (II) as well as function $g(\cdot)$, our tree aggregator $f_{\text{Agg}}^{(T)} : H \mapsto H' \in \mathbb{R}^{n \times d}$ can be always derived as two recursions via operators $\mathcal{M}^{+/-}$:

$$\forall u \in V, \quad S_u = f_{\text{Agg}} \left(\{S_v\}_{v \in \text{Child}(u)} \cup \{g(H_u)\} \right), \quad \text{Recursion (I)} \quad (5)$$

$$\forall v \in V, \quad H'_v = \mathcal{M}^+ \left(S_v, \mathcal{M}^- \left(H'_{\text{Fa}(v)}, S_v \right) \right), \quad H'_r = S_r, \quad \text{Recursion (II)} \quad (6)$$

where $H, H' \in \mathbb{R}^{n \times d}$ denote node embeddings before and after aggregation.

This theorem provides an efficient way to propagate long-distance information on a tree: (1) First, to calculate S_u for each node $u \in V$, it suffices to collect all distant messages targeting the root once, by recursively calling $f_{\text{Agg}}(\cdot)$; (2) Then, apart from the root $H'_r = S_r$, we can calculate H' for other nodes efficiently via the operator \mathcal{M}^- followed by \mathcal{M}^+ .

Implementation Despite the strong generality, we still prioritize a linear variant for simplicity and ease of implementation. Specifically, adopting f_{Agg} and \mathcal{M}^+ as weighted sums, \mathcal{M}^- as weighted difference, and g as a linear transformation, we implement Eq. 5 and Eq. 6 as follows:

$$\forall u \in V, \quad S_u = \sum_{v \in \text{Child}(u)} (\alpha_{v \rightarrow u} \cdot W_A) \cdot S_v + W_B \cdot H_u \in \mathbb{R}^d, \quad (7)$$

$$270 \quad \forall v \in V, \quad H'_v = S_v + \alpha_{\text{Fa}(v) \rightarrow v} \cdot W_A \cdot \left(H'_{\text{Fa}(v)} - \alpha_{v \rightarrow \text{Fa}(v)} \cdot W_A \cdot S_v \right) \in \mathbb{R}^d, \quad (8)$$

$$271$$

272 where $W_A \in \mathbb{R}^{d \times d}$ and $W_B \in \mathbb{R}^{d \times d}$ are learnable matrices. The local attentions $\{\alpha_{i \rightarrow j}\}_{i,j}$ (defined
273 in Eq. 3) are utilized to enhance the impact of homophilous edges and weaken heterophilous edges.
274

275 **Acceleration and Extensions** Note that parallelization can be conducted both between trees and
276 between aggregations inside a single tree. For higher parallelization, we can intuitively make a rooted
277 tree shallower yet wider to support many threads working together by selecting its centroid as the
278 root. Furthermore, there exist different greedy strategies for nodes’ priority for different recursions
279 (Eq. 5 and Eq. 6) to reduce the waiting time of threads. We discuss their specific implementations
280 in Sec. D of Appn. Due to space limits, we will discuss more on several potential extensions of
281 the above tree aggregators in Sec. C of Appn., which includes how to: (1) efficiently integrate a
282 global linear attention to the framework similar to Wu et al. (2024) and conveniently incorporate
283 the kernel decomposition techniques (e.g., Random Feature Likhosherstov et al. (2022)) to improve
284 the expressivity of attention; (2) conduct fine-grained propagation control, such as discounting
285 or truncating the distance, similar to some deep GNNs Xu et al. (2018); Chen et al. (2020a); (3)
286 generalize forests to eliminate the need for Recursion (II), *i.e.*, Eq. 6.

287 4.4 TREE FUSER

288 Motivated by prior work Wu et al. (2024); Kreuzer et al. (2021); Wu et al. (2021), we utilize a local
289 module to supplement local knowledge to mitigate the local sparsity of trees. Thus, the tree fuser first
290 computes the local information H from input features X , which is formalized as below:

$$291 \quad H = \left(\beta_1 \cdot \widehat{A}_{\widehat{G}} + \beta_2 \cdot \alpha + (1 - \beta_1 - \beta_2) \cdot \mathbb{I}_{n \times n} \right)^{K_L} X W_H \in \mathbb{R}^{n \times d}, \quad (9)$$

$$292$$

293 where $\beta_1 + \beta_2 \leq 1$, $K_L \leq 2$ are hyper-parameters and W_H are training parameters.

294 The tree fuser then computes the results of N_T different tree aggregators, $H'^{(k)} = f_{\text{Agg}}^{(T_k)}(H)$, $k \in$
295 $[1, N_T]$. For each $H'^{(k)}$, the tree fuser normalizes each row to 1 using the L_2 -norm for numerical
296 stabilization. Afterwards, the tree fuser averages all the tree aggregators as global information:
297

$$298 \quad H' = \text{Mean} \left(\left\{ \text{RowNorm} \left(H'^{(k)} \right) \right\}_{k \in [1, N_T]} \right) \in \mathbb{R}^{n \times d}. \quad (10)$$

$$299$$

300 Subsequently, the tree fuser uses a residual connection controlled by the hyper-parameter $\gamma \in [0, 1]$
301 to balance local and global information, which can be formulated as follows:

$$303 \quad H'' = (1 - \gamma) \cdot H' + \gamma \cdot H. \quad (11)$$

$$304$$

305 The H'' are final node embeddings that can be fed into a linear predictor for node classification.
306

307 4.5 COMPLEXITY ANALYSIS

308 The comprehensive time and space complexities per epoch are linear against the number of nodes and
309 edges, *i.e.*, n and m , as well as hidden dim d . Specifically, suppose we sample and utilize N_T trees.
310 Each pre-training epoch costs $\mathcal{O}((n + m)d)$ time and space. Each training epoch of the student
311 requires only $\mathcal{O}((n + m)Kd)$ time and space, which can be further parallelized.
312

313 4.6 THEORETICAL DISCUSSION

314 In this subsection, we provide theoretical justification for a rigorous asymptotic relationship between
315 the accuracy of the edge-homophily estimator and the quality of the induced tree distribution.
316 Formally, we define $P_{\widehat{G}}(T) = \prod_{e_{i,j} \in T} s(e_{i,j}) / \sum_{T \subseteq \widehat{G}} \prod_{e_{i,j} \in T} s(e_{i,j})$, where the edge score is given
317 by $s(e_{i,j}) = p$ if nodes i and j share the same label (a homophilous edge), and $s(e_{i,j}) = q$ otherwise
318 (a heterophilous edge). Based on this formulation, we establish the following result:
319

320 **Theorem 2.** *Let \widehat{G} be any connected graph, and define the expected edge homophily ratio under the
321 score ratio $\Delta = p/q > 0$ as:*

$$322 \quad R_{\widehat{G}}(\Delta) := \mathbb{E}_{T \sim P_{\widehat{G}}^{(p,q)}} [h(T)],$$

$$323$$

324 where $h(T)$ is the edge homophily ratio of tree T . Then there exists a $\Delta_0 > 0$ such that:
325

- **Monotonicity.** If $\Delta > \Delta' \geq \Delta_0$, then $R_{\widehat{G}}(\Delta) > R_{\widehat{G}}(\Delta')$.

Table 1: The results of performance comparison (with the best bolded and the runner-ups underlined)

Method	Category	Cora	Citeseer	Pubmed	Actor	Cornell	Texas	Wisconsin	Arxiv	Flickr	Avg. Rank
324 MLP	Classic	58.30	58.68	72.94	35.62	72.70	77.84	79.61	32.84	42.01	14.11
325 GCN	GNN	82.06	71.60	79.58	27.88	53.51	69.19	57.25	53.77	38.40	14.89
326 GAT	GNN	82.84	72.28	78.52	28.71	55.14	68.65	58.82	<u>55.73</u>	40.32	12.78
327 GraphSAGE	GNN	81.40	71.68	78.50	36.24	63.78	75.14	76.08	51.42	41.42	11.00
328 SuperGAT _{SD}	GNN	82.70	72.50	81.30	30.18	54.59	69.73	58.04	51.52	36.24	13.22
329 APPNP	GNN	84.10	72.14	80.02	33.47	61.08	71.35	65.10	55.60	43.07	9.22
330 ClusterGCN	GNN	82.04	70.08	77.26	29.66	49.73	63.24	62.35	53.35	39.58	16.89
331 GraphSAINT	GNN	82.00	70.30	77.36	29.55	48.65	63.78	61.96	53.55	35.26	17.67
332 Pairnorm	DeepGNN	66.24	44.20	72.12	24.33	40.68	41.08	52.94	54.58	31.41	22.56
333 Nodenorm	DeepGNN	80.14	65.74	78.64	29.74	40.00	66.49	48.24	54.22	44.11	16.33
334 Meannorm	DeepGNN	79.54	72.16	73.06	25.46	25.41	61.62	52.94	20.37	42.40	19.67
335 DropEdge	DeepGNN	81.69	71.43	79.06	26.38	52.97	64.86	60.78	39.23	32.11	18.33
336 GCNII	DeepGNN	85.34	73.24	79.88	34.64	74.61	69.19	70.31	51.91	41.79	8.78
337 ShadowGNN	DeepGNN	82.32	70.06	77.30	29.45	51.35	64.32	62.35	53.35	37.59	17.00
338 GT	GT	77.58	66.96	76.48	37.15	61.62	74.60	71.76	OOM	OOM	15.57
339 SAN	GT	77.60	68.64	76.62	37.79	63.24	75.14	77.25	OOM	OOM	13.00
340 Graphormer	GT	63.08	61.08	OOM	OOM	62.70	76.76	72.16	OOM	OOM	15.40
341 ANS-GT	GT	77.68	64.16	77.98	<u>38.29</u>	<u>74.92</u>	76.22	76.47	41.83	21.86	13.22
342 Nodeformer	GT	79.02	69.66	76.06	34.80	68.11	77.84	76.47	39.47	40.31	13.11
343 NAGphormer	GT	79.51	67.34	78.32	37.33	63.78	71.89	66.27	52.00	38.59	13.44
344 GOAT	GT	83.18	71.99	79.13	37.66	64.32	76.76	73.33	52.46	35.53	9.11
345 Exphormer	GT	82.77	71.63	79.46	35.53	62.16	75.68	70.98	41.12	22.79	12.67
346 SGFormer	GT	82.38	71.82	80.64	37.80	68.65	<u>78.92</u>	80.00	45.73	40.13	<u>7.22</u>
347 DIFFormer	GT	83.32	74.46	78.16	34.51	60.00	68.11	63.92	53.60	44.25	10.56
348 TDGNN	GT	<u>85.35</u>	73.78	80.20	32.84	35.68	61.35	46.86	OOM	38.25	15.00
349 GraphMamba	Mamba	54.36	58.98	70.90	36.05	74.05	77.29	<u>80.39</u>	33.59	42.30	13.89
350 Ours	Forest	85.46	<u>74.42</u>	<u>81.00</u>	39.88	83.24	91.89	86.27	56.47	47.22	1.22

- **Upper Bound.** For all $\Delta \geq \Delta_0$, $R_{\widehat{G}}(\Delta) \leq 1 - \frac{\text{NHCC}(\widehat{G})-1}{n-1}$, where $\text{NHCC}(\widehat{G})$ denotes the number of homophilous connected components of \widehat{G} .
- **Asymptotic Tightness.** As $\Delta \rightarrow +\infty$, $R_{\widehat{G}}(\Delta) \rightarrow 1 - \frac{\text{NHCC}(\widehat{G})-1}{n-1}$.

Theorem 2 shows that, for a given graph \widehat{G} , as the ratio $\Delta = p/q$ increases, $P_{\widehat{G}}(T)$ gradually shifts toward homophilous trees. Moreover, the upper bound of $R_{\widehat{G}}(\Delta)$ is determined by the number of homophilous connected components in \widehat{G} , which reflects the inherent structural limitation of the graph. In the limit $\Delta \rightarrow +\infty$, $R_{\widehat{G}}(\Delta)$ approaches this structural bound. In other words, assigning a higher score $p > 0$ to homophilous edges and a lower score $q > 0$ to heterophilous edges drives $P_{\widehat{G}}(T)$ toward the maximum level of edge homophily permitted by the graph.

5 EXPERIMENTS

This section verifies the effectiveness of the proposed method in the semi-supervised node classification task via extensive experiments. Due to space limits, some experimental details such as environments, dataset statistics, algorithm implementation details, hyperparameter optimization strategy and configurations, and some visualizations are moved to Sec. K of Appn.

Benchmarks and Baselines The experiments include nine real-world benchmarks, covering two types: (1) homophilous graphs: Cora, Citeseer, Pubmed (Sen et al., 2008), and OGBN-ArXiv (Hu et al., 2020) at a large node scale; (2) heterophilous graphs: Flickr (Zeng et al., 2019), Texas, Wisconsin, Cornell (Pei et al., 2020a), and Actor (Tang et al., 2009). Their full statistics are detailed in Tab. 7 of Appn. For a fair comparison, semi-supervised data splits are adopted for OGBN-ArXiv and Flickr (Sec. K.2), and other datasets strictly follow the standard public splits in (Kipf & Welling, 2017). Twenty-six counterparts are selected for a thorough comparison, including: (1) **classic method**: MLP; (2) **seven GNNs**: GCN (Li et al., 2019), GAT (Veličković et al., 2018), GraphSAGE, SuperGAT_{SD} (Kim & Oh, 2021), APPNP (Gasteiger et al., 2019a), ClusterGCN (Chiang et al., 2019) and GraphSAINT (Zeng et al., 2019); (3) **six Deep GNNs**: Pairnorm (Zhao & Akoglu, 2020), Nodenorm (Zhou et al., 2021), Meannorm (Yang et al., 2020), DropEdge (Rong et al., 2020b), GCNII (Chen et al., 2020a) and ShadowGNN (Zeng et al., 2021); (4) **eleven Graph Transformers**: GT (Dwivedi & Bresson, 2020), SAN (Kreuzer et al., 2021), Graphormer (Ying et al., 2021), ANS-GT (Zhang et al., 2022), NodeFormer (Wu et al., 2022), GOAT (Kong et al., 2023), NAGphormer (Chen et al., 2022b), Exphormer (Shirzad et al., 2023), SGFormer (Wu et al., 2024), DIFFormer (Wu et al., 2023), and TDGNN (Qu et al., 2020); (5) **Mamba**: GraphMamba (Wang et al., 2024a),

Comparative Experiments All experiments run with ten different initializations. We report mean accuracy in Tab. 1 with also their standard deviations in Tab. 10 of Appn. We empirically show our framework has significant advantages for both homophilous and heterophilous datasets: against GT, DIFFormer, GCN, and GCNII, the mean accuracy is relatively increased by 16.2%, 16.1%, 24.5%

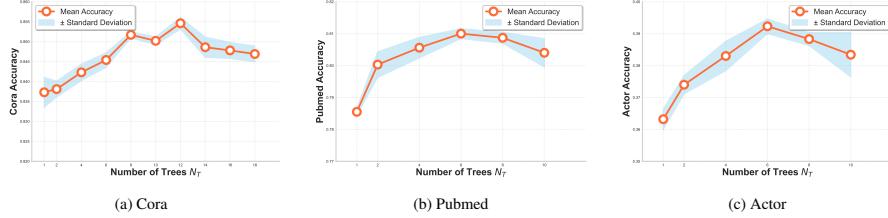
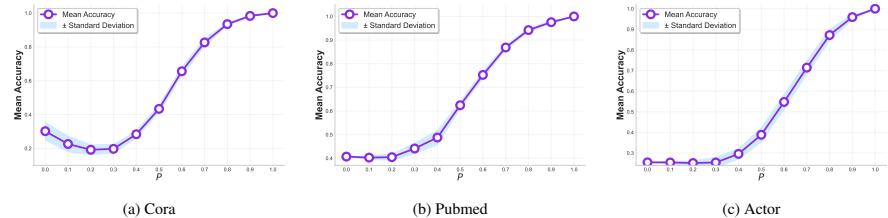
378
379
380381
382
383Figure 4: Model performance with varying number of trees N_T .384
385
386
387
388
389390
391
392
393Figure 5: Effect of homophily estimator accuracy (p is the average score assigned to homophilous edges).

Table 3: The results of ablation studies.

394
395
396
397
398
399

No.	Method	Cora	Citeseer	Pubmed	Actor	Cornell	Texas	Wisconsin	ArXiv	Flickr
(1)	w.o. Global Submodule	80.00	71.63	76.13	34.73	75.68	82.88	83.92	55.05	39.63
(2)	w.o. Local Submodule	82.18	71.55	77.48	35.08	74.77	69.93	75.49	54.92	32.17
(3)	Uniform Tree Sampling	83.63	72.32	78.45	36.13	72.97	82.58	84.80	55.11	42.77
(4)	Single Homophily-guided Tree	<u>83.73</u>	<u>72.58</u>	<u>78.55</u>	<u>36.32</u>	<u>76.35</u>	<u>84.83</u>	<u>85.29</u>	<u>55.17</u>	<u>42.96</u>
(5)	FGL - Ours	85.46	74.42	81.00	39.88	83.24	91.89	86.27	56.47	47.22

400
401
402
403
404

and 11.9%, respectively. Particularly on Wisconsin, we obtain 20.2%, 35.0%, 50.7%, and 22.7% relative gains. Against recent models like TDGNN, ShadowGNN, and GraphSAINT, our framework also shows significant relative gains of 39.3%, 24.8%, and 27.0%, respectively. These performance gains are attributed to our ability to effectively capture long-distance knowledge, thus highlighting the potential of the proposed forest-based paradigm, even under label scarcity.

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

Ablation Studies We conduct ablation studies in Tab. 3 and drop or substitute key parts. For convenience, we refer to Eq. 9 and Eq. 10 as Local and Global Submodules, respectively. We (1) drop Global Submodules to verify its long-range modeling capability; (2) drop Local Submodules to test the effects of supplementing local knowledge; (3) Sample trees from a uniform distribution and apply the attention weighting mechanism from Eq 7-8.; (4) sample only a single tree to explore the potential of multi-tree fusion. Comparing (4) vs. (3) reveals that sampling a single tree from the homophily-guided distribution outperforms multiple random trees, emphasizing the importance of homophily-based tree sampling. Comparing (1)(2) vs. (5) shows the significance of each submodule. Comparing (5) vs. (4) shows sampling multiple trees (a forest) can consistently surpass a single tree from our distribution, confirming that a forest can effectively capture more comprehensive and complementary topological knowledge.

421
422
423
424
425
426
427
428
429
430
431

Hyper-Parameter Studies We conduct several hyper-parameter studies in Sec. J.1. Here, due to space limits, we focus only on the impact of the tree number N_T on performance in Fig. 4, which reveals an optimal range of 6 to 10 trees across different datasets, highlighting our efficient coverage of global knowledge. In Fig. 4, the performance first consistently rises and then fluctuates or decreases, meaning that our framework covers the essence of the graph structure with only a few trees, and more trees provide marginal benefits and risk redundancy, highlighting our efficiency due to *a lower number of structures* in the calculation of the total cost, *i.e.*, Eq. 1.

432
433
434
435
436
437
438
439
440

Efficiency Comparison Besides the theoretical complexity analysis in Sec. 4.5, we compare the practical running time in Tab. 2, where our method runs faster than baselines in most cases. For example, compared with recent GTs like ANS-GT and GOAT, which require over 1 second per epoch on small graphs and dozens of seconds on large graphs, our method runs in under 0.02 seconds on small graphs and 0.246 seconds on ArXiv. Even against efficient GTs like DIFFormer and deep GNNs like GCNII, our method shows 2 to 5 times speedup. While a few baselines run slightly faster

Table 2: Running time comparison (sec/epoch)

Method	Cora	Citeseer	Pubmed	Flickr	ArXiv
GT	0.011	0.014	0.254	OOM	OOM
SAN	0.165	0.154	0.241	OOM	OOM
Graphomer	0.433	0.639	OOM	OOM	OOM
ANS-GT	1.453	2.973	3.433	7.796	24.540
Nodeformer	0.188	0.217	0.292	0.838	1.360
NAGraphomer	0.022	0.044	0.031	0.835	1.560
GOAT	1.026	1.045	1.450	28.281	58.772
Exphormer	0.086	0.175	0.348	1.112	1.948
SGFormer	0.010	0.011	0.021	0.051	0.114
DIFFormer	0.029	0.030	0.047	0.297	0.545
GraphSAINT	0.013	0.022	0.030	0.658	0.951
Pairnorm	0.053	0.071	0.647	0.320	1.387
Nodenorm	0.013	0.032	0.285	0.310	1.357
Meannorm	0.012	0.030	0.279	0.296	1.461
Dropedge	0.017	0.017	1.231	1.244	1.491
GCNII	0.066	0.033	1.306	1.373	2.843
Ours	0.005	0.019	0.020	0.079	0.246

Table 4: Comparison of different homophily estimators.

No.	Model	Cora	CiteSeer	Pubmed	Actor	Cornell	Texas	Wisconsin	ArXiv	Flickr
(A)	Non-attention auxiliary module (NAAM)	78.42	69.62	76.64	35.33	72.97	72.97	82.35	47.65	38.36
(B)	Naive attention based estimator	75.18	65.78	74.32	34.87	70.27	75.00	73.04	53.45	40.90
(C)	Two-stage (NAAM + attention) estimator	81.40	70.30	78.68	36.20	78.38	83.78	82.75	53.99	43.30
(D)	FGL (Uniform)	78.40	73.13	71.54	34.47	71.62	70.27	74.51	52.30	41.05
(E)	FGL (Naive attention)	81.60	73.38	75.10	35.56	74.32	75.00	76.75	53.63	41.61
(F)	FGL (2-stage) - Ours	85.46	74.42	81.00	39.88	83.24	91.89	86.27	56.47	47.22

than ours, their performance is generally worse than ours, since they overlook some critical structural knowledge due to over-simplified designs. Compared with these baselines with strong performance, we have the highest efficiency, highlighting the advantages of the linear complexities and higher parallelizability of the proposed forest-based learning paradigm.

Homophily Estimator Comparison To explore the effects of different homophily estimators, we compare six variants in Tab. 4: (A) Non-attention auxiliary module (NAAM) via single-layer GCN for homophilous graphs or MLP for heterophilous graphs to generate pseudo-labels; (B) Naive attention based estimator via a single local graph transformer layer where attention coefficients serve as bidirected average edge homophily scores; (C) 2-stage homophily estimation that first generates pseudo-labels via non-attention estimator, then uses these labels to guide the training of attention-based estimator for more stable homophily scores; (D) FGL (Uniform) as baseline that samples trees uniformly; (E) FGL (Naive attention estimator) that uses attention scores from (B) to guide tree sampling; (F) FGL (2-stage estimator) - Ours, incorporating the full two-stage estimation process for robust homophily-guided tree sampling. Comparing (B) vs. (E), FGL using an attention-based estimator performs competitive or better than the standalone attention estimator, demonstrating FGL’s effective utilization of homophily scores through structured tree aggregation. Comparing (C) vs. (E), two-stage estimation significantly outperforms FGL with only attention-based estimation in most cases, confirming that pseudo-labels from non-attention estimators provide valuable supervision to improve homophily estimation quality, especially under label scarcity. These empirical observations further support our theoretical analysis (Theorem 2) and directly confirm the accuracy of the edge homophily estimator has a positive impact on our final results.

Figure 6: homophily ratio comparison based on different sampling strategies

Interpretability Studies We propose a strategy to design our tree distribution, which is justified by Theorem 2. Here, we provide some empirical evidence to understand our performance gains. Fig. 5 reveals that as the accuracy of homophily estimator increases, model performance consistently improves across all datasets, with perfect estimation (accuracy is 1) leading to perfect classification, demonstrating no performance bottleneck and motivating the pursuit of high-quality homophily estimators. To further understand the mechanism, we introduce a global homophily metric

(Sec. J.2). Fig. 6 shows that trees sampled from our homophily-guided distribution significantly facilitate higher long-range homophilous information propagation compared to uniform sampling. Such trees allow the subsequent tree aggregator much easier to capture and exploit beneficial distant graph information, which fundamentally interprets our performance gains.

6 CONCLUSION

To break the dilemma of existing graph techniques, *i.e.*, the challenging trade-off between complexities and comprehensive long-distance knowledge, we fundamentally analyze its root cause and propose a novel forest-based graph learning paradigm. The key insight is to understand a graph as a fusion of some sampled spanning trees, similar to bagging, since a tree can connect all nodes economically. We provide a technical framework, where we first induce a tree distribution proven biased towards homophily, and then efficiently conduct all node-pair interactions in each tree via a general tree aggregator with linear complexities and higher parallelizability. Compared with deep GNNs or GTs, our framework has better global coverage and structural understanding, with higher efficiency. Extensive experiments on semi-supervised node classifications show we can achieve competitive or even better results than state-of-the-art counterparts. We believe our forest-based paradigm is a significant step towards the future development of long-distance graph learning.

486 REFERENCES
487

488 Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
489 networks for graph pooling. In *International Conference on Machine Learning*, pp. 874–883.
490 PMLR, 2020.

491 Francesco Bonchi, Claudio Gentile, Francesco Paolo Nerini, André Panisson, and Fabio Vitale. Fast
492 and effective gnn training through sequences of random path graphs. In *Proceedings of the 31st
493 ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1*, pp. 49–60, 2025.

494 Andrei Z Broder. Generating random spanning trees. In *FOCS*, volume 89, pp. 442–447, 1989.

495

496 Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
497 representation learning. In *International Conference on Machine Learning*, pp. 3469–3489. PMLR,
498 2022a.

499

500 Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
501 for node classification in large graphs. In *The Eleventh International Conference on Learning
502 Representations*, 2022b.

503 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
504 convolutional networks. In *International Conference on Machine Learning*, pp. 1725–1735, 2020a.

505

506 Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and
507 Zhangyang Wang. Bag of tricks for training deeper graph neural networks: A comprehen-
508 sive benchmark study. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp.
509 DOI:10.1109/TPAMI.2022.3174515, 2022c.

510

511 Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Lingfei Wu,
512 Charu Aggarwal, and Chang-Tien Lu. Bridging the gap between spatial and spectral domains: A
513 survey on graph neural networks, 2020b.

514

515 Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
516 efficient algorithm for training deep and large graph convolutional networks. In *Proceedings of the
517 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 257–266,
518 2019.

519

520 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
521 graph neural network. In *International Conference on Learning Representations*, 2021. URL
522 <https://openreview.net/forum?id=n6j17fLxrP>.

523

524 Fan RK Chung. *Spectral graph theory*, volume 92. American Mathematical Soc., 1997.

525

526 Xiangyu Dong, Xingyi Zhang, Yanni Sun, Lei Chen, Mingxuan Yuan, and Sibo Wang. Smoothgnn:
527 Smoothing-aware gnn for unsupervised node anomaly detection. In *Proceedings of the ACM on
528 Web Conference 2025*, pp. 1225–1236, 2025.

529

530 David Durfee, Rasmus Kyng, John Peebles, Anup B Rao, and Sushant Sachdeva. Sampling random
531 spanning trees faster than matrix multiplication. In *Proceedings of the 49th Annual ACM SIGACT
532 Symposium on Theory of Computing*, pp. 730–742, 2017.

533

534 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
535 *arXiv preprint arXiv:2012.09699*, 2020.

536

537 Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmessage:
538 Unifying random dropping for graph neural networks, 2023.

539

540 Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
541 Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
542 *Advances in neural information processing systems*, 33:22092–22103, 2020.

543

544 Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
545 Graph neural networks meet personalized pagerank. In *International Conference on Learning
546 Representations*, 2019a.

540 Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
 541 learning. *Advances in neural information processing systems*, 32, 2019b.

542

543 Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros. On the
 544 trade-off between over-smoothing and over-squashing in deep graph neural networks. In *Proceed-
 545 ings of the 32nd ACM International Conference on Information and Knowledge Management*,
 546 CIKM '23, pp. 566–576, New York, NY, USA, 2023. Association for Computing Machinery.
 547 ISBN 9798400701245. doi: 10.1145/3583780.3614997. URL <https://doi.org/10.1145/3583780.3614997>.

548

549 Caterina Graziani, Tamara Drucks, Monica Bianchini, Thomas Gärtner, et al. No pain no gain: More
 550 expressive gnns with paths. In *NeurIPS 2023 Workshop: New Frontiers in Graph Learning*, 2023.

551

552 Yonghang Guan, Jun Zhang, Kuan Tian, Sen Yang, Pei Dong, Jinxi Xiang, Wei Yang, Junzhou Huang,
 553 Yuyao Zhang, and Xiao Han. Node-aligned graph convolutional network for whole-slide image
 554 representation and classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 555 and Pattern Recognition*, pp. 18813–18823, 2022.

556

557 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 558 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in
 559 neural information processing systems*, 33:22118–22133, 2020.

560

561 Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-smoothing
 562 for general graph convolutional networks, 2020.

563

564 Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
 565 a replacement for graph convolution. In *Proceedings of the 28th ACM SIGKDD Conference on
 566 Knowledge Discovery and Data Mining*, pp. 655–665, 2022.

567

568 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv
 569 preprint arXiv:1611.01144*, 2016.

570

571 Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. *Expert
 572 Systems with Applications*, 207:117921, nov 2022. doi: 10.1016/j.eswa.2022.117921. URL
 573 <https://doi.org/10.1016%2Fj.eswa.2022.117921>.

574

575 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE
 576 Transactions on Big Data*, 7(3):535–547, 2019.

577

578 George Karypis and Vipin Kumar. A software package for partitioning unstructured graphs, partition-
 579 ing meshes, and computing fill-reducing orderings of sparse matrices. *University of Minnesota,
 580 Department of Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN*,
 581 38, 1998.

582

583 Jonathan A Kelner and Aleksander Madry. Faster generation of random spanning trees. In *2009 50th
 584 Annual IEEE Symposium on Foundations of Computer Science*, pp. 13–21. IEEE, 2009.

585

586 Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with
 587 self-supervision. In *International Conference on Learning Representations*, 2021.

588

589 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *3rd International
 590 Conference on Learning Representations*, 2015.

591

592 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 593 In *5th International Conference on Learning Representations*, 2017.

594

595 Kezhi Kong, Juhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
 596 A global transformer on large-scale graphs. In *International Conference on Machine Learning*, pp.
 597 17375–17390. PMLR, 2023.

598

599 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 600 Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing
 601 Systems*, 34:21618–21629, 2021.

594 Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
 595 as cnns? In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 596 9267–9276, 2019.

597

598 Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
 599 with 1000 layers. In *International conference on machine learning*, pp. 6437–6449, 2021.

600

601 Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
 602 Finding global homophily in graph neural networks when meeting heterophily. In *International
 603 conference on machine learning*, pp. 13242–13256. PMLR, 2022.

604

605 Valerii Likhoshesterstov, Krzysztof M Choromanski, Kumar Avinava Dubey, Frederick Liu, Tamas
 606 Sarlos, and Adrian Weller. Chefs’ random tables: Non-trigonometric random features. *Advances
 607 in Neural Information Processing Systems*, 35:34559–34573, 2022.

608

609 Zhe Liu, Jinghua Hou, Xinyu Wang, Xiaoqing Ye, Jingdong Wang, Hengshuang Zhao, and Xiang Bai.
 610 Lion: Linear group rnn for 3d object detection in point clouds. *Advances in Neural Information
 611 Processing Systems*, 37:13601–13626, 2024.

612

613 Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: stronger multi-
 614 scale deep graph convolutional networks. In *Proceedings of the 33rd International Conference on
 615 Neural Information Processing Systems*, pp. 10945–10955, 2019.

616

617 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
 618 Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
 619 classification? *arXiv preprint arXiv:2109.05641*, 2021.

620

621 Gaspard Michel, Giannis Nikolentzos, Johannes F Lutzeyer, and Michalis Vazirgiannis. Path neural
 622 networks: Expressive and accurate graph neural networks. In *International Conference on Machine
 623 Learning*, pp. 24737–24755. PMLR, 2023.

624

625 Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
 626 Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
 627 architecture perspective. *arXiv preprint arXiv:2202.08455*, 2022.

628

629 Usman Nazir, He Wang, and Murtaza Taj. Survey of image based graph neural networks, 2021.

630

631 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 632 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,high-
 633 performance deep learning library. *Advances in neural information processing systems*, 32:
 634 8024–8035, 2019.

635

636 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 637 graph convolutional networks. In *International Conference on Learning Representations*, 2020a.
 638 URL <https://openreview.net/forum?id=S1e2agrFvS>.

639

640 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 641 graph convolutional networks. *arXiv preprint arXiv:2002.05287*, 2020b.

642

643 Liang Qu, Huasheng Zhu, Qiqi Duan, and Yuhui Shi. Continuous-time link prediction via temporal
 644 dependent graph neural network. In *Proceedings of The Web Conference 2020, WWW ’20*, pp.
 645 3026–3032, New York, NY, USA, 2020. ISBN 9781450370233. doi: 10.1145/3366423.3380073.
 646 URL <https://doi.org/10.1145/3366423.3380073>.

647

648 Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
 649 Self-supervised graph transformer on large-scale molecular data. *Advances in Neural Information
 650 Processing Systems*, 33:12559–12571, 2020a.

651

652 Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
 653 networks on node classification. In *International Conference on Learning Representations*,
 654 2020b.

648 Mudar Sarem, Tarek Jurd, Laya Albshlawy, and Ebrahim Massrie. Improving long text classification
 649 based on selective state space model (mamba). In *2024 IEEE 17th International Symposium on*
 650 *Embedded Multicore/Many-core Systems-on-Chip (MCSoC)*, pp. 32–38. IEEE, 2024.

651

652 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 653 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

654

655 Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
 656 Exphormer: Sparse transformers for graphs. In *International Conference on Machine Learning*,
 657 pp. 31613–31632. PMLR, 2023.

658

659 Henan Sun, Xunkai Li, Zhengyu Wu, Daohan Su, Rong-Hua Li, and Guoren Wang. Breaking the
 660 entanglement of homophily and heterophily in semi-supervised node classification. In *2024 IEEE*
40th International Conference on Data Engineering (ICDE), pp. 2379–2392. IEEE, 2024.

661

662 Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit of
 663 graph neural networks by improving the assortativity of graphs with local mixing patterns. In
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
 664 1541–1551, 2021.

665

666 Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 807–816, 2009.

667

668 Josephine M Thomas, Alice Moallemi-Oureh, Silvia Beddar-Wiesing, and Clara Holzhüter. Graph
 669 neural networks designed for different graph types: A survey, 2022.

670

671 Domenico Tortorella and Alessio Micheli. Beyond homophily with graph echo state networks. *arXiv*
preprint arXiv:2210.15731, 2022.

672

673 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 674 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 675 2018.

676

677 Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
 678 sequence modeling with selective state spaces. *arXiv preprint arXiv:2402.00789*, 2024a.

679

680 Kunze Wang, Yihao Ding, and Soyeon Caren Han. Graph neural networks for text classification: A
 681 survey. *Artificial Intelligence Review*, 57(8):190, 2024b.

682

683 David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 296–303,
 684 1996.

685

686 David Bruce Wilson and James Gary Propp. How to get an exact sample from a generic markov
 687 chain and sample a random spanning tree from a directed graph, both within the cover time. In
SODA, pp. 448–457. Citeseer, 1996.

688

689 Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
 690 structure learning transformer for node classification. *Advances in Neural Information Processing*
691 Systems, 35:27387–27401, 2022.

692

693 Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Dif-
 694 former: Scalable (graph) transformers induced by energy constrained diffusion. *arXiv preprint*
arXiv:2301.09474, 2023.

695

696 Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
 697 Junchi Yan. Simplifying and empowering transformers for large-graph representations. *Advances*
698 in Neural Information Processing Systems, 36, 2024.

699

700 Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
 701 Representing long-range context for graph neural networks with global attention. *Advances in*
702 Neural Information Processing Systems, 34:13266–13279, 2021.

702 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
 703 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and*
 704 *learning systems*, 32(1):4–24, 2020.

705 Yicheng Xiao, Lin Song, Shaoli Huang, Jiangshan Wang, Siyu Song, Yixiao Ge, Xiu Li, and
 706 Ying Shan. Mambatree: Tree topology is all you need in state space model. In *The Thirty-*
 707 *eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=W8rFsaKr4m>.

708 Yu Xie, Shengze Lv, Yuhua Qian, Chao Wen, and Jiye Liang. Active and semi-supervised graph
 709 neural networks for graph classification. *IEEE Transactions on Big Data*, 8(4):920–932, 2022. doi:
 710 10.1109/TBDA.2021.3140205.

711 Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
 712 Jegelka. Representation learning on graphs with jumping knowledge networks. In *International*
 713 *conference on machine learning*, pp. 5453–5462, 2018.

714 Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
 715 over-smoothing in deep gcn, 2020.

716 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
 717 Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in Neural*
 718 *Information Processing Systems*, 34:28877–28888, 2021.

719 Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
 720 *721* borhood overlap-aware graph neural networks for link prediction. *Advances in Neural Information*
 722 *Processing Systems*, 34:13683–13694, 2021.

723 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
 724 *725* saint: Graph sampling based inductive learning method. In *International Conference on Learning*
 726 *Representations*, 2019.

727 Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan,
 728 *729* Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
 730 *731* networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in*
 732 *733* *Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=d0MtHWY0NZ>.

734 Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
 735 *736* learning graph representations. *arXiv preprint arXiv:2001.05140*, 2020.

737 Xiangyu Zhang, Qiquan Zhang, Hexin Liu, Tianyi Xiao, Xinyuan Qian, Beena Ahmed, Eliathamby
 738 *739* Ambikairajah, Haizhou Li, and Julien Epps. Mamba in speech: Towards an alternative to self-
 740 *741* attention. *IEEE Transactions on Audio, Speech and Language Processing*, 2025.

742 Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
 743 *744* adaptive node sampling. *Advances in Neural Information Processing Systems*, 35:21171–21183,
 745 2022.

746 Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
 747 *748* Ye. Gophormer: Ego-graph transformer for node classification. *arXiv preprint arXiv:2110.13094*,
 749 2021.

750 Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In *International*
 751 *752* *Conference on Learning Representations*, 2020.

753 Yilun Zheng, Jiahao Xu, and Lihui Chen. Learn from heterophily: Heterophilous information-
 754 *755* enhanced graph neural network. *arXiv preprint arXiv:2403.17351*, 2024.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng.
 Understanding and resolving performance degradation in deep graph convolutional networks.
Proceedings of the 30th ACM International Conference on Information & Knowledge Management,
 pp. 2728–2737, 2021.

756 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
757 homophily in graph neural networks: Current limitations and effective designs. *Advances in neural*
758 *information processing systems*, 33:7793–7804, 2020.
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 **A DISCUSSIONS**
 811

812 In this section, we will provide extensive discussions on some different aspects of our framework,
 813 including some intuitions and motivations as well as theoretical insights.
 814

815 **A.1 DISCUSSION ON DEGREE IMBALANCE AND THE MERITS OF LONG-DISTANCE
 816 KNOWLEDGE**
 817

818 In real-world graphs, *degree/density imbalance* is a common phenomenon, where a small number
 819 of nodes have many connections while most nodes have only a few connections, especially in, *e.g.*,
 820 social networks, citation networks, and biological graphs. For example, in social media, a few
 821 influential users may have thousands of followers, but most of the others have limited neighbors.
 822 Degree imbalance biases graph learning algorithms to focus on highly connected nodes and ignore
 823 low-degree nodes. More severely, it fundamentally worsens overfitting in graph learning. Low-degree
 824 nodes in the training set face a significant issue. Constrained by training objectives, they must fit their
 825 labels, but their limited local knowledge may not be enough. With sufficient expressivity, they will
 826 use noisy information for fitting to achieve their learning goal and reduce their training losses. Since
 827 noise varies among nodes, classification rules learned from noise cannot generalize to unseen nodes,
 828 thus causing overfitting issues. On the other hand, for low-degree or low-density nodes in the test set,
 829 the limitation of local knowledge poses another challenge. Graph learning models rely on training
 830 data to learn classification rules to generalize. However, for those unseen low-degree nodes in the test
 831 set, even well-trained models struggle to generalize, since their valuable knowledge on which the
 832 generalizable rule is based is insufficient, directly causing misclassification.
 833

834 Therefore, distant information becomes crucial. By supplementing the scarce local information of
 835 low-degree nodes, it helps models understand these nodes better, capture global graph context, and
 836 learn general patterns, thus reducing overfitting. In summary, distant knowledge is critical in graph
 837 learning, especially under degree or density imbalance. Even when local information seems sufficient,
 838 integrating distant knowledge can partly improve performance, which is currently underestimated.
 839

840 **A.2 DISCUSSION ON AGGREGATING BEHAVIOR COMPARISON AMONG DIFFERENT
 841 PARADIGMS**
 842

843 We find that our tree-based paradigm and some other counterparts can be rewritten in a united
 844 path-decomposition form with different path weighting strategies, which is shown below:
 845

846 **Definition 1.** Define the path-decomposition of a graph learner or aggregator as follows:
 847

$$H'_v = \text{Agg}(\{H_u\}_{u \in V}) = \sum_{u \in V} \sum_{\substack{\vec{p}(u \rightarrow v) \in G: \\ p_0 = u \rightarrow p_1 \rightarrow \dots \rightarrow p_k = v}} H_u \cdot w(\vec{p}) \cdot \text{PE}(\vec{p}), \quad (12)$$

848 where $w(\vec{p}) = \prod_{i=1}^k w_{p_{i-1} \rightarrow p_i}$ with $w_{x \rightarrow y}$ is the weight of directed edge $x \rightarrow y$ and $\text{PE}(\vec{p})$ is an
 849 extra path-based positional encoding beyond vanilla pair-wise relative positional encoding.

850 We find that: (1) Infinite-layer deep local SGC, deep local GT, or infinite-step random walk ag-
 851 gregation all have this form, with $w_{x \rightarrow y}$ as values in the normalized adjacency matrix/transition
 852 matrix/layer-shared attention coefficients, and $\text{PE}(\vec{p}) = \prod_{i=0}^k \text{PE}(p_i)$, where $\text{PE}(p_i)$ is the sum of
 853 the discounted edge weight product in all circles of any length. This shows that these methods focus
 854 more on *local environmental importance* of a path, *e.g.*, densities or degrees of nodes contained in
 855 it. (2) Tree-Set (*i.e.*, Forest) Layer also has this form, with $\text{PE}(\vec{p})$ as the sum of weight products
 856 of all spanning trees of the graph obtained by merging path \vec{p} into a single node. This shows that
 857 our paradigm focuses more on *global transport importance* of a path, *i.e.*, how connectivity or
 858 communication this path can facilitate if it is built as a highway with no communication cost along it.
 859

860 We provide the detailed derivations in Sec. B.4 of Appn.
 861

862 **A.3 DISCUSSION ON OVER-SMOOTHNESS ALLEVIATION OF OUR PARADIGM**
 863

864 In this subsection, we provide a theoretical discussion on the relationship between our graph learning
 865 paradigm and the over-smoothing issues. Our analysis can be divided into two parts: (1) Analysis on

864 the over-smoothness of fixed-distance aggregation; (2) Analysis on the over-smoothness of infinite-
 865 distance (*i.e.*, comprehensively global) aggregation. This analysis not only highlights one of the
 866 merits of our paradigm, but also provides some novel insights for alleviating over-smoothing issues
 867 from the perspective of the aggregating operators themselves as well as their adaptive aggregating
 868 scopes.

869 We first consider the first case, *i.e.*, fixed distance, which is based on similar theoretical evidence as
 870 those deep GNNs from, *e.g.*, Rong et al. (2020b) or Chung (1997).

871 **Lemma 1** (Chung (1997)). *Let $G = (V, E)$ be a connected graph with its diameter $D(G) \geq 4$.
 872 Then the second smallest eigenvalue $\lambda_2(G)$ of its normalized Laplacian matrix satisfies:*

$$874 \quad \lambda_2(G) \leq 1 - 2 \cdot \frac{\sqrt{(\max_{v \in V} d_v) - 1}}{\max_{v \in V} d_v} \left(1 - \frac{2}{D(G)}\right) + \frac{2}{D(G)}, \quad (13)$$

875 where $\lambda_2(G)$ is also known as the spectral gap of the graph G .

876 This lemma provides an upper bound for the spectral gap for a graph G . The next lemma shows how
 877 $\lambda_2(G)$ can connect to the over-smoothness.

878 **Lemma 2** (Chung (1997)). *Let \mathbf{P} be an ergodic random walk transition matrix, where G is connected
 879 and non-bipartite, let π be its stationary distribution, and let \mathbf{f} be any initial distribution. For any
 880 $s \in \mathbb{N}^+$, we have:*

$$881 \quad \|\mathbf{f}^\top \mathbf{P}^s - \pi\| \leq e^{-s\lambda'} \frac{\max_i \sqrt{d_i}}{\min_j \sqrt{d_j}}, \quad (14)$$

882 where $\lambda' = \lambda_2(G)$ if $1 - \lambda_2 \geq \lambda_N(G) - 1$, and $2 - \lambda_N$ otherwise. $\mathbf{P} = \mathbf{D}^{-1} \mathbf{A}$ is the random
 883 walk transition matrix. For any initial node distribution $f : \mathcal{V} \rightarrow \mathbb{R}$ with $\sum_{v \in \mathcal{V}} f(v) = 1$, the node
 884 distribution after k steps is given by $\mathbf{f}^\top \mathbf{P}^k$, where $\mathbf{f} \in \mathbb{R}^{N \times 1}$ is the vector of initial distributions such
 885 that $\mathbf{f}(i)$ is the function evaluated on the i th node. The random walk is ergodic when there is a unique
 886 stationary distribution π satisfying that $\lim_{s \rightarrow \infty} \mathbf{f}^\top \mathbf{P}^s = \pi$ Chung (1997).

887 Therefore, we can compute the value of s such that $\|\mathbf{f}^\top \mathbf{P}^s - \pi\| \leq \epsilon$ as follows:

$$888 \quad s \geq \frac{1}{\lambda' \log \left(\frac{\max_i \sqrt{d_i}}{\epsilon \min_j \sqrt{d_j}} \right)}, \quad (15)$$

889 where we can always add self-loops with weights d_v for node $v \in V$ to make $\lambda' = \lambda_2(G)$.

890 **Theorem 3.** *Let $G = (V, E)$ be a connected graph with vertex degrees $\{d_v\}_{v \in V}$, maximum degree
 891 $M = \max_{v \in V} d_v$, and diameter $D(G) \geq 4$. For any spanning tree $T = (V, E_T)$ of G , denote the
 892 degree of vertex v in T as $d_v^{(T)}$, its maximum degree as $M_T = \max_{v \in V} d_v^{(T)}$, and its diameter as
 893 $D(T) \geq D(G)$. Let $s(G)$ and $s(T)$ be the number of steps required for node distributions in G and
 894 T to be within ϵ of their stationary distributions, respectively. Based on Lemma 1 and Lemma 2, we
 895 have the lower bounds of $s(\cdot)$: (1) For graph G :*

$$896 \quad s(G) \geq \frac{1}{\left(1 - 2 \cdot \frac{\sqrt{M-1}}{M} \left(1 - \frac{2}{D(G)}\right) + \frac{2}{D(G)}\right) \log \left(\frac{\max_i \sqrt{d_i}}{\epsilon \min_j \sqrt{d_j}} \right)}, \quad (16)$$

900 and (2) for its spanning tree T :

$$901 \quad s(T) \geq \frac{1}{\left(1 - 2 \cdot \frac{\sqrt{M_T-1}}{M_T} \left(1 - \frac{2}{D(T)}\right) + \frac{2}{D(T)}\right) \log \left(\frac{\max_i \sqrt{d_i^{(T)}}}{\epsilon \min_j \sqrt{d_j^{(T)}}} \right)}. \quad (17)$$

902 Since spanning tree T satisfies: (1) **Degree constraint**: $d_v^{(T)} \leq d_v$ for all $v \in V$, implying $M_T \leq M$;
 903 (2) **Diameter extension**: $D(T) \geq D(G) \geq 4$, the monotonicity analysis of the bounds of s with
 904 respect to M yields: T has a tighter (larger) lower bound of $s(T)$ against that of G . Since a larger s
 905 indicates more steps are needed before distributions approach the stationary node distribution of
 906 the Markov Chain. Thus, for fixed-distance aggregation, the spanning tree structure T can alleviate
 907 over-smoothing issues.

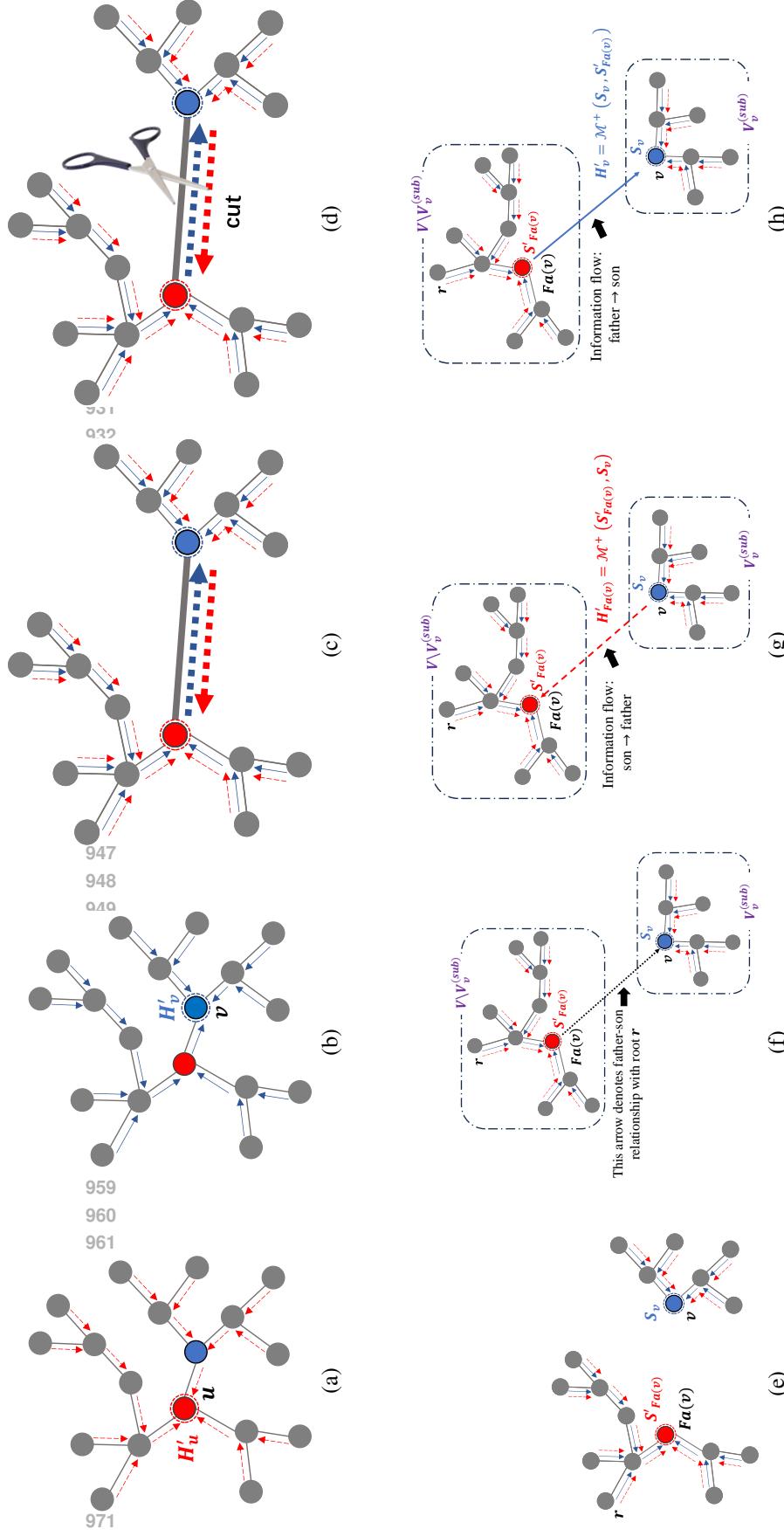


Figure 7: The detailed illustration of the recursion formulas (Eq. 30 and Eq. 31) described in Sec. B.1 of the main text. We demonstrate the derivation of these two relationships via several steps. Given a tree T , consider a pair of neighboring key nodes u and v , which are colored red and blue, respectively. (a) With the red node u as the root of T , all other nodes send global messages to u (colored red dashed line), and we can clearly observe the information flow direction of each edge. Denote the expected total global messages of node u with H'_u . (b) With the blue node v as the root of T , all other nodes send global messages to v (colored blue solid line), and we can clearly observe the information flow direction of each edge. Denote the expected total global messages of node v with H'_v . (c) We put (a) and (b) together. From the comparison, we can clearly see that the only difference between these two distinct information flows is *the direction of a single key edge* (i.e., the edge $u \leftrightarrow v$). In other words, the directions of all other edges remain consistent. (d) Then, we cut the key edge and observe the remaining message aggregation processes. (e) With another node $r \in V$ as the root of tree T , node u will become the father of node v . After cutting the key edge $u \leftrightarrow v$, the remaining global messages flowing into node $u = Fa(v)$ is denoted as $S'_{Fa(v)}$ (red) while the remaining global messages flowing into node v is denoted as S_v (blue). (f) This sub-figure more clearly shows the father-son relationship between node u and node v . The black dashed line explicitly highlights this relationship. Note that the black line does not represent any information flow or its direction. (g) If we add back the key edge with son \rightarrow father (i.e., $v \rightarrow fa(v) = u$), we can restore the total global messages into node $u = Fa(v)$, i.e., $H'_{Fa(v)}$, by merging the information from v (i.e., blue S_v) into that of $Fa(v)$ (i.e., red $S'_{Fa(v)}$), which derives one formula (Eq. 31). Note that the long red dashed line $v \rightarrow u$ denotes the direction of the information flow. (h) If we add back the key edge with father \rightarrow son (i.e., $fa(v) = u \rightarrow v$), we can restore the total global messages into node $v = Fa(v)$ (i.e., red $S'_{Fa(v)}$) into that of v (i.e., blue S_v), which derives another formula (Eq. 30). Note that the long blue solid line $u \rightarrow v$ denotes the direction of the information flow. These figures detailedly show the derivations of two formulas, both of which utilize the operator $\mathcal{M}^+(\cdot, \cdot)$ but with different or opposite merging directions.

972 The proof can be found in Sec. B.3 of Appn.
 973

974 We then consider the second case, *i.e.*, infinite distance. Recall Eq. 30 and Eq. 31 provided in Sec. B.1
 975 and the illustration on their derivations in Fig. 7:

$$976 \quad H'_v = \mathcal{M}^+ \left(S_v, S'_{Fa(v)} \right), \quad (18)$$

$$978 \quad H'_{Fa(v)} = \mathcal{M}^+ \left(S'_{Fa(v)}, S_v \right), \quad (19)$$

980 where $\mathcal{M}^+ (\cdot, \cdot)$ is a directional merging operator, merging the right term into the left term. Note
 981 that the term S_v and $S'_{Fa(v)}$ denoting knowledge from different parts in the graph G (the sub-tree of
 982 node v and its complement, Fig. 7), which means that there is nearly no over-lapped (or intersected)
 983 information among them. Therefore, it is reasonable to suppose that: $\|S'_{Fa(v)} - S_v\|_2$ is not small,
 984 which gives:

$$985 \quad \|H'_{Fa(v)} - H'_v\|_2 = \left\| \mathcal{M}^+ \left(S_v, S'_{Fa(v)} \right) - \mathcal{M}^+ \left(S'_{Fa(v)}, S_v \right) \right\|_2. \quad (20)$$

987 This equation implies that the difference between the node embeddings of a pair of neighboring
 988 nodes can be bounded by the extent of asymmetry. Since the $\mathcal{M}^+ (\cdot, \cdot)$ can be specifically designed
 989 by practitioners, we have the opportunity to directly alleviate the over-smoothness. For the simplest
 990 example, we set $\mathcal{M}^+ (a, b) = 3a + b$, and thus we obtain:

$$991 \quad \|H'_{Fa(v)} - H'_v\|_2 = \left\| \left(3S_v + S'_{Fa(v)} \right) - \left(3S'_{Fa(v)} + S_v \right) \right\|_2 \quad (21)$$

$$993 \quad = 2 \cdot \left\| S'_{Fa(v)} - S_v \right\|_2. \quad (22)$$

995 Since we assume that $\|S'_{Fa(v)} - S_v\|_2$ is not small (*i.e.*, the two terms inside it have non-trivial
 996 differences because they aggregate information of completely different sets of nodes, illustrated in
 997 Fig. 7), the over-smoothness can be naturally controlled. Yet, for traditional deep GNNs with very
 998 deep layers, the differences between H'_u and H'_v are bounded by embeddings from the last layer,
 999 which already have too many similarities due to overlapping or even the same global scope, intuitively
 1000 improving the risk of over-smoothness.

1001 A.4 DISCUSSION ON PROPAGATION BOTTLENECK ALLEVIATION OF OUR PARADIGM

1003 In this subsection, we briefly discuss how our framework alleviates the propagation bottleneck. When
 1004 the knowledge is propagated along the edge of a single tree, it would be discounted with distance
 1005 or even blocked when the distance becomes too long. To address this issue, we integrate several
 1006 trees (N_T trees), *i.e.*, a forest, rather than a single tree. Furthermore, we can additionally integrate a
 1007 simple local shallow GNN (*i.e.*, several local layers) before and/or after the proposed global layer
 1008 (*i.e.*, Forest Layer in Fig. 2).

1009 Suppose we have N_T trees and add $K_L/2$ local sub-layers before and after our global layer, re-
 1010 spectively. One message from node v to node u has only a single path in a tree with the distance
 1011 $\text{dist}^{(T)}(v, u)$. After improving, the number of candidate paths becomes $K \cdot \bar{d}^{2K_L}$, where \bar{d} is as-
 1012 sumed to be the average degree of all nodes on a graph. Furthermore, the distance can be significantly
 1013 shortened as follows:

$$1014 \quad \text{dist}^{\{\{T_k\}_{k \in [1, K]}\}}(v, u) \quad (23)$$

$$1016 \quad = \min_{\substack{v': \text{dist}^{(G)}(v, v') \leq K_L/2 \\ u': \text{dist}^{(G)}(u, u') \leq K_L/2}} \left(\text{dist}^{(G)}(v, v') + \text{dist}^{(G)}(u, u') + \min_{k \in [1, K]} \text{dist}^{(T_k)}(u', v') \right), \quad (24)$$

1019 which means that the message from v to u can first select a $K_L/2$ -order neighbor on the vanilla graph,
 1020 then be quickly sent to another neighbor u' of u , and finally be propagated from u' to u . The overall
 1021 path is: $v \rightarrow v' \rightarrow u' \rightarrow u$, which mimics the real-world transport strategies, where people walk into
 1022 a highway system and walk outside it.

1023 The distance $\text{dist}^{\{\{T_k\}_{k \in [1, K]}\}}$ can be shortened to the minimum value, *i.e.*, the length of their shortest
 1024 path in the vanilla graph, *i.e.*, $\text{dist}^{(G)}(u, v)$, since:

$$1025 \quad \text{dist}^{\{\{T_k\}_{k \in [1, K]}\}}(v, u) \geq \text{dist}^{(G)}(v, v') + \text{dist}^{(G)}(u, u') + \text{dist}^{(G)}(u', v') \geq \text{dist}^{(G)}(v, u), \quad (25)$$

1026 where u', v' are the optimal nodes of the last equation. When improving the value of K_L , the
 1027 above distance tends to approach the optimal value, if $K_L \geq D(G)$ and letting $u' = v'$. This case
 1028 deteriorates into a traditional deep GNN, propagating knowledge only via stacking local layers.
 1029 Thus, from the perspective of propagating distance, our framework can be viewed as an interpolation
 1030 between deep GNNs and shallow global counterparts. Moreover, with some graph augmentation
 1031 tricks, *e.g.*, Expander Shirzad et al. (2023) or a prediction-based one (Sec. L), the shortest path length
 1032 on the vanilla graph can be further reduced, which means the distance can be adjusted into appropriate
 1033 values between a large interval. Therefore, we can find a good K_L and N_T to adjust those distances
 1034 to the most appropriate values. Note that too large K_L and N_T can nearly address the propagation
 1035 bottleneck, but with extra computational overhead. Also, it would make over-smoothness severe due
 1036 to their essential trade-off reported in Giraldo et al. (2023). Thus, we keep $K_L \leq 2$ and $N_T \leq 15$
 1037 ($N_T \leq 6$ for larger graphs), and empirically obtain competitive performance.

1038 A.5 DISCUSSION ON THE MOTIVATION OF OUR ATTENTION-BASED ESTIMATOR

1040 In this subsection, we will detail our motivation for the design of an attention-based edge weight or
 1041 homophily estimator, as well as a discussion on its impact on future attention exploitation, which will
 1042 essentially provide an explanation of our performance gain from a very high-level perspective, even
 1043 though we utilize the most basic auxiliary models to guide the training of local attention learning.

1044 We expect to sample spanning trees from a tree distribution defined via scores defined based on a
 1045 homophily estimator. In the node classification tasks, the quality of a homophily estimator is assumed
 1046 to be positively proportional to its performance (despite the fact that it is not the only factor related to
 1047 the performance). Therefore, we hope the auxiliary models to have better performance. Attention
 1048 coefficients tend to measure the utility of the information of one object on the learning of another one,
 1049 which is intuitively a good implementation of the above-mentioned homophily estimator. However,
 1050 under label scarcity in the semi-supervised settings, attention-based models risk over-fitting issues
 1051 due to their strong expressivity, which would deteriorate their performance as well as their quality of
 1052 attention. To address this issue, before learning effective attention coefficients, we expect to adjust
 1053 or polish the way of pre-training the attention-based auxiliary models, *i.e.*, \mathcal{T}_1 . Yet, how to better
 1054 pre-train this auxiliary model \mathcal{T}_1 is quite a big problem, which may be significantly beyond our work.
 1055 But we can consider this problem at a high level and utilize a simple trick: use another pre-training
 1056 process before the training of \mathcal{T}_1 and inject some valuable knowledge \mathbb{K}_0 into the latter. The extra
 1057 knowledge \mathbb{K}_0 can be viewed as some extra guidance, hints, or rules (*e.g.*, the pseudo-labels or
 1058 predictions from \mathcal{T}_0). The attention learning will be generalized as a conditional training, *i.e.*, with
 1059 \mathbb{K}_0 , we extract new knowledge \mathbb{K}_1 from \mathcal{T}_1 . We trust the ability of the model \mathcal{T}_1 , but sometimes it
 1060 may suffer from some issues due to some reasons. The outputs \mathbb{K}_0 have the potential to stabilize
 1061 its training. Also, \mathbb{K}_0 can be extracted from another model \mathcal{T}_0 . For our case, the \mathbb{K}_0 can be simply
 1062 set to the predictions, *i.e.*, the node label predictions from the previous auxiliary model \mathcal{T}_0 . The
 1063 intuition is that this \mathbb{K}_0 can supplement the supervision, which has effects on alleviating over-fitting
 1064 issues. As evidenced in our estimator comparison experiments (*i.e.*, Tab. 4), the introduction of \mathbb{K}_0
 1065 can effectively improve the performance of the attention-based model \mathcal{T}_1 in most cases.

1066 A.6 DISCUSSION ON THE GENERALITY OF THE MESSAGE AGGREGATOR

1068 Despite the restrictions posed on $f_{\text{Agg}}(\cdot)$ due to the discovered properties, we show $f_{\text{Agg}}(\cdot)$ can still
 1069 be quite general. To see this, recall the fact that many aggregators are designed with a weighted sum
 1070 of transformed embeddings (including attention) followed by a simple element-wise activation. If the
 1071 activation is an identity map, then the linearity perfectly admits the properties (Eq. 4). Besides, if it is
 1072 non-linear and invertible, we can first invert S_v and $H'_{\text{Fa}(v)}$ easily in Eq. 34 (the first arguments in \mathcal{M}^+
 1073 and \mathcal{M}^-), and then repose non-linearity after \mathcal{M}^+ . Moreover, for those non-invertible non-linear
 1074 activation functions $\sigma(\cdot)$, we can use a trick, *i.e.*, only storing before-activation values into $S_v^{[b]}$ and
 1075 $H'_{\text{Fa}(v)}^{[b]}$ to avoid invertibility and then reposing non-linearity as follows:

$$1076 \quad \forall u \in V, \quad S_u^{[b]} = f_{\text{Agg}}^{[b]} \left(\left\{ \sigma \left(S_v^{[b]} \right) \right\}_{v \in \text{Child}(u)} \cup \{g(H_u)\} \right), \quad \text{Recursion (I)'} \quad (26)$$

$$1077 \quad \forall v \in V, \quad H_v^{[b]} = \mathcal{M}^+ \left(S_v^{[b]}, \sigma \left(\mathcal{M}^- \left(H'_{\text{Fa}(v)}^{[b]}, \sigma \left(S_v^{[b]} \right) \right) \right) \right), \quad \text{Recursion (II)'} \quad (27)$$

$$1080 \quad \forall v \in V, \quad H'_v = \sigma \left(H_v^{[b]} \right), \quad S_v = \sigma \left(S_v^{[b]} \right), \quad f_{\text{Agg}}^{[b]}(\cdot) = \sigma(f_{\text{Agg}}(\cdot)). \quad (28)$$

1082 This insight allows almost all famous first-order local aggregators $f_{\text{Agg}}(\cdot)$, including many local
 1083 attention-based GNNs and typical RNNs, even beyond linearity.
 1084

1085 A.7 DISCUSSION ON THE INSIGHTS OF EXPRESSIVITY

1087 Recall that the expressive power of GNNs typically refers to their ability to discriminate whether two
 1088 given graphs are isomorphic or not. Thus, the first natural question is whether the proposed framework
 1089 can successfully identify two given isomorphic graphs. Here, we consider two graphs, $G_1 = (V_1, E_1)$
 1090 and $G_2 = (V_2, E_2)$, with exactly the same number of nodes and edges (i.e., $|V_1| = |V_2|$ and
 1091 $|E_1| = |E_2|$). Provided that they are isomorphic, there must exist a bijective function $\varphi : V_1 \rightarrow V_2$
 1092 such that $\mathbb{I}\{(u, v) \in E_1\} = \mathbb{I}\{(\varphi(u), \varphi(v)) \in E_2\}$ for any $u, v \in V_1$, where $\mathbb{I}\{\cdot\}$ is the indicator
 1093 function. In other words, these two graphs, G_1 and G_2 , look exactly the same, up to a node relabeling.
 1094 Assume that our paradigm encodes a graph $G = (V, E)$ into an embedding $H(G) \in \mathbb{R}^d$, where
 1095 $H(G) = \text{Pool}(\{H_v(G)\}_{v \in V})$ and $H_v(G) = \mathbb{E}_{T \sim P_T(G)}[f_{\text{Agg}}^T(v)]$ with $f_{\text{Agg}}^T(v) \in \mathbb{R}^d$ denoting
 1096 the global message obtained via node v by the tree T . Therefore, we can successfully identify that
 1097 these two graphs G_1 and G_2 are isomorphic, since $H(G_1) = H(G_2)$. To see this, considering
 1098 any spanning tree $T_1 = (V, E_{T_1}) \subseteq G_1$, there must exist a corresponding tree $T_2 \subseteq G_2$, where
 1099 $T_2 = \varphi(T_1) = (V, \varphi(E_{T_1}))$, such that T_1 and T_2 are isomorphic and the position of node v in
 1100 T_1 is symmetrically the same as that of node $\varphi(v)$ in T_2 . Thus, we have $f_{\text{Agg}}^{T_1}(v) = f_{\text{Agg}}^{T_2}(\varphi(v))$,
 1101 and consequently we can obtain that for any node $v \in V$, $H_v(G_1) = H_{\varphi(v)}(G_2)$, due to the fact
 1102 that $\mathbb{E}_{T_1 \sim P_T(G_1)}[f_{\text{Agg}}^{T_1}(v)] = \mathbb{E}_{T_2 \sim P_T(G_2)}[f_{\text{Agg}}^{T_2}(\varphi(v))]$. This concludes the proof of $H(G_1) =$
 1103 $H(G_2)$, showing the ability of the proposed framework to identify isomorphic graphs.

1104 Besides, we can further provide some insights into the ability to identify non-isomorphic graphs. We
 1105 present two example graphs, G_1 and G_2 , that are not isomorphic and can be successfully identified by
 1106 our paradigm, yet fail to be identified by typical GNNs. One case is that: let G_1 be a six-node circle
 1107 and G_2 be two three-node circles with all node features assigned scalars 1s (we call this case **Case**
 1108 **A**). For typical GNNs, including GIN, their expressive/discriminative powers are restricted within
 1109 1-WL, which is a theoretical framework for encoding graphs based on iterative local aggregations
 1110 and hashing. In this case, by mathematical induction, each node in each graph has intrinsically the
 1111 same color set of first-order neighbors (e.g., $\{1, 1\}$), and thus they will be colored exactly the same
 1112 after hashing at each iteration in the 1-WL test algorithm (e.g., all nodes are colored with 1), which
 1113 implies that both of G_1 and G_2 obtains the same graph encoding, i.e., the multi-set $\{1, 1, \dots, 1\}$,
 1114 and cannot be distinguished. More high-levelly, since 1-WL gains global power by local stacking, it
 1115 works well for local structures, but may fail at some simple global structural recognitions. We know
 1116 that graphs can be viewed as approximated discrete manifolds. From the perspective of manifolds,
 1117 local structures do not directly imply the global topology, and how such local structures are organized
 1118 still matters. That is why 1-WL techniques fail to deal with Case A. In contrast, Graph Transformers
 1119 (GTs) directly conduct global aggregations and have the potential to address this case. Yet, without
 1120 sophisticated positional or structural encodings (PEs or SEs), GTs fail to capture such long-distance
 1121 topological knowledge (e.g., connectivity, connected components, or communities). It would produce
 1122 node embeddings 1s for all nodes (i.e., $H(G_1) = H(G_2) = \text{Pool}(\{1, 1, \dots, 1\})$ for each graph),
 1123 and thus still fail to discriminate graphs in case A. Therefore, it necessitates a complex PE for GTs,
 1124 such as Laplacian-based encodings, which, nevertheless, would result in a higher complexity to
 1125 achieve such a stronger power. But in our paradigm, taking any spanning tree (with edges weights 1)
 1126 for each connected component of the graphs, we can efficiently obtain $H(G_1) = \text{Pool}(\{6, 6, \dots, 6\})$
 1127 and $H(G_2) = \text{Pool}(\{3, 3, \dots, 3\})$, which easily distinguishes these two graphs G_1 and G_2 without
 1128 the necessity of any hand-craft high-complexity PEs or SEs. This case can be generalized to any
 1129 two non-isomorphic k -regular graphs G_1 and G_2 (**Case B**), where each node has the same degree k .
 1130 Similarly, by mathematical induction, 1-WL will still produce the same encoding for both G_1 and
 1131 G_2 , and thus fails to discriminate them. And GTs still require sophisticated PEs/SEs to encode subtle
 1132 structural differences. But our FGL can implicitly encode such differences into edge probabilities in
 1133 a tree (i.e., $p(e)$, denoting how likely an edge e would appear in a spanning tree), and then affect the
 1134 probabilities of propagating paths. The sensitive probabilistic differences will naturally differentiate
 1135 the passed node messages and make final graph encodings distinct. This insight shows the potential
 1136 of our FGL to surpass the expressive power of typical GNNs.

1134
1135

A.8 DISCUSSION ON DEALING WITH DENSE GRAPH

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

It is not practical for us to utilize only several trees (e.g., K trees) to comprehensively capture all topological information of a densely connected graph, such as a graph with n nodes and $O(n^2)$ edges. In other words, it would unavoidably cause some information loss in this situation. The intuition is that it seems not enough for these trees to well represent first-order neighborhoods, since K trees cover only $K \cdot n$ degrees ($K \ll n$), but the total node degree positively correlates to the number of edges, i.e., $O(n^2)$ edges. However, we can straightforwardly mitigate the information loss by increasing the number of trees, K , with extra complexities no more than the number of edges $O(n^2)$. The reason is that in this situation, the graph itself would become the essential bottleneck of complexities, and thus, there are no efficient ways to process it without any information loss. Moreover, we empirically find that adding only a few trees may be sufficient to cover the main information. That is to say, the number of trees utilized for a dense graph can be sublinear in the number of nodes, n , with a very limited extra computational burden compared to the graph itself. To show this clearly, we introduce a dense graph and empirically test the relationship between the number of trees and the final performance. We construct the graph by adding many edges to the Cora dataset (100 extra edges for each node), while maintaining the vanilla edge homophily rate p (adding a homophilous edge with probability p and a heterophilous edge with probability $1 - p$). The results are shown in Sec. J.6. We observe that the addition of extra trees can further improve performance compared to using only a few. However, introducing too many trees cannot improve performance and may even slightly degrade it, as they introduce redundancy and would increase the risk of overfitting or over-smoothing issues. Therefore, even dealing with a very densely connected graph, a limited number of trees would be enough to encode the essential structural knowledge, without the need to introduce too many trees.

1157
1158

A.9 DISCUSSION ON A CASE WHERE OUR PARADIGM MIGHT UNDERPERFORM

1159
1160
1161
1162
1163
1164
1165

Here, we supplement a discussion with a case where our paradigm might underperform. The case would be a highly disconnected graph with too sparse edges. This graph has too many connected components ($O(n)$ components), and each of them is very small in size ($O(1)$ nodes per component). In this graph, our paradigm might fail to extract valuable long-distance knowledge and thereby degrade the final performance, possibly due to its heavy dependence on the pre-processing stage to address the high dis-connectivity. Yet, notably, deep GNNs still have this limitation, while GTs might have some merits in avoiding this issue.

1166

B PROOFS AND DERIVATIONS

1167

B.1 PROOF FOR THEOREM 1

1170
1171
1172

Recall the design of our tree aggregator $f_{\text{Agg}}^{(T)}$, it is designed based on a general message aggregator $f_{\text{Agg}}(\cdot)$. Any $f_{\text{Agg}}(\cdot)$ can be applied here if it satisfies the following two sufficient properties:

1173

$$\forall S, A, B, \text{ s.t. } S = B \cup A, B \cap A = \emptyset :$$

1174

$$f_{\text{Agg}}(S) = \mathcal{M}^+(f_{\text{Agg}}(B), f_{\text{Agg}}(A)), \quad \text{Property (I)} \quad (29)$$

1175

$$f_{\text{Agg}}(B) = f_{\text{Agg}}(S \setminus A) = \mathcal{M}^-(f_{\text{Agg}}(S), f_{\text{Agg}}(A)), \quad \text{Property (II)}$$

1176

where A, B, S are sets of messages (e.g., node embeddings).

1177

Two merging operators $\mathcal{M}^+(\vec{a}, \vec{b})$ and $\mathcal{M}^-(\vec{a}, \vec{b})$ denote adding (or deleting) vector \vec{b} to (or from) vector \vec{a} . Note that the $\mathcal{M}^{+/-}(\cdot, \cdot)$ can utilize auxiliary information and thus are allowed to be unsymmetrical.

1178

Then, we provide the proof of Theorem 1 as follows:

1179

1180

1181

Proof. Let $f_{\text{Agg}}^{(T)} : H \mapsto H' \in \mathbb{R}^{n \times d}$ denote our general tree aggregator, where $H, H' \in \mathbb{R}^{n \times d}$ denote the node embeddings before and after aggregation. Let node $r \in V$ is the root node of tree T .

1182

1183

1184

1185

1186

1187

First, we prove Recursion (I). Consider a node $u \in V$: the notation S_u denotes the combination of all messages from the subtree $T_u^{(\text{sub})}$ (nodes $V_u^{(\text{sub})}$). Note that all such messages will either pass

1188 through one of the children nodes $\text{Child}(u)$ (denoted as v) or be generated from u itself (i.e., $g(H_u)$).
 1189 Provided that node u has K_u children on tree T , we can classify the aforementioned messages into
 1190 $K_u + 1$ categories. At each one of the first K_u categories (assuming passing through the child v),
 1191 messages are merged into S_v . Merging these $K_u + 1$ categories, i.e., $\{S_v\}_{v \in \text{Child}(u)} \cup \{g(H_u)\}$,
 1192 which naturally derives Recursion (I), concluding the proof. Therefore, one can easily pre-process all
 1193 S_v for all $v \in V$ with the simple recursion, i.e., Recursion (I). Then, we will assume that all S_v are
 1194 known.

1195 Second, we prove Recursion (II). Recalling the observation we found in Sec. 4.3 and the intuitive
 1196 visualization in Fig. 7, we can obtain: the globally merged message at node v (i.e., H'_v) and that at
 1197 its father node $\text{Fa}(v)$ (i.e., $H'_{\text{Fa}(v)}$) differ only at the direction of one edge $e = (v, \text{Fa}(v))$. In other
 1198 words, the messages arriving at node v partially pass the edge $\text{Fa}(v) \rightarrow v$, and those at node $\text{Fa}(v)$
 1199 partially pass $v \rightarrow \text{Fa}(v)$. Thus, if we delete the edge e , the left messages at nodes v and $\text{Fa}(v)$
 1200 (denoted as S_v and $S'_{\text{Fa}(v)}$) are from a subtree $T_v^{(\text{sub})}$ (i.e., nodes $V_v^{(\text{sub})}$) and from its complement
 1201 set (i.e., nodes $V \setminus V_v^{(\text{sub})}$), respectively. It means that H'_v and $H'_{\text{Fa}(v)}$ are formed by exactly the same
 1202 two parts with different merging directions, which can be formulated as follows:
 1203

$$H'_v = \mathcal{M}^+(S_v, S'_{\text{Fa}(v)}), \quad (30)$$

$$H'_{\text{Fa}(v)} = \mathcal{M}^+(S'_{\text{Fa}(v)}, S_v). \quad (31)$$

1204 The above insight allows us to derive an recursion that directly connects H'_v and $H'_{\text{Fa}(v)}$. Provided
 1205 with S_v , according to Properties (I) and (II), we can first inverse Eq. 31 easily to calculate $S'_{\text{Fa}(v)}$
 1206 from $H'_{\text{Fa}(v)}$ by taking $\mathcal{M}^-(\cdot, S_v)$ at both of its sides:
 1207

$$S'_{\text{Fa}(v)} = \mathcal{M}^-(\mathcal{M}^+(S'_{\text{Fa}(v)}, S_v), S_v) = \mathcal{M}^-(H'_{\text{Fa}(v)}, S_v). \quad (32)$$

1212 Note that we can combine Properties (I) and (II), which implies that:
 1213

$$\mathcal{M}^-(\mathcal{M}^+(p, q), q) = p. \quad (33)$$

1214 In other words, if we first add q into p (obtaining $p + q$) and then subtract q from $p + q$, then we will
 1215 obtain p itself, showing the invertability of \mathcal{M}^+ and \mathcal{M}^- .
 1216

1217 Then, injecting Eq. 32 into Eq. 30 provides us with Recursion (II), i.e., Eq. 34.
 1218

$$\forall v \in V, \quad H'_v = \mathcal{M}^+(S_v, \mathcal{M}^-(H'_{\text{Fa}(v)}, S_v)). \quad \text{Recursion (II)} \quad (34)$$

1219 Putting these two parts together concludes the whole proof of this theorem. \square
 1220

1221 B.2 PROOF FOR THEOREM 2

1222 Recall the theorem we present in Sec. 4.6 of the main text, which justifies the quality of the specifically
 1223 designed tree distribution, i.e., trees sampled from it tend to preserve the first-order homophily ratios.
 1224 Next, we provide its proof.

1225 **Theorem 2*.** *Let \widehat{G} be any connected graph, and define the expected edge homophily ratio under
 1226 the score ratio $\Delta = p/q > 0$ as:*

$$R_{\widehat{G}}(\Delta) := \mathbb{E}_{T \sim P_{\widehat{G}}^{(p,q)}} [h(T)],$$

1227 where $h(T)$ is the edge homophily ratio of tree T . Then there exists a $\Delta_0 > 0$ such that:
 1228

- 1229 • **Monotonicity.** If $\Delta > \Delta' \geq \Delta_0$, then

$$R_{\widehat{G}}(\Delta) > R_{\widehat{G}}(\Delta').$$

- 1230 • **Upper Bound.** For all $\Delta \geq \Delta_0$,

$$R_{\widehat{G}}(\Delta) \leq 1 - \frac{\text{NHCC}(\widehat{G}) - 1}{n - 1},$$

1231 where $\text{NHCC}(\widehat{G})$ denotes the number of homophilous connected components of \widehat{G} .
 1232

1242 • **Asymptotic Tightness.** As $\Delta \rightarrow +\infty$,

1244
$$R_{\widehat{G}}(\Delta) \rightarrow 1 - \frac{\text{NHCC}(\widehat{G}) - 1}{n - 1}.$$

1247 *Proof.* Based on an introduced homophily indicator function $\mathbb{I}^{\text{homo}}(\cdot)$ denoting whether an edge is
1248 homophilous, we can define the first-order homophily ratio of a tree T of size n (assuming it is
1249 sampled from a graph $\widehat{G} = (V, E)$ of n nodes and m edges), *i.e.*, $h(T)$, as follows:

1251
$$h(T) = \frac{1}{n - 1} \cdot \sum_{e \in T} \mathbb{I}^{\text{homo}}(e), \quad (35)$$

1254 where $\mathbb{I}^{\text{homo}}(e = (u \leftrightarrow v)) = 1$ if node labels $Y_u = Y_v$, $\mathbb{I}^{\text{homo}}(e = (u \leftrightarrow v)) = 0$ otherwise.
1255 Denote as $\mathbb{T}(G)$ the space/set of all spanning trees of the graph G , where we suppose G is connected.
1256 For convenience, we also define $n^+(T)$, $n^-(T) \in \mathbb{N}$ as the numbers of edges in the tree T that are
1257 homophilous and heterophilous, respectively. Therefore, based on their definitions, we immediately
1258 have:

1259
$$\forall T \in \mathbb{T}(\widehat{G}), \quad n^+(T) + n^-(T) = n - 1, \quad (36)$$

1261
$$n^+(T) = \sum_{e \in T} \mathbb{I}(e). \quad (37)$$

1263 Recall the definition of the designed tree distribution $P_{\widehat{G}}^{(p, q)}(T)$ ($0 < q \leq p \leq 1$) conditioned on the
1264 graph \widehat{G} :

1266
$$\forall T \in \mathbb{T}(\widehat{G}), \quad P_{\widehat{G}}^{(p, q)}(T) = \frac{\prod_{e \in T} p^{\mathbb{I}^{\text{homo}}(e)} \cdot q^{1 - \mathbb{I}^{\text{homo}}(e)}}{\sum_{T' \in \mathbb{T}(\widehat{G})} \prod_{e \in T'} p^{\mathbb{I}^{\text{homo}}(e)} \cdot q^{1 - \mathbb{I}^{\text{homo}}(e)}}, \quad (38)$$

1270 where $p > 0$ is the score we assign for the homophilous edges, $q > 0$ is the score for the heterophilous
1271 edges, and we assume $q < p$. Then we can analyze the expected homophily ratio as follows:

1272
$$\mathbb{E}_{T \sim P_{\widehat{G}}^{(p, q)}(T)}[h(T)] = \sum_{T \in \mathbb{T}(\widehat{G})} P_{\widehat{G}}^{(p, q)}(T) \cdot h(T) \quad (39)$$

1275
$$= \sum_{T \in \mathbb{T}(\widehat{G})} P_{\widehat{G}}^{(p, q)}(T) \cdot \frac{n^+(T)}{n - 1} \quad (40)$$

1278
$$= \frac{1}{n - 1} \cdot \sum_{T \in \mathbb{T}(\widehat{G})} P_{\widehat{G}}^{(p, q)}(T) \cdot n^+(T) \quad (41)$$

1281
$$= \frac{1}{n - 1} \cdot \sum_{T \in \mathbb{T}(\widehat{G})} \frac{\prod_{e \in T} p^{\mathbb{I}^{\text{homo}}(e)} \cdot q^{1 - \mathbb{I}^{\text{homo}}(e)}}{\sum_{T' \in \mathbb{T}(\widehat{G})} \prod_{e \in T'} p^{\mathbb{I}^{\text{homo}}(e)} \cdot q^{1 - \mathbb{I}^{\text{homo}}(e)}} \cdot n^+(T) \quad (42)$$

1285
$$= \frac{1}{n - 1} \cdot \frac{\sum_{T \in \mathbb{T}(\widehat{G})} \prod_{e \in T} p^{\mathbb{I}^{\text{homo}}(e)} \cdot q^{1 - \mathbb{I}^{\text{homo}}(e)} \cdot n^+(T)}{\sum_{T' \in \mathbb{T}(\widehat{G})} \prod_{e \in T'} p^{\mathbb{I}^{\text{homo}}(e)} \cdot q^{1 - \mathbb{I}^{\text{homo}}(e)}}. \quad (43)$$

1289 Due to the fact that:

1290
$$\prod_{e \in T} p^{\mathbb{I}^{\text{homo}}(e)} \cdot q^{1 - \mathbb{I}^{\text{homo}}(e)} = p^{n^+(T)} \cdot q^{n^-(T)}. \quad (44)$$

1292 Injecting Eq. 44 into Eq. 43, we can obtain:

1294
$$\mathbb{E}_{T \sim P_{\widehat{G}}^{(p, q)}(T)}[h(T)] = \frac{1}{n - 1} \cdot \frac{\sum_{T \in \mathbb{T}(\widehat{G})} p^{n^+(T)} \cdot q^{n^-(T)} \cdot n^+(T)}{\sum_{T' \in \mathbb{T}(\widehat{G})} p^{n^+(T')} \cdot q^{n^-(T')}}. \quad (45)$$

According to Eq. 36, we have:

$$n^-(T) = n - 1 - n^+(T). \quad (46)$$

Injecting this into Eq. 45, we can obtain the following formula:

$$\mathbb{E}_{T \sim P_{\widehat{G}}^{(p, q)}(T)} [h(T)] = \frac{1}{n-1} \cdot \frac{\sum_{T \in \mathbb{T}(\widehat{G})} p^{n^+(T)} \cdot q^{n-1-n^+(T)} \cdot n^+(T)}{\sum_{T' \in \mathbb{T}(\widehat{G})} p^{n^+(T')} \cdot q^{n-1-n^+(T')}}. \quad (47)$$

We can cancel out the term q^{n-1} and then get:

$$\mathbb{E}_{T \sim P_{\widehat{G}}^{(p, q)}(T)} [h(T)] = \frac{1}{n-1} \cdot \frac{\sum_{T \in \mathbb{T}(\widehat{G})} p^{n^+(T)} \cdot q^{-n^+(T)} \cdot n^+(T)}{\sum_{T' \in \mathbb{T}(\widehat{G})} p^{n^+(T')} \cdot q^{-n^+(T')}} \quad (48)$$

$$= \frac{1}{n-1} \cdot \frac{\sum_{T \in \mathbb{T}(\widehat{G})} \left(\frac{p}{q} \right)^{n^+(T)}}{\sum_{T' \in \mathbb{T}(\widehat{G})} \left(\frac{p}{q} \right)^{n^+(T')}}. \quad (49)$$

Let $\lambda = \frac{p}{q} > 1$, then we have:

$$\mathbb{E}_{T \sim P_{\widehat{G}}^{(p, q)}(T)} [h(T)] = \frac{1}{n-1} \cdot \frac{\sum_{T \in \mathbb{T}(\widehat{G})} \lambda^{n^+(T)} \cdot n^+(T)}{\sum_{T' \in \mathbb{T}(\widehat{G})} \lambda^{n^+(T')}}. \quad (50)$$

Observing this formula, we find that we can treat both the numerator and the denominator as polynomials of the variable $\lambda > 1$. Moreover, they have different coefficients for different terms: all the terms of the denominator have exactly the same coefficient, *i.e.*, 1, while the term $\lambda^{n^+(T)}$ of the numerator has the coefficient $n^+(T)$, which hints at us to disentangle the constant.

Denote the maximum value of $n^+(T)$ as n_{\max}^+ and the number of $n^+(T)$ among all trees T in $\mathbb{T}(\widehat{G})$ as $N(n^+(T))$, formally:

$$N(n_0) = \# \left\{ T : T \in \mathbb{T} \left(\widehat{G} \right), n^+(T) = n_0 \right\}, \quad (51)$$

$$n_{\max}^+ = \max_{T \in \mathbb{T}(\widehat{G})} n^+(T). \quad (52)$$

Based on these notations, we can reformulate Eq. 50 as follows:

$$\mathbb{E}_{T \sim P_{\tilde{G}}^{(p, q)}(T)} [h(T)] = \frac{1}{n-1} \cdot \frac{\sum_{k \geq 0} \lambda^k \cdot k \cdot N(k)}{\sum_{k \geq 0} \lambda^k \cdot N(k)}. \quad (53)$$

For $N(k) > 0$, $k_{\max} = N_{\max}^+$. We can disentangle the constant $\frac{k_{\max} \cdot N(k_{\max})}{N(k_{\max})} = k_{\max} = N_{\max}^+$ from the above equations:

$$\mathbb{E}_{T \sim P_{\hat{G}}^{(p, q)}(T)}[h(T)] = \frac{1}{n-1} \cdot \left(N_{\max}^+ - N_{\max}^+ + \frac{\sum_{k \geq 0} \lambda^k \cdot k \cdot N(k)}{\sum_{k \geq 0} \lambda^k \cdot N(k)} \right) \quad (54)$$

$$= \frac{1}{n-1} \cdot \left(N_{\max}^+ + \frac{\sum_{k \geq 0} \lambda^k \cdot k \cdot N(k) - \sum_{k \geq 0} \lambda^k \cdot N(k) \cdot N_{\max}^+}{\sum_{k \geq 0} \lambda^k \cdot N(k)} \right) \quad (55)$$

$$= \frac{1}{n-1} \cdot \left(N_{\max}^+ - \frac{\sum_{k \geq 0} \lambda^k \cdot (N_{\max}^+ - k) \cdot N(k)}{\sum_{k > 0} \lambda^k \cdot N(k)} \right) \quad (56)$$

$$= \frac{1}{n-1} \cdot \left(N_{\max}^+ - \frac{\sum_{0 \leq k < N_{\max}^+} \lambda^k \cdot (N_{\max}^+ - k) \cdot N(k)}{\sum_{0 \leq k < N^+} \lambda^k \cdot N(k)} \right). \quad (57)$$

Observed from the above equation, the order of the numerator $\sum_{0 \leq k < N_{\max}^+} \lambda^k \cdot (N_{\max}^+ - k) \cdot N(k)$ is less than N_{\max}^+ , but the order of the denominator $\sum_{0 < k < N^+} \lambda^k \cdot N(k)$ is exactly N_{\max}^+ . Therefore,

1350 the order of the numerator is less than the order of the denominator. Thus, intuitively, as $\lambda \rightarrow +\infty$,
 1351 the growth rate is much faster than that of the numerator. There must exist a constant λ_0 satisfying
 1352 that when $\lambda > \lambda_0$, the fraction part of the above formula $\frac{\sum_{0 \leq k \leq N_{\max}^+} \lambda^k \cdot (N_{\max}^+ - k) \cdot N(k)}{\sum_{0 \leq k \leq N_{\max}^+} \lambda^k \cdot N(k)}$ decreases as
 1353 λ increases. Thus, the proof of part (1) of the theorem concludes.

1354
 1355 To prove parts (2) and (3) of the above theorem, we should further prove that:
 1356

$$1357 \frac{N_{\max}^+}{n-1} = 1 - \left(\text{NHCC}(\widehat{G}) - 1 \right) / (n-1). \quad (58)$$

1359 It immediately follows if and only if:
 1360

$$1361 N_{\max}^+ = n - \text{NHCC}(\widehat{G}). \quad (59)$$

1363 Suppose the graph \widehat{G} has $N_H = \text{NHCC}(\widehat{G})$ numbers of homophilous connected components
 1364 (*i.e.*, considering only the homophilous edges) C_1, \dots, C_{N_H} . N_{\max}^+ is the maximum value of
 1365 $N^+(T) = \sum_{e \in T} \mathbb{I}^{(\text{homo})}(e)$. This fact means that N_{\max}^+ is the sum of weights contained in the
 1366 maximum spanning tree of the graph \widehat{G} with the weights $\mathbb{I}^{(\text{homo})}(e)$. Considering the Kruskal's
 1367 algorithm², we sort all edges of \widehat{G} according to their weights, which means that all edges e with
 1368 $\mathbb{I}^{(\text{homo})}(e) = 1$ will be considered first. The rest of the edges with 0 weights have no influence on
 1369 the answer to the maximum spanning tree question.
 1370

1371 All edges with weights 1 are divided into N_H components. Each component has a mutually indepen-
 1372 dent solution. The answer of the component C_i ($i \in [1, N_H]$) is obviously $|C_i| - 1$, since adding
 1373 any further edge will cause a circle. Therefore, we have:
 1374

$$1375 N_{\max}^+ = \sum_{k=1}^{N_H} (|C_k| - 1) = \sum_{k=1}^{N_H} |C_k| - N_H = n - N_H = n - \text{NHCC}(\widehat{G}), \quad (60)$$

1376 which shows that Eq. 59 follows.
 1377

1378 Injecting Eq. 59 into Eq. 57 concludes the proof of the theorem. \square
 1379

1381 B.3 PROOF FOR THEOREM 3

1382 In this subsection, we provide the rigorous proof for Theorem 3, which is heavily based on the
 1383 monotonicity analysis of s with Respect to Maximum Degree M .
 1384

1385 *Proof.* According to Lemma 1 and Lemma 2, we can derive the following formula for the lower
 1386 bound of $s(\cdot)$:

$$1387 s \geq \frac{1}{\left(1 - 2 \cdot \frac{\sqrt{M}-1}{M} \left(1 - \frac{2}{D} \right) + \frac{2}{D} \right) \log \left(\frac{\max_i \sqrt{d_i}}{\epsilon \min_j \sqrt{d_j}} \right)} \quad (61)$$

1388 where $M = \max_{v \in V} d_v$ and $D = D(G) \geq 4$.
 1389

1390 First, simplify the denominator part involving M :
 1391

$$\begin{aligned} 1392 & 1 - 2 \cdot \frac{\sqrt{M}-1}{M} \left(1 - \frac{2}{D} \right) + \frac{2}{D} \\ 1393 & = 1 - \frac{2(\sqrt{M}-1)}{M} \left(1 - \frac{2}{D} \right) + \frac{2}{D} \\ 1394 & = \frac{M - 2(\sqrt{M}-1)}{M} + \frac{4(\sqrt{M}-1)}{MD} + \frac{2}{D} \\ 1395 & = \frac{M - 2\sqrt{M} + 2}{M} + \frac{4\sqrt{M} - 4 + 2M}{MD} \end{aligned}$$

²https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

$$1404 \quad = \frac{D(M - 2\sqrt{M} + 2) + 4\sqrt{M} - 4 + 2M}{MD}.$$

$$1405$$

$$1406$$

1407 Thus, the formula for s can be rewritten as:

$$1408 \quad s \geq \frac{MD}{(D(M - 2\sqrt{M} + 2) + 4\sqrt{M} - 4 + 2M) \log\left(\frac{\max_i \sqrt{d_i}}{\epsilon \min_j \sqrt{d_j}}\right)}. \quad (62)$$

$$1409$$

$$1410$$

$$1411$$

1412 To analyze the monotonicity of s with respect to M , define:

$$1413 \quad y = \frac{MD}{D(M - 2\sqrt{M} + 2) + 4\sqrt{M} - 4 + 2M}, \quad (63)$$

$$1414$$

$$1415$$

$$1416$$

1417 and compute its derivative $\frac{dy}{dM}$.

1418 Using the quotient rule $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$, where $u = MD$ and $v = D(M - 2\sqrt{M} + 2) + 4\sqrt{M} - 4 + 2M$:

1419 First, compute v' :

$$1420 \quad v' = \frac{d}{dM} [D(M - 2\sqrt{M} + 2) + 4\sqrt{M} - 4 + 2M]$$

$$1421 \quad = D \left(1 - \frac{1}{\sqrt{M}}\right) + \frac{2}{\sqrt{M}} + 2.$$

$$1422$$

$$1423$$

$$1424$$

$$1425$$

$$1426$$

$$1427$$

1428 Then, compute y' :

$$1429 \quad y' = \frac{D \cdot v - MD \cdot v'}{v^2}$$

$$1430 \quad = \frac{D [D(M - 2\sqrt{M} + 2) + 4\sqrt{M} - 4 + 2M] - MD \left[D \left(1 - \frac{1}{\sqrt{M}}\right) + \frac{2}{\sqrt{M}} + 2\right]}{v^2}.$$

$$1431$$

$$1432$$

$$1433$$

$$1434$$

1435 Simplifying the numerator:

$$1436 \quad \text{Numerator} = D^2M - 2D^2\sqrt{M} + 2D^2 + 4D\sqrt{M} - 4D + 2DM$$

$$1437 \quad - MD^2 + MD \cdot \frac{D}{\sqrt{M}} - 2MD \cdot \frac{1}{\sqrt{M}} - 2MD$$

$$1438 \quad = (D^2 - D^2)M + (-2D^2 + D^2 + 4D - 2D)\sqrt{M} + 2D^2 - 4D$$

$$1439 \quad = (-D^2 + 2D)\sqrt{M} + 2D^2 - 4D$$

$$1440 \quad = -D(D - 2)\sqrt{M} + 2D(D - 2)$$

$$1441 \quad = D(D - 2)(2 - \sqrt{M}).$$

$$1442$$

$$1443$$

$$1444$$

$$1445$$

$$1446$$

1447 Thus, the derivative simplifies to:

$$1448 \quad y' = \frac{D(D - 2)(2 - \sqrt{M})}{(D(M - 2\sqrt{M} + 2) + 4\sqrt{M} - 4 + 2M)^2}. \quad (64)$$

$$1449$$

$$1450$$

$$1451$$

1452 Given $D \geq 4$, we have $D - 2 > 0$ and $D > 0$. The sign of y' is determined by $2 - \sqrt{M}$:

$$1453$$

$$1454 \quad \bullet \text{ When } M < 4, 2 - \sqrt{M} > 0 \implies y' > 0, \text{ so } y \text{ is increasing.}$$

$$1455 \quad \bullet \text{ When } M = 4, 2 - \sqrt{M} = 0 \implies y' = 0, \text{ so } y \text{ reaches a critical point.}$$

$$1456 \quad \bullet \text{ When } M > 4, 2 - \sqrt{M} < 0 \implies y' < 0, \text{ so } y \text{ is decreasing.}$$

$$1457$$

1458 Therefore, the lower bound of s first increases and then decreases with respect to the maximum
 1459 degree M , reaching its peak at $M = 4$. In our case, we typically have $M \geq 4$ since there exist some
 1460 nodes with larger degrees than other nodes. Besides, we have a graph augmentation before graph
 1461 learning, which has an effect on improving the maximum degree of nodes, making it more likely to
 1462 satisfy $M \geq 4$.

1463 Then, to analyze monotonicity of y on D , write:

$$1465 \quad y = \frac{MD}{D(M - 2\sqrt{M} + 2) + 2M + 4\sqrt{M} - 4}. \quad (65)$$

1466 By the quotient rule, the derivative is:

$$1467 \quad \frac{dy}{dD} = \frac{M(2M + 4\sqrt{M} - 4)}{\left[D(M - 2\sqrt{M} + 2) + 2M + 4\sqrt{M} - 4\right]^2}. \quad (66)$$

1473 For $M \geq 1$, since $2M + 4\sqrt{M} - 4 \geq 2 > 0$, it follows that $\frac{dy}{dD} > 0$. Therefore, y is monotonically
 1474 increasing in D .

1475 Putting two monotonic analyses together concludes the proof of the theorem. \square

1477 B.4 DERIVATIONS OF PATH DECOMPOSITIONS FOR SOME PARADIGMS

1479 Recall several formulas in Sec. A.2 of Appn.:

$$1482 \quad H'_v = \text{Agg}(\{H_u\}_{u \in V}) = \sum_{u \in V} \sum_{\substack{\tilde{p} \in \mathcal{P}_{u \rightarrow v}(G): \\ \tilde{p} = (p_0 \rightarrow p_1 \rightarrow \dots \rightarrow p_k = v) \\ \text{s.t. } p_0 = u, p_k = v}} H_u \cdot w(\tilde{p}) \cdot \text{PE}(\tilde{p}). \quad (67)$$

1486 Here, $w(\tilde{p})$ is the path weight for a path $\tilde{p} = (p_0, p_1, \dots, p_k)$:

$$1488 \quad w(\tilde{p}) = \prod_{j=1}^k w_{p_{j-1} \rightarrow p_j}, \quad (68)$$

1491 where $w_{x \rightarrow y}$ is the weight of the directed edge $x \rightarrow y$. And $\text{PE}(\tilde{p})$ is an extra path-based positional
 1492 encoding beyond vanilla pair-wise relative positional encoding:

$$1494 \quad \text{PE}(\tilde{p}) = f_{\text{path-PE}}(\tilde{p}, G, \{w_{xy}\}). \quad (69)$$

1496 B.4.1 OTHER PARADIGMS

1498 **Infinite-layer deep local SGC, deep local GT, or infinite-step random walk aggregation all have
 1499 this form (Equation equation 67).** The "infinite-layer" or "infinite-step" nature implies that the
 1500 summation $\sum_{\tilde{p} \in \mathcal{P}_{u \rightarrow v}(G)}$ in Equation equation 67 considers all paths (walks) of any length k from u
 1501 to v . For these models, the components are identified as:

1502 (1) The edge weights $w_{x \rightarrow y}$ used in Equation equation 68 are specified as:

- 1504 • For **Infinite-layer SGC (Simple Graph Convolution)**: $w_{x \rightarrow y} = S_{xy}$, where S is the
 1505 normalized adjacency matrix (e.g., $S = \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2}$ with $\tilde{A} = A + I$). The path
 1506 weight becomes $w_{\text{SGC}}(\tilde{p}) = \prod_{j=1}^k S_{p_{j-1} p_j}$. The full aggregation often takes a form like
 1507 $H' = (\sum_{\ell=0}^{\infty} \beta^\ell S^\ell) H_{\text{in}}$ or $(I - \beta S)^{-1} H_{\text{in}}$. The sum over paths in Def. 1, when combined
 1508 with the PE term, captures this.
- 1509 • For **Infinite-layer deep local GT (Graph Transformer/Attention)**: $w_{x \rightarrow y} = \alpha_{yx}^{\text{shared}}$,
 1510 representing a layer-shared attention coefficient for information flowing from x to y (where y
 1511 is the target node in the attention mechanism). The path weight is $w_{\text{GT}}(\tilde{p}) = \prod_{j=1}^k \alpha_{p_j p_{j-1}}^{\text{shared}}$.

1512 • For **Infinite-step random walk aggregation**: $w_{x \rightarrow y} = T_{xy}$, an entry from the probability
 1513 transition matrix T , where $T_{xy} = P(\text{next node} = y | \text{current node} = x)$. The path weight
 1514 becomes $w_{\text{RW}}(\tilde{p}) = \prod_{j=1}^k T_{p_{j-1}p_j}$. This corresponds to the probability of traversing the
 1515 path \tilde{p} . Aggregations like those based on Personalized PageRank $\sum_{\ell=0}^{\infty} \beta^\ell T^\ell$ inherently
 1516 sum over weighted paths.
 1517

1518 (2) The path-based positional encoding $\text{PE}(\tilde{p})$ for a path $\tilde{p} = (p_0, p_1, \dots, p_k)$ is given by a product
 1519 of node-specific positional encodings for all nodes along the path:

$$\text{PE}(\tilde{p}) = \prod_{i=0}^k \text{PE}(p_i). \quad (70)$$

1520 Each node-specific positional encoding $\text{PE}(p_i)$ is defined as the sum of the discounted edge weight
 1521 product in all cycles (cycles) C of any length L_C that pass through node p_i . Let $\mathcal{C}(p_i, G)$ be the set
 1522 of all simple cycles containing node p_i in graph G . It can be formulated as follows:

$$\text{PE}(p_i) = \sum_{C \in \mathcal{C}(p_i, G)} \delta(L_C) \left(\prod_{(x,y) \in E(C)} w_{x \rightarrow y} \right), \quad (71)$$

1523 where $E(C)$ are the directed edges forming the cycle C , L_C is the length (number of edges) of cycle
 1524 C , and $\delta(L_C)$ is a discount factor that depends on the length of the cycle (e.g., $\delta(L_C) = \gamma^{L_C}$ for
 1525 some $0 < \gamma \leq 1$). The edge weights $w_{x \rightarrow y}$ in this context are the same as those defined above for
 1526 SGC, GT, or RW respectively. This structure (Equations equation 70 and equation 71) demonstrates
 1527 that these methods focus more on local environmental importance of a path, e.g., densities or degrees
 1528 of nodes contained in it, as captured by the properties of cycles involving nodes on the path.
 1529

1530 B.4.2 OUR PARADIGM

1531 **Tree-Set (i.e., Forest) Layer also has this form (Equation equation 67)**, with $\text{PE}(\tilde{p})$ as the sum of
 1532 weight products of all spanning trees of the graph obtained by merging path \tilde{p} into a single node.

1533 Let $G'_{\tilde{p}}$ be the graph obtained by contracting the path $\tilde{p} = (p_0, \dots, p_k)$ into a single *supernode*
 1534 $v_{\tilde{p}}$. The edges incident to $v_{\tilde{p}}$ are derived from edges incident to any $p_i \in \tilde{p}$ in G . Let $\mathbb{T}(G'_{\tilde{p}})$
 1535 be the set of all spanning trees in $G'_{\tilde{p}}$. For each spanning tree $T \in \mathbb{T}(G'_{\tilde{p}})$, its weight product is
 1536 $W(T) = \prod_{e \in E(T)} w'_e$, where w'_e are the (possibly re-defined) edge weights in T .
 1537

1538 The path positional encoding is:

$$\text{PE}(\tilde{p}) = \sum_{T \in \mathbb{T}(G'_{\tilde{p}})} W(T) = \sum_{T \in \mathbb{T}(G'_{\tilde{p}})} \left(\prod_{e \in E_T} w'_e \right). \quad (72)$$

1539 This shows that this paradigm focuses more on the global transport importance of a path, *i.e.*, how
 1540 connectivity or communication this path can facilitate if it is built as a highway with no communication
 1541 cost along it.
 1542

1543 C EXTENSIONS OF OUR TREE AGGREGATOR

1544 In this section, we will introduce some extensions of our tree aggregator in Sec. 4.3, which not only
 1545 shows the potential of the proposed general aggregator, but also reveals how it can be technically
 1546 combined with other popular techniques, exhibiting some possible future research directions on
 1547 general graph learning.
 1548

1549 C.1 INTEGRATED WITH GLOBAL ATTENTIONS

1550 Based on kernel decomposition, *i.e.*, $k(x, y) = f(x)^T \cdot f(y)$. We can easily inject global linear
 1551 and even general attention paradigm into our aggregator. In the attention mechanism, $k(Q, K)V =$
 1552 $f(Q)f(K)^TV$. Thus, we can treat $f(K)^TV$ as messages fed into the aggregator. Note that Q need
 1553 to conduct tensor product with $f(K)^TV$. Dimension reduction can be further utilized to reduce the
 1554 memory consumption.
 1555

1566
1567

C.2 FINE-GRAINED PROPAGATION CONTROL

1568
1569

In this subsection, we design fine-grained propagation control, such as discounting or truncating the distance, which can make the tree aggregators more flexible and better filter the possible distant noise.

1570
1571
1572

We can discount the distance by introducing a discounting weight and multiplying it by the edge weight. We can truncate the distance by introducing an extra variable to store how distant the currently embedding aggregates information.

1573

C.3 GENERALIZE FORESTS

1574
1575

In this subsection, we generalize forests to eliminate the need for Recursion (II). We can generalize the forests to the Directed Acyclic Graphs (DAGs) forests. Each time, we randomly sample one *directing solution* for each edge and form a DAG. And use a similar tree aggregator to aggregate distant messages and conduct fusion for them. Yet, it needs extra sampling strategy and tools for DAGs, which is still under-developped.

1581

D ACCELERATIONS OF OUR TREE AGGREGATOR

1582
1583

In this section, we introduce some tricks to accelerate our tree aggregator.

1584
1585

D.1 SELECTING CENTROID AS ROOT

1586
1587
1588
1589
1590
1591
1592

We can select the centroid node as the root to conduct the recursions on trees rather than choose the node 0, since the width of the rooted tree would be larger and the depth of the rooted tree would be smaller. This would facilitate higher parallelizability. For example, when we conduct leaf-to-root recursion, multiple threads can be better utilized. The centroid node can be found via two Depth-First Searches, which are efficient.

1593
1594

D.2 DIFFERENT GREEDY STRATEGIES FOR DIFFERENT RECURSIONS

1595
1596
1597
1598
1599
1600

Our recursions can use greedy strategies to improve parallelizability. When conducting leaf-to-root recursion, we can calculate the depth $\text{dep}(v)$ and sub-tree depth $\text{dep}^{(\text{sub})}(v)$ of each node v . We treat $\text{dep}^{(\text{sub})}(v)$ as the first key-words and treat $\text{dep}(v)$ as the second key-words to sort all nodes. When conducting root-to-leaf recursion, we can use $\text{dep}(v)$ as the only keyword. We can assign nodes for threads one by one based on $i \bmod N$, where N is the number of threads.

1601
1602

E DETAILS OF BLOCK ACCELERATION OF TREE SAMPLER

1603

As described in Sec. 4.2 in the main text and Sec. G of Appn. as well as Algorithm 2, we follow some Theoretical Computer Science previous works Wilson (1996) and adopt a random walk-based spanning tree sampler. It can sample a random tree exactly from the given tree distribution with linear running times in most cases. However, when dealing with larger graphs, a linear time complexity is sometimes not enough to satisfy practical requirements. The essential reason is that the parallelizability is based on the specific input graph structure. When the graph becomes more dense, a single thread may have a shorter life period, and more threads are needed. Yet, when more threads simultaneously work at nearby locations in a graph, they may interfere with each other. For example, supposing that two threads produce two paths p_1 and p_2 after circle/loop stripping, p_1 and p_2 can intersect many times. To maintain the correctness of this sampler, we must drop some parts of these paths, which definitely causes computational waste to some extent. More severely, as the multi-threaded working paradigm proceeds, the under-explored area in the graph becomes much localler (akin to some smaller connected components), and in a nearby environment, the number of threads must be reduced (otherwise the useless walk/path would frequently occur), which reduces the parallelizability.

1618
1619

In this section, we propose a simple trick (*i.e.*, Algo 3), which calls the vanilla Tree Sampler (*i.e.*, Algo 2) with some extra tools and intuitively improves its parallelizability with only limited precision sacrifice. In other words, we propose to conduct approximate sampling with ignorable deviations, yet

1620 make better use of modern architectural advantages. We describe some specific details in Algo. 3 for
 1621 the convenience of implementation. Furthermore, we provide detailed explanations of the algorithmic
 1622 pseudo-code in Sec. E of Appn.

1623 The key idea is to identify some unimportant edges in the original graph and attempt to drop them
 1624 or at least some of them. If the graph can be divided into several disconnected parts, we are then
 1625 allowed to conduct a separate tree sampling for each of them.

1627 How to integrally achieve this end poses a challenge, especially considering we expect to minimize
 1628 the number of dropped edges. To demonstrate our motivation more clearly, we consider solving the
 1629 problem starting from a simple greedy strategy. Since we already know the importance score of
 1630 each edge, *i.e.*, s (recall Sec. 4.2), a natural heuristic greedy strategy is to sort all edges by the edge
 1631 scores ascendingly and then drop the edges one by one until the number of connected components
 1632 achieving the pre-defined number, *e.g.*, K_B . However, the significant issue of the greedy strategy is
 1633 that to achieve the number K_B , we may risk dropping too many edges. Despite the fact that some of
 1634 these dropped edges are low-score, the cumulative effect cannot be ignorable. To understand this,
 1635 consider the following example with $K_B = 2$. Suppose that we have an n -sized random tree T which
 1636 is uniformly sampled from an n -sized complete graph. We label all edges in T with edge scores 1.
 1637 Assuming n is even, we can find the two centroid nodes of the tree T and denote them as nodes u
 1638 and v . Cutting the edge $u \leftrightarrow v$ would cause the tree T to become two parts. We denote the left node
 1639 set and the right node set with notations $V_{\text{left}} \subseteq V$ and $V_{\text{right}} \subseteq V$. We then continuously add edges
 1640 with uniform random edge scores between 0 and $1 - \epsilon$ (*i.e.*, $s(e) \sim \text{Uniform}(0, 1)$ and $0 < \epsilon \ll 1$)
 1641 to the V_{left} -induced subgraph (denoted G_{left}) and the V_{right} -induced subgraph (denoted G_{right}) until
 1642 both of them becoming complete graphs. Next, we consider the solution derived from the above
 1643 greedy strategy for the constructed graph G . It will drop all the edges with scores smaller than 1,
 1644 *i.e.*, all the edges that are added after sampling the initial tree T , and then drop one of the edges in
 1645 T . An obvious issue of this method is that the sum of all the dropped edges would be too large to
 1646 ignore their cumulative effects. In fact, the expected sum of the dropped edges is $\mathcal{O}(n^2)$. On the
 1647 other hand, the optimal solution of the constructed graph G is obvious, *i.e.*, deleting the single edge
 1648 $u \leftrightarrow v$ with the total edge scores equaling 1 (*i.e.*, $\mathcal{O}(1)$). From another perspective, we expect the
 1649 obtained two components are relatively balanced, *i.e.*, $|V_{\text{left}}| \approx |V_{\text{right}}|$. The optimal solution follows
 1650 this requirement, yet the greedy strategy may fail to achieve this, due to the randomness of the sorting
 1651 algorithm for those edges with exactly the same scores.

1652 Therefore, based on the above analysis, we can outline the conditions that we expect the graph
 1653 division technique to holistically satisfy: (1) The divided parts are expected to be maximally balanced.
 1654 (2) The number of dropped edges is expected to be minimal. (3) The sum of scores of the dropped
 1655 edges is expected to be minimal. We notice that these conditions are almost the merits of some
 1656 graph cut techniques, *e.g.*, METIS library Karypis & Kumar (1998), which is treated as an operator
 1657 (denoted as $\text{GraphCut}(\cdot)$) called in the first step of our algorithm.

1658 After obtaining the several components split via $\text{GraphCut}(\cdot)$, we call Algo. 2 to separately sample
 1659 a tree for each component and then we obtain several trees T_1, \dots, T_{K_B} . However, how to merge
 1660 them and how to consider the dropped edges remain challenging. To this end, we propose to collapse
 1661 each component to a single node labeled with the component label (*i.e.*, the block number, labeled,
 1662 *e.g.*, between 1 and K_B). Then all edges between these components (*i.e.*, blocks) can be re-labeled
 1663 with their end nodes' block numbers and will become multi-edges connecting two newly labeled
 1664 nodes. For example, a vanilla edge $73 \leftrightarrow 254$ would become $4 \leftrightarrow 7$, where 73 and 254 are two
 1665 vanilla node labels as well as 4 and 7 are two block numbers (*i.e.*, two new labels of merged/collapsed
 1666 new nodes, 73 comes from 4-th block, and 254 comes from 7-th block). Along this way, we can obtain
 1667 a highly collapsed small graph with exactly K_B nodes and many edges coming from vanilla edges
 1668 connecting two different blocks/components. We call this new graph G' . It contains no self-loops
 1669 since we drop all intra-block vanilla edges (note that when sampling T_1, \dots, T_{K_B} , we retain only
 1670 these edges and drop all the other edges). It also contains many edges that connect two same pair
 1671 of nodes (new nodes), which we call *multi-edges*. We then merge a multi-edge (containing many
 1672 edges) into a single edge, with its edge weight as the sum of vanilla edge weights. Here, our idea is
 1673 to sample a tree for this new graph G' , and then down-sample a selected tree edge (corresponding to
 1674 a multi-edge before merging) into a vanilla edge contained in the corresponding multi-edge. This
 1675 process can be proven equivalent to directly sampling a tree for the new graph with repeating edges
 1676 that have different edge weights, where the latter cannot be conveniently implemented via directly
 1677 calling Algo. 2.

1674 The edge down-sampling process requires us to simultaneously conduct multiple (exactly K_B)
 1675 sampling operations from variable-length categorical distributions. For example, we are required to
 1676 parallelizably sample a x from the categorical distribution $[\frac{1}{2}, \frac{1}{4}, \frac{1}{4}]$ and at the same time, sample a y
 1677 from another distribution with different length, *e.g.*, $[\frac{3}{7}, \frac{4}{7}]$. This makes GPU-level parallelization
 1678 inconvenient. The challenge can be addressed via a Gumbel trick, described below. We first normalize
 1679 the edge weights in each first-order neighborhood to construct each categorical distribution. This
 1680 step can be done via a Scatter_Add operator to efficiently calculate the sum of first-order edge
 1681 weights. Then, we compute the log values for all probabilities and add element-wise *Gumbel* random
 1682 variables, *i.e.*, $x = -\log(-\log(t))$, $t \sim \text{Uniform}(0, 1)$. Next, the most key step is to conduct a
 1683 Scatter_ArgMax(\cdot) operator to allow the sampling distribution to have different lengths, which is
 1684 significantly beyond vanilla ArgMax(\cdot) after some operation such as $\text{*.reshape}(\cdot)$. Through these
 1685 steps, we can efficiently conduct edge down-sampling and obtain a new tree with vanilla node labels
 1686 (between 1 and n). We call this tree T_0 . Merged with other obtained trees, *i.e.*, T_1, \dots, T_{K_B} , we
 1687 can obtain the final tree $T = \mathcal{M}(\{T_k\}_{k \in [0, K_B]})$.
 1688

F DETAILS OF ALGORITHMS

1691 In this section, we provide several algorithmic pseudo-codes to support the detailed implementations
 1692 of our main framework, as well as some discussions in other sections of this Supplementary Mate-
 1693 rials. In each algorithm, we will shortly provide a description of this algorithm, the input/output,
 1694 important hyper-parameters, learnable parameters, and other notes on, *e.g.*, some extra definitions
 1695 or clarifications of symbols or operators, as well as some tools called from another library. In the
 1696 corresponding subsection of one algorithm, we will provide line-by-line explanations to detail the
 1697 specific implementation, including some notable points.
 1698

F.1 ALGORITHM OF OUR FRAMEWORK

1700 We provide a detailed introduction part by part in Sec. 4 of the main text. Next, we will provide an
 1701 algorithmic pseudo-code (*i.e.*, Algo. 1) to connect these parts from a more holistic perspective for a
 1702 better understanding.
 1703

1704 Furthermore, we will provide a line-by-line description for this algorithmic pseudo-code (*i.e.*, Algo. 1)
 1705 as follows:

- 1706 • Line 1 extracts some knowledge from the non-attention-based model \mathcal{T}_0 via pretraining. In
 1707 our implementation, for simplicity, we select a single-layer GCN/MLP for our \mathcal{T}_0 to show
 1708 our true potential (rather than based on powerful candidates). Also, \mathbb{K}_0 is treated as direct
 1709 node predictions, *i.e.*, node label prediction probabilities. Other implementations may also
 1710 be acceptable or better.
- 1711 • Line 2 augments the vanilla graph into an augmented variant, based on the extracted
 1712 predictions \mathbb{K}_0 (note it is optional). The main motivation is to make the graph connected
 1713 and to improve the initial homophily ratio or its NHCC (especially for heterophilous graphs
 1714 *). A simple top-k augmentation is enough to achieve this end (Sec. L).
 1715*
- 1716 • Line 3 extracts new knowledge \mathbb{K}_1 from the attention-based model \mathcal{T}_1 based on the old yet
 1717 necessary auxiliary information \mathbb{K}_0 . The detailed motivation for why we need additional old
 1718 information \mathbb{K}_0 to extract new knowledge \mathbb{K}_1 can be found in Sec. 4.2 of the main text and
 1719 Sec. A.5. In our implementation, the new knowledge is modeled as attention coefficients of
 1720 the module \mathcal{T}_1 , and thus it can also be viewed as a kind of attention learning.
 1721
- 1722 • Line 4, based on the knowledge \mathbb{K}_1 , defines a tree distribution conditioned on the graph \widehat{G} ,
 1723 *i.e.*, $P_{\widehat{G}}(T)$.
 1724
- 1725 • Line 5 \rightarrow 7 separately sample a tree from the tree distribution $P_{\widehat{G}}(T)$. We sample N_T trees
 1726 in total and these trees can be viewed a *iid.* sample of size N_T from the distribution.
 1727
- 1728 • Line 8 inputs the vanilla graph G as well as its feature matrix X into our Local Submodule
 1729 (Sec. 4.4) of our architecture, and we obtain the node embedding matrix $H \in \mathbb{R}^{n \times d}$.
 1730
- 1731 • Line 9 \rightarrow 11 separately fed the sampled tree T_k as well as the embedding matrix H into
 1732 the tree aggregator, and obtain new embeddings $H'^{(k)} \in \mathbb{R}^{n \times d}$. The tree aggregator will
 1733

1728 aggregate distant messages on each tree independently. In other words, $H'^{(k)}$ depends only
1729 on the k -th tree.
1730

- 1731 • Line 12 fuses all these node embeddings from different trees into single ones, *i.e.*, $H' \in \mathbb{R}^{n \times d}$. We directly implement the operator $\text{Fuse}(\cdot)$ via a simple post-hoc mean fusion. Yet,
1732 note that other sophisticated alternatives are options, too.
- 1733 • Line 13 represents a residual connection governed by a hyper-parameter $\gamma \in [0, 1]$, which
1734 controls the trade-off between the local knowledge and global knowledge.

1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782

1783 **Algorithm 1** Algorithm of Our Framework

1784

1785 **Description:** The holistic architecture of our FGL framework mainly contains four critical steps.1786 **Input:** an input graph $G = (V, E)$ with feature matrix $X \in \mathbb{R}^{n \times f}$ and normalized adjacency matrix
1787 \hat{A} , the node labels in the training set Y_L , a graph augmenter $\text{Aug}(G; \mathbb{K})$ (to augment graph with
1788 some auxiliary information \mathbb{K}), a non-attention-based graph layer \mathcal{T}_0 , an local attention-based graph
1789 layer \mathcal{T}_1 , training operator $\text{Train}(\mathcal{T} | \mathbb{K})$ returning the outputs or predictions of the trained auxiliary
1790 modules (*e.g.*, \mathcal{T}_0 and \mathcal{T}_1) where auxiliary information \mathbb{K} may contain both training labels and
1791 training inputs as well as testing inputs, a tree distribution definer $\text{Define}(\cdot)$, and some key technical
1792 components including Tree Sampler $\text{TreeSampler}(\cdot)$, Tree Aggregators $f_{\text{Agg}}^{(T)}(\cdot)$, and Tree Fuser
1793 $\text{Fuse}(\cdot)$.

1794

1795 **Output:** node embeddings $H'' \in \mathbb{R}^{n \times d}$ 1796 **Hyper-Parameters:**1797 β_1, β_2 , the hyper-parameters in our Local Submodule (Eq. 9);1798 γ , the residual coefficient;1800 $K_L \leq 2$, the number of sub-layers of our Local Submodule;1801 N_T , the number of sampled trees1802 **Trainable-Parameters:** learnable parameters in Local and Global Submodules as well as auxiliary
1803 modules (layers), *i.e.*, \mathcal{T}_0 and \mathcal{T}_1 1804 **Note:** For brevity, here we aim to present the *high-level idea*, and detailed text descriptions are
1805 provided in Sec. 4 of the main text.

1806

1807 1: $\mathbb{K}_0 \leftarrow \text{Train}(\mathcal{T}_0 | G, Y_L)$ 1808 2: $\hat{G} \leftarrow \text{Aug}(G; \mathbb{K}_0)$ 1809 ▷ The main motivation is to make the graph connected and to improve the initial homophily
1810 ratio or its NHCC. A simple top-k augmentation is enough to achieve this end.1811 3: $\mathbb{K}_1 \leftarrow \text{Train}(\mathcal{T}_1 | \mathbb{K}_0, \hat{G}, Y_L)$ 1812 4: $P_{\hat{G}}(T) \leftarrow \text{Define}(\mathbb{K}_1)$ 1813 ▷ Define a tree distribution based on the knowledge \mathbb{K}_1 (Sec. 4.2).1814 5: **for** each $k \in [1, N_T]$ **do**1815 6: $T_k \leftarrow \text{TreeSampler}(P_{\hat{G}}(\cdot))$ 1816 7: **end for**1817 8: $H \leftarrow \text{Local}(X; \beta_1, \beta_2, G, \mathbb{K}_1, K_L) \in \mathbb{R}^{n \times d}$ 1818 9: **for** $k \in [1, N_T]$ **do**1819 10: $H'^{(k)} \leftarrow f_{\text{Agg}}^{(T_k)}(H) \in \mathbb{R}^{n \times d}$ 1820 11: **end for**1821 12: $H' \leftarrow \text{Fuse}\left(\left\{H'^{(k)}\right\}_{k \in [1, N_T]}\right) \in \mathbb{R}^{n \times d}$ 1822 ▷ We directly implement the operator $\text{Fuse}(\cdot)$ via a simple post-hoc mean fusion. Yet, note
1823 that other sophisticated alternatives are options, too.1824 13: $H'' \leftarrow \gamma \cdot H' + (1 - \gamma) \cdot H \in \mathbb{R}^{n \times d}$ 1825 14: **return** $H'' \in \mathbb{R}^{n \times d}$

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836
1837

F.2 ALGORITHM OF TREE SAMPLER

1838
1839
1840
1841

Recall the brief description of the utilized tree sampler in Sec. 4.2 and a more detailed introduction in Sec. G of Appn. To facilitate a better understanding, in this subsection, we will provide an algorithm pseudo-code as well as line-by-line explanations for the convenience of implementations or some possible future extensions and improvements.

1842
1843

We give an explanation of Algorithm 2 as follows:

1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

- Lines 1 computes the transition matrix of a Markov Chain defined based on edge weights $s = \{s_e\}_{e \in E}$ according to Eq. 74.
- Lines 2 randomly generate a node permutation $a[\cdot]$ with its first element as the root of the sampled tree in the graph.
- Lines 3 → 5 initialize the arrays $\text{Next}[\cdot]$ and $\text{InTree}[\cdot]$. The former denotes a temporary linked array pointing from the leaf nodes to the root node of the sampled tree (we treat the temporary tree as a rooted tree with root node $a[0]$). The latter denotes whether a node v is contained in the current (rooted) sampled tree.
- Line 6 takes the root node $a[0]$.
- Line 7 → 23 finds a node $v \in V$ that is not in the current tree and starts a new walk (recall the above-mentioned Markov Chain) from the node v (until encountering a node already in the current tree). The walk would contain some repeated nodes, and we should strip all circles or loops to obtain a path. Finally, we take all the nodes and edges, and merge them into the tree node and tree edge sets, respectively.
- Line 8 → 11 attempt to identify a new node that is not in the current tree to start a new walk.
- Line 12 → 16 sample a walk step by step (each time sampling a node in a categorical distribution) and record this walk in the way of Next pointers. Notably, the iteratively sampling operations implicitly strip all the loops or circles by substituting the old $\text{Next}(u)$ with a new value, considering this point from the perspective of a linked array, and obtain a directed path. The walk (or the directed path) will end at a node that is already contained in the current tree, *i.e.*, $\text{InTree}[v] = \text{True}$.
- Line 17 → 22 add all nodes and edges in the path into the tree node set and the tree edge set, respectively.
- Line 24 returns the sampled tree.

1890
1891**Algorithm 2** Algorithm of Tree Sampler1892
1893
1894
1895

Description: Given a positively weighted directed graph G , define a tree distribution conditioned on graph G as $P_G(T)$, with the unnormalized score equaling to the product of all edge weights in a tree (Recall Eq. 2 in the main text). Return a spanning tree of graph G sampled from $P_G(T)$. Check Sec. F.2 for the line-by-line explanations of this algorithm.

1896
1897
1898

Input: a graph $G = (V, E)$ with first-order neighborhoods $\{N_v\}_{v \in V}$ (or equivalently the adjacency list of G), edge weights $s = \{s(e)\}_{e \in E}$ where $e \in E$ is a undirected edge of graph G

1899
1900

Output: the tree $T \sim P_G(T)$ with $T = (V_T, E_T)$, where V_T and E_T denote its node set and its (undirected) edge set, respectively

1901
1902
1903
1904
1905
1906
1907
1908

Note: (1) Next $[v]$ is a "next" pointer directing the next node after node v , noting that it implicitly includes a loop-stripping process. The Next $[\cdot]$ operator with a Head node defines a linked array, representing a random walk. Since it implicitly includes a loop-stripping process, the above random walk is essentially a path. InTree $[v] \in \{\text{True}, \text{False}\}$ denotes whether node v is in the current tree. (2) This tree sampler can be highly parallelized via, e.g., the OpenMP library at <https://www.openmp.org/>. Besides, it can naturally support simultaneously sampling multiple trees. We also provide a block acceleration trick (Algo. 3), which can further improve its parallelizability with only an ignorable deviation from standard sampling.

1909
1910
1911
1912
1913

1: Calculate a Markov Chain (transition matrix) based on the edge weights s , recalling Eq. 74:

$$p_{i \rightarrow j} = \frac{s(e = (i \leftrightarrow j))}{\sum_{e' = (i \leftrightarrow k) \in \hat{G}} s(e')} \in [0, 1]. \quad (73)$$

1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

2: Generate a random permutation of $V = \{v_0, v_1, \dots, v_{n-1}\}$, i.e., $a[\cdot]$, where $n = |V|$.

3: **for** each $v \in V$ **do**

4: Next $[v] \leftarrow -1$, InTree $[v] \leftarrow \text{False}$

5: **end for**

6: InTree $[a[0]] \leftarrow \text{True}$, $V_T \leftarrow \{a[0]\}$, $E_T \leftarrow \emptyset$

7: **for** each $t \in [0, n - 1]$ **do**

8: $v \leftarrow a[t]$, $v_0 \leftarrow v$

9: **if** InTree $[v]$ **then**

10: Continue

11: **end if**

12: **while** InTree $[v] = \text{False}$ **do**

13: $u \leftarrow \text{Sample}(u; \{p_{v \rightarrow u}\}_{u \in N_v})$

14: Next $[v] \leftarrow u$

15: $v \leftarrow u$

16: **end while**

17: **while** InTree $[v_0] = \text{False}$ **do**

18: InTree $[v_0] \leftarrow \text{True}$

19: $V_T \leftarrow V_T \cup \{v_0\}$

20: $E_T \leftarrow E_T \cup \{v_0 \leftrightarrow \text{Next}[v_0]\}$

21: $v_0 \leftarrow \text{Next}[v_0]$

22: **end while**

23: **end for**

24: **return** $T \leftarrow (V_T, E_T)$

1944
1945

F.3 ALGORITHM OF BLOCK ACCELERATION OF TREE SAMPLER

1946
1947
1948

As introduced in Sec. E, we propose a *block acceleration* tree to improve the parallelizability of the tree sampler (see Algorithm 2), which can be efficiently and conveniently implemented via Tensor operations (using Torch library <https://pytorch.org/>) as well as some other tools.

1949
1950

We give an explanation of Algorithm 3 as follows:

1951
1952
1953

- Line 1 call the GraphCut operator to cut the graph into several blocks and return the block numbers of all n nodes in V , where $\text{BlockNo}(v)$ denotes the block number of node $v \in V$. The motivation can be found in Sec. E for details.
- Line 2 calculates the new edge index of the graph G with new node labels, *i.e.*, block numbers.
- Lines 3 → 6 obtain the edge index and the corresponding edge weights inside each block.
- Line 7 obtains the edge mask indicating all edges between blocks. These edges are essentially edges in G' , but note the node labels.
- Line 8 → 9 obtain vanilla edges and weights between blocks.
- Line 10 relabel the between-block edges (*i.e.*, the edge index) inside G' (recall Sec. E).
- Line 11 merges a multi-edge into a single edge. The weight of the single edge is the sum of the edge weights of vanilla edges contained in this multi-edge.
- Line 12 → 14 calls the operator $\text{TreeSampler}(\cdot)$ to separately sample a tree for each block, including the special block 0, which takes blocks as new nodes.
- Line 15 → 16 compute the row index of each related edge positioned in the edge index of the tree T_0 , which is also the ID of a multi-edge. Each related edge is contained in a multi-edge and can be numbered with the ID of the multi-edge. In other words, $\text{Index}[i] = j$ represents the i -th related edge (relabelled with the respective block number) corresponds to the j -th tree edge in block 0 (*i.e.*, $\text{TreeBlock}[0]$). Each tree edge in $\text{TreeBlock}[0]$ (*i.e.*, an above-mentioned single multi-edge) corresponds to many relabeled edges (called *related edges*).
- Line 17 selects all the related edges. The edge index has many repeating rows, *e.g.*, $[3, 5], [3, 5], [3, 5]$, where 3 and 5 denote the 3-th and the 5-th collapsed nodes (*i.e.*, block numbers). Note that they represent different vanilla edges.
- Line 18 selects those edge weights. Different repeating rows in the edge index may have different edge weights, since they are essentially different edges, yet with the same pair of end node block numbers.
- Line 19 calculates the edge weight of a multi-edge as the sum of all the related edges it contains. For example, there are 7 numbers of $[3, 5]$ s with edge weights s_0, \dots, s_6 , and then they will be merged into a single edge (a multi-edge) with the weight $s = \sum_{i=0}^6 s_i$. Now, there is only one copy of $[3, 5]$.
- Line 20 represents a normalization operation, which can calculate n categorical distributions with possibly different lengths.
- Line 21 represents a Gumbel sampling step. We calculate the log values and add independently sampled Gumbel variables to them. Please refer to Jang et al. (2016) for a detailed introduction to Gumbel sampling or the Gumbel Softmax trick, which is popular for categorical sampling.
- Line 22 is the most key step. We utilize the operator $\text{Scatter_ArgMax}(\cdot)$ to select the maximum element for each group simultaneously, which is typically much more efficient than those less-optimized simple variants of practitioners.
- Line 23 concatenates all the trees from different blocks (*i.e.*, T_0, \dots, T_{K_B}) into a single tree T , which is our sampled tree.
- Line 24 returns the tree T .

1998 G DETAILS OF EFFICIENT TREE SAMPLER

1999
 2000 Restricting the tree distribution into such a parametric class (Eq. 2) has another benefit, *i.e.*, it has
 2001 a deep connection with extensive prior studies on random spanning trees in Theoretical Computer
 2002 Science Wilson (1996); Broder (1989); Kelner & Madry (2009); Durfee et al. (2017); Wilson &
 2003 Propp (1996). Sampling such trees conditioned on a given graph can be achieved via different
 2004 techniques, *e.g.*, determinant calculation/Matrix Tree Theorem, random walk Wilson (1996), and
 2005 effective resistance Durfee et al. (2017). For simplicity and implementation convenience, we follow
 2006 the study Wilson (1996) and adopt a random walk-based tree sampler (demonstrated in Algorithm 2).
 2007 It maintains real-time tree node and edge sets V_T and E_T , and at each iteration, find a node $v \notin V_T$
 2008 and start a new random walk \mathcal{W}_v from v (*i.e.*, $\mathcal{W}_v = (v \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v')$) until encountering
 2009 a node $v' \in V_T$. The walk \mathcal{W}_v is produced following the Markov Chain induced from the edge scores
 2010 $s = \{s(e)\}_{e \in \hat{G}}$, *i.e.:*

$$2011 p_{i \rightarrow j} = \frac{s(e = (i \leftrightarrow j))}{\sum_{e'=(i \leftrightarrow k) \in \hat{G}} s(e')} \in [0, 1]. \quad (74)$$

2012 After loop stripping, all nodes and edges contained in $\mathcal{W}'_v = \text{LoopStrip}(\mathcal{W}_v)$ are merged into V_T
 2013 and E_T , respectively. More details are provided in Algorithm 2. This sampler is simple and efficient
 2014 with only $\mathcal{O}(\tau(p))$ running time, where $\tau(p)$ denotes the expected hitting time of two random nodes
 2015 $u, v \in V$ sampled from stationary distribution π_p of the Markov Chain p (Eq. 74):

$$2016 \tau(p) = \mathbb{E}_{u, v \sim \pi_p} [\text{Step}(u \rightarrow v)] = \sum_{u, v \in V} \pi_p(u) \cdot \pi_p(v) \cdot \text{Step}(u \rightarrow v), \quad (75)$$

2017 where $\text{Step}(u \rightarrow v)$ denotes the expected number of steps for a random walk from node u to (hit)
 2018 node v at the first time. As pointed out in Wilson (1996), $\mathcal{O}(\tau(p)) \approx \mathcal{O}(|V|)$ for most random
 2019 graphs, which is much faster than their cover time (typically $\mathcal{O}(|V| \log |V|)$). Notably, it can also
 2020 be parallelized and sample multiple trees simultaneously. Moreover, we propose a further optional
 2021 *block acceleration* when dealing with very large graphs (detailed in Algorithm 3 and Sec. E of Appn.)
 2022 with a Graph Cut technique and Gumbel-Softmax edge down-sampling, which sacrifices only some
 2023 unimportant low-score edges.

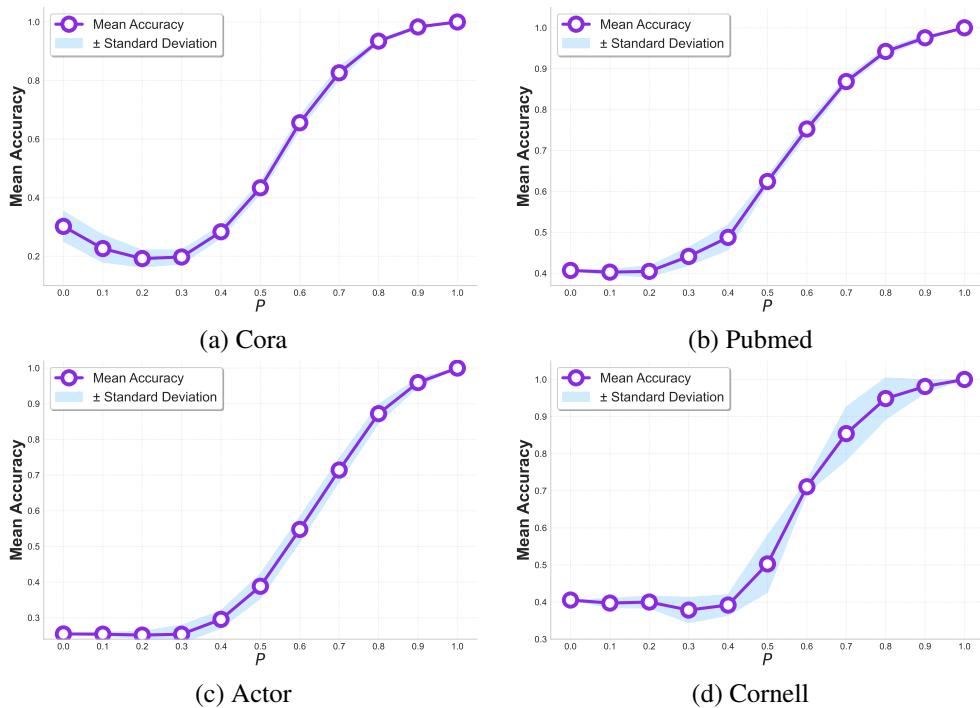
2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051

2052 H SET OF MOTIVATION EXPERIMENTS

2053
 2054 In this section, we will provide some motivation experiments, whose results will justify some parts of
 2055 the design of our framework.

2056 H.1 STUDIES ON EFFECT OF HOMOPHILY ESTIMATION ON GENERALIZABILITY

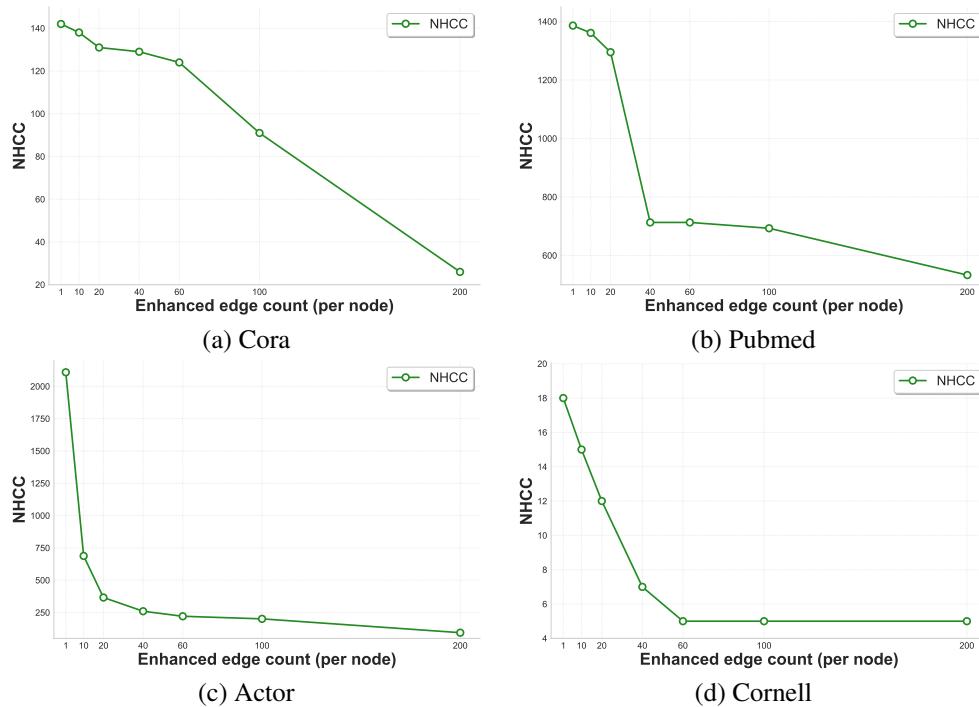
2057 Based on Fig. 8, it can be clearly seen that as the accuracy rate of the homophilous estimator increases,
 2058 the performance on all our datasets is consistently and continuously growing. Moreover, in extreme
 2059 cases, when the homophilous estimator has absolute performance (with an accuracy rate of 1), the
 2060 precision of all datasets also reaches 1. Thus, it can be proved that when we find a better homophilous
 2061 estimator, we can obtain better generalization performance, and there is no bottleneck. Therefore, it
 2062 tells us to pursue the quality of the homophilous estimator rather than randomness.



2088 Figure 8: Effect of homophily estimator accuracy on model performance

2106 H.2 EFFECTS OF PREDICTION-BASED GRAPH AUGMENTATION ON NHCC
2107

2108 We conduct a study on how the graph augmentation affects the values of NHCC. As illustrated in
2109 Fig. 9, the distillation-based top-k augmentation strategy (Sec. L) can effectively improve the NHCC
2110 values (*i.e.*, the number of homophilous connected components), which are the theoretical upper
2111 bounds of our designed ideal tree distributions.

2135 Figure 9: Variation of NHCC with graph augmentation edge numbers. Discussed in Sec. H.2
2136

2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

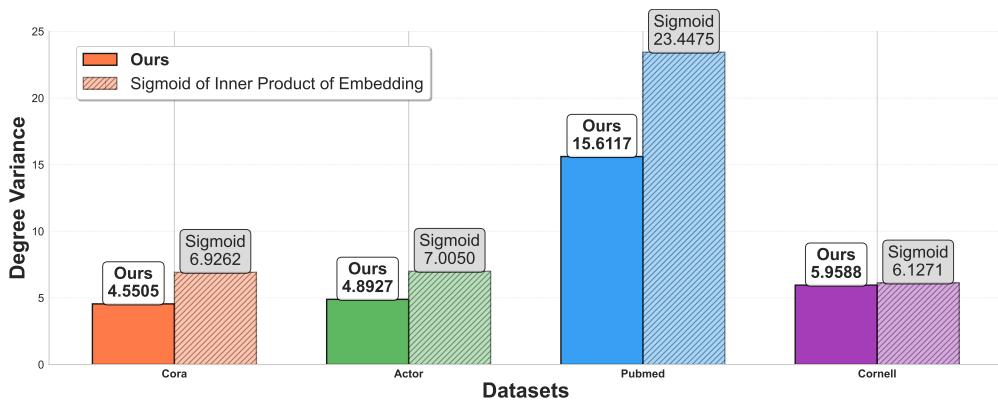
2160 **H.3 STUDIES ON DEGREE IMBALANCE ISSUE OF SIGMOID EDGE ESTIMATOR**
2161

2162 There is an important alternative comparison for the definition of tree distribution scores mentioned
2163 in in Sec. 4.2 of the main text. If we modify the score definition to sample based on the edge weights
2164 of the embedded inner product sigmoid, the generated tree will face a serious degree imbalance
2165 problem. This imbalance phenomenon stems from the fact that the sigmoid function tends to generate
2166 a polarized weight distribution, resulting in some nodes receiving excessive connections and attention
2167 while others are ignored or marginalized.

2168 The proposed tree sampling distribution can effectively alleviate this problem and achieve an improve-
2169 ment in degree balance of nearly 40% for most moderate-sized graphs. In terms of implementation,
2170 we adopt the variance of the node degrees on the tree as the key metric to measure the degree balance,
2171 *i.e.*, the smaller the variance value, the more uniform the degree distribution between nodes and the
2172 more balanced the tree structure. Formally, the metric of node degree imbalance can be formulated as
2173 follows:

2174
$$\mathcal{V}^{(\text{degree})} = \sqrt{\frac{1}{|V|} \cdot \sum_{v \in V} (d_v - \bar{d})^2}, \quad (76)$$
2175

2176 where d_v is the degree of node $v \in V$ and $\bar{d} = \frac{1}{|V|} \sum_{v \in V} d_v$.

2177 Fig. 10 indicates that the spanning tree generated by the traditional sigmoid sampling method based
2178 on the embedded inner product has a relatively high degree variance, reflecting a serious structural
2179 imbalance. Sampling trees from this distribution significantly reduces this variance, leading to more
2180 uniform node connections in the tree structure. The improvement of this degree balance not only
2181 helps to avoid deviations in the process of information aggregation, but also ensures that each node in
2182 the network can obtain relatively fair information dissemination opportunities and the richness of
2183 information, thereby enhancing the expressive ability and generalization performance of the overall
2184 model.

2199 Figure 10: Degree variance comparison of two sampling methods on four datasets. The solid columns
2200 represent the method we proposed, and the diagonal columns represent the sampling method based
2201 on the sigmoid value of the inner product between node embeddings.

2214 **I MORE DISCUSSIONS OF EXPERIMENTS OF EFFICIENCY COMPARISONS**
2215

2216 In Table 2, we present a comparison of the running times of different models across multiple datasets.
2217 These datasets encompass graph-structured data of varying scales and complexities, facilitating a
2218 comprehensive evaluation of each model’s efficiency. As observed in Table 2, our method achieves the
2219 fastest running times across all evaluated datasets. Specifically, several GTs (GT, SAN, Graphomer)
2220 encounter out-of-memory issues on larger graphs like Flickr and ArXiv, while our method scales
2221 efficiently to these datasets. For computationally intensive methods like ANS-GT and GOAT, which
2222 require over 1 second per epoch even on small graphs and escalate to 20-50+ seconds on larger
2223 datasets, our method maintains sub-0.02 second runtime on small graphs and only 0.246 seconds on
2224 ArXiv. Even when compared to recent efficient GTs like SGFormer and DIFFomer, or deep GNNs
2225 like GCNII, our method demonstrates 2-5 \times speedup across different dataset scales. This outcome
2226 aligns with the theoretical complexity analysis conducted in Sec. 4.4, affirming that our method holds
2227 a computational complexity advantage in practice.

2228 **J SUPPLEMENTARY EXPERIMENTS**
2229

2230 In this section, we provide some supplementary experimental results for a better understanding of our
2231 graph learning paradigm and framework.

2232 **J.1 HYPER-PARAMETER STUDIES**
2233

2234 In our experimental implementation, there are several key hyper-parameters that have a significant
2235 impact on the model’s performance. First, there is the tree quantity parameter N_T , which determines
2236 the number of trees included in the forest model. Under a certain quantity, the prediction performance
2237 of the model will improve as the value of N_T increases. However, when N_T reaches a certain quantity,
2238 the performance improvement will stop or even decline, and the computational complexity will also
2239 increase accordingly. Therefore, it is necessary to find the optimal balance point between model
2240 performance and computational efficiency.

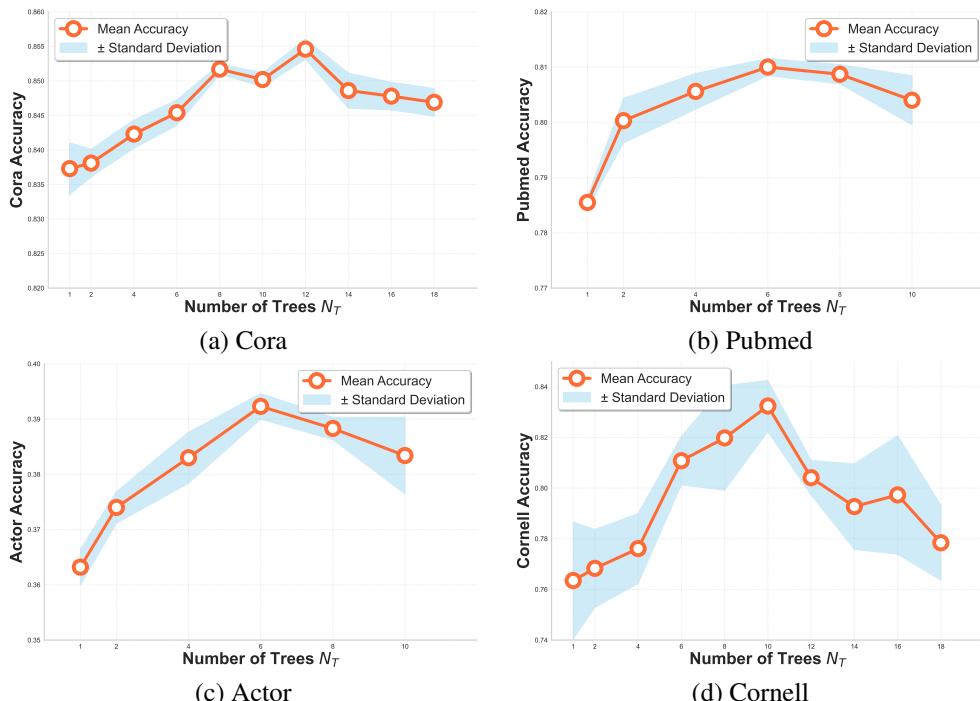
2241 Secondly, there are the parameters β_1 and β_2 . These two parameters jointly adjust the contribution
2242 weights of different sub-models in the All-In-One Local Layer. β_1 controls the influence intensity of
2243 the first GCN, while β_2 regulates the contribution degree of the attn model. By adjusting the propor-
2244 tional relationship of these two parameters, the optimal fusion among different model components
2245 can be achieved, thereby improving the overall prediction accuracy.

2246 Finally, there is the residual parameter γ . It is responsible for balancing the importance weights
2247 between the Forest Layer and the Local Layer. A larger γ value will enhance the influence of the
2248 Forest Layer, making the model focus more on long-range information. And the smaller γ value
2249 will highlight the role of the Local Layer, allowing domain information to have a more significant
2250 proportion.

2268 J.1.1 THE STUDY ON THE NUMBER OF TREES, *i.e.*, N_T
2269

2270 In the experiment on the number of trees K , we tested the impact of different numbers of trees on the
2271 model performance on four different datasets. To ensure the fairness and reliability of the results, we
2272 conducted experiments on five random seeds and calculated the mean and variance, which are all
2273 reflected in Fig. 11.

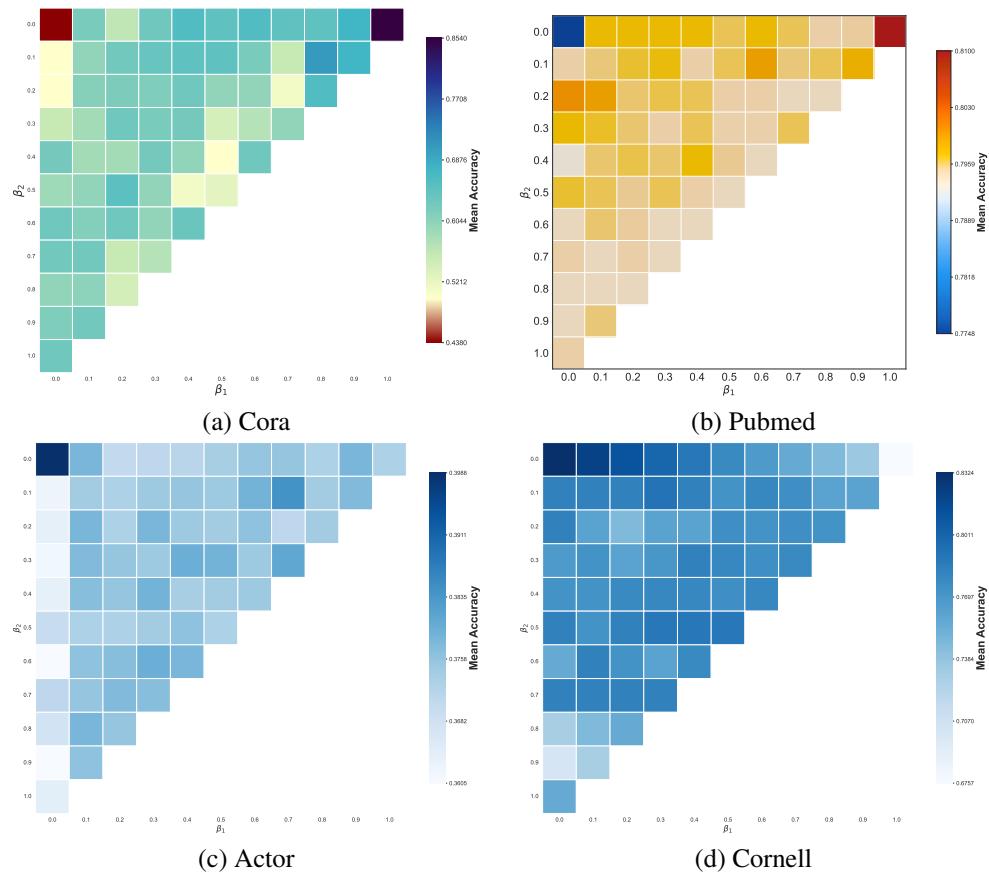
2274 The experimental results show that the number of optimal trees on different datasets is not fixed,
2275 but it often falls within the range of 6 to 10. We find that there is an obvious trade-off relationship
2276 in the number of trees: When the number of trees is too small, the model faces the problem of
2277 insufficient information richness and is unable to fully capture the complex patterns in the data; When
2278 the number of trees is too large, it is difficult to ensure that each tree maintains a high quality standard.
2279 Trees of lower quality will aggregate incorrect information to nodes, thereby leading to a decrease
2280 in the overall prediction accuracy. It can be clearly observed from the line graph of the experiment
2281 that the performance curves of all datasets show a similar trend: The model performance gradually
2282 improves with the increase in the number of trees, and begins to decline after reaching the peak. It is
2283 worth noting that while the performance declines, the variance of the model's prediction results often
2284 increases accordingly, which further confirms that the negative impact of too many low-quality trees
2285 can reduce the robustness of the model.

2309 Figure 11: Model performance with varying number of trees.
2310

2322 J.1.2 THE STUDY ON THE HYPER-PARAMETERS OF LOCAL SUBMODULE, *i.e.*, β_1 , β_2
2323

2324 In the in-depth study of the parameters β_1 and β_2 , we discovered an important phenomenon: Different
2325 types of datasets show obvious preference differences for the architecture design of the Local Layer,
2326 and this preference pattern directly reflects the inherent graph structure characteristics of each dataset.

2327 Two completely different optimization modes can be clearly observed from the experimental results
2328 of the Fig. 12. For the two homophilous graph datasets, PubMed and Cora, the model performance
2329 shows a significant positive correlation with the value of β_1 - the higher the proportion of β_1 , the better
2330 the model performance. It is particularly notable that when β_1 and β_2 approach 0 simultaneously,
2331 the performance of both datasets has decreased significantly. The fundamental reason for this
2332 phenomenon lies in that at this time, the Local Layer degenerates into the traditional multi-layer
2333 Perceptron (MLP) structure, and MLP is unable to effectively handle the strong correlations and
2334 neighborhood dependencies among nodes in homophilous graphs.



2364 Figure 12: Heat map of the influence of parameters β_1 and β_2 on the model performance of the four
2365 datasets. (a) Cora dataset, (b) PubMed dataset, (c) Actor dataset, (d) Cornell dataset. The depth
2366 of the color represents the average accuracy rate. The horizontal axis is β_1 and the vertical axis is β_2 .
2367

2368 In sharp contrast, the two heterophilous graph datasets, Cornell and Actor, exhibit completely
2369 opposite optimization characteristics. Both of these two datasets achieve the best performance under
2370 the condition that β_1 and β_2 are both 0, fully demonstrating that the heterophilous graph structure
2371 is more suitable for using MLP as the architectural choice for the Local Layer. This is because in
2372 heterophilous graphs, adjacent nodes often belong to different categories. Traditional graph neural
2373 networks are prone to interference from neighborhood noise, while MLP can better capture the feature
2374 information of the nodes themselves.

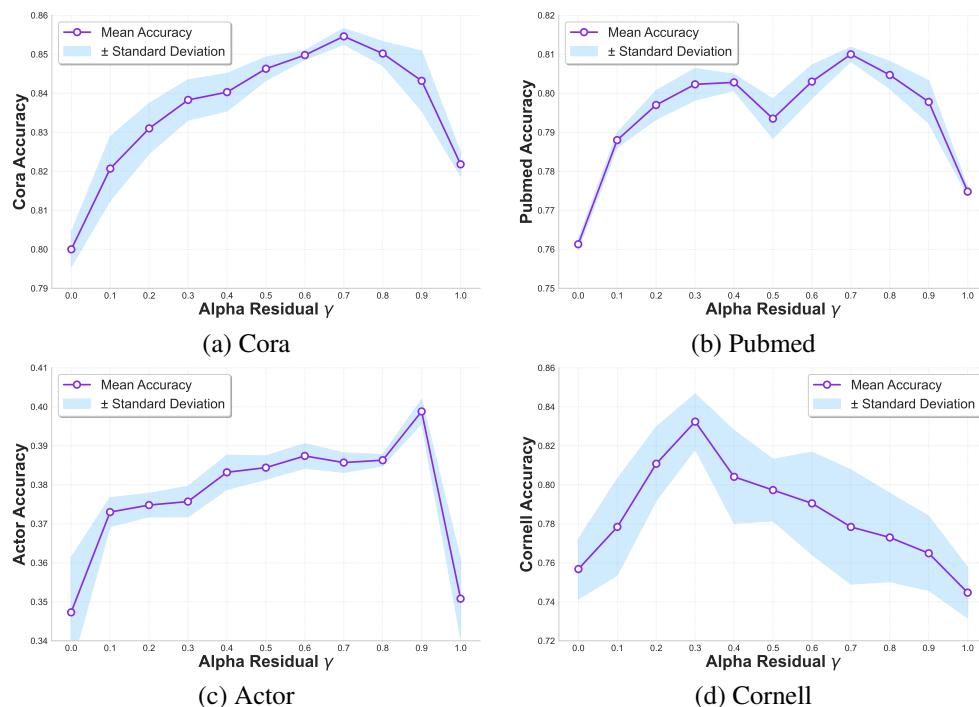
2375 Further analysis also revealed the differences in sensitivity among the datasets: The Actor dataset
was more sensitive to the changes in the ratios of β_1 and β_2 compared to the Cornell dataset, and the

2376 performance degradation was more significant when the parameters deviated from the optimal values.
 2377 Relatively speaking, our method shows stronger robustness on the Cornell dataset and has a larger
 2378 fault-tolerant range for parameter selection.
 2379
 2380

2381 J.1.3 THE STUDY ON THE RESIDUAL COEFFICIENT, *i.e.*, γ

2382
 2383 The parameter γ , as a key parameter in the model, is responsible for balancing the weight distribution
 2384 between the remote information (Forest Layer) and the short-range information (Local Layer).
 2385 Through systematic experiments on the dataset, we observed consistent and significant forms and
 2386 patterns of performance changes.

2387 Based on the observation of Fig. 13, whether it overly relies on short-range information or overly
 2388 emphasizes long-range information, it will lead to a significant decline in the model performance.
 2389 The performance curves of all datasets show a similar inverted U-shaped trend (with different peaks) :
 2390 As the γ value increases, the model performance gradually improves first, reaches a peak at a certain
 2391 specific proportion, and then begins to decline. This phenomenon fully proves that a balance point
 2392 needs to be found between long-range information and short-range information in order to further
 2393 exert the performance of the model. However, even if the overall trend remains consistent, we can
 2394
 2395



2419 Figure 13: The curves of the model performance varying with the parameter γ on the four datasets.
 2420 (a) Cora dataset, (b) PubMed dataset, (c) Actor dataset, (d) Cornell dataset. The purple solid line
 2421 represents the average accuracy rate, and the blue shaded area represents the range of standard
 2422 deviations.
 2423

2424 clearly observe that different datasets have different degrees of dependence on long-range information
 2425 and short-range information. This difference reflects the inherent graph structure characteristics of
 2426 each dataset. For example, the Actor dataset shows a stronger dependence on remote information.
 2427 This preference may stem from the fact that the long-distance dependency relationships among nodes
 2428 in the Actor dataset are more important, and a tree structure is needed to capture a broader global
 2429 pattern.

2430

J.1.4 THE STUDY ON THE HIDDEN DIMENSION HYPER-PARAMETER, *i.e.*, d

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

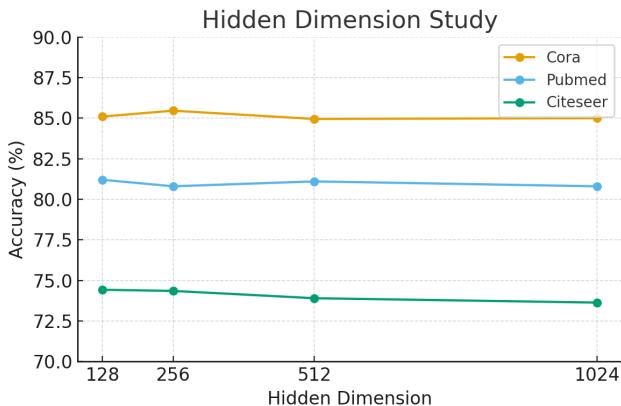


Figure 14: Hidden Dimension Study

2484
2485

J.2 INTERPRETABILITY STUDIES

2486
2487
2488
2489
2490

Based on the theoretical proof of Theorem 2, we have verified that trees sampled from our tree distribution can obtain theoretical guarantees on the first-order homogeneity. In this section, we hope to further conduct in-depth research and explain the internal mechanism of the model performance improvement, and reveal the essential principle of performance growth by directly analyzing the quantity of long-range information aggregated by nodes and the validity of this information.

2491
2492
2493

To quantify the benefit of this kind of information aggregation, we introduce a metric of ***global homogeneity***. This metric can be directly achieved through our Forest Layer - the calculation can be completed simply by passing the one-hot encoding of the node as input into the network.

2494
2495
2496
2497
2498
2499

It can be clearly observed from the experimental results of Fig. 15 that in all scenarios, the trees sampled from our distribution exhibit significantly higher remote homophilous information aggregation capabilities. This phenomenon indicates that our method can capture and utilize the long-distance information in the graph more effectively, thereby aggregating into more feature representations with discriminative value. It is precisely because of this enhanced remote information aggregation capability that our model can achieve better performance on various datasets.

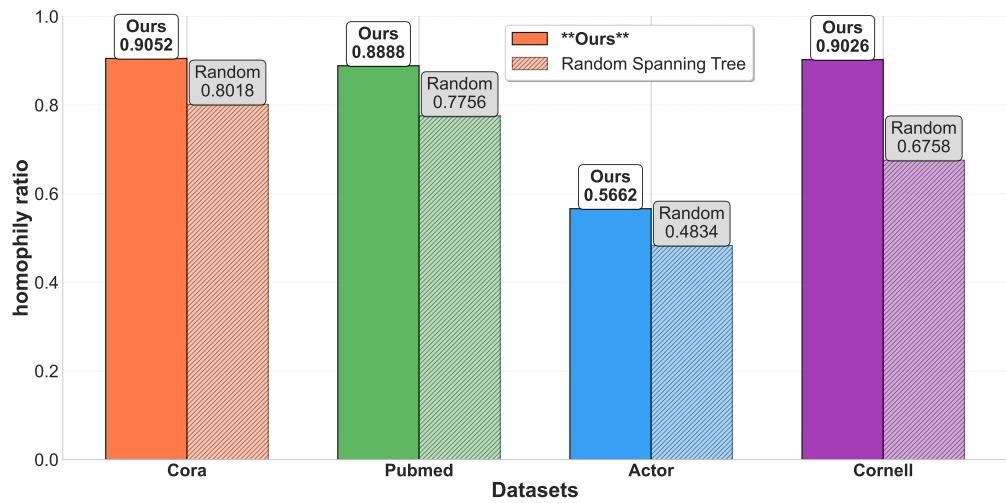
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519

Figure 15: homophily ratio comparison based on different sample method

2520

This analysis not only verifies and explains the effectiveness of our method from an empirical perspective, but also reveals the fundamental reason for the performance improvement from the perspective of information theory - that is, the more full utilization of valuable remote information is achieved through the improved sampling strategy.

2524

J.3 NODE EMBEDDING VISUALIZATIONS

2525

We plot some node embeddings produced by ours, SGC, and original features in Fig. 16. Observed from Fig. 16, our framework can obtain a much clearer gap between node embeddings from different node classes, *i.e.*, between-class embedding margins. It partly explains the performance gain of ours against some counterparts.

2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

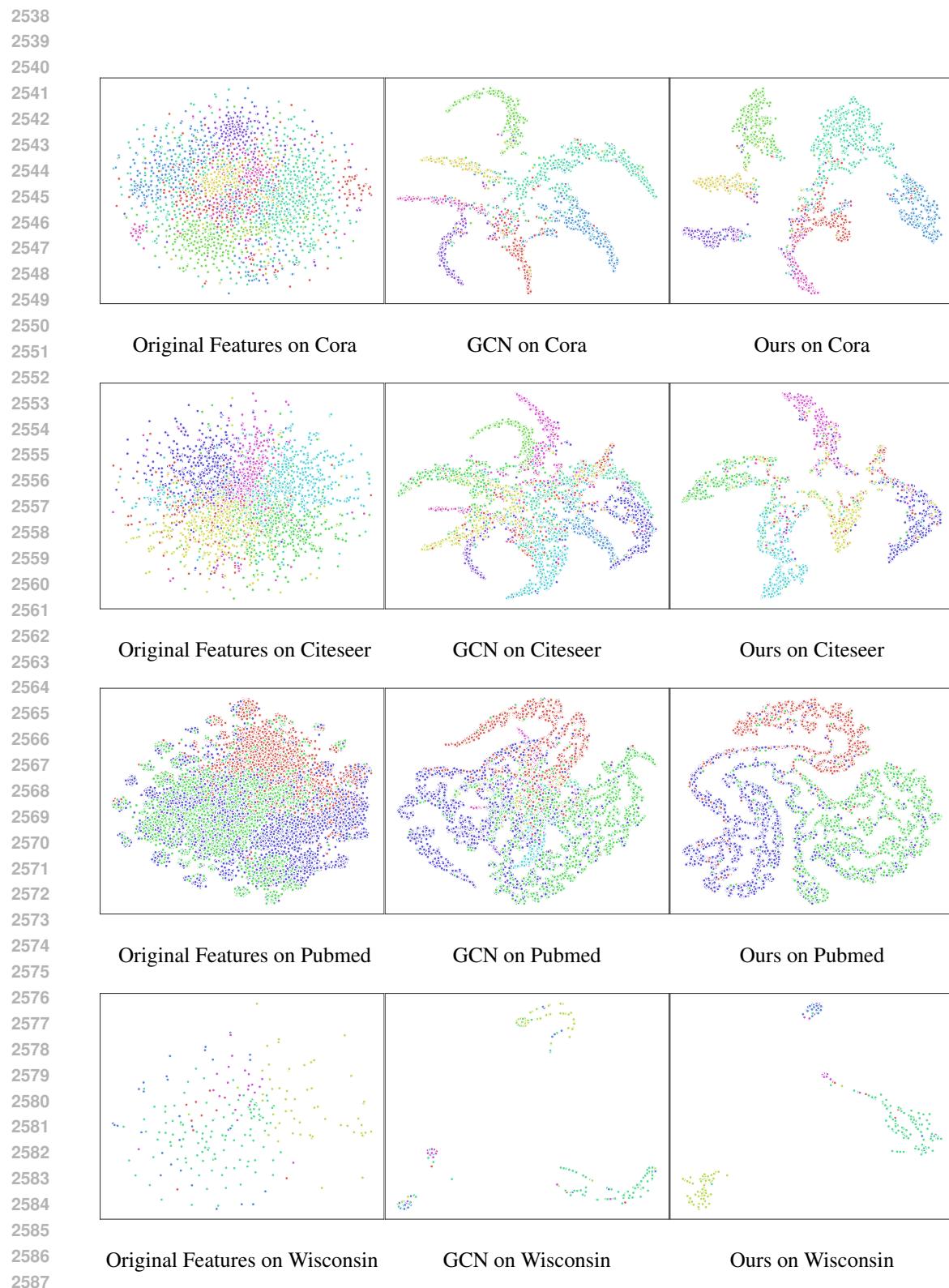


Figure 16: Scatter plots of original features and embeddings output via GCN and our method on real-world benchmarks Cora, Citeseer, Pubmed, and Wisconsin.

2592
2593

J.4 NOISY-FEATURE NODE CLASSIFICATION TASKS

2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611

To evaluate model robustness, we introduce a task called Noisy-Feature Node Classification, where we inject Gaussian noise (5%, 10%, 15%) into the input node features and observe how classification accuracy varies under increasing perturbation. We visualize the results in Fig. 17 and Fig. 18 to facilitate a clear comparison. By comparing accuracy trends across different models, we assess whether our method maintains performance more effectively than existing baselines under node feature noise. Across all three benchmark datasets -CORA, PUBMED, and CITESEER - our framework exhibits significantly stronger robustness to feature noise with various levels (*i.e.*, 5%, 10%, 15%) compared with existing baselines. While all comparative methods show rapidly degrading accuracies as noise level increases, our framework consistently maintains a clear and stable performance superiority. For example, on CORA and PUBMED, the advantage is clear: even at the highest noise level (15%), our model retains 0.631 and 0.646 accuracy respectively, far above the second-best models, whose performance typically falls into the [0.37, 0.49] range. This indicates that our method is substantially less sensitive to perturbations in node features. The trend is similar in CITESEER, where accuracy remains above 0.44, while other models are much lower, and NodeFormer collapses severely due to its instability under noise. The bar plots (see Fig. ??) clearly illustrate that although all models naturally decline with increasing noise, ours declines much more gracefully, preserving a significantly higher accuracy. Overall, the results demonstrate that the proposed method possesses superior noise resilience and thus can maintain high discriminative power with valuable knowledge even when node features are heavily corrupted.

2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645



Figure 17: Robustness Comparison under Feature Noise of various levels on Cora, Pubmed, and Citeseer

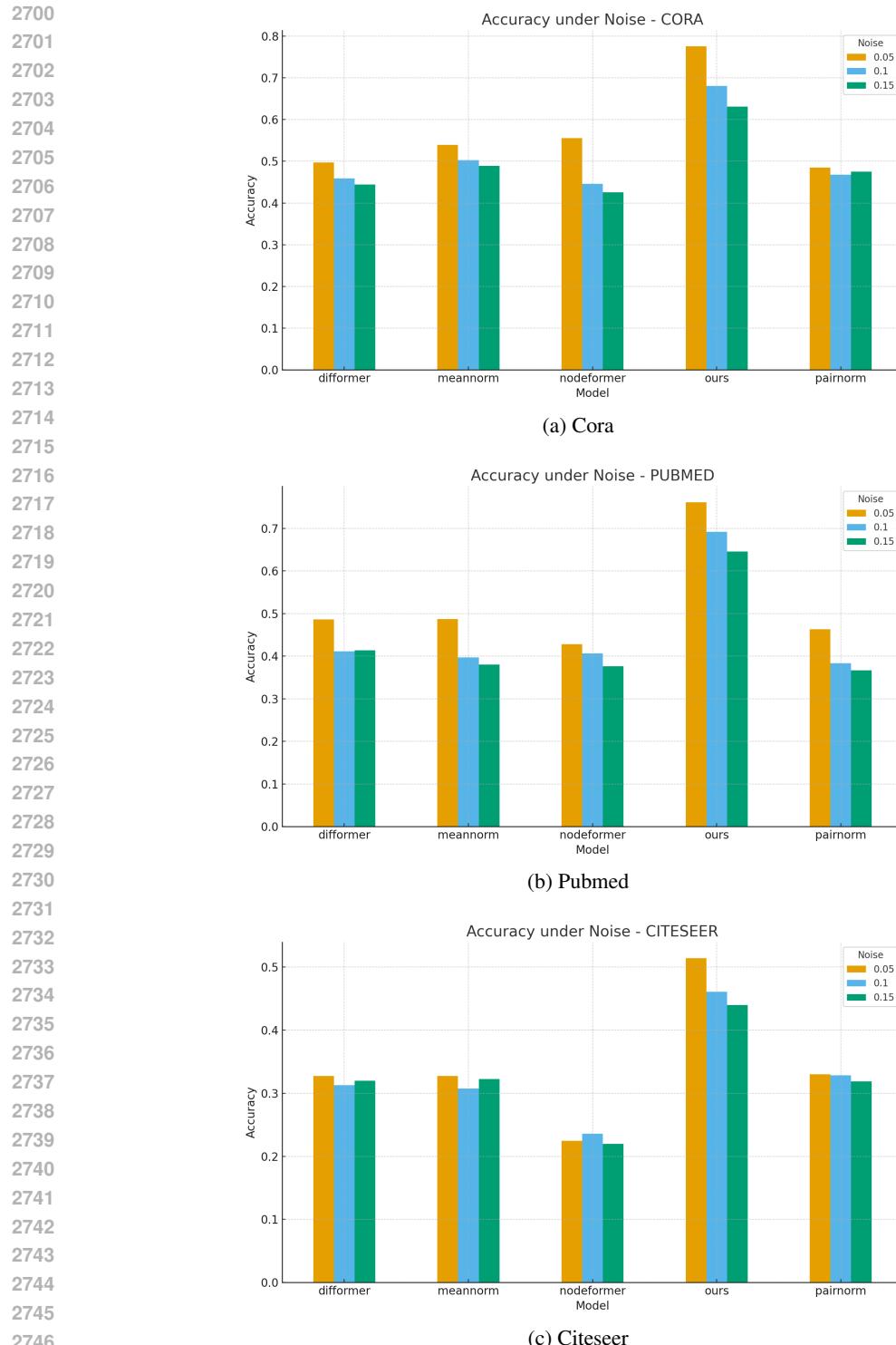
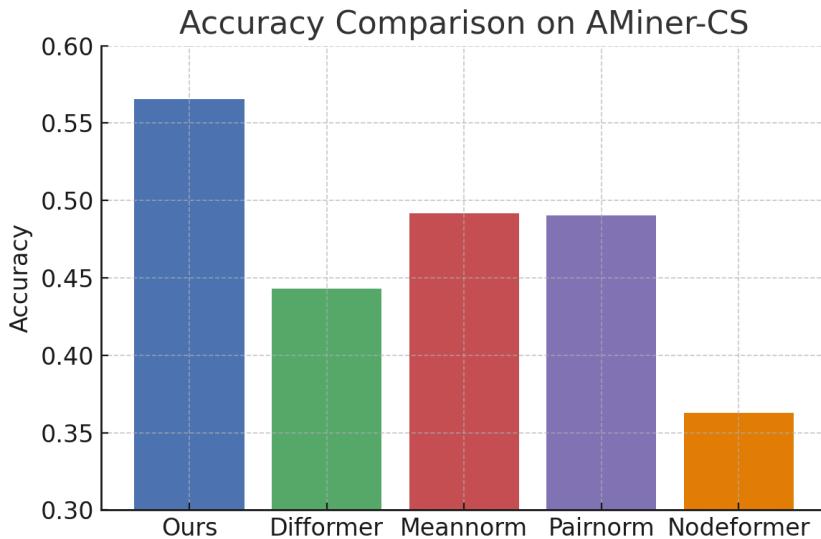


Figure 18: Robustness Comparison under Feature Noise of various levels on Cora, Pubmed, and Citeseer

2754 **J.5 EXPERIMENTS ON LARGER-SCALE GRAPH BENCHMARK**
2755

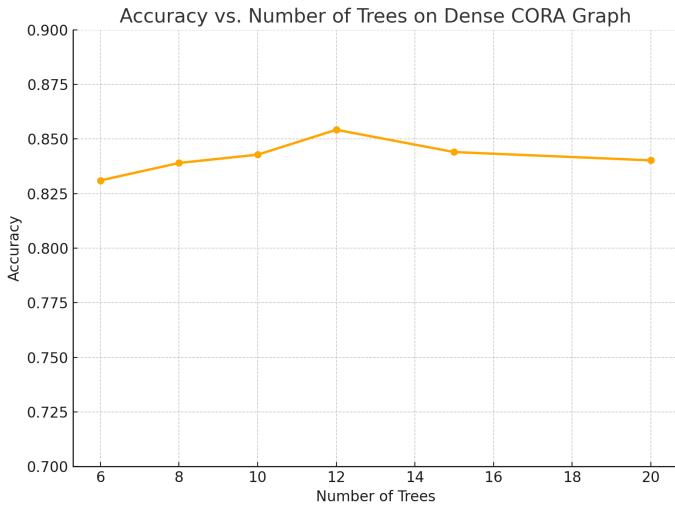
2756 In this subsection, we supplement experiments on a larger-scale graph dataset, *i.e.*, AMiner-CS,
2757 and report the results in Fig. 19 and Tab. 5, including final performance comparisons as well as
2758 the efficiency comparisons. Across all comparative baselines, our framework achieves the best
2759 classification accuracy, exceeding the second-best method by a significant margin. In addition to
2760 its superior predictive performance, our approach is also substantially faster, requiring only 0.152
2761 seconds per epoch, which is notably lighter than baseline models such as Differomer and dramatically
2762 more efficient than deep GNN methods like Meannorm and Pairnorm. These results collectively
2763 demonstrate that our method effectively breaks the challenging trade-off between accuracy and
2764 computational efficiency, making it highly suitable for large-scale graph learning scenarios.
2765

2783 Figure 19: Accuracy comparison on the AMiner-CS dataset.
27842785 Table 5: Training speed comparison on AMiner-CS (seconds per epoch).
2786

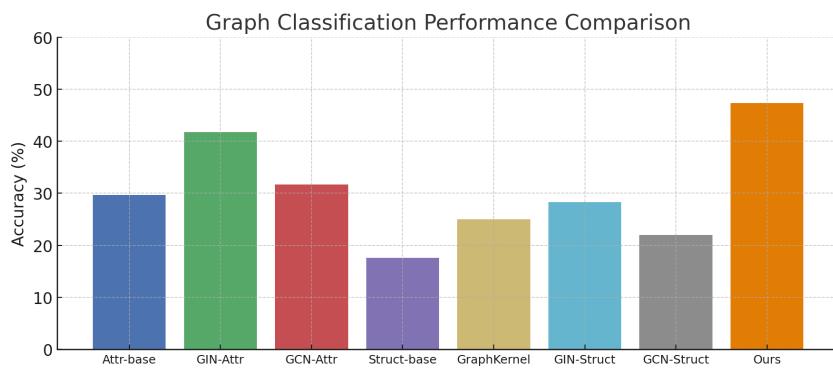
Method	Avg Epoch Time (s)
Differomer	0.2524
Meannorm	1.1620
Pairnorm	1.2253
Nodeformer	0.3771
Ours	0.152

2808 **J.6 EXPERIMENTS ON HIGHLY CONNECTED GRAPH BENCHMARK**
2809

2810 In this subsection, we supplement experiments on a dense graph, *i.e.*, Dense Cora, and report the
 2811 results in Fig. 20. Dense Cora is a highly connected graph constructed by adding 100 extra edges
 2812 per node while keeping comprehensive homophily rate. Observed from Fig. 20, the accuracy first
 2813 increases slightly when the number of trees N_T grows from 10 to 12, but then decreases slightly
 2814 as the number of trees N_T is further enlarged to 15 and 20. In other words, we observe that the
 2815 addition of extra trees can further improve performance compared to using only a few. However,
 2816 introducing too many trees cannot improve performance and may even slightly degrade it, as they
 2817 introduce redundancy and would increase the risk of overfitting or over-smoothing issues. Therefore,
 2818 even dealing with a very densely connected graph, a limited number of trees would be enough to
 2819 encode the essential structural knowledge, without the need to introduce too many trees.
 2820

2837 Figure 20: Accuracy vs. Number of Trees on the Dense cora Graph
28382839 **J.7 GRAPH CLASSIFICATION TASKS**
2840

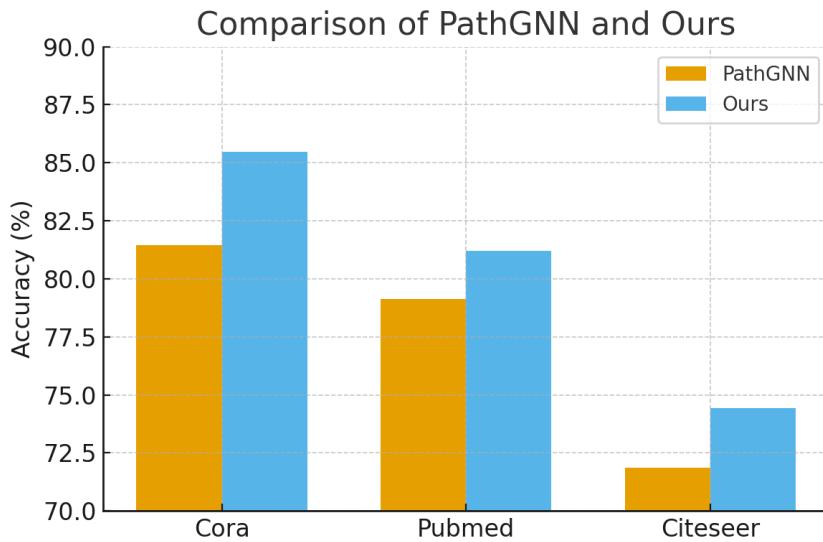
2841 In this subsection, we supplement some experiments on graph classification tasks on the ENZYMES
 2842 dataset. We report the results in Fig. 21, with comparisons against seven baselines. While our method
 2843 is primarily designed for node classification, we show that it still achieves the best performance
 2844 when directly applied to the graph classification task, surpassing all attribute-based, structure-based,
 2845 and kernel-based graph classification baselines. This demonstrates that the learned embeddings
 2846 generalize effectively from node-level supervision to whole-graph-level prediction, indicating strong
 2847 adaptability, generality, and robustness of our model.
 2848

2858 Figure 21: Graph Classification Accuracy Comparison on the ENZYMES Dataset
2859

2862 J.8 COMPARISONS WITH PATH-BASED GNNs
2863

2864 While both our work and some path-based methods (such as PAIN Graziani et al. (2023) and
2865 PathNNs Michel et al. (2023)) can expand GNNs’ receptive fields, our forest-based paradigm is
2866 fundamentally distinct. The path-based works rely on enumerating fixed-length paths (with exponen-
2867 tial complexity like $O(nD^L)$) and stacking layers (with an additional factor $L > 2$) to approximate
2868 global coverage. These factors (path numbers, path lengths, and layer numbers) make path-based
2869 graph learning inherently suffer from a severe trade-off between global coverage comprehensiveness
2870 and computational cost. In sharp contrast, our forest-based paradigm enables native pairwise node
2871 interaction in a single layer. It achieves full global coverage in linear time, thereby avoiding complex
2872 structural encoding, layer stacking, and path-length constraints.

2873 In this subsection, we supplement some experimental comparisons with some path-based GNN
2874 baselines on the Cora, Citeseer, and Pubmed datasets. We report the results in Fig. 22, with
2875 comparisons against path-based baseline. Compared with PAIN Graziani et al. (2023), our method
2876 consistently achieves higher classification accuracy on all three citation networks. On Cora, Pubmed,
2877 and Citeseer, our model improves the performance from 81.44% to 85.46%, from 79.14% to 81.20%,
2878 and from 71.86% to 74.42%, respectively, demonstrating a clear and stable advantage over PathGNN
2879 across different datasets.

2898 Figure 22: Comparison of PathGNN and Ours on Cora, Pubmed, and Citeseer.
2899

2916
2917

J.9 COMPARISONS WITH HETEROGRAPHY GNNs

2918
2919
2920
2921
2922
2923
2924
2925
2926
2927

In this subsection, we supplement some experimental comparisons with some Heterophily-Oriented GNN baselines on the Actor, Cornell, Texas, and Wisconsin datasets. We report the results in Tab. 6. From this figure, we can clearly see that our method achieves the highest accuracy on all four heterophily datasets, outperforming recently proposed heterophily-specific GNNs such as ADPA Sun et al. (2024), GESN Tortorella & Micheli (2022), and HiGNN Zheng et al. (2024). The improvements are particularly large on Texas and Wisconsin, where our c reaches 91.89% and 86.27%, substantially surpassing the best existing results and demonstrating its strong capability of capturing informative structural patterns even under severe heterophily. These results confirm that our approach generalizes effectively across diverse heterophilous scenarios and consistently provides state-of-the-art performance.

2928
2929
2930

Table 6: Performance comparison on heterophily datasets (Actor, Cornell, Texas, Wisconsin). The best result in each column is shown in **bold**.

2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Method	Actor	Cornell	Texas	Wisconsin
ADPA Sun et al. (2024)	38.8 ± 0.3	82.9 ± 3.0	83.8 ± 2.7	81.6 ± 3.5
GESN Tortorella & Micheli (2022)	34.56 ± 0.76	81.14 ± 6.00	84.31 ± 4.44	83.33 ± 3.81
HiGNN Zheng et al. (2024)	37.21 ± 1.35	80.00 ± 4.62	86.22 ± 4.67	85.88 ± 3.18
Ours	39.88 ± 0.43	83.24 ± 2.02	91.89 ± 0.0	86.27 ± 0.0

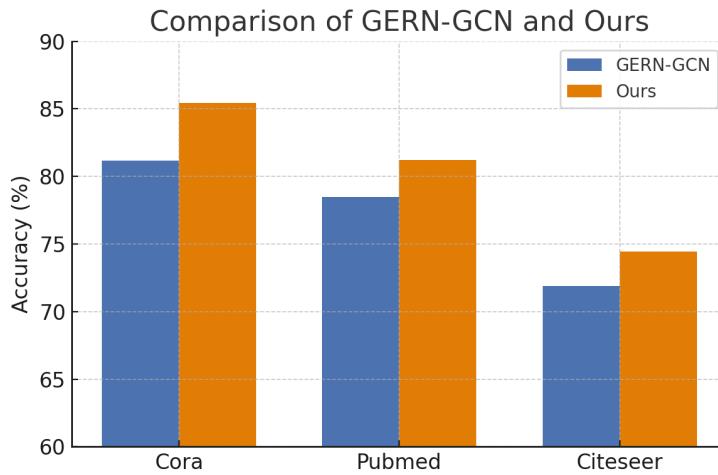
2970 J.10 COMPARISONS WITH OTHER RANDOM TREE-BASED GNNs
2971

2972 We find a recent work, *i.e.*, Bonchi et al. (2025), has some similarities with ours, but we are
2973 fundamentally different. Bonchi et al. (2025) also introduces the tree structures to the graph learning
2974 domain. However, it is different from our graph learning paradigm in the following perspectives:

2975 (1) Core ideas and main motivations: It introduces random trees mainly to accelerate the local GNN
2976 aggregations, by leveraging the tree sparsity to reduce the average number of neighbors. In contrast,
2977 we aim to break the trade-off between complexities and comprehensive global aggregations, *i.e.*,
2978 providing insights on how to conduct all pairwise node interactions (achieving global coverage) while
2979 significantly reducing running cost compared to traditional graph learning paradigms (with only
2980 linear complexities), which is more challenging and needs novel fundamental revolutions.

2981 (2) Techniques to sample and utilize trees are different: It samples trees from a uniform distribution,
2982 while our technical framework samples trees from a distribution that theoretically biases towards
2983 homophily, facilitating beneficial node knowledge propagations in a tree. It deals with such trees
2984 via linearization based on path splits or a straightforward depth-first search (DFS) visit order, which
2985 reduces informative neighbors for nodes in a tree and risks introducing noisy neighbors. Moreover,
2986 they focus more on local aggregation and still require layer stacking to cover global receptive fields.
2987 Yet, our work proposes a powerful tree aggregator to explicitly address knowledge propagation
2988 along tree paths, achieving global coverage in a single layer without information loss, while keeping
2989 efficiency.

2990 Furthermore, we supplement some comparative experiments and empirically find that our technical
2991 framework consistently achieves better results compared to GERN-GCN Bonchi et al. (2025). The
2992 results are reported in Fig. 23.



3009 Figure 23: Comparison of GERN-GCN and Ours

3010
3011
3012 We can observe that our method significantly outperforms GERN-GCN across all three datasets.
3013 On Cora, our model achieves an accuracy of 85.46%, while GERN-GCN achieves only 81.17%.
3014 Similarly, on Pubmed and Citeseer, our method shows clear superiority, with accuracy improvements
3015 of approximately 3.0% and 2.5% respectively. These results highlight that our approach not only
3016 surpasses GERN-GCN in accuracy but also exhibits strong generalization across diverse datasets.
3017

3018
3019
3020
3021
3022
3023

3024 K MORE EXPERIMENTAL DETAILS

3025
 3026 In this section, more details of the experiments are provided to complement the experiments in the
 3027 main text, including the experimental environments or platforms, dataset descriptions, and the specific
 3028 hyper-parameter configurations, searching strategies, and searching space.
 3029

3030 K.1 EXPERIMENTAL ENVIRONMENTS, PLATFORMS, AND TOOLS

3031
 3032 We implement it via Pytorch Paszke et al. (2019) and optimize it with Adam Optimizer Kingma &
 3033 Ba (2015). All experiments are performed on an Ubuntu system with a single NVIDIA RTX A6000
 3034 GPU (48GB Memory) and 32 AMD EPYC 7543 CPUs.
 3035

3036 K.2 DATASET DESCRIPTIONS AND EXPERIMENTAL SETUP

3037 We summarize some important details of all the graph benchmarks in Tab. 7 utilized for evaluation,
 3038 including the specific splits. We adopt the standard splits similar to GCN Kipf & Welling (2017).
 3039 For large-scale graph datasets Flickr and Arxiv, we randomly generated 20 class-balanced data
 3040 splits to ensure statistical robustness and report the average results across all splits. This multi-split
 3041 evaluation approach mitigates potential bias from single data partitions and provides more reliable
 3042 performance estimates. To guarantee fair comparison, all baseline methods were evaluated under
 3043 identical experimental conditions, including the exact same 20 data splits, consistent hyperparameter
 3044 search spaces, and uniform optimization procedures. This standardized evaluation protocol ensures
 3045 that performance differences reflect genuine algorithmic capabilities rather than experimental varia-
 3046 tions. Our comprehensive comparison framework eliminates potential confounding factors, enabling
 3047 objective assessment of each method’s true performance on these challenging large-scale benchmarks.
 3048 Notably, in semi-supervised settings, we have only limited labeled nodes since the labels are quite
 3049 expensive to obtain in the real world, which is quite significant in our world, since collecting so many
 3050 data samples is already challenging enough, not alone collecting enough labels. In our cross-dataset
 3051 rank analysis, we employed a fair ranking methodology to handle Out-of-Memory (OOM) scenarios.
 3052 For algorithms without OOM issues, we calculated their average ranking across all nine datasets.
 3053 When algorithms encountered OOM errors due to their inherently high space complexity, we excluded
 3054 those specific datasets from their ranking calculation to ensure fair performance comparison. For
 3055 example, if an algorithm experienced OOM on 2 out of 9 datasets, its final ranking was based on the
 3056 average across the remaining 7 datasets. While OOM represents a fundamental scalability limitation
 3057 of certain architectures, this approach prevents hardware constraints from skewing our comparative
 3058 analysis, focusing instead on actual algorithmic performance.
 3059

3060 Table 7: Dataset statistics of nine real-world benchmarks with their splits

3061 Dataset	3062 Nodes	3063 Edges	3064 Ave.Degree	3065 Features	3066 Classes	3067 train/val/test
Cora	2,708	5,429	4.0	1,433	7	140/500/1000
Citeseer	3,327	4,732	2.84	3,703	6	120/500/1000
PubMed	19,717	44,338	4.5	500	3	60/500/1000
3068 OGBN-Arxiv	169,343	1,166,243	13.77	128	40	800/800/167743
Texas	183	309	3.38	1,703	5	87/59/37
Wisconsin	251	499	5.45	1,703	5	120/80/51
Cornell	183	295	3.22	1,703	5	87/59/37
Actor	7,600	33,544	8.83	931	5	3648/2432/1520
Flickr	89,250	899,756	10.08	500	7	140/140/88970

3071
 3072
 3073
 3074
 3075
 3076
 3077

3078 K.3 HYPER-PARAMETERS
3079

3080 We tune hyper-parameters via a two-stage strategy. For the first stage, we treat a tree as a hyper-
3081 parameter and we tune all of them together. In every stage, we choose the hyper-parameters according
3082 to their best validation performance. After the first stage, we enter the second tuning stage. We
3083 select the best trees based on the best validation results, and then fix the trees and tune the other
3084 hyper-parameters. The search spaces of all meaningful hyper-parameters are listed in Tab. 9, and
3085 we omit some unimportant ones because they are actually robust to model performance. For every
3086 kind of experiment, we search in the space randomly for 200 times in total. Additionally, for
3087 better reproducibility, we report all hyper-parameters configurations used by *Ours* for comparative
3088 experiments in Tab. 8.

3089
3090 Table 8: The Hyper-parameter Configurations of *Ours* for semi-supervised node classification tasks
3091 on nine public graph benchmarks.

3094 Dataset	3095 Hyper-parameter Configurations
3096 Cora	3097 $lr = 0.01, epochs = 50, d = 256, N_T = 12,$ $dropout = 0.9, weight_decay = 0.85, \gamma = 0.7,$ $\beta_1 = 1.0, \beta_2 = 0.0, K_L = 2$
3098 Citeseer	3099 $lr = 0.005, epochs = 100, d = 128, N_T = 12,$ 3100 $dropout = 0.9, weight_decay = 0.75, \gamma = 0.7,$ $\beta_1 = 1.0, \beta_2 = 0.0, K_L = 2$
3101 Pubmed	3102 $lr = 0.001, epochs = 100, d = 128, N_T = 6,$ 3103 $dropout = 0.6, weight_decay = 0.0001, \gamma = 0.7,$ $\beta_1 = 1.0, \beta_2 = 0.0, K_L = 2$
3104 Actor	3105 $lr = 0.01, epochs = 90, d = 128, N_T = 5,$ 3106 $dropout = 0.9, weight_decay = 0.0, \gamma = 0.9,$ $\beta_1 = 0.0, \beta_2 = 0.0, K_L = 1$
3107 Cornell	3108 $lr = 0.01, epochs = 60, d = 256, N_T = 15,$ 3109 $dropout = 0.7, weight_decay = 0.001, \gamma = 0.3,$ $\beta_1 = 0.0, \beta_2 = 0.0, K_L = 2$
3110 Texas	3111 $lr = 0.005, epochs = 100, d = 256, N_T = 5,$ 3112 $dropout = 0.5, weight_decay = 0.00001, \gamma = 0.6,$ $\beta_1 = 0.4, \beta_2 = 0.0, K_L = 2$
3113 Wisconsin	3114 $lr = 0.01, epochs = 100, d = 128, N_T = 5,$ 3115 $dropout = 0.6, weight_decay = 0.0, \gamma = 0.1,$ $\beta_1 = 0.2, \beta_2 = 0.8, K_L = 1$
3116 Ogbn-Arxiv	3117 $lr = 0.0005, epochs = 10, d = 256, N_T = 4,$ 3118 $dropout = 0.8, weight_decay = 0.0, \gamma = 0.5,$ $\beta_1 = 0.4, \beta_2 = 0.6, K_L = 2$
3119 Flickr	3120 $lr = 0.01, epochs = 30, d = 128, N_T = 5,$ 3121 $dropout = 0.3, weight_decay = 0.00001, \gamma = 0.6,$ $\beta_1 = 1.0, \beta_2 = 0.0, K_L = 2$

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

Table 9: The Hyper-parameter Search Spaces.

3152

3153

Hyper-parameters	Hyper-parameter Search Spaces
lr	0.01, 0.001, 0.0005
epochs	linspace(10, 110, 10), 200
d	64, 128, 256
N_T	4, 5, 6, 8, 10, 12, 15
dropout	linspace(0.1, 1, 0.1)
weight_decay	linspace(0.6, 0.95, 0.05), 0.0, 0.001, 0.0001, 0.00001
γ	linspace(0.1, 1, 0.1)
β_2	linspace(0.1, 1, 0.1)
β_1	linspace(0.1, 1, 0.1)
K_L	1, 2

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186 L DETAILS OF PREDICTION-BASED GRAPH AUGMENTATION

3188 As mentioned in Sec. 4.2 and Sec. F.1 of Appn., we introduce a simple graph augmentation to support
 3189 our framework. The motivation is basic: we expect to make the vanilla graph G become connected,
 3190 and thus we can effectively and conveniently sample trees on the augmented variant. Besides, we
 3191 also find that it can also improve the NHCC value of the graph (Sec. H.2).

3192 In our implementation, we adopt a Maximum Inner Product Search (MIPS) between \mathbb{K}_0 , *i.e.*, node
 3193 label predictions, which is efficient and easy to implement via the Faiss Johnson et al. (2019) library
 3194 (supporting even billion-scale similarity search with GPUs). We conduct top-k selection for each
 3195 node (via the metric inner product) on the vanilla graph for simplicity. Further improvement can be
 3196 developed to, *e.g.*, consider node specialty (*e.g.*, densities or degrees) and shrink the number of added
 3197 graphs. The added edges are merged into the vanilla edge set and drop those duplicated edges. For
 3198 reproducibility, we add 12, 10, 15, 15, 10, 5, 8, 8, and 6 edges for each node on datasets ora Citeseer,
 3199 Pubmed, Actor, Cornell, Texas, Wisconsin, OGBN-Arxiv, and Flickr, respectively. We find that the
 3200 hyper-parameter is not a sensitive hyper-parameter and its influence on the generalizability of final
 3201 performance is limited. Yet, note that the heterophilous graphs may require a slightly larger value,
 3202 since, as highlighted above, it can improve the value of the NHCC for the vanilla graph, which has a
 3203 theoretical connection with the upper bound of the tree quality (Sec. 4.6).

3204 M ILLUSTRATION OF COMPARISONS BETWEEN DIFFERENT GRAPH 3205 LEARNING PARADIGMS

3206 We provide a figure (*i.e.*, Fig. 24) to illustrate and compare different graph learning paradigms, *e.g.*,
 3207 neighborhood-based, walk-based, and our forest-based paradigms.

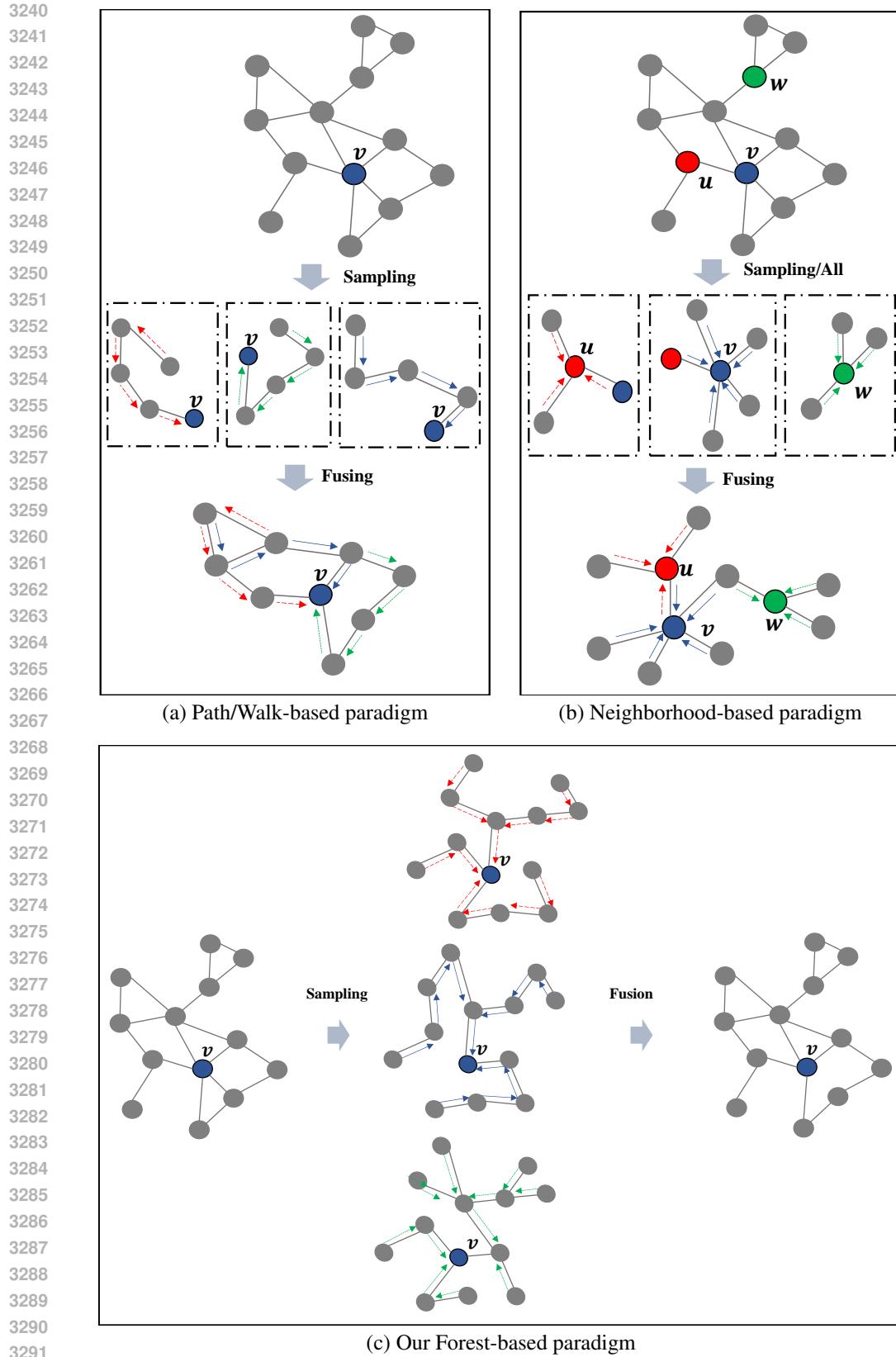


Figure 24: Graph Learning paradigm Comparison: (a) Path/Walk-based paradigm; (b) Neighborhood-based paradigm; (c) Our Forest-based paradigm.

Table 10: The results of performance comparison (with the best bolded and the runner-ups underlined).

Method	Category	Cora	Citeseer	Pubmed	Actor	Comell	Texas	Wisconsin	Arxiv	Flickr	Avg.R
MLP	Classic	58.30 ± 0.11	58.68 ± 0.04	72.94 ± 0.05	35.62 ± 0.08	72.70 ± 1.99	77.84 ± 1.14	79.61 ± 1.01	32.84 ± 0.29	42.01 ± 0.47	14.11
GCN	GNN	82.06 ± 0.69	71.60 ± 0.32	79.58 ± 0.26	27.88 ± 0.07	53.51 ± 1.21	69.19 ± 1.48	57.25 ± 1.25	53.77 ± 0.34	38.40 ± 0.23	14.89
GAT	GNN	82.84 ± 0.67	72.28 ± 0.72	78.52 ± 0.32	28.71 ± 0.25	55.14 ± 0.48	68.65 ± 1.48	58.82 ± 2.40	55.73 ± 0.46	40.32 ± 1.75	12.78
GraphSAGE	GNN	81.40 ± 0.52	71.68 ± 0.13	78.50 ± 0.44	36.24 ± 0.39	63.78 ± 2.42	75.14 ± 1.21	76.08 ± 0.88	51.42 ± 0.21	41.42 ± 0.89	11.00
SuperGAT ^{SD}	GNN	82.70 ± 0.60	72.50 ± 0.80	81.30 ± 0.50	30.18 ± 0.25	54.50 ± 1.21	69.73 ± 1.21	58.04 ± 1.07	51.52 ± 0.37	36.24 ± 4.15	13.22
APPNP	GNN	84.10 ± 0.43	72.14 ± 0.22	80.02 ± 0.19	33.47 ± 0.38	61.08 ± 1.48	71.35 ± 1.48	65.10 ± 0.88	55.60 ± 0.12	43.07 ± 0.85	9.22
ClusterGCN	GNN	82.04 ± 0.22	70.08 ± 0.26	77.26 ± 0.11	49.73 ± 5.27	63.24 ± 2.42	62.35 ± 3.23	53.35 ± 0.12	39.38 ± 4.62	16.89	
GraphSAINT	GNN	82.00 ± 0.20	70.30 ± 0.21	77.36 ± 0.24	29.55 ± 0.19	48.65 ± 1.91	63.78 ± 2.42	61.96 ± 1.08	53.55 ± 0.24	35.26 ± 2.73	17.67
Painorm	DeepGNN	66.24 ± 1.58	44.20 ± 1.23	72.12 ± 3.01	24.33 ± 1.60	40.68 ± 12.89	41.08 ± 18.04	52.94 ± 11.35	54.58 ± 0.04	31.41 ± 4.66	22.56
NodeNorm	DeepGNN	80.14 ± 0.51	65.74 ± 1.88	78.64 ± 0.52	29.74 ± 1.01	40.00 ± 2.02	66.49 ± 2.76	48.24 ± 3.64	54.22 ± 0.87	44.11 ± 2.76	16.33
Meannorm	DeepGNN	79.54 ± 0.56	72.16 ± 0.54	73.06 ± 3.06	25.46 ± 0.00	25.41 ± 13.52	61.62 ± 2.02	52.94 ± 1.24	20.37 ± 16.24	42.40 ± 2.12	19.67
DropEdge	DeepGNN	81.69 ± 0.91	71.43 ± 0.72	79.06 ± 0.81	26.38 ± 2.41	52.97 ± 1.32	64.86 ± 0.90	60.78 ± 0.00	39.23 ± 0.80	32.11 ± 8.09	18.33
GCNII	DeepGNN	85.34 ± 0.32	73.24 ± 0.78	79.88 ± 0.17	34.64 ± 0.71	74.61 ± 6.48	69.19 ± 6.36	70.31 ± 1.75	51.91 ± 1.50	41.79 ± 0.30	8.78
ShadowGNN	Deep GNN	82.32 ± 0.24	70.06 ± 0.15	77.30 ± 0.20	29.45 ± 0.08	51.35 ± 3.31	64.32 ± 2.96	62.35 ± 1.64	53.35 ± 0.32	37.59 ± 1.88	17.00
GT	GT	77.58 ± 0.22	66.96 ± 0.36	76.48 ± 0.13	37.15 ± 0.40	61.62 ± 2.26	74.60 ± 1.48	71.76 ± 1.75	OOM	OOM	15.57
SAN	GT	77.60 ± 0.23	68.64 ± 0.92	76.62 ± 0.22	37.79 ± 0.20	63.24 ± 1.48	75.14 ± 2.26	77.25 ± 1.75	OOM	OOM	13.00
Graphormer	GT	63.08 ± 0.27	61.08 ± 0.04	OOM	62.70 ± 2.26	76.76 ± 1.48	72.16 ± 0.88	76.47 ± 1.96	41.83 ± 0.62	21.86 ± 1.93	13.22
ANS-GT	GT	77.68 ± 0.81	64.16 ± 1.16	77.98 ± 1.38	38.29 ± 0.61	74.92 ± 1.86	76.22 ± 2.26	76.47 ± 1.96	40.31 ± 4.42	13.11	
Nodeformer	GT	79.02 ± 0.57	69.66 ± 0.13	76.06 ± 0.98	34.80 ± 0.48	68.11 ± 1.21	77.84 ± 1.71	76.47 ± 1.80	39.47 ± 1.08	38.59 ± 1.16	13.44
NAGphormer	GT	79.51 ± 0.90	67.34 ± 0.80	78.32 ± 0.40	37.33 ± 0.20	63.78 ± 1.48	71.89 ± 1.48	66.27 ± 0.88	52.00 ± 0.29	35.53 ± 3.13	9.11
GOAT	GT	83.18 ± 1.27	71.99 ± 1.26	79.13 ± 0.38	37.66 ± 0.51	64.32 ± 2.02	76.76 ± 2.76	73.33 ± 1.57	52.46 ± 1.12	35.53 ± 3.13	
Exphormer	GT	82.77 ± 1.38	71.63 ± 1.19	79.46 ± 0.35	35.53 ± 0.62	62.16 ± 2.42	75.68 ± 1.71	70.98 ± 2.29	41.12 ± 0.69	22.79 ± 3.09	12.67
SGFormer	GT	82.38 ± 0.70	71.82 ± 0.18	80.64 ± 0.52	37.80 ± 0.47	68.65 ± 2.42	78.92 ± 1.21	80.00 ± 0.88	45.73 ± 1.61	40.13 ± 2.49	7.22
DIFFormer	GT	83.32 ± 0.52	74.46 ± 0.42	78.16 ± 0.32	34.51 ± 0.76	60.00 ± 1.21	68.11 ± 2.26	63.92 ± 1.07	53.60 ± 0.64	44.25 ± 0.86	10.56
TDGNN	GT	85.35 ± 0.49	73.78 ± 0.60	80.20 ± 0.33	32.84 ± 0.76	35.68 ± 4.15	61.35 ± 2.72	46.86 ± 4.76	OOM	38.25 ± 1.88	15.00
GraphManba	Mamba	54.36 ± 2.34	58.98 ± 2.39	70.90 ± 1.16	36.05 ± 0.40	74.05 ± 3.24	77.29 ± 2.16	80.39 ± 1.24	33.59 ± 3.50	42.30 ± 0.00	13.89
Ours	Forest	85.46 ± 0.29	74.42 ± 0.29	81.00 ± 0.26	39.88 ± 0.43	83.24 ± 2.02	91.89 ± 0.00	86.27 ± 0.00	56.47 ± 0.60	47.22 ± 1.98	1.22

3348
3349**Algorithm 3** Algorithm of Block Acceleration of Tree Sampler3350
3351
3352
3353
3354
3355
3356
3357

Description: Given a positively weighted directed graph G , define a tree distribution conditioned on graph G as $P_G(T)$, with the unnormalized score equaling to the product of all edge weights in a tree (Recall Eq. 2 in the main text). Return a spanning tree of graph G approximately sampled from $P_G(T)$ yet with higher parallelizability via a trick called *Block Acceleration* (Sec. E and Sec. F.3). The key idea is to identify a set of unimportant edges with relatively low scores and distinguish them from other edges by first ignoring and then reconsidering them, which provides a way that first divides the input graph into several blocks, parallelizably processes intra-block edges, and finally adds inter-block edges. Check Sec. F.3 for the line-by-line explanations of this algorithm.

3358
3359

Input: a graph $G = (V, E)$ with its edge index $\text{EdgeIndex} \in \mathbb{R}^{m \times 2}$ and its edge weights $\text{EdgeWeights} \in \mathbb{R}^{m \times 1}$ where $m = |E|$ and we also denote $n = |V|$

3360
3361

Output: the tree $T \sim P_G(T)$ with $T = (V_T, E_T)$, where V_T and E_T denote its node set and its (undirected) edge set, respectively

3362

Hyper-Parameters: K_B , the number of blocks

3363

Note: (1) We will call Algorithm 2 with the operator *TreeSampler* (EdgeIndex , EdgeWeights);

3364

(2) We will call a graph cut technique *GraphCut* (EdgeIndex , EdgeWeights) (e.g., efficient METIS Library for implementations), which will return a partition solution of the node set V of an input graph G with its edge index and its undirected edge weights;

3365

(3) We denote the operator $\text{LookUp}(S, X) \in \mathbb{N}^{q \times 1}$ with $S \in \mathbb{R}^{p \times k}$, $X \in \mathbb{R}^{q \times k}$ to find the row index of a row X_i in S (-1 for rows not contained), assuming no two rows in S are exactly the same;

3366

(4) We will call two operators *Scatter_Add* (a , Index) and *Scatter_ArgMax* (a , Index) from library `torch_scatter`, where $\text{Index}[i]$ denotes the class number of the i -th row of the matrix a , with their definitions as follows:

3367

$$\text{Scatter_Add}(a, \text{Index})[i] = \sum_{j=0}^{|a|-1} \mathbb{I}(\text{Index}[j] = i) \cdot a[j], \quad (77)$$

3368
3369
3370
3371

$$\text{Scatter_ArgMax}(a, \text{Index})[i] = \text{argmax}_{j: 0 \leq j < |a| \& \text{Index}[j]=i} a[j].$$

3372

1: $\text{BlockNo} \leftarrow \text{GraphCut}(\text{EdgeIndex}, \text{EdgeWeights}) \in \mathbb{N}^{n \times 1}$

3373

2: $\text{BnLeft}, \text{BnRight} \leftarrow \text{BlockNo}(\text{EdgeIndex}[:, 0]), \text{BlockNo}(\text{EdgeIndex}[:, 1])$

3374

3: **for** each $i \in [1, K_B]$ **do**

3375

4: $\text{Mask} \leftarrow (\text{BnLeft} = \text{BnRight} \& \text{BnLeft} = i)$

3376

5: $\text{EdgeIndexBlock}[i], \text{EdgeWeightsBlock}[i] \leftarrow \text{EdgeIndex}[\text{Mask}], \text{EdgeWeights}[\text{Mask}]$

3377

6: **end for**

3378

7: $\text{ZeroMask} \leftarrow (\text{BnLeft} \neq \text{BnRight})$

3379

8: $\text{EdgeIndexBlockZeroVanilla} \leftarrow \text{EdgeIndex}[\text{ZeroMask}]$

3380

9: $\text{EdgeWeightsBlockZero} \leftarrow \text{EdgeWeights}[\text{ZeroMask}]$

3381

10: $\text{EdgeIndexBlockZeroBlockNo} \leftarrow \text{BlockNo}[\text{EdgeIndexBlockZeroVanilla}]$

3382

11: $\text{EdgeIndexBlock}[0], \text{EdgeWeightsBlock}[0] \leftarrow \text{Merge}(\text{EdgeIndexBlockZeroBlockNo}, \text{EdgeWeightsBlockZero})$

3383

12: **for** $i \in [0, K_B]$ **do**

3384

13: $\text{TreeBlock}[i] \leftarrow \text{TreeSampler}(\text{EdgeIndexBlock}[i], \text{EdgeWeightsBlock}[i])$

3385

14: **end for**

3386

15: $\text{Index} \leftarrow \text{LookUp}(\text{TreeBlock}[0], \text{EdgeIndexBlockZeroBlockNo})$

3387

16: $\text{Index} \leftarrow \text{Index}[\text{Index} \geq 0]$

3388

17: $\text{EdgeIndexBlockZeroBlockNoInTree} \leftarrow \text{EdgeIndexBlockZeroBlockNo}[\text{Index}]$

3389

18: $\text{EdgeWeightsBlockZeroInTree} \leftarrow \text{EdgeWeightsBlockZero}[\text{Index}]$

3390

19: $\text{EdgeSum} \leftarrow \text{Scatter_Add}(\text{EdgeWeightsBlockZeroInTree}, \text{Index})$

3391

20: $\text{EdgeProbabilities} \leftarrow \text{EdgeWeightsBlockZeroInTree} / \text{EdgeSum}[\text{Index}]$

3392

21: $\text{tmp} \leftarrow \log(\text{EdgeProbabilities}) + \text{Gumbels}$, where each element in *Gumbels* is $x = -\log(-\log(t))$, $t \sim \text{Uniform}(0, 1)$

3393

22: $\text{TreeBlock}[0] \leftarrow \text{EdgeWeightsBlockZeroInTree}[\text{Scatter_ArgMax}(\text{tmp}, \text{Index})]$

3394

23: $V_T \leftarrow V, E_T \leftarrow \text{Concat}(\{\text{TreeBlock}[k]\}_{k \in [0, K_B]})$

3395

24: **return** $T \leftarrow (V_T, E_T)$

3402 **N MORE RELATED WORK**
34033404 In this section, we will provide more discussions on the literature related to our work.
34053406 **N.1 GNNs ON HETEROGRAPHIC GRAPH**
34073408 While traditional graph neural networks (GNNs) excel at semi-supervised node classification un-
3409 der the homophily assumption, they face challenges in heterophilic graphs—where dissimilar
3410 nodes (with different labels) are often connected—due to misleading message aggregation and
3411 over-smoothing. Existing heterophilic GNNs can be categorized into three main types: aggrega-
3412 tion calibration, graph modification, and other approaches. (1) Aggregation calibration methods
3413 optimize message aggregation to mitigate heterophily’s negative effects while preserving local
3414 topology. H2GCN Zhu et al. (2020) distinguishes between ego-node and neighbor representations,
3415 combining node embeddings to balance local and global information. ACMGCN Luan et al. (2021)
3416 adaptively mixes different frequency signals via low-pass, high-pass, and identity channels, which
3417 successfully separates meaningful information from noise in heterophilic scenarios. (2) Graph modifi-
3418 cation methods adjust the original graph structure to enhance semantic similarity between connected
3419 nodes. Geom-GNN Pei et al. (2020b) constructs structural connections via geometric measurements,
3420 preserving topological properties while linking semantically relevant nodes. WRGAT Suresh et al.
3421 (2021) learns a new computation graph based on node proximity and local structural similarity,
3422 thereby breaking the constraints imposed by the original edges. GloGNN Li et al. (2022) captures
3423 node correlations via feature and topology similarity by learning a coefficient matrix, strengthening
3424 connections between semantically similar nodes. DIGL Gasteiger et al. (2019b) utilizes generalized
3425 graph diffusion (e.g., personalized PageRank) to adjust edge weights, thereby promoting connectivity
3426 between nodes with short diffusion distances, aligning with semantic similarity. Other methods
3427 adopt alternative techniques to overcome the limitations of traditional message-passing GNNs on
3428 heterophilic graphs. GESN Tortorella & Micheli (2022) employs a reservoir computing framework,
3429 where node embeddings are generated by an unlearnable recursive message-passing function, thereby
3430 avoiding over-smoothing by controlling the Lipschitz constant to effectively encode structural knowl-
3431 edge. ADPA Sun et al. (2024) proposes the AMUD framework to assess how node features interact
3432 with directed topology—it helps determine whether the graph should be modeled as undirected
3433 or directed—and utilizes hierarchical attention to integrate message information across different
3434 scales. HiGNN Zheng et al. (2024) defines *heterophilous information* as the label distribution of each
3435 node’s neighbors, constructs a new adjacency matrix to connect nodes with similar *heterophilous*
3436 *information*, and fuses this matrix with the vanilla graph structure to improve performance.
34373438 **O LLM USAGE STATEMENT**
34393440 Large language models were employed in this study exclusively for the purpose of linguistic refine-
3441 ment and stylistic enhancement.
34423443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455