
Under review as submission to TMLR

Better Linear Rates for SGD with Data Shuffling

Anonymous authors
Paper under double-blind review

Abstract

Virtually all state-of-the-art methods for training supervised machine learning models are variants of
SGD, enhanced with a number of additional tricks, such as minibatching, momentum, and adaptive
stepsizes. However, one of the most basic questions in the design of successful SGD methods, one that
is orthogonal to the aforementioned tricks, is the choice of the next training data point to be learning
from. Standard variants of SGD employ a sampling with replacement strategy, which means that
the next training data point is sampled from the entire data set, often independently of all previous
samples. While standard SGD is well understood theoretically, virtually all widely used machine
learning software is based on sampling without replacement as this is often empirically superior.
That is, the training data is randomly shuffled/permuted, either only once at the beginning, strategy
known as random shuffling (Rand-Shuffle), or before every epoch, strategy known as random reshuffling
(Rand-Reshuffle), and training proceeds in the data order dictated by the shuffling. RS and RR strategies
have for a long time remained beyond the reach of theoretical analysis that would satisfactorily
explain their success. However, very recently, Mishchenko et al. (2020) provided tight sublinear
convergence rates through a novel analysis, and showed that these strategies can improve upon
standard SGD in certain regimes. Inspired by these results, we seek to further improve the rates of
shuffling-based methods. In particular, we show that it is possible to enhance them with a variance
reduction mechanism, obtaining linear convergence rates. To the best of our knowledge, our linear
convergence rates are the best for any method based on sampling without replacement.

1 Introduction

The main paradigm for training supervised machine learning models—Empirical Risk Minimization (ERM)—is an
optimization problem of the finite sum structure

min
x∈Rd

[
f (x) B 1

n

n∑
i=1

fi(x)
]
, (1)

where x ∈ Rd is a vector representing the parameters (model weights, features) of a model we wish to train, n is the
number of training data points, and fi(x) represents the (smooth) loss of the model x on data point i. The goal of ERM
is to train a model whose average loss on the training data is minimized. This abstraction allows to encode virtually all
supervised models trained in practice, including linear and logistic regression, and neural networks.

The gigantic size of modern training data sets necessary to train models with good generalization poses severe
issues for the designers of methods for solving equation 1. Over the last decade, stochastic first-order methods have
emerged as the methods of choice, and for this reason, their importance in machine learning remains exceptionally
high (Bottou et al., 2018). Of these, stochastic gradient descent (SGD) is perhaps the best known, but also the most
basic. SGD has a long history (Robbins & Monro, 1951; Bertsekas & Tsitsiklis, 1996) and is therefore well-studied and
well-understood (Rakhlin et al., 2012; Hardt et al., 2016; Drori & Shamir, 2019; Gower et al., 2019; Nguyen et al.,
2020).

Training data order. Standard and even variance-reduced variants of SGD employ a sampling with replacement
strategy (Gorbunov et al., 2020), which means that the next training data point in each epoch is sampled from the entire
data set, independently of all previous samples. However, virtually all widely used machine learning software is based
on sampling without replacement as this is often empirically superior (Bottou, 2009; Recht & Ré, 2013), and therefore

1

Under review as submission to TMLR

acts as the de-facto default sampling mechanism in deep learning (Bengio, 2012; Sun, 2020). With this latter strategy, in
each epoch we sample each training data exactly once, and this can be performed by generating a random permutation
of the training data.

There are three commonly used variants of sampling without replacement.

(i) In the first, which we call deterministic shuffling (Det-Shuffle) in this paper, the training data is processed in
some natural order in a cyclic manner. That is, a deterministic permutation is used throughout the entire
training process. This idea is the basis of the Cyclic-GD method (Luo, 1991; Grippo, 1994). While this strategy
is not effective in practice, it is perhaps the simplest strategy conceptually, and has been studied repeatedly.
However, it is notoriously difficult to obtain good guarantees for it.

(ii) In the second variant, which we call random shuffling (Rand-Shuffle) in this paper1, the training data is instead
shuffled/permuted randomly. This is done only once, before the start of the training process, and the selection
of training data then follows a cyclic pattern dictated by this single random permutation (Nedić & Bertsekas,
2001). The purpose of this procedure is to break the potentially adversarial default ordering of the data that
could negatively affect training speed. Almost no non-trivial analyses exist for this method (Mishchenko et al.,
2020). This strategy works very well in practice.

(iii) In the third variant, known as random reshuffling (Rand-Reshuffle), the training data is randomly reshuffled
before the start of each epoch. This is perhaps the most common and relatively most studied approach. Its
empirical performance is, however, often very similar to Rand-Shuffle, and the current best theoretical bounds
for both are the same (Mishchenko et al., 2020).

Difficulties with analyzing shuffling-based methods. The main difficulty in analyzing methods based on sampling
without replacement is that each gradient step within an epoch is biased, and performing a sharp analysis of methods
based on biased estimators is notoriously difficult. While Cyclic-GD was studied already a few decades ago (Mangasarian
& Solodov, 1994; Bertsekas & Tsitsiklis, 2000), convergence rates were established relatively recently (Li et al., 2019;
Ying et al., 2019; Gürbüzbalaban et al., 2019; Nguyen et al., 2020). For the Rand-Shuffle method, the situation is more
complicated, and non-vacuous theoretical analyses were only performed recently (Safran & Shamir, 2020; Rajput
et al., 2020). Rand-Reshuffle is well understood for twice-smooth (Gürbüzbalaban et al., 2019; Haochen & Sra, 2019)
and smooth (Nagaraj et al., 2019) objectives. Moreover, lower bounds for Rand-Reshuffle and similar methods were
also recently established (Safran & Shamir, 2020; Rajput et al., 2020). Mishchenko et al. (2020) recently performed
an in-depth analysis of Det-Shuffle, Rand-Shuffle and Rand-Reshuffle with novel and simpler proof techniques, leading to
improved and new convergence rates. Their rate for Rand-Shuffle, for example, tightly matches the lower bound of Safran
& Shamir (2020) in the case when each fi is strongly convex. Further, Rand-Reshuffle can be accelerated (Gürbüzbalaban
et al., 2019), and for small constant step-sizes, the neighborhood of solution can be controlled (Sayed, 2014). However,
despite these advances, Rand-Reshuffle and related method described above still suffer from the same problem as SGD,
i.e., we do not have variants that would have a fast linear convergence rate to the exact minimizer.

Variance reduction. Despite its simplicity and elegance, SGD has a significant disadvantage: the variance of naive
stochastic gradient estimators of the true gradient remains high throughout the training process, which causes issues with
convergence. When a constant learning rate is used in the smooth and strongly convex regime, SGD converges linearly
to a neighborhood of the optimal solution of size proportional to the learning rate and to the variance of the stochastic
gradients at the optimum (Gower et al., 2020). While a small or a decaying learning schedule restores convergence, the
convergence speed suffers as a result. Fortunately, there is a remedy for this ailment: variance-reduction (VR) (Johnson
& Zhang, 2013). The purpose of VR mechanisms is to steer away from the naive gradient estimators. Instead, VR
mechanisms iteratively construct and apply a gradient estimator whose variance would eventually vanish. This allows
for larger learning rates to be used safely, which accelerates training. Among the early VR-empowered SGD methods
belong SAG (Roux et al., 2012), SVRG (Johnson & Zhang, 2013), SAGA (Defazio et al., 2014a), and Finito (Defazio et al.,
2014b). For a recent survey of VR methods, see (Gower et al., 2020).

Related work. Some cyclic and random reshuffling versions of variance-reduced methods were shown to obtain linear
convergence. Incremental Average Gradient (IAG)—a cyclic version of the famous SAG method—was analyzed by
Gürbüzbalaban et al. (2017). Based on this, the Doubly Incremental Average Gradient (DIAG) method was introduced,

1This method is called “shuffle once” in some papers.

2

Under review as submission to TMLR

and it has a significantly better rate if each fi is strongly convex (Mokhtari et al., 2018). A linear rate for Cyclic-SAGA

was established by Park & Ryu (2020). The first analysis of Rand-Reshuffle with variance reduction was done by Ying
et al. (2020). Firstly, they establish a linear rate for SAGA under random reshuffling, and then they introduce a new
method called Amortized Variance-Reduced Gradient (AVRG), which is similar to SAGA. SVRG using Rand-Reshuffle

was introduced by Shamir (2016), and their theoretical analysis was conducted for the Least Squares problem. The
promising result of Prox-DFinito is introduced in Huang et al. (2021) for the composite optimization problem.

2 Approach and Contributions

Let us now briefly outline our approach and key contributions.

2.1 Controlled linear perturbations

In the design of our methods we employ a simple but powerful tool: the idea of introducing a sequence of carefully
crafted reformulations of the original finite sum problem, and applying vanilla shuffling-based methods on these
reformulations instead of the original formulation. As the sequence is designed to have progressively better conditioning
properties, our methods will behave progressively better as well, and this is why this result in variance reduced shuffling
methods.

The main idea is to perturb the objective function with zero written as the average of n nonzero linear functions. This
perturbation is performed at the beginning of each epoch, and stays fixed within each epoch. Let us consider the finite
sum problem equation 1 and vectors ai

t, . . . , a
n
t ∈ R

d summing up to zero:
∑n

i=1 ai
t = 0. Let at = (ai

t, . . . , a
n
t). Adding

this structured zero to f , we reformulate problem equation 1 into the equivalent form

f (x) = 1
n

n∑
i=1

fi(x) = 1
n

n∑
i=1

(
fi(x) +

〈
ai

t, x
〉)
B 1

n

n∑
i=1

f t
i (x), (2)

where f t
i (x) B fi(x) +

〈
ai

t, x
〉
. Note that

∇ f t
i (x) = ∇ fi(x) + ai

t. (3)

Next, we establish a simple but important property of this reformulation.

Proposition 1. Assume that each fi is µ-strongly convex (resp. convex) and L-smooth. Then f t
i is µ-strongly convex

(resp. convex) and L-smooth.

In our methods, the vectors a1
t , . . . , a

n
t depend on two objects:

• a control vector yt ∈ R
d, which is updated at the start of each epoch,

• the permutation π = {π0, π1, . . . , πn−1} chosen at the beginning of the current epoch.

In particular, we choose
ai

t B −∇ fπi (yt) + ∇ f (yt). (4)

Note that by plugging equation 4 into equation 3, the gradient of f t
πi

at x ∈ Rd is given by

gi
t(x, yt) B ∇ fπi (x) − ∇ fπi (yt) + ∇ f (yt). (5)

At the start of each epoch, the control vector yt is set to the latest iterate xt.

2.2 New algorithms: improvement of shuffling based methods

Our key proposal is to run standard Det-Shuffle, Rand-Shuffle and Rand-Reshuffle methods, for example as described in
(Mishchenko et al., 2020), but in each epoch to apply them to the current reformulated problem

min
x∈Rd

1
n

n∑
i=1

f t
i (x).

3

Under review as submission to TMLR

Algorithm 1 Algorithms Det-Shuffle, Rand-Shuffle, Rand-Reshuffle

Input: Stepsize γ > 0, initial iterate x0 ∈ R
d, number of epochs T

Option Det-Shuffle: Choose a deterministic permutation {π0, . . . , πn−1} of {1, . . . , n}
Option Rand-Shuffle: Choose a random permutation {π0, . . . , πn−1} of {1, . . . , n}
for t = 0, 1, . . .T − 1 do

Option Rand-Reshuffle: Choose a random permutation {π0, . . . , πn−1} of {1, . . . , n}
x0

t = xt, yt = xt

for i = 0, . . . , n − 1 do
gi

t(xi
t, yt) = ∇ fπi (xi

t) − ∇ fπi (yt) + ∇ f (yt)
xi+1

t = xi
t − γgi

t(xi
t, yt)

end for
xt+1 = xn

t
end for

This leads to our variance-reduced algorithms, all described compactly in Algorithm 1. Hoping that this will not cause
confusion, we do not give the methods a different name.

• Note that as mentioned in the introduction, in Det-Shuffle we only use a single deterministic permutation at the
start of the method. The steps are then performed incrementally through all data, in the same order in each
epoch.

• In contrast, in Rand-Shuffle we shuffle the data points randomly instead, but otherwise proceed as in Det-Shuffle,
using this one permutation in all subsequent epochs.

• Finally, Rand-Reshuffle is similar to Rand-Shuffle, with the exception that a new permutation is resampled at the
start of each epoch.2

Besides Algorithm 1, we also propose a generalized version of Rand-Reshuffle (Algorithm 2), which differs from Rand-

Reshuffle in that at the end of each epoch we flip a biased coin to decide whether to update the control vector yt or not.
While in Rand-Reshuffle the control vector yt+1 is updated to the latest iterate xt+1, in Algorithm 2 we use the previous
point xt. We do this as it slightly simplified the analysis. However, it makes sense to use the newest point xt+1 instead of
xt to update the control vector in practice. This method is described in the appendix only.

2.3 Analysis technique: the basic idea

Since in view of Proposition 1 the reformulated problem satisfies all assumptions of the original problem, in a single
epoch it is possible to apply results that hold for vanilla Det-Shuffle, Rand-Shuffle and Rand-Reshuffle methods – variants that
are not variance-reduced. In particular, we rely on some results of Mishchenko et al. (2020), and complement them
with new analysis that handles the changing nature of the reformulations through the change in the control vectors {yt}.

In particular, a key insight of our paper is the observation that by updating the control vector, we can control the variance
of shuffling based methods.3

We are now ready to formulate the core lemma of our work.

Lemma 1. Assume that each fi is L-smooth and convex. If we apply the linear perturbation reformulation equation 2
using vectors of the form equation 4, then the gradient variance of the reformulated problem at the optimum x∗ can be
bounded via the distance of the control vector yt to x∗ as follows:

(
σt
∗

)2 B 1
n

n∑
i=1

∥∥∥∇ f t
i (x∗)

∥∥∥2
≤ 4L2‖yt − x∗‖2. (6)

4

Under review as submission to TMLR

Table 1: Complexity of shuffling based methods (in all expressions we ignore constant terms).

Algorithm µ-strongly
convex fi

µ-strongly
convex f

convex
f

non-convex
f memory reference

RR-SAGA – κ2 log 1/ε – – dn Ying et al. (2020)
AVRG – κ2 log 1/ε – – d Ying et al. (2020)

Rand-Shuffle
Rand-Reshuffle κ

√
κ
n log 1/ε(1) κ log 1/ε(1)

κ
√
κ log 1/ε(2) L/ε L/ε2(5) d this paper

Prox-DFinito κ log 1/ε – L2/ε – dn Huang et al. (2021)
Cyclic-SAGA κ2 log 1/ε – – – dn Park & Ryu (2020)

IAG (3) – nκ2 log 1/ε – – dn Gürbüzbalaban et al. (2017)
DIAG (4) κ log 1/ε – – – dn Mokhtari et al. (2018)

Det-Shuffle – κ
√
κ log 1/ε L/ε – d this paper

(1) Big data regime.
(2) General regime.
(4) Cyclic version of the Stochastic Average Gradient (SAG) method, which was the original inspiration for SAG.
(3) Cyclic version of the Finito algorithm.
(5) The result is applied to Rand-Reshuffle

2.4 Complexity results

Our theory leads to improved rates for shuffling-based methods using all three sampling strategies: Det-Shuffle, Rand-Shuffle

and Rand-Reshuffle. We provide theoretical guaranties in Section 3; a summary is presented in Table 1.

� Strongly convex case. If f is strongly convex, we obtain O
(
κ3/2 log 1/ε

)
iteration (epoch-by-epoch) complexity for

Rand-Reshuffle, where κ is the condition number. This rate is better than the O
(
κ2 log 1/ε

)
rate of RR-SAGA and AVRG

introduced by Ying et al. (2020). Moreover, if n > O(κ), we improve this rate for Rand-Reshuffle and get O
(
κ log 1/ε

)
complexity. If each fi is strongly convex and the number of functions is sufficiently large (Theorem 3), then the rate of
Rand-Reshuffle can be further improved to O(κ

√
κ/n log 1/ε). For Det-Shuffle we prove similar convergence results under the

assumption of strong convexity of f . The iteration complexity of this method is O
(
κ3/2 log 1/ε

)
, which is noticeably

better than the O
(
nκ2 log 1/ε

)
rate of IAG (Gürbüzbalaban et al., 2017). Furthermore, it is better than the O

(
κ2 log 1/ε

)
rate of Cyclic-SAGA (Park & Ryu, 2020). It is worth mentioning that Mokhtari et al. (2018) obtain a better complexity,
O

(
κ log 1/ε

)
, for their DIAG method. However, their analysis requires much stricter assumption.

� Convex case. In the general convex setting we give the first analysis and convergence guarantees for Det-Shuffle,
Rand-Shuffle, and Rand-Reshuffle. After applying variance reduction, we obtain fast convergence to the exact solution. As
expected, these methods have the sublinear rate O(1

ε
) in an ergodic sense.

2.5 Shuffling-based variants of variance reduced methods.

While, as we argue, our methods should be seen as improvements over existing shuffling-based methods via variance
reduction, it is possible to alternatively see them as shuffling-based variants of variance reduced methods. However,
when seen that way, we do not observe an improvement in complexity. The reason for this is that there is a large gap in
our understanding of shuffling based methods, especially for variance reduced variants, which does not yet allow for
theoretical speedups compared to their sampling-with-replacement cousins. For example, from the latter viewpoint, and
to the best of our knowledge, we provide the first convergence analysis of SVRG under random reshuffling. However, the
rate of classical variance reduced methods, such as SVRG, is still superior in some regimes.

3 Main Theoretical Results

Having described the methods and the idea of controlled linear perturbations, we are ready to proceed to the formal
statement of our convergence results.

2Note that Rand-Reshuffle can be seen as a version of SVRG in which the number of inner steps m is equal to n, and in which sampling without
replacement is used. Johnson & Zhang (2013) remarked that m = O(n) works well in practice, but a theoretical analysis of this was not provided.

3While this was known for methods based on sampling with replacement, this is a new observation for methods based on sampling without
replacement, and our control strategy.

5

Under review as submission to TMLR

3.1 Assumptions and Notation

Before introducing our convergence results, let us first formulate the definitions and assumptions we use throughout the
work. Function f : Rd → R is L-smooth if

f (y) ≤ f (x) + 〈∇ f (x), y − x〉 + L
2 ‖y − x‖2 ∀x, y ∈ Rd, (7)

convex if
f (x) + 〈∇ f (x), y − x〉 ≤ f (y) ∀x, y ∈ Rd, (8)

and µ-strongly convex if
f (x) + 〈∇ f (x), y − x〉 + µ

2 ‖y − x‖2 ≤ f (y) ∀x, y ∈ Rd. (9)

The Bregman divergence with respect to f is the mapping D f : Rd × Rd → R defined as follows:

D f (x, y) B f (x) − f (y) − 〈∇ f (y), x − y〉. (10)

Note that if y = x∗, where x∗ is a minimum of f , then D f (x, x∗) = f (x) − f (x∗).

Lastly, we define an object that plays the key role in our analysis.

Definition 1 (Variance at optimum). Gradient variance at optimum is the quantity

σ2
∗ B

1
n

n∑
i=1
‖∇ fi (x∗)‖2 . (11)

This quantity is used in several recent papers on stochastic gradient-type methods. Particularly, it is a version of gradient
noise introduced in Gower et al. (2019) for finite sum problems.

For all theorems in this paper the following assumption is used.

Assumption 1. The objective f and the individual losses f1, . . . , fn are all L-smooth. We also assume the existence of a
minimizer x∗ ∈ Rd.

This assumption is classical in the literature, and it is necessary for us to get convergence results for all the methods
described above.

3.2 Convergence Analysis of Rand-Shuffle and Rand-Reshuffle

We provide two different rates in the strongly convex case. Let κ B L/µ.

Theorem 1 (Strongly convex case: f). Suppose that each fi is convex, f is µ-strongly convex, and Assumption 1 holds.
If the stepsize satisfies 0 < γ ≤ (2

√
2Ln
√
κ)−1, the iterates generated by Rand-Shuffle and Rand-Reshuffle satisfy

E
[
‖xT − x∗‖2

]
≤

(
1 − γnµ

2

)T
‖x0 − x∗‖2.

This means that the iteration complexity of these methods is T = O
(
κ
√
κ log 1/ε

)
.

If we are in the big data regime characterized by the inequality n > O(κ), then we can use a larger step-size, which leads
to an improved rate. This is captured by our next theorem.

Theorem 2 (Strongly convex case: f). Suppose that each fi is convex, f is µ-strongly convex and Assumption 1 holds.
Additionally assume we are in the “big data” regime characterized by n ≥ 2κ/(1− 1

√
2κ

). Then provided the stepsize satisfies
γ ≤ 1/

√
2Ln, the iterates generated by Rand-Shuffle and Rand-Reshuffle satisfy

E
[
‖xT − x∗‖2

]
≤

(
1 − γnµ

2

)T
‖x0 − x∗‖2.

This means that the iteration complexity of these methods is T = O
(
κ log 1/ε

)
.

As we shall see next, we obtain an even better rate in the case when each function fi is strongly convex.

6

Under review as submission to TMLR

Theorem 3 (Strongly convex case: fi). Suppose that the functions f1, . . . , fn are µ-strongly convex and Assumption 1
holds. Fix constant 0 < δ < 1. If the stepsize satisfies γ ≤ δ/L

√
2nκ, and if number of functions is sufficiently big,

n > log(1−δ2)/log(1−γµ), then the iterates generated by Rand-Shuffle and Rand-Reshuffle satisfy

E
[
‖xT − x∗‖2

]
≤

(
(1 − γµ)n + δ2

)T
‖x0 − x∗‖2.

If we further assume that δ2 ≤ (1 − γµ)n/2
(
1 − (1 − γµ)n/2

)
, then the iteration complexity of these methods is T =

O
(
κ
√
κ/n log 1/ε

)
.

In our work we provide the first bounds for SVRG under random reshuffling without strong convexity.
Theorem 4 (Convex case). Suppose the functions f1, f2, . . . , fn are convex and Assumption 1 holds. Then for Rand-Shuffle

and Rand-Reshuffle with stepsize γ ≤ 1/
√

2Ln, the average iterate x̂T B
1
T
∑T

t=1 xt satisfies

E
[
f (x̂T)

]
− f (x∗) ≤

3‖x0−x∗‖2

2γnT .

This means that the iteration complexity of these methods is T = O

(
L‖x0−x∗‖2

ε

)
.

We also obtained first convergence result for Rand-Reshuffle in the non-convex case.
Theorem 5 (General non-convex case). Suppose that Assumption 1 holds. Then for Algorithm Rand-Reshuffle run for T
epochs with a stepsize γ ≤ 1

2Ln we have

1
T
∑T−1

t=0 E
[
‖∇ f (xt)‖2

]
≤

4(f (x0)− f∗)
γnT .

Choose γ = 1
2nL . Then the mean of gradient norms satisfies 1

T
∑T−1

t=0 E
[
‖∇ f (xt)‖2

]
≤ ε2 provided the number of iterations

satisfies T = O
(

8δ0L
ε2

)
.

Theorem 6 (Polyak-Łojasiewicz condition). Suppose that Assumption 1 holds and f satisfies the Polyak-Łojasiewicz
inequality with µ > 0, i.e., ‖∇ f (x)‖2 ≥ 2µ(f (x) − f∗) for any x ∈ Rd. Then for Algorithm Rand-Reshuffle run for T epochs
with a stepsize γ ≤ 1

2Ln we have

E
[
f (xT) − f∗

]
≤

(
1 − γµn

2

)T
(f (x0) − f∗) ,

then the relative error satisfies E[f (xT)− f∗]
f (x0)− f∗

≤ ε provided the number of iterations satisfies T = O(κ log 1
ε
).

3.3 Convergence Analysis of Det-Shuffle

In this section we present results for Det-Shuffle. They are very similar to the previous bounds. However, the lack of
randomization does not allow us to improve convergence in the big data regime.
Theorem 7 (Strongly convex case: f). Suppose that each fi is convex function, f is µ-strongly convex function, and
Assumption 1 holds. If the stepsize satisfies γ ≤ 1/4Ln

√
κ, the iterates generated by Det-Shuffle satisfy

‖xT − x∗‖2 ≤
(
1 − γnµ

2

)T
‖x0 − x∗‖2.

This means that the iteration complexity of this method is T = O
(
κ
√
κ log 1/ε

)
.

Note that this is the same rate as that of Rand-Shuffle and Rand-Reshuffle.

Our rate for Det-Shuffle is better than the rate of Cyclic-SAGA (Park & Ryu, 2020). We remark that the convergence rate of
DIAG (Mokhtari et al., 2018) is better still; however, their result requires strong convexity of each fi.

Similarly, we can establish convergence results for Det-Shuffle in the convex case.
Theorem 8 (Convex case). Suppose the functions f1, f2, . . . , fn are convex and Assumption 1 holds. If the stepsize
satisfies γ ≤ 1/2

√
2Ln, the average iterate x̂T B

1
T
∑T

j=1 x j generated by Det-Shuffle satisfies

E
[
f (x̂T)

]
− f (x∗) ≤

2‖x0−x∗‖2

γnT .

This means that the iteration complexity of this method is T = O

(
L‖x0−x∗‖2

ε

)
.

Up to a constant factor, the complexity of Det-Shuffle is the same as that of Rand-Shuffle and Rand-Reshuffle.

7

Under review as submission to TMLR

0 25 50 75 100 125 150 175 200
#gradients/n

0.5

0.6

0.7

0.8

0.9

1.0
||x

k
x

*|
|2

n = 252, = 252

RR_SAGA
Rand-Reshuffle

0 10 20 30 40 50
#gradients/n

0.6

0.7

0.8

0.9

1.0

||x
k

x
*|

|2

n = 16100, = 1611

RR_SAGA
Rand-Reshuffle

0 20 40 60 80 100
#gradients/n

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

||x
k

x
*|

|2

n = 35000, = 459

RR_SAGA
Rand-Reshuffle

Figure 1: Comparison of Rand-Reshuffle and RR-SAGA with theoretical stepsizes on bodyfat, a7a, and ijcnn1 datasets
(from left to right).

0 10 20 30 40 50 60
#gradients/n

10 25

10 22

10 19

10 16

10 13

10 10

10 7

10 4

10 1

||x
k

x
*|

|2

n = 20640, = 2058

Det-Shuffle
Rand-Shuffle
SVRG
Rand-Reshuffle
L_SVRG

0 5 10 15 20 25 30
#gradients/n

10 26

10 22

10 18

10 14

10 10

10 6

10 2
||x

k
x

*|
|2

n = 4177, = 413

Det-Shuffle
Rand-Shuffle
SVRG
Rand-Reshuffle
L_SVRG

0 10 20 30 40 50
#gradients/n

10 25

10 21

10 17

10 13

10 9

10 5

10 1

||x
k

x
*|

|2

n = 1605, = 161

Det-Shuffle
Rand-Shuffle
SVRG
Rand-Reshuffle
L_SVRG

(a) (b) (c)

Figure 2: (a) Comparison of methods on cadata dataset, we set the regularization constant λ = 10/n and carefully
chosen stepsizes. (b, c) Comparison of SVRG, L-SVRG, Rand-Reshuffle, Det-Shuffle and Rand-Shuffle on abalone and a1a
datasets. For each dataset we run 5 experiments and use average errors for each algorithm.

4 Experiments

In our experiments we solve the regularized ridge regression problem, which has the form equation 1 with

fi(x) = 1
2 ‖Ai,:x − yi‖

2 + λ
2 ‖x‖

2,

where A ∈ Rn×d, y ∈ Rn and λ > 0 is a regularization parameter. Note that this problem is strongly convex and satisfies
the Assumptions 1 for L = maxi ‖Ai,:‖

2 + λ and µ = λmin(A>A)/n + λ, where λmin is the smallest eigenvalue. To have
a tighter bound on the L-smoothness constant we normalize rows of the data matrix A. We use datasets from open
LIBSVM corpus (Chang & Lin, 2011). In the plots x-axis is the number of single data gradient computation divided by
n, and y-axis is the normalized error of the argument ‖xk − x∗‖2/‖x0 − x∗‖2. In the appendix you can find the details and
additional experiments.

4.1 Rand-Reshuffle vs RR-SAGA

In this experiment, we compare Rand-Reshuffle and RR-SAGA under an academic setting, i.e. we choose the steps that are

suggested by theory. For Rand-Reshuffle we take the stepsize γ = 1/
√

2Ln when n ≥ 2L
µ

1
1− µ

√
2L

and γ = 1
2
√

2Ln

√
µ
L otherwise,

and for RR-SAGA γ =
µ

11L2n . We can see that Rand-Reshuffle outperforms RR-SAGA in terms of the number of epochs and
the number of gradient computations. Although the cost of iteration of Rand-Reshuffle is twice higher than RR-SAGA, the
larger stepsize significantly impacts the total complexity. In addition, RR-SAGA needs O(nd) extra storage to maintain
the table of gradients, which makes RR-SAGA algorithm hard to use in the big data regime.

4.2 Variance Reduced Random Reshuffling Algorithms

This section compares the variance reduced algorithms with and without random reshuffling: SAGA, RR-SAGA, SVRG,
L-SVRG and Rand-Reshuffle. For each algorithm, we choose its optimal stepsizes using the grid search. To make algorithms

8

Under review as submission to TMLR

0 5 10 15 20 25 30 35 40
#gradients/n

10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2

||x
k

x
*|

|2
n = 252, = 26

SAGA
RR-SAGA
Rand-Reshuffle
L-SVRG
SVRG

0 10 20 30 40 50 60 70
#gradients/n

10 25

10 22

10 19

10 16

10 13

10 10

10 7

10 4

10 1

||x
k

x
*|

|2

n = 252, = 252

SAGA
RR-SAGA
Rand-Reshuffle
L-SVRG
SVRG

0 10 20 30 40 50
#gradients/n

10 25

10 22

10 19

10 16

10 13

10 10

10 7

10 4

10 1

||x
k

x
*|

|2

n = 1605, = 161

SAGA
RR-SAGA
Rand-Reshuffle
L-SVRG
SVRG

Figure 3: Comparison of SAGA, RR-SAGA, Rand-Reshuffle, L-SVRG and SVRG with optimal stepsizes on bodyfat dataset
with different regularization constants (on the left and middle) and a1a (on the right).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
#gradients/n

10 19

10 16

10 13

10 10

10 7

10 4

10 1

||
f(x

k)|
|2

n = 252, = 7

SAGA
RR-SAGA
Rand-Reshuffle
L_SVRG
SVRG

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
#gradients/n

10 19

10 16

10 13

10 10

10 7

10 4

10 1

||
f(x

k)|
|2

n = 252, = 64

SAGA
RR-SAGA
Rand-Reshuffle
L_SVRG
SVRG

0 5 10 15 20 25 30 35 40
#gradients/n

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||
f(x

k)|
|2

n = 1605, = 402

SAGA
RR-SAGA
Rand-Reshuffle
L_SVRG
SVRG

0 5 10 15 20 25
#gradients/n

10 17

10 14

10 11

10 8

10 5

10 2

||
f(x

k)|
|2

n = 4177, = 1045

SAGA
RR-SAGA
Rand-Reshuffle
L_SVRG
SVRG

0 10 20 30 40 50
#gradients/n

10 9

10 7

10 5

10 3

10 1

||
f(x

k)|
|2

n = 3185, = 797

SAGA
RR-SAGA
Rand-Reshuffle
L_SVRG
SVRG

0 5 10 15 20 25 30 35 40
#gradients/n

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||
f(x

k)|
|2

n = 6414, = 1604

SAGA
RR-SAGA
Rand-Reshuffle
L_SVRG
SVRG

Figure 4: Comparison of SAGA, RR-SAGA, Rand-Reshuffle, L-SVRG and SVRG with optimal stepsizes on bodyfat dataset
with different regularization constants (upper left and middle), a1a (upper right), abalone (lower left), a3a (lower
middle) and a5a (lower right).

reasonable to compare in SVRG, we set the length of the inner loop m = n, in L-SVRG the control update probability is
1/n. Also, we consider only the uniform sampling version of SVRG and L-SVRG. We can see the results on Figure 3. We
can see that the variance reduced algorithms perform well on this experiment, and there is no obvious leader. However,
note that for SAGA and RR-SAGA, we need to have an additional O(nd) space to store the table of the gradients, which is a
serious issue in the big data regime.

4.3 Different versions of SVRG

In this section, we compare different types of SVRG algorithm: SVRG, L-SVRG, Rand-Reshuffle, Rand-Shuffle and Det-Shuffle.
For each algorithm we run five experiments with different random seeds with optimal stepsizes found by grid search.
We can see that Rand-Reshuffle in average outperforms other algorithms, while in some random cases L-SVRG can perform
better. Also, we can see that Rand-Shuffle is better than Det-Shuffle that coincides with theoretical findings. If the sampling
in each epoch is problematic, one can shuffle data once before the training.

9

Under review as submission to TMLR

4.4 Experiments with logistic regression

We also run experiments for the regularized logistic regression problem; i.e., for problem equation 1 with

f (x) = 1
n

n∑
i=1

log
(
1 + exp(−yia>i x)

)
+ λ

2 ‖x‖
2.

Note that the problem is L-smooth and µ-strongly convex for L = 1
4nλmax(A>A)+λ, and µ = λ. In these experiments (also

in the ridge regression experiments) when we choose optimal stepsize, we choose the best one among { 1
L ,

1
2L ,

1
3L ,

1
5L ,

1
10L }.

For the logistic regression we do not have an explicit formula for the optimum x∗ as in the ridge regression, thus in this
case we compare the norm of the gradients instead. In Figure 4 we can see the performance of the variance reduced
algorithms: SAGA, RR-SAGA, SVRG, L-SVRG and Rand-Reshuffle.

5 Conclusion

In this paper, we consider variance-reduced algorithms under random reshuffling. Our results are predominantly
theoretical because these algorithms are already widely used in practice and show excellent work. We have proposed a
new approach for analysis using inner product reformulation, which leads to better rates. Experimental results confirm
our theoretical discoveries. Thus, we receive a deeper theoretical understanding of these algorithms’ work, and we hope
that this will inspire researchers to develop further and analyze these methods. The understanding of variance reduction
mechanism is essential to construct accelerated versions for stochastic algorithms. We also believe that our theoretical
results can be applied to other aspects of machine learning, leading to improvements in state of the art for current or
future applications.

References

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks
of the Trade, pp. 437–478, 2012. ISSN 1611-3349. doi: 10.1007/978-3-642-35289-8_26.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient convergence in gradient methods with errors. SIAM Journal on
Optimization, 10(3):627–642, January 2000. doi: 10.1137/s1052623497331063.

Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. 2009.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. SIAM
Review, 60(2):223–311, 2018. doi: 10.1137/16M1080173.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM Transactions on Intelligent
Systems and Technology (TIST), 2(3):1–27, 2011.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA : A fast incremental gradient method with support for
non-strongly convex composite objectives. arXiv preprint arXiv:1407.0202, 2014a.

Aaron Defazio, Justin Domke, and Caetano. Finito: A faster, permutable incremental gradient method for big data
problems. In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learning Research, pp. 1125–1133, Bejing, China, 22–24 Jun
2014b. PMLR.

Yoel Drori and Ohad Shamir. The complexity of finding stationary points with stochastic gradient descent. arXiv
preprint arXiv:1910.01845, 2019.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance reduction, sampling,
quantization and coordinate descent. In The 23rd International Conference on Artificial Intelligence and Statistics,
2020.

10

Under review as submission to TMLR

Robert M Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced methods for machine learning.
Proceedings of the IEEE, 108(11):1968–1983, 2020.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter Richtárik. SGD:
General analysis and improved rates. In International Conference on Machine Learning, pp. 5200–5209. PMLR,
2019.

L. Grippo. A class of unconstrained minimization methods for neural network training. Optimization Methods and
Software, 4(2):135–150, January 1994. doi: 10.1080/10556789408805583.

M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. On the convergence rate of incremental aggregated gradient
algorithms. SIAM Journal on Optimization, 27(2):1035–1048, Jan 2017. ISSN 1095-7189. doi: 10.1137/15m1049695.

M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. Convergence rate of incremental gradient and incremental newton
methods. SIAM Journal on Optimization, 29(4):2542–2565, 2019. doi: 10.1137/17M1147846.

Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats stochastic gradient descent.
Mathematical Programming, pp. 1–36, 2019.

Jeff Haochen and Suvrit Sra. Random shuffling beats SGD after finite epochs. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2624–2633, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In
International Conference on Machine Learning, pp. 1225–1234. PMLR, 2016.

Xinmeng Huang, Kun Yuan, Xianghui Mao, and Wotao Yin. An improved analysis and rates for variance reduction
under without-replacement sampling orders. Advances in Neural Information Processing Systems, 34, 2021.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. Advances
in Neural Information Processing Systems, 26:315–323, 2013.

Xiao Li, Zhihui Zhu, Anthony Man-Cho So, and Jason D Lee. Incremental methods for weakly convex optimization.
arXiv preprint arXiv:1907.11687, 2019.

Zhi-Quan Luo. On the convergence of the LMS algorithm with adaptive learning rate for linear feedforward networks.
Neural Computation, 3(2):226–245, June 1991. doi: 10.1162/neco.1991.3.2.226.

O.L. Mangasarian and M.V. Solodov. Serial and parallel backpropagation convergence via nonmonotone perturbed
minimization. Optimization Methods and Software, 4(2):103–116, 1994. doi: 10.1080/10556789408805581.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis with vast improve-
ments. Advances in Neural Information Processing Systems, 33, 2020.

Aryan Mokhtari, Mert Gürbüzbalaban, and Alejandro Ribeiro. Surpassing gradient descent provably: A cyclic
incremental method with linear convergence rate. SIAM Journal on Optimization, 28(2):1420–1447, 2018.

Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. SGD without replacement: sharper rates for general smooth
convex functions. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4703–4711, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

Angelia Nedić and Dimitri P. Bertsekas. Incremental subgradient methods for nondifferentiable optimization. SIAM
Journal on Optimization, 12(1):109–138, January 2001. doi: 10.1137/s1052623499362111.

Lam M. Nguyen, Quoc Tran-Dinh, Dzung T. Phan, Phuong Ha Nguyen, and Marten van Dijk. A unified convergence
analysis for shuffling-type gradient methods. arXiv preprint arXiv:2002.08246, 2020.

Youngsuk Park and Ernest K Ryu. Linear convergence of cyclic SAGA. Optimization Letters, 14(6):1583–1598, 2020.

11

Under review as submission to TMLR

Shashank Rajput, Anant Gupta, and Dimitris Papailiopoulos. Closing the convergence gap of SGD without replacement.
arXiv preprint arXiv:2002.10400, 2020.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. In Proceedings of the 29th International Coference on International Conference on Machine
Learning, ICML’12, pp. 1571–1578, Madison, WI, USA, 2012. Omnipress. ISBN 9781450312851.

Benjamin Recht and Christopher Ré. Parallel stochastic gradient algorithms for large-scale matrix completion.
Mathematical Programming Computation, 5(2):201–226, 2013.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical Statistics, pp.
400–407, 1951.

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential convergence rate
for finite training sets. arXiv preprint arXiv:1202.6258, 2012.

Itay Safran and Ohad Shamir. How good is SGD with random shuffling? In Conference on Learning Theory, pp.
3250–3284. PMLR, 2020.

Ali H Sayed. Adaptive networks. Proceedings of the IEEE, 102(4):460–497, 2014.

Ohad Shamir. Without-replacement sampling for stochastic gradient methods. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, pp. 46–54, 2016.

Ruo-Yu Sun. Optimization for deep learning: an overview. Journal of the Operations Research Society of China, June
2020. doi: 10.1007/s40305-020-00309-6.

Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H. Sayed. Stochastic learning under random reshuffling with constant
step-sizes. In IEEE Transactions on Signal Processing, volume 67, pp. 474–489, 2019.

Bicheng Ying, Kun Yuan, and Ali H Sayed. Variance-reduced stochastic learning under random reshuffling. IEEE
Transactions on Signal Processing, 68:1390–1408, 2020.

12

Under review as submission to TMLR

A Appendix

Contents

1 Introduction 1

2 Approach and Contributions 3

2.1 Controlled linear perturbations . 3

2.2 New algorithms: improvement of shuffling based methods . 3

2.3 Analysis technique: the basic idea . 4

2.4 Complexity results . 5

2.5 Shuffling-based variants of variance reduced methods. 5

3 Main Theoretical Results 5

3.1 Assumptions and Notation . 6

3.2 Convergence Analysis of Rand-Shuffle and Rand-Reshuffle . 6

3.3 Convergence Analysis of Det-Shuffle . 7

4 Experiments 8

4.1 Rand-Reshuffle vs RR-SAGA . 8

4.2 Variance Reduced Random Reshuffling Algorithms . 8

4.3 Different versions of SVRG . 9

4.4 Experiments with logistic regression . 10

5 Conclusion 10

A Appendix 13

B Basic Facts 15

B.1 Elementary Inequalities . 15

B.2 Convexity and smoothness . 15

B.3 From convergence rate to iteration complexity . 15

C Proof of Proposition 1 17

D Proof of Lemma 1 18

E Analysis of Rand-Shuffle and Rand-Reshuffle 19

E.1 Proof of Theorems 1 and 2 . 19

E.2 Proof of Theorem 3 . 20

E.3 Proof of Theorem 4 . 21

13

Under review as submission to TMLR

E.4 Proof of Theorem 5 and 6 . 24

F Analysis of Det-Shuffle 26

F.1 Proof of Theorem 7 . 26

F.2 Proof of Theorem 8 . 27

G One More Algorithm: RR-VR 29

G.1 New Algorithm: RR-VR . 29

G.2 Convergence Theory . 29

G.3 Proof of Theorem 9 . 29

G.4 Proof of Theorem 10 . 31

14

Under review as submission to TMLR

B Basic Facts

B.1 Elementary Inequalities

Proposition 2. For all a, b ∈ Rd and t > 0 the following inequalities hold

〈a, b〉 ≤
‖a‖2

2t
+

t‖b‖2

2
,

‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, (12)
1
2
‖a‖2 − ‖b‖2 ≤ ‖a + b‖2.

B.2 Convexity and smoothness

Proposition 3. Let f : Rd → R be continuously differentiable and let L ≥ 0. Then the following statements are
equivalent:

• f is L-smooth,

• 2D f (x, y) ≤ L‖x − y‖2 for all x, y ∈ Rd,

• 〈∇ f (x) − ∇ f (y), x − y〉 ≤ L‖x − y‖2 for all x, y ∈ Rd.

Proposition 4. Let f : Rd → R be continuously differentiable and let µ ≥ 0. Then the following statements are
equivalent:

• f is µ-strongly convex,

• 2D f (x, y) ≥ µ‖x − y‖2 for all x, y ∈ Rd,

• 〈∇ f (x) − ∇ f (y), x − y〉 ≥ µ‖x − y‖2 for all x, y ∈ Rd.

Note that the µ = 0 case reduces to convexity.

Proposition 5. Let f : Rd → R be continuously differentiable and L > 0. Then the following statements are equivalent:

• f is convex and L-smooth

• 0 ≤ 2D f (x, y) ≤ L‖x − y‖2 for all x, y ∈ Rd,

• 1
L ‖∇ f (x) − ∇ f (y)‖2 ≤ 2D f (x, y) for all x, y ∈ Rd,

• 1
L ‖∇ f (x) − ∇ f (y)‖2 ≤ 〈∇ f (x) − ∇ f (y), x − y〉 for all x, y ∈ Rd.

Proposition 6 (Jensen’s inequality). Let f : Rd → R be a convex function, x1, . . . , xm ∈ R
d, and λ1, . . . , λm be

nonnegative real numbers adding up to 1. Then

f

 m∑
i=1

λixi

 ≤ m∑
i=1

λi f (xi) .

B.3 From convergence rate to iteration complexity

We implicitly use the following standard result to derive iteration complexity results in our theorems. We include the
statement and proof, for completeness.

15

Under review as submission to TMLR

Lemma 2. Consider a randomized algorithm producing a sequence of random iterates {xt}t≥0. Let Dt be some
nonnegative function of xt (example: Dt = ‖xt − x∗‖2). Assume that there exists q ∈ (0, 1) such that the following
inequality holds for all t ≥ 0:

E [Dt] ≤ (1 − q)t D0. (13)

Fix any ε > 0. Then as long as

T ≥
1
q

ln
(

1
ε

)
,

we have
E [DT] ≤ εD0.

Proof. Since eq ≥ 1 + q for all q ∈ R, we have e−q ≥ 1 − q for all q ∈ (0, 1). Since logarithm is an increasing over R+, it
follows that −q ≥ ln(1 − q) for all q ∈ (0, 1). Therefore, the inequality

−tq ≥ t ln (1 − q)

holds for all t ≥ 0 and all q ∈ (0, 1). Now if we have T ≥ 1
q ln

(
1
ε

)
, which is equivalent to −T · q ≤ ln(ε), we obtain

T ln (1 − q) ≤ ln(ε). Taking exponential on both sides, we get

0 < (1 − q)T ≤ ε. (14)

Finally, we have

E [DT]
equation 13
≤ (1 − q)T D0

equation 14
≤ εD0.

16

Under review as submission to TMLR

C Proof of Proposition 1

Assume that each fi is µ-strongly convex (resp. convex) and L-smooth. Then the function

f t B
1
n

n∑
i=1

f t
i ,

where
f t
i (x) B fi(x) +

〈
at

i, x
〉
, (15)

is µ-strongly convex (resp. convex) and L-smooth.

Proof. Let us compute Bregman divergence with respect to the new function f t
i (x) :

D f t
i
(x, y) = f t

i (x) − f t
i (y) − 〈∇ f t

i (y), x − y〉.

Note that ∇ f t
i (y) = ∇ fi(y) + at

i. Now we have

D f t
i
(x, y) = f t

i (x) − f t
i (y) − 〈∇ f t

i (y), x − y〉

= fi(x) +
〈
at

i, x
〉
−

(
fi(y) +

〈
at

i, y
〉)
− 〈∇ fi(y) + at

i, x − y〉

= fi(x) +
〈
at

i, x
〉
− fi(y) −

〈
at

i, y
〉
− 〈∇ fi(y), x − y〉 − 〈at

i, x − y〉

= fi(x) +
〈
at

i, x
〉
− fi(y) −

〈
at

i, y
〉
− 〈∇ fi(y), x − y〉 − 〈at

i, x〉 + 〈a
t
i, y〉

= fi(x) − fi(y) − 〈∇ fi(y), x − y〉

= D fi (x, y).

Since the Bregman divergence is not changed, the new function f t
i (x) has the same properties (µ-strong convexity or

convexity and L-smoothness) as the initial function fi(x).

17

Under review as submission to TMLR

D Proof of Lemma 1

Proof. Using the fact that ∇ f (x∗) = 0, applying Young’s inequality equation 12, and finally employing several standard
inequalities from Section B.2, we get

(
σt
∗

)2
B

1
n

n∑
i=1

‖∇ f t
i (x∗)‖2

=
1
n

n∑
i=1

‖∇ fi(x∗) − ∇ fi(yt) + ∇ f (yt)‖2

=
1
n

n∑
i=1

‖∇ fi(x∗) − ∇ fi(yt) + ∇ f (yt) − ∇ f (x∗)‖2

equation 12
≤

1
n

n∑
i=1

(
2‖∇ fi(yt) − ∇ fi(x∗)‖2 + 2‖∇ f (yt) − ∇ f (x∗)‖2

)
≤

1
n

n∑
i=1

4LiD fi (yt, x∗) +
1
n

n∑
i=1

4LD f (yt, x∗)

≤ 4LD f (yt, x∗) + 4LD f (yt, x∗)
= 8LD f (yt, x∗)
≤ 4L2‖yt − x∗‖2.

18

Under review as submission to TMLR

E Analysis of Rand-Shuffle and Rand-Reshuffle

E.1 Proof of Theorems 1 and 2

Proof. We start from Lemma 3 in paper of Mishchenko et al. (2020).

Lemma 3. Assume that functions f1, . . . , fn are convex and that Assumption 1 is satisfied. If Random Reshuffling or
Shuffle-Once is run with a stepsize satisfying γ ≤ 1

√
2Ln

, then

E
[
‖xt+1 − x∗‖2

]
≤ E

[
‖xt − x∗‖2

]
− 2γnE

[
f (xt+1) − f (x∗)

]
+
γ3Ln2σ2

∗

2
.

Now we can apply this inequality to the reformulated problem equation 2. Using strong convexity, we obtain

E
[
‖xt+1 − x∗‖2 | xt

]
≤ ‖xt − x∗‖2 − 2γnE

[
f (xt+1) − f (x∗) | xt

]
+
γ3Ln2 (

σt
∗

)2

2

≤ ‖xt − x∗‖2 − γnµE
[
‖xt+1 − x∗‖2 | xt

]
+
γ3Ln2 (

σt
∗

)2

2
.

Since we update yt = xt after each epoch, this leads to

E
[
‖xt+1 − x∗‖2 | xt

]
≤

1
1 + γµn

‖xt − x∗‖2 +
γ3Ln2 (

σt
∗

)2

2

equation 6
≤

1
1 + γµn

(
‖xt − x∗‖2 +

γ3Ln2 · 4L2‖yt − x∗‖2

2

)
=

1
1 + γµn

(
‖xt − x∗‖2 + 2γ3n2L3‖xt − x∗‖2

)
=

1
1 + γµn

(
1 + 2γ3n2L3

)
‖xt − x∗‖2.

We can use the tower property to obtain

E
[
‖xt+1 − x∗‖2

]
≤

1 + 2γ3L3n2

1 + γµn
E

[
‖xt − x∗‖2

]
.

If this inequality 1+2γ3L3n2

1+γµn ≤ 1 − γnµ
2 is correct, we can unroll the recursion and obtain

E
[
‖xT − x∗‖2

]
≤

(
1 −

γnµ
2

)T
‖x0 − x∗‖2.

Now we need to solve the following inequality:

1 + 2γ3L3n2

1 + γµn
≤ 1 −

γnµ
2
.

Let us simplify it:

1 + 2γ3L3n2 ≤ 1 +
γnµ

2
−
γ2n2µ2

2

2γ2L3n2 ≤
nµ
2
−
γn2µ2

2

2γ2L3n ≤
µ

2
−
γnµ2

2

2γ2L3n +
γnµ2

2
≤
µ

2
.

19

Under review as submission to TMLR

Now as γ ≤ 1
2
√

2Ln

√
µ
L , we have

2 ·
1

8L2n2 ·
µ

L
L3n +

1

2
√

2Ln

√
µ

L
·

nµ2

2
≤
µ

2

1
4n
µ +

1

4
√

2

µ

L

√
µ

L
µ ≤

µ

2

1
4n

+
1

4
√

2

µ

L

√
µ

L
≤

1
2
.

It is true since n ≥ 1 and µ ≤ L. We have proved Theorem 1.

Now let us use the biggest step-size allowed by the Lemma 3 in Section E.1. Let us utilize γ ≤ 1
√

2Ln
:

2 ·
1

2L2n2 L3n +
1
√

2Ln
·

nµ2

2
≤
µ

2
L
n

+
µ

2
·

µ
√

2L
≤
µ

2
.

This leads to

L
n
≤
µ

2
−
µ

2
·

µ
√

2L
=
µ

2

(
1 −

µ
√

2L

)
and

1
n
≤

µ

2L

(
1 −

µ
√

2L

)
⇒ n ≥

2L
µ
·

1
1 − µ

√
2L

.

We have proved Theorem 2.

E.2 Proof of Theorem 3

We start from Theorem 1 in (Mishchenko et al., 2020), which states that

E
[
‖xt+1 − x∗‖2 | xt

]
≤ (1 − γµ)n ‖xt − x∗‖2 + 2γ2σ2

Shuffle

n−1∑
i=0

(1 − γµ)i

 .
Using Proposition 1 from (Mishchenko et al., 2020), which says that

γµn
8
σ2
∗ ≤ σ

2
Shuffle ≤

γLn
4
σ2
∗,

we get

E
[
‖xt+1 − x∗‖2 | xt

]
≤ (1 − γµ)n ‖xt − x∗‖2 +

γ3Ln
2

σ2
∗

n−1∑
i=0

(1 − γµ)i

≤ (1 − γµ)n ‖xt − x∗‖2 +

γ2Ln
2µ

σ2
∗.

Now we can apply Lemma 1 and using yt = xt we have the following inequality:

E
[
‖xt+1 − x∗‖2 | xt

]
≤ (1 − γµ)n ‖xt − x∗‖2 +

2γ2L3n
µ
‖xt − x∗‖2

≤

(
(1 − γµ)n +

2γ2L3n
µ

)
‖xt − x∗‖2.

20

Under review as submission to TMLR

Applying the tower property, we get

E
[
‖xt+1 − x∗‖2

]
≤

(
(1 − γµ)n +

2γ2L3n
µ

)
E

[
‖xt − x∗‖2

]
,

and after unrolling this recursion, we get

E
[
‖xT − x∗‖2

]
≤

(
(1 − γµ)n +

2γ2L3n
µ

)T

E
[
‖x0 − x∗‖2

]
≤

(
(1 − γµ)n +

δ2

L2

µ

2nL
2L3n
µ

)T

E
[
‖x0 − x∗‖2

]
≤

(
(1 − γµ)n + δ2

)T
E

[
‖x0 − x∗‖2

]
,

where we used the stepsize restriction γ ≤ δ
L

√
µ

2nL . In order for this to lead to convergence, we need to assume that

(1 − γµ)n + δ2 < 1. This is satisfied, for example, if n is large enough. In particular, this holds when

n > log
(

1
1 − δ2

)
·

(
log

(
1

1 − γµ

))−1

.

Finally, using the additional assumption δ2 ≤ (1 − γµ)
n
2

(
1 − (1 − γµ)

n
2

)
, we get

δ2 + (1 − γµ)n ≤ (1 − γµ)
n
2 .

Now we can apply Theorem 3 and get

E
[
‖xT − x∗‖2

]
≤ (1 − γµ)

nT
2 ‖x0 − x∗‖2.

Finally, we apply Lemma 2 with γ = δ
L

√
µ

2nL and get iteration complexity T = O
(
κ
√

κ
n log

(
1
ε

))
.

E.3 Proof of Theorem 4

Suppose the functions f1, f2, . . . , fn are convex and Assumption 1 holds. Then for Rand-Reshuffle or Rand-Shuffle with
stepsize γ ≤ 1

√
2Ln
, the average iterate x̂T B

1
T
∑T

t=1 xt satisfies

E
[
f (x̂T) − f (x∗)

]
≤

3 ‖x0 − x∗‖2

2γnT
.

Proof. We start with Lemma 3 from Mishchenko et al. (2020), which says that

E
[
‖xt+1 − x∗‖2 | xt

]
≤ ‖xt − x∗‖2 − 2γnE

[
f (xt+1) − f (x∗) | xt

]
+
γ3Ln2σ2

∗

2
.

Apply this inequality to the reformulated problem equation 2, we get

2γnE
[
f (xt+1) − f (x∗) | xt

]
≤ ‖xt − x∗‖2 − E

[
‖xt+1 − x∗‖2 | xt

]
+
γ3Ln2 (

σt
∗

)2

2
. (16)

Using Lemma 1 and the fact that yt = xt and f = f t, we get(
σt
∗

)2
≤ 8LD f t (xt, x∗) = 8LD f (xt, x∗) = 8L(f (xt) − f (x∗)), (17)

where the last identity follows from Proposition 1.

21

Under review as submission to TMLR

Plugging equation 17 into equation 16, we obtain

2γnE
[
f (xt+1) − f (x∗) | xt

]
≤ ‖xt − x∗‖2 − E

[
‖xt+1 − x∗‖2 | xt

]
+
γ3Ln2

2
· 8L(f (xt) − f (x∗)),

which after using the tower property turns into

2γnE
[
f (xt+1) − f (x∗)

]
≤ E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

]
+ 4γ3L2n2E

[
f (xt) − f (x∗)

]
.

Now we subtract from both sides:

2γnE
[
f (xt+1) − f (x∗)

]
− 4γ3L2n2E

[
f (xt+1) − f (x∗)

]
≤ E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

]
+4γ3L2n2E

[
f (xt) − f (x∗)

]
−4γ3L2n2E

[
f (xt+1) − f (x∗)

](
2γn − 4γ3L2n2

)
E

[
f (xt+1) − f (x∗)

]
≤ E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

]
+4γ3L2n2 (

E
[
f (xt) − f (x∗)

]
− E

[
f (xt+1) − f (x∗)

])
2γn

(
1 − 2γ2L2n

)
E

[
f (xt+1) − f (x∗)

]
≤ E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

]
+4γ3L2n2 (

E
[
f (xt) − f (x∗)

]
− E

[
f (xt+1) − f (x∗)

])
.

Summing these inequalities for t = 0, 1, . . . ,T − 1 gives

2γn
(
1 − 2γ2L2n

) T−1∑
t=0

E
[
f (xt+1) − f (x∗)

]
≤

T−1∑
t=0

(
E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

])
+ 4γ3L2n2

T−1∑
t=0

(
E

[
f (xt) − f (x∗)

]
− E

[
f (xt+1) − f (x∗)

])
= E

[
‖x0 − x∗‖2

]
− E

[
‖xT − x∗‖2

]
+ 4γ3L2n2E

[
f (x0) − f (x∗)

]
− 4γ3L2n2E

[
f (xT) − f (x∗)

]
≤ E

[
‖x0 − x∗‖2

]
+ 4γ3L2n2E

[
f (x0) − f (x∗)

]
≤ E

[
‖x0 − x∗‖2

]
+ 2γ3L3n2E

[
‖x0 − x∗‖2

]
= (1 + 2γ3L3n2)E

[
‖x0 − x∗‖2

]
,

and dividing both sides by 2γn
(
1 − 2γ2L2n

)
T , we get

1
T

T−1∑
t=0

E
[
f (xt+1) − f (x∗)

]
≤

1 + 2γ3L3n2

1 − 2γ2L2n
‖x0 − x∗‖2

2γnT
.

Using the convexity of f , the average iterate x̂T
def
= 1

T
∑T

t=1 xt satisfies

E
[
f (x̂T) − f (x∗)

]
≤

1
T

T∑
t=1

E
[
f (xt) − f (x∗)

]
≤

1 + 2γ3L3n2

1 − 2γ2L2n
‖x0 − x∗‖2

2γnT
.

Let us show that
1 + 2γ3L3n2

1 − 2γ2L2n
≤ 3.

Applying γ ≤ 1
√

2Ln
we have

1 + 2 1
2
√

2L3n3 L3n2

1 − 2 1
2L2n2 L2n

=
1 + 1

√
2n

1 − 1
n

≤ 3.

22

Under review as submission to TMLR

This leads to 4n > 6 +
√

2 and since n ∈ N : n > 1, this inequality holds. Finally, we have

E
[
f (x̂T) − f (x∗)

]
≤

3 ‖x0 − x∗‖2

2γnT
.

23

Under review as submission to TMLR

E.4 Proof of Theorem 5 and 6

We provide analysis for non-convex settings.

Let us remind you our reformulation:

f (x) =
1
n

n∑
i=1

fi(x) =
1
n

n∑
i=1

(
fi(x) +

〈
ai

t, x
〉)

:=
1
n

n∑
i=1

f t
i (x),

where f t
i (x) := fi(x) +

〈
ai

t, x
〉

and
∑n

i=1 ai
t = 0. Note that

∇ f t
i (x) = ∇ fi(x) + aI

t .

In particular, we choose
ai

t := −∇ fπi (yt) + ∇ f (yt) .

Finally, we have
∇ f t

πi
(x) = ∇ fπi (x) − ∇ fπi (yt) + ∇ f (yt) .

Now we need to establish an analogue of Lemma 1 for gradient variance. Let us define

σ2(xt) =
1
n

n∑
i=1

‖∇ fi(xt) − ∇ f (xt)‖2 .

Lemma If we apply the linear perturbation reformulation, then the gradient variance of the reformulated problem (σ2
t)

is equal to zero.

Proof.

σ2
t (xt) =

1
n

n∑
i=1

∥∥∥∇ f t
i (xt) − ∇ f (xt)

∥∥∥2
=

1
n

n∑
i=1

∥∥∥∇ fπi (xt) − ∇ fπi (yt) + ∇ f (yt) − ∇ f (xt)
∥∥∥2
.

In Algorithm Rand-Reshuffle we set xt = yt, we have

σ2
t (xt) =

1
n

n∑
i=1

∥∥∥∇ fπi (xt) − ∇ fπi (yt) + ∇ f (yt) − ∇ f (xt)
∥∥∥2

=
1
n

n∑
i=1

∥∥∥∇ fπi (xt) − ∇ fπi (xt) + ∇ f (xt) − ∇ f (xt)
∥∥∥2

= 0.

Suppose that Assumption 1 holds. Then for Algorithm Rand-Reshuffle run for T epochs with a stepsize γ ≤ 1
2Ln we have

1
T
∑T−1

t=0 E
[
‖∇ f (xt)‖2

]
≤

4(f (x0)− f∗)
γnT .

Choose γ = 1
2nL . Then the mean of gradient norms satisfies 1

T
∑T−1

t=0 E
[
‖∇ f (xt)‖2

]
≤ ε2 provided the number of

iterations satisfies T = O
(

8δ0L
ε2

)
.

Suppose that Assumption 1 holds and f satisfies the Polyak-Łojasiewicz inequality with µ > 0, i.e., ‖∇ f (x)‖2 ≥
2µ(f (x) − f∗) for any x ∈ Rd. Then for Algorithm Rand-Reshuffle run for T epochs with a stepsize γ ≤ 1

2Ln we have

E
[
f (xT) − f∗

]
≤

(
1 − γµn

2

)T
(f (x0) − f∗) ,

then the relative error satisfies E[f (xT)− f∗]
f (x0)− f∗

≤ ε provided the number of iterations satisfies T = O(κ log 1
ε
).

24

Under review as submission to TMLR

Proof. We start from Lemma 4 and Lemma 5 from Mishchenko et al. (2020)

E
[
f (xt+1)|xt

]
≤ f (xt) −

γn
2
‖∇ f (xt)‖2 +

γL2

2

(
γ2n3 ‖∇ f (xt)‖2 + γ2n2σ2(xt)

)
This lemma works for the reformulated problem. Since we do not change initial function f(x) the gradient ∇ f (xt)
remains the same. The only thing that changes is the variance of the gradient. According to the lemma proved above,
this variance is equal to zero. Now we have the following inequality:

E
[
f (xt+1)|xt

]
≤ f (xt) −

γn
2
‖∇ f (xt)‖2 +

γL2

2
γ2n3 ‖∇ f (xt)‖2

≤ f (xt) −
γn
2

(
1 − γ2L2n2

)
‖∇ f (xt)‖2

Let δ = f (xt) − f∗. Adding − f∗ to both sides,

E [δt+1|xt] ≤ δt −
γn
2

(
1 − γ2L2n2

)
‖∇ f (xt)‖2

Taking unconditional expectations and using that γ ≤ 1
2Ln we have 1 − γ2L2n2 ≥ 1

2 , we get

E [δt+1] ≤ E [δt] −
γn
4
E

[
‖∇ f (xt)‖2

]
.

It leads to

1
T

T−1∑
t=0

E
[
‖∇ f (xt)‖2

]
≤

4
γn

1
T

T−1∑
t=0

(E [δt+1] − E [δt]) ≤
4δ0

γnT

If we have PL condition, then we start from

E [δt+1] ≤ E [δt] −
γn
4
E

[
‖∇ f (xt)‖2

]
.

Applying 1
2 ‖∇ f (x)‖2 ≥ µ(f (x) − f∗) leads to

E [δt+1] ≤ E [δt] −
γµn

2
E

[
f (xt) − f∗

]
.

Unrolling this recursion, we get

E [δT] ≤
(
1 −

γµn
2

)T
δ0.

Suppose that Assumption 1 holds. Choose the stepsize γ as 1
2nL . Then the mean of gradient norms satisfies

1
T

T−1∑
t=0

E
[
‖∇ f (xt)‖2

]
≤ ε2

provided the number of iterations satisfies

T ≥
8δ0L
ε2 .

If f satisfies the Polyak-Łojasiewicz inequality, then the relative error satisfies

E
[
f (xT) − f∗

]
(f (x0) − f∗)

≤ ε

provided the number of iterations satisfies

T = O(κ log
1
ε

).

25

Under review as submission to TMLR

F Analysis of Det-Shuffle

F.1 Proof of Theorem 7

We start from Lemma 8 in Mishchenko et al. (2020)

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2γn (f (xt+1) − f (x∗)) + γ3Ln3σ2
∗. (18)

Now we can apply to the reformulated problem equation 2. Using strong convexity we obtain

E
[
‖xt+1 − x∗‖2 | xt

]
≤ ‖xt − x∗‖2 − 2γnE

[
f (xt+1) − f (x∗) | xt

]
+ γ3Ln2

(
σt
∗

)2

≤ ‖xt − x∗‖2 − γnµE
[
‖xt+1 − x∗‖2 | xt

]
+ γ3Ln3

(
σt
∗

)2
.

Since we update yt = xt after each epoch, this leads to

E
[
‖xt+1 − x∗‖2 | xt

]
≤

1
1 + γµn

(
‖xt − x∗‖2 + γ3Ln3

(
σt
∗

)2
)

≤
1

1 + γµn

(
‖xt − x∗‖2 + γ3Ln3 · 4L2‖yt − x∗‖2

)
=

1
1 + γµn

(
‖xt − x∗‖2 + 4γ3n3L3‖xt − x∗‖2

)
=

1
1 + γµn

(
1 + 4γ3n3L3

)
‖xt − x∗‖2.

We can use the tower property to obtain

E
[
‖xt+1 − x∗‖2

]
≤

1 + 4γ3L3n3

1 + γµn
E

[
‖xt − x∗‖2

]
.

If this inequality 1+4γ3L3n3

1+γµn ≤ 1 − γnµ
2 is correct, we can unroll the recursion and obtain

E
[
‖xT − x∗‖2

]
≤

(
1 −

γnµ
2

)T
‖x0 − x∗‖2.

Now we need to solve the following inequality:

1 + 4γ3L3n3

1 + γµn
≤ 1 −

γnµ
2
.

Let us simplify it:

1 + 4γ3L3n3 ≤ 1 +
γnµ

2
−
γ2n2µ2

2

4γ2L3n3 ≤
nµ
2
−
γn2µ2

2

4γ2L3n2 ≤
µ

2
−
γnµ2

2

4γ2L3n2 +
γnµ2

2
≤
µ

2
.

26

Under review as submission to TMLR

Now as γ ≤ 1
4Ln

√
µ
L , we have

2 ·
1

16L2n2 ·
µ

L
L3n2 +

1
4Ln

√
µ

L
·

nµ2

2
≤
µ

2

1
4
µ +

1
8
µ

L

√
µ

L
µ ≤

µ

2

1
4

+
1
8
µ

L

√
µ

L
≤

1
2
.

It is true since n ≥ 1 and µ ≤ L. This ends proof of Theorem 7.

F.2 Proof of Theorem 8

Suppose the functions f1, f2, . . . , fn are convex and Assumption 1 hold.s Then for Algorithm ?? with a stepsize
γ ≤ 1

2
√

2Ln
, the average iterate x̂T B

1
T
∑T

j=1 x j satisfies

E
[
f (x̂T) − f (x∗)

]
≤

2 ‖x0 − x∗‖2

γnT
.

We start with Lemma 8 from Mishchenko et al. (2020):

E
[
‖xt+1 − x∗‖2 | xt

]
≤ ‖xt − x∗‖2 − 2γnE

[
f (xt+1) − f (x∗) | xt

]
+ γ3Ln3σ2

∗

2γnE
[
f (xt+1) − f (x∗) | xt

]
≤ ‖xt − x∗‖2 − E

[
‖xt+1 − x∗‖2 | xt

]
+ γ3Ln3σ2

∗.

Using Lemma 1 and considering yt = xt, we have(
σt
∗

)2
≤ 8LD f t (xt, x∗).

Applying Proposition 1 we get (
σt
∗

)2
≤ 8LD f (xt, x∗) = 8L(f (xt) − f (x∗)).

Next, we utilize the inner product reformulation and get

2γnE
[
f (xt+1) − f (x∗) | xt

]
≤ ‖xt − x∗‖2 − E

[
‖xt+1 − x∗‖2 | xt

]
+ γ3Ln3 · 8L(f (xt) − f (x∗)).

Using tower property we have

2γnE
[
f (xt+1) − f (x∗)

]
≤ E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

]
+ 8γ3L2n3E

[
(f (xt) − f (x∗))

]
.

Now we subtract from both sides:

2γnE
[
f (xt+1) − f (x∗)

]
− 8γ3L2n3E

[
f (xt+1) − f (x∗)

]
≤ E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

]
+8γ3L2n3E

[
(f (xt) − f (x∗))

]
−8γ3L2n3E

[
f (xt+1) − f (x∗)

](
2γn − 8γ3L2n3

)
E

[
f (xt+1) − f (x∗)

]
≤ E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

]
+8γ3L2n3 (

E
[
f (xt) − f (x∗)

]
− E

[
f (xt+1) − f (x∗)

])
2γn

(
1 − 4γ2L2n2

)
E

[
f (xt+1) − f (x∗)

]
≤ E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

]
+8γ3L2n3 (

E
[
f (xt) − f (x∗)

]
− E

[
f (xt+1) − f (x∗)

])
.

27

Under review as submission to TMLR

Summing these inequalities for t = 0, 1, . . . ,T − 1 gives

2γn
(
1 − 4γ2L2n2

) T−1∑
t=0

E
[
f (xt+1) − f (x∗)

]
≤

T−1∑
t=0

(
E

[
‖xt − x∗‖2

]
− E

[
‖xt+1 − x∗‖2

])
+ 8γ3L2n3

T−1∑
t=0

(
E

[
f (xt) − f (x∗)

]
− E

[
f (xt+1) − f (x∗)

])
= E

[
‖x0 − x∗‖2

]
− E

[
‖xT − x∗‖2

]
+ 8γ3L2n3E

[
f (x0) − f (x∗)

]
− 8γ3L2n3E

[
f (xT) − f (x∗)

]
≤ E

[
‖x0 − x∗‖2

]
+ 8γ3L2n3E

[
f (x0) − f (x∗)

]
≤ E

[
‖x0 − x∗‖2

]
+ 4γ3L3n3E

[
‖x0 − x∗‖2

]
= (1 + 4γ3L3n3)E

[
‖x0 − x∗‖2

]
,

and dividing both sides by 2γn
(
1 − 4γ2L2n2

)
T , we get

1
T

T−1∑
t=0

E
[
f (xt+1) − f (x∗)

]
≤

1 + 4γ3L3n3

1 − 4γ2L2n2

‖x0 − x∗‖2

2γnT
.

Using the convexity of f , the average iterate x̂T
def
= 1

T
∑T

t=1 xt satisfies

E
[
f (x̂T) − f (x∗)

]
≤

1
T

T∑
t=1

E
[
f (xt) − f (x∗)

]
≤

1 + 4γ3L3n3

1 − 4γ2L2n2

‖x0 − x∗‖2

2γnT
.

Let us show that
1 + 4γ3L3n3

1 − 4γ2L2n2 ≤ 4.

Applying γ ≤ 1
2
√

2Ln
we have

1 + 4 1
16
√

2L3n3 L3n3

1 − 4 1
8L2n2 L2n2

=
1 + 1

4
√

2

1 − 1
2

≤ 4.

Finally, we have

E
[
f (x̂T) − f (x∗)

]
≤

2 ‖x0 − x∗‖2

γnT
.

This ends the proof.

28

Under review as submission to TMLR

G One More Algorithm: RR-VR

G.1 New Algorithm: RR-VR

Algorithm 2 Random Reshuffling with Variance Reduction
1: Input: Stepsize γ > 0, probability p, x0 = x0

0 ∈ R
d, y0 ∈ R

d, number of epochs T .
2: for t = 0, 1, . . .T − 1 do
3: Choose a random permutation {π0, . . . , πn−1} of {1, . . . , n}
4: x0

t = xt

5: for i = 0, . . . , n − 1 do
6: gi

t(xi
t, yt) = ∇ fπi (xi

t) − ∇ fπi (yt) + ∇ f (yt)
7: xi+1

t = xi
t − γgi

t(xi
t, yt)

8: end for
9: xt+1 = xn

t

10: yt+1 =

yt with probability 1 − p
xt with probability p

11: end for

In this section we formulate convergence results for a generalized version of SVRG under random reshuffling. Analysis
of RR-VR (Algorithm 2) is more complicated.

G.2 Convergence Theory

To analyze this method, we introduce Lyapunov functions.
Theorem 9. Suppose that each fi is convex, f is µ-strongly convex, and Assumption 1 holds. Then provided the
parameters satisfy n > κ, κ

n < p < 1 and γ ≤ 1
2
√

2Ln
, the final iterate generated by RR-VR (Algorithm 2) satisfies

VT ≤ max (q1, q2)T V0, where q1 = 1 − γµn
4

(
1 − p

2

)
, q2 = 1 − p + 8

µ
γ2L3n, and the Lyapunov function is defined via

Vt B E
[
‖xt − x∗‖2

]
+

(
4
γµn

)−1

E
[
‖yt − x∗‖2

]
.

This means that the iteration complexity of Algorithm 2 is T = O
(
κ log

(
1
ε

))
.

Note that the probability p should not be too small. We obtain the same complexity as that of of Rand-Reshuffle.
Theorem 10. Suppose that the functions f1, . . . , fn are µ-strongly convex, and that Assumption 1 holds. Then for RR-VR

(Algorithm 2) with parameters that satisfy γ ≤ 1
2L

√
µ

2nL , 1
2 < δ <

1
√

2
, 0 < p < 1, and for a sufficiently large number of

functions, n > log
(

1
1−δ2

)
·
(
log

(
1

1−γµ

))−1
, the iterates generated by the RR-VR algorithm satisfy VT ≤ max (q1, q2)T V0,

where q1 = (1 − γµ)n + δ2, q2 = 1 − p
(
1 − 2γ2L3n

µδ2

)
, and

Vt B E
[
‖xt − x∗‖2

]
+
δ2

p
E

[
‖yt − x∗‖2

]
.

This means that the iteration complexity of Algorithm 2 is T = O
(
max

(
κ
√

κ
n ,

1
2 log(2δ)

)
log

(
1
ε

))
.

We get almost the same rate as the rate of Rand-Reshuffle, but there is one difference. Complexity depends on δ term.
However, the first term dominates in most cases.

G.3 Proof of Theorem 9

Suppose that each fi is convex, f is µ-strongly convex, and Assumption 1 holds. Then provided the parameters satisfy
n > κ, κ

n < p < 1 and γ ≤ 1
2
√

2Ln
, the final iterate generated by RR-VR (Algorithm 2) satisfies

VT ≤ max (q1, q2)T V0,

29

Under review as submission to TMLR

where

q1 = 1 −
γµn

4

(
1 −

p
2

)
, q2 = 1 − p +

8
µ
γ2L3n,

and the Lyapunov function is defined via

Vt B E
[
‖xt − x∗‖2

]
+

4
γµn
E

[
‖yt − x∗‖2

]
.

Proof. For the problem 1
n
∑n

i=1 f t
i (x) we will use an inequality from Mishchenko et al. (2020):

E
[
‖xt+1 − x∗‖2 | xt

]
≤

1
1 + γµn

(
‖xt − x∗‖2 +

γ3Ln2σ2
∗

2

)
=

1
1 + γµn

‖xt − x∗‖2 +
1

1 + γµn
γ3Ln2σ2

∗

2

≤

(
1 −

γµn
2

)
‖xt − x∗‖2 +

γ3Ln2σ2
∗

2
.

Now we apply inequality

E
[
‖xt+1 − x∗‖2 | xt, yt

]
≤

(
1 −

γµn
2

)
‖xt − x∗‖2 +

γ3Ln2σ2
∗

2

≤

(
1 −

γµn
2

)
‖xt − x∗‖2 + 2γ3L3n2‖yt − x∗‖2.

Using tower property we have

E
[
‖xt+1 − x∗‖2

]
= E

[
E

[
‖xt+1 − x∗‖2 | xt, yt

]]
≤

(
1 −

γµn
2

)
E

[
‖xt − x∗‖2

]
+ 2γ3L3n2E

[
‖yt − x∗‖2

]
.

Now we look at

yt+1 =

{
yt with probability 1 − p
xt with probability p .

We get

E
[
‖yt+1 − x∗‖2 | xt, yt

]
= (1 − p)‖yt − x∗‖2 + p‖xt − x∗‖2.

Using tower property

E
[
‖yt+1 − x∗‖2

]
= E

[
E

[
‖yt+1 − x∗‖2 | xt, yt

]]
= (1 − p)E

[
‖yt − x∗‖2

]
+ pE

[
‖xt − x∗‖2

]
.

Finally, we have

E
[
‖xt+1 − x∗‖2

]
+ ME

[
‖yt+1 − x∗‖2

]
≤

(
1 −

γµn
2

)
‖xt − x∗‖2 + 2γ3L3n2E

[
‖yt − x∗‖2

]
+ (1 − p)ME‖yt − x∗‖2 + pME‖xt − x∗‖2.

Denote Vt = E
[
‖xt − x∗‖2

]
+ ME

[
‖yt − x∗‖2

]
. Using this we obtain

Vt+1 ≤

(
1 −

γµn
2

)
E

[
‖xt − x∗‖2

]
+ 2γ3L3n2E

[
‖yt − x∗‖2

]
+ (1 − p)ME

[
‖yt − x∗‖2

]
+ pME

[
‖xt − x∗‖2

]
.

30

Under review as submission to TMLR

Thus,

Vt+1 ≤

(
1 −

γµn
2

+ pM
)
E

[
‖xt − x∗‖2

]
+

(
1 − p +

1
M

2γ3L3n2
)

ME
[
‖yt − x∗‖2

]
.

To have contraction we use

M =
γµn

4
, γ =

1

2
√

2Ln
.

We have the final rate

Vt+1 ≤ max
(
1 −

γµn
4

(
1 −

p
2

)
, 1 − p +

8
µ
γ2L3n

)
Vt

VT ≤ max
(
1 −

γµn
4

(
1 −

p
2

)
, 1 − p +

8
µ
γ2L3n

)T

V0.

G.4 Proof of Theorem 10

Suppose that the functions f1, . . . , fn are µ-strongly convex, and that Assumption 1 holds. Then for RR-VR (Algorithm 2)

with parameters that satisfy γ ≤ 1
2L

√
µ

2nL , 1
2 < δ < 1

√
2
, 0 < p < 1, and for a sufficiently large number of functions,

n > log
(

1
1−δ2

)
·
(
log

(
1

1−γµ

))−1
, the iterates generated by the RR-VR algorithm satisfy

VT ≤ max (q1, q2)T V0,

where

q1 = (1 − γµ)n + δ2, q2 = 1 − p
(
1 −

2γ2L3n
µδ2

)
,

and

Vt B E
[
‖xt − x∗‖2

]
+
δ2

p
E

[
‖yt − x∗‖2

]
.

Proof. For the problem 1
n
∑n

i=1 f t
i (x) we will use two inequalities from Mishchenko et al. (2020):

E
[
‖xt+1 − x∗‖2 | xt

]
≤ (1 − γµ)n ‖xt − x∗‖2 + 2γ2σ2

Shuffle

n−1∑
i=0

(1 − γµ)i

σ2

Shuffle ≤
γLn

4
σ2
∗.

Using this result, we have

E
[
‖xt+1 − x∗‖2 | xt, yt

]
≤ (1 − γµ)n ‖xt − x∗‖2 +

1
2
γ3Lnσ2

∗

n−1∑
i=0

(1 − γµ)i

≤ (1 − γµ)n ‖xt − x∗‖2 +

1
µ

2γ2L2nL‖yt − x∗‖2.

Using tower property

E
[
‖xt+1 − x∗‖2

]
= E

[
E

[
‖xt+1 − x∗‖2 | xt, yt

]]
≤ (1 − γµ)n E

[
‖xt − x∗‖2

]
+

1
µ

2γ2LnL2E
[
‖yt − x∗‖2

]
.

31

Under review as submission to TMLR

Now we look at

yt+1 =

{
yt with probability 1 − p
xt with probability p .

Thus, E
[
‖yt+1 − x∗‖2 | xt, yt

]
= (1 − p)‖yt − x∗‖2 + p‖xt − x∗‖2. Using tower property

E
[
‖yt+1 − x∗‖2

]
= E

[
E

[
‖yt+1 − x∗‖2 | xt, yt

]]
= (1 − p)E

[
‖yt − x∗‖2

]
+ pE

[
‖xt − x∗‖2

]
.

Denote Vt = E
[
‖xt − x∗‖2

]
+ ME

[
‖yt − x∗‖2

]
and we have

Vt+1 = E
[
‖xt+1 − x∗‖2

]
+ ME

[
‖yt+1 − x∗‖2

]
≤ (1 − γµ)n E

[
‖xt − x∗‖2

]
+

2
µ
γ2L3nE

[
‖yt − x∗‖2

]
+ (1 − p)ME

[
‖yt − x∗‖2

]
+ pME

[
‖xt − x∗‖2

]
≤ ((1 − γµ)n + pM)E

[
‖xt − x∗‖2

]
+

(
(1 − p) +

2γ2L3n
µM

)
ME

[
‖xt − x∗‖2

]
≤ max

(
((1 − γµ)n + pM) ,

(
(1 − p) +

2γ2L3n
µM

))
Vt.

Unrolling the recusrion we have

VT ≤ max
(
((1 − γµ)n + pM) ,

(
1 − p +

2γ2L3n
µM

))T
V0.

Applying M = δ2

p and γ ≤ 1
2L

√
µ

2nL we get

VT ≤ max
(
(1 − γµ)n + δ2, 1 − p

(
1 −

2γ2L3n
µδ2

))T

V0.

32

	Introduction
	Approach and Contributions
	Controlled linear perturbations
	New algorithms: improvement of shuffling based methods
	Analysis technique: the basic idea
	Complexity results
	Shuffling-based variants of variance reduced methods.

	Main Theoretical Results
	Assumptions and Notation
	Convergence Analysis of Rand-Shuffle and Rand-Reshuffle
	Convergence Analysis of Det-Shuffle

	Experiments
	Rand-Reshuffle vs RR-SAGA
	Variance Reduced Random Reshuffling Algorithms
	Different versions of SVRG
	Experiments with logistic regression

	Conclusion
	Appendix
	Basic Facts
	Elementary Inequalities
	Convexity and smoothness
	From convergence rate to iteration complexity

	Proof of Proposition 1
	Proof of Lemma 1
	Analysis of Rand-Shuffle and Rand-Reshuffle
	Proof of Theorems 1 and 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5 and 6

	Analysis of Det-Shuffle
	Proof of Theorem 7
	Proof of Theorem 8

	One More Algorithm: RR-VR
	New Algorithm: RR-VR
	Convergence Theory
	Proof of Theorem 9
	Proof of Theorem 10

