
Bulk Bitwise Accumulation in Commercial DRAM

Anonymous Author(s)
Affiliation
Address
email

Abstract

Processing-in-memory (PIM) is a promising paradigm for addressing data transfer1

bottlenecks in data-intensive workloads, particularly in machine learning. Among2

PIM techniques, Processing-using-Commercial-DRAM (PuCD) offers a practi-3

cal approach for enabling in-memory computing by employing widely available4

DRAM modules without hardware modifications. With its massive bit-level par-5

allelisms, PuCD has a high-performance capability of bulk bit logic operation.6

However, implementing accumulation operations, crucial for machine learning7

tasks, remains challenging in PuCD. The need for multiple consecutive opera-8

tions in accumulation leads to increased latency and error propagation. To address9

these challenges, we propose a novel method for bulk bitwise accumulation us-10

ing PuCD. As a fundamental building block for our accumulation method, we11

introduce a novel implementation of the population-count-of-3 (POPCNT3) opera-12

tion tailored for commercial DRAM. On top of this, we present a POPCNT3-based13

bitwise accumulation method that efficiently handles large input sizes, enabling14

scalable bitwise accumulation for various input sizes. We evaluate the through-15

put and errors of our approach using commercial DDR4 DRAM modules with an16

FPGA. The experiments indicate that the throughput improvement is up to 34817

times over A100 GPU across various input sizes with negligible errors to main-18

tain the accuracy of machine learning applications. These results demonstrate that19

PuCD can provide a practical pathway for accelerating machine learning tasks20

without requiring specialized memory chips.21

1 Introduction22

Emerging data-intensive workloads, particularly in machine learning (ML), are increasingly con-23

strained by data transfer costs rather than computation. Deep neural networks, especially large24

language models, exemplify this trend with their demand for processing vast amounts of data, often25

requiring tens of gigabytes of parameters [Brown et al., 2020]. The predominance of multiply-26

accumulate (MAC) operations of general matrix-vector multiplication (GeMV) in these models,27

coupled with their low on-chip data reuse, makes off-chip data transfer the primary performance28

bottleneck [Choi et al., 2023, Wu et al., 2024].29

To address this challenge, processing-in-memory (PIM) has reemerged as a promising solution. PIM30

is a computing paradigm that integrates computational capabilities directly within memory devices,31

utilizing high internal bandwidth and reducing off-chip data movement. While digital PIM [Devaux,32

2019, Kwon et al., 2021, Lee et al., 2022] incorporates processing units within memory devices,33

analog PIM [Chi et al., 2016, Seshadri et al., 2017, Eckert et al., 2018] transforms memory cells into34

computational units. Compared to digital PIM, analog PIM offers higher computational density and35

energy efficiency, while digital PIM provides greater arithmetic precision and flexibility.36

Submitted to the Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS (MLNCP
2024). Do not distribute.

While most workloads require high-precision computations, some DNN models, including LLMs,37

have inherent redundancy that allows them to tolerate lower precision [Ma et al., 2024]. These mod-38

els can quantize their weights to just a few bits without sacrificing accuracy. This trend towards39

low-bit arithmetic presents a unique opportunity for analog PIM, which operates with bit-level par-40

allelism, to efficiently accelerate DNNs. Even more intriguing is the discovery of a technology41

called Processing-using-Commercial-DRAM (PuCD), which transforms standard DRAM into an42

analog PIM device [Gao et al., 2019, Olgun et al., 2021, Gao et al., 2022, Yuksel et al., 2024, Yüksel43

et al., 2024]. PuCD enables massive parallelism and substantial computational power by leverag-44

ing the density of DRAM, without requiring additional circuitry or changes to the cost-optimized,45

low-margin DRAM design. By making use of the widespread availability of DRAM and enabling in-46

memory computation without hardware modifications, PuCD provides a practical solution to bring47

PIM capabilities into mainstream computing systems.48

Despite the potential of PuCD, implementing accumulation using PuCD presents significant chal-49

lenges. Accumulation is a fundamental operation in MAC computations, which form the backbone50

of many ML processes. Unlike multiplication, which typically involves two inputs, accumulation51

requires a number of inputs proportional to the matrix size to sum up the multiple results. This char-52

acteristic poses two main difficulties for PuCD implementation: performance issues and accuracy53

concerns. Executing accumulation with many inputs necessitates a proportional number of logical54

operations, resulting in slow performance when implemented in PuCD. Additionally, PuCD inher-55

ently carries computational errors, which can accumulate significantly when multiple operations are56

performed consecutively, as required in accumulation.57

To address the challenges of implementing fast and accurate accumulation operations in PuCD, we58

propose a novel method for bulk bitwise accumulation. Our approach consists of two key com-59

ponents: First, we introduce an optimized implementation of the population-count-of-3 (POPCNT3)60

operation specifically designed for commercial DRAM. POPCNT3 serves as a fundamental building61

block for our accumulation method, efficiently counting the number of ’1’ bits in three input bits.62

Our implementation leverages PuCD to perform POPCNT3 with minimal latency and error propaga-63

tion. Building upon this optimized POPCNT3 operation, we develop a scalable bitwise accumulation64

technique capable of handling larger input sizes. This method iteratively applies POPCNT3 operations65

to groups of inputs, progressively computing higher-order bit positions. By leveraging the efficiency66

of our POPCNT3 implementation and the parallelism inherent in PuCD, we achieve high-throughput67

accumulation across various input sizes.68

The key contributions of this work are as follows:69

1. As a fundamental building block for our accumulation method, we introduce a new imple-70

mentation of the POPCNT3 operation tailored for commercial DRAM.71

2. We present a POPCNT3-based bitwise accumulation method that efficiently handles large72

input sizes, enabling scalable bitwise accumulation for various input sizes.73

3. Using DDR4 DRAM modules, we demonstrate up to 348 times higher throughput than74

A100 GPU across various input sizes with negligible errors to maintain the accuracy of75

machine learning applications.76

2 DRAM Structure and PuCD Technology77

Modern computing systems widely employ dynamic random-access memory (DRAM) as their main78

memory due to its high density and low cost characteristics. DRAM modules utilize a hierarchical79

structure to enable efficient data management as shown in Figure 1. At the highest level, channels80

offer independent data paths. Each channel encompasses multiple ranks, with a rank comprising a81

collection of DRAM chips. Manufacturers divide each chip into multiple banks, which function as82

independently operable memory arrays. Banks further subdivide into subarrays, with each subarray83

consisting of a two-dimensional array of memory cells arranged in rows and columns. The memory84

cell, the fundamental unit of DRAM, incorporates a single transistor and a capacitor. This cell stores85

data as the presence or absence of an electrical charge. Each column of memory cells is connected86

to a bitline, which serves as a communication for reading from and writing to the cells. At the end87

of each bitline is a sense amplifier, a crucial component that detects and amplifies the small voltage88

differences on the bitline operations. A memory controller governs data access in DRAM. This89

2

DRAM Chip

Bank

Subarray
Sense Amp

Subarray
Sense Amp

Ro
w
-a
dd
re
ss
 la
tc
h

an
d
de
co
de
r

Column decoder

Lo
ca
l R
ow
 D
ec
od
er

Sense Amplifier

capacitor

wordline

bitline
DRAM Module

Chip Chip Chip Chip

CPU

Memory Controller

DDR4
Memory
Channel

Row Data

Command
• PRE
• ACT
• RD/WR

Figure 1: DRAM hierarchy and basic operation. The figure illustrates the structural organization of
DRAM from the highest level (memory channel) down to the individual memory cell.

controller issues commands in carefully timed sequences. Through this orchestration of commands,90

the memory controller achieves efficient data access.91

Processing-using-Commercial-DRAM (PuCD) is an innovative technique that enables in-memory92

computation on existing DRAM modules without hardware modifications by exploiting the charge-93

sharing effect between simultaneously activated rows to perform logical operations. Gao et al.94

[2019] discovered that logical operations could be performed directly on commercial DDR3 DRAM95

modules without circuit modifications. Building on this insight, researchers have demonstrated the96

ability to execute RowCopy [Gao et al., 2019, Yuksel et al., 2024], AND/OR [Gao et al., 2022], and97

NOT [Yüksel et al., 2024] operations on DDR4 DRAM modules. The charge-sharing effect occurs98

when multiple DRAM rows are activated simultaneously, causing the electrical charges stored in the99

capacitors of these rows to redistribute across the bitlines. PuCD implements this charge-sharing100

effect through simultaneous multi-row activation (SiMRA), a method that involves issuing DRAM101

commands in a way that violates conventional timing constraints. This technique activates multi-102

ple DRAM rows simultaneously on commercial DRAM modules, inducing charge sharing on the103

bitlines. PuCD then utilizes this charge sharing effect to execute majority-of-X (MAJX) operations.104

MAJX operations, which determine the majority value among input bits, serve as the basic logical105

units in PuCD. Prior works build upon MAJX to implement fundamental logical operations such as106

AND and OR. For instance, they can achieve AND/OR operations by fixing certain inputs of MAJX to spe-107

cific values. By combining these basic operations, PuCD can perform more complex computations.108

However, PuCD faces challenges in operational reliability. The reliability of MAJX operations heav-109

ily depends on input patterns, with performance degrading significantly when the numbers of ’0’s110

and ’1’s in the input are closely balanced. Furthermore, complex operations often require numerous111

consecutive MAJX operations, potentially leading to cumulative errors and performance deteriora-112

tion.113

3 Bulk Bitwise Accumulation114

In this section, we introduce a novel approach to perform efficient bulk bitwise accumulation using115

PuCD. We present our method in two stages: first, we propose an optimized implementation of116

POPCNT3, a fundamental operation that counts the number of ’1’s in three input bits. Then, we117

build upon this POPCNT3 operation to develop a scalable bitwise accumulation technique capable118

of handling larger input sizes. By combining these two components, we achieve an efficient and119

accurate method for bulk bitwise accumulation for various input sizes.120

3.1 POPCNT3 in Commercial DRAM121

We propose a novel method for efficiently implementing POPCNT3 in PuCD. POPCNT3 represents a122

bit operation that counts the number of ’1’s in three input bits and expresses the result in two bits.123

POPCNT3 is defined for three input bits A, B, and C using the following logical expressions:124

MSB(A,B,C) = (A ∧B) ∨ (B ∧ C) ∨ (C ∧A)
125

LSB(A,B,C) = (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C) ∨ (A ∧B ∧ C)

where MSB denotes the most significant bit and LSB the least significant bit. Naive PuCD ap-126

proaches attempting to implement these logical expressions directly require numerous consecutive127

3

AND, OR, and NOT operations. Specifically, LSB calculation necessitates 11 consecutive AND/OR128

operations, leading to high latency and reduced accuracy. In PuCD, multiple consecutive logical129

operations increase the overall execution time. Moreover, each logical operation carries a success130

probability. For instance, even if a DRAM module can perform AND/OR operations with an exact131

99% success rate, the probability of all 11 consecutive operations succeeding drops to approxi-132

mately 90%. These challenges highlight the inefficiency and accuracy issues of directly implement-133

ing POPCNT3 in PuCD.134

To achieve fast and high-precision POPCNT3 in PuCD, we propose a novel implementation method135

that leverages MAJX operations in PuCD. This approach introduces reference rows and performs136

MAJX operations combining input and reference rows to directly and efficiently calculate the137

POPCNT3 output. Figure 2 illustrates the execution timeline of POPCNT3. Our method prepares138

three input rows, two reference rows, and two output rows within the same subarray. The process139

unfolds as follows: 1⃝ We store input values in the input rows. We can move these values can from140

other rows within the same subarray using RowCopy. 2⃝ We execute MAJ3 on the input rows to141

calculate the MSB value and store the result in the MSB row. 3⃝ We reload the input values into142

the input rows and copy the NOT of the previous MSB value to the reference rows using NOT. 4⃝ We143

perform a MAJ5 operation combining input and reference rows to calculate the LSB value. Table 1144

presents the truth table for POPCNT3. The essence of this approach lies in recursively comparing the145

number of ’1’s in the input to identify the output bits in binary representation from the most signifi-146

cant bit. We can consider this process as a binary search. Our proposed method executes POPCNT3147

with significantly fewer logical operations (two MAJX operations). This reduction in operations sub-148

stantially decreases the overall execution time. Moreover, by minimizing the number of consecutive149

PuCD logical operations, we also mitigate output accuracy degradation.150

1
0
1

Lane 0
Lane 1
Lane 2
Lane 3

Input
Rows

Reference
Rows

Output
Rows

MSB

LSB

NOT

1 2 3 4Step

1

Lane 0
Lane 1
Lane 2
Lane 3

1
0
1
0
0
1

Lane 0
Lane 1
Lane 2
Lane 3

1
0

Lane 0
Lane 1
Lane 2
Lane 3

MAJ5

MAJ3 INITINIT

Figure 2: Timeline illustrating data changes in a DRAM segment during a POPCNT3 operation. The
figure shows the step-by-step process of executing a POPCNT3 operation using PuCD.

of 1s in Input Rows 0 1 2 3

Reference Row Value
1 1 0 0
1 1 0 0

Output Bits
MSB 0 0 1 1
LSB 0 1 0 1

Table 1: Truth table for the POPCNT3 operation in PuCD. This table illustrates the relationship
between the number of ’1’ bits in the input rows, the reference row bit, and the resulting output bit
pattern in the POPCNT3 operation.

3.2 POPCNT3-based Bitwise Accumulation151

Building upon the POPCNT3 operation, we propose POPCNT3-based bitwise accumulation, a method152

for executing bitwise accumulation on a larger number of inputs. This approach enables counting for153

a larger number of inputs by iteratively applying POPCNT3. While POPCNT3 generates a 2-bit output154

4

from three inputs, we can continue to calculate higher bit position values by repeatedly executing155

POPCNT3 on each output bit position. Figure 3 illustrates the procedure for bitwise accumulation156

with 15 inputs. First, we initially execute POPCNT3 five times on groups of three inputs from the157

15 inputs, yielding five 1st bits and five 2nd bits as outputs. Then, we apply POPCNT3 to three158

of the five 1st bits, generating an additional 1st bit and 2nd bit. Finally, we repeat this process,159

ultimately obtaining a 4-bit output. Consequently, our approach offers an efficient solution for160

bitwise accumulation across various input sizes, leveraging the simplicity and effectiveness of the161

POPCNT3 operation.162

Our POPCNT3-based bitwise accumulation inherits the bulk processing capabilities and bank par-163

allelism of PuCD, enabling simultaneous computation across all columns in an array and parallel164

execution across multiple banks. This parallelism allows our method to achieve high throughput for165

bitwise accumulation operations. However, it’s constrained by PuCD’s requirement that all inputs166

and intermediate results must reside within the same subarray. Given that typical DRAM subar-167

rays contain only a few hundred rows, this limits the size of accumulations that can be performed168

solely using PuCD. For larger accumulations, alternative or hybrid approaches may be necessary,169

highlighting the importance of careful data layout consideration in practical applications of this170

technique.171

1 2 3 4
POPCNT3 5 POPCNT3 2

5
POPCNT3 2 POPCNT3 1

0

4

5

9

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

14
3rd
Bit

1st
Bit

2nd
Bit

2nd
Bit

1st

3rd
Bit

0

1

2

3

4

5

1st2nd3rd4th
LSBMSB

1

2

3

15

POPCNT3

Input D
ata

POPCNT3 1st
Bit
(LSB)

2nd
Bit

POPCNT3

6
POPCNT3 1

0

1

2

3

1st

2nd

3rd

4th
(MSB)

1st

2nd

3rd
Bit

Figure 3: Timeline of a 15-input bitwise accumulation operation in a single DRAM bitline using
POPCNT3-based method. This figure illustrates the step-by-step process of performing bitwise accu-
mulation on 15 inputs using our proposed POPCNT3-based approach.

4 Results and Discussion172

We evaluate the performance and accuracy of our proposed bulk bitwise accumulation method using173

DDR4 DRAM for different accumulation sizes. We refer to a single bulk bitwise accumulation174

computation as a kernel. We express the kernel size as K ×N , where K represents the input length175

and N denotes the bulk data width. To implement our proposed method, we use an FPGA connected176

to four DDR4 DRAM modules. We compare the performance of our method with an NVIDIA A100177

GPU as a baseline. Further details about our evaluation setup are in Appendix A.178

Table 2 presents the throughput and latency of our proposed method for each kernel size. Through-179

put indicates the amount of data that can be processed per second. For our method, we calculate180

throughput when executing in parallel across 64 banks of 4 modules. Latency of our method repre-181

sents the time required from the execution of the first DRAM command to the completion of the last182

DRAM command for a single kernel execution which comprises multiple POPCNT3 operations. As183

shown in Table 2, our proposed method consistently outperforms the GPU across all kernel sizes.184

Specifically, our method achieves approximately 348 times higher throughput for the smallest ker-185

nel size (7x65536) and still maintains about 27 times higher throughput for the largest kernel size186

(127x65536). This significant improvement in throughput demonstrates that our proposed method187

5

effectively leverages the bit-level parallelism of DRAM to accelerate bulk bitwise accumulation op-188

erations. The ability to process data at such high rates is particularly beneficial for large-scale MAC189

operations, potentially enabling much faster execution of machine learning algorithms and neural190

network computations.191

Table 2: Comparison of throughput and latency for bulk bitwise accumulation using our method and
GPU (A100) for different kernel sizes. Our evaluation covers four dimensions: K = 7, 15, 31, 63
and N = 65536. We chose these K values to represent realistic accumulations within a subarray,
with output bit counts of exactly 3, 4, 5, and 6, respectively. N is equal to the number of columns in
the DRAM.

Kernel Size Our Method GPU (A100)

K x N Throughput (TB/s) (Latency (us)) Throughput (TB/s) (Latency (us))

7x65536 47.3 (4.97) 0.136 (7.06)
15x65536 37.0 (13.6) 0.352 (7.36)
31x65536 32.2 (32.3) 0.609 (5.95)
63x65536 30.0 (70.8) 0.834 (6.09)

127x65536 28.6 (149) 1.04 (6.48)

Due to the inherent error in PuCD operations, our proposed bulk bitwise accumulation also has192

error. Table 3 presents the normalized mean square error (NMSE) of our DRAM-based calculations193

compared to ideal computational results (details in Appendix B). As shown in Table 3, the error194

in our proposed method is three to four orders of magnitude smaller than the quantization error195

typically used in machine learning [Wei et al., 2024]. This implies that adopting our method for196

neural network inference would have a negligible impact on inference accuracy.197

Table 3: NMSE error of our bulk bitwise accumulation for different kernel sizes.

Kernel Size NMSE error

7x65536 9.1e-08
15x65536 1.1e-07
31x65536 2.9e-07
63x65536 6.9e-07

127x65536 1.5e-06

5 Conclusion198

This paper has introduced an efficient method for bulk bitwise accumulation using PuCD. Our ap-199

proach addresses the challenges of implementing accumulation operations in PuCD, which are cru-200

cial for machine learning tasks. We presented a novel implementation of the POPCNT3 operation201

optimized for commercial DRAM, serving as a fundamental building block for our scalable bit-202

wise accumulation technique. Evaluation using DDR4 DRAM modules shows that our approach203

consistently outperforms GPU-based methods across all tested kernel sizes, with throughput im-204

provements ranging from 27 to 348 times, while maintaining high accuracy. These results highlight205

the effectiveness of leveraging bit-level parallelism in DRAM for accelerating bulk bitwise accu-206

mulation operations. This substantial increase in throughput is crucial for constructing large matrix207

multiplications, which form the cornerstone of many machine learning inference tasks. The ability208

to process vast amounts of data rapidly can lead to significant advancements in real-time predictions209

and efficient handling of large datasets. Future work could explore integrating this approach into210

broader machine learning frameworks and extending it to other types of operations. By enabling211

efficient PIM capabilities in standard DRAM, our work contributes to addressing the data transfer212

bottleneck in modern computing systems.213

6

References214

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-215

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,216

Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.217

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,218

Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,219

Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the220

34th International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook,221

NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.222

Jaewan Choi, Jaehyun Park, Kwanhee Kyung, Nam Sung Kim, and Jung Ho Ahn. Unleashing223

the Potential of PIM: Accelerating Large Batched Inference of Transformer-Based Generative224

Models. IEEE Computer Architecture Letters, 22(2):113–116, July 2023. ISSN 1556-6064. doi:225

10.1109/LCA.2023.3305386. URL https://ieeexplore.ieee.org/document/10218731/226

?arnumber=10218731. Conference Name: IEEE Computer Architecture Letters.227

Yuting Wu, Ziyu Wang, and Wei D. Lu. PIM GPT a hybrid process in memory accelerator228

for autoregressive transformers. npj Unconventional Computing, 1(1):4, July 2024. ISSN229

3004-8672. doi: 10.1038/s44335-024-00004-2. URL https://www.nature.com/articles/230

s44335-024-00004-2.231

Fabrice Devaux. The true processing in memory accelerator. In 2019 IEEE Hot Chips 31 Symposium232

(HCS), pages 1–24, 2019. doi: 10.1109/HOTCHIPS.2019.8875680.233

Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son,234

O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, Youngmin Cho, Jin Guk Kim, Jongy-235

oon Choi, Hyun-Sung Shin, Jin Kim, BengSeng Phuah, HyoungMin Kim, Myeong Jun Song,236

Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David Wang, Shinhaeng Kang, Yuhwan237

Ro, Seungwoo Seo, JoonHo Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 25.4238

a 20nm 6gb function-in-memory dram, based on hbm2 with a 1.2tflops programmable com-239

puting unit using bank-level parallelism, for machine learning applications. In 2021 IEEE In-240

ternational Solid-State Circuits Conference (ISSCC), volume 64, pages 350–352, 2021. doi:241

10.1109/ISSCC42613.2021.9365862.242

Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gimoon Hong, Dongyoon Ka,243

Kyudong Hwang, Jeongje Park, Kyeongpil Kang, Jungyeon Kim, Junyeol Jeon, Nahsung Kim,244

Yongkee Kwon, Kornijcuk Vladimir, Woojae Shin, Jongsoon Won, Minkyu Lee, Hyunha Joo,245

Haerang Choi, Jaewook Lee, Donguc Ko, Younggun Jun, Keewon Cho, Ilwoong Kim, Choungki246

Song, Chunseok Jeong, Daehan Kwon, Jieun Jang, Il Park, Junhyun Chun, and Joohwan247

Cho. A 1ynm 1.25v 8gb, 16gb/s/pin gddr6-based accelerator-in-memory supporting 1tflops248

mac operation and various activation functions for deep-learning applications. In 2022 IEEE249

International Solid-State Circuits Conference (ISSCC), volume 65, pages 1–3, 2022. doi:250

10.1109/ISSCC42614.2022.9731711.251

Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan252

Xie. PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation253

in ReRAM-Based Main Memory. In 2016 ACM/IEEE 43rd Annual International Symposium254

on Computer Architecture (ISCA), pages 27–39, June 2016. doi: 10.1109/ISCA.2016.13. URL255

https://ieeexplore.ieee.org/document/7551380/?arnumber=7551380. ISSN: 1063-256

6897.257

Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie258

Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. Ambit: in-259

memory accelerator for bulk bitwise operations using commodity DRAM technology. In Pro-260

ceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pages261

273–287, Cambridge Massachusetts, October 2017. ACM. ISBN 978-1-4503-4952-9. doi:262

10.1145/3123939.3124544. URL https://dl.acm.org/doi/10.1145/3123939.3124544.263

Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Dennis Sylvester,264

David Blaaauw, and Reetuparna Das. Neural Cache: Bit-Serial In-Cache Acceleration of Deep265

7

https://ieeexplore.ieee.org/document/10218731/?arnumber=10218731
https://ieeexplore.ieee.org/document/10218731/?arnumber=10218731
https://ieeexplore.ieee.org/document/10218731/?arnumber=10218731
https://www.nature.com/articles/s44335-024-00004-2
https://www.nature.com/articles/s44335-024-00004-2
https://www.nature.com/articles/s44335-024-00004-2
https://ieeexplore.ieee.org/document/7551380/?arnumber=7551380
https://dl.acm.org/doi/10.1145/3123939.3124544

Neural Networks. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Ar-266

chitecture (ISCA), pages 383–396, Los Angeles, CA, June 2018. IEEE. ISBN 978-1-5386-267

5984-7. doi: 10.1109/ISCA.2018.00040. URL https://ieeexplore.ieee.org/document/268

8416842/.269

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,270

Ruiping Wang, Jilong Xue, and Furu Wei. The Era of 1-bit LLMs: All Large Language Models are271

in 1.58 Bits, February 2024. URL http://arxiv.org/abs/2402.17764. arXiv:2402.17764272

[cs].273

Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. ComputeDRAM: In-Memory Compute Us-274

ing Off-the-Shelf DRAMs. In Proceedings of the 52nd Annual IEEE/ACM International Sym-275

posium on Microarchitecture, pages 100–113, Columbus OH USA, October 2019. ACM. ISBN276

978-1-4503-6938-1. doi: 10.1145/3352460.3358260. URL https://dl.acm.org/doi/10.277

1145/3352460.3358260.278

Ataberk Olgun, Minesh Patel, A. Giray Yağlıkçı, Haocong Luo, Jeremie S. Kim, Nisa Bostancı,279

Nandita Vijaykumar, Oğuz Ergin, and Onur Mutlu. QUAC-TRNG: High-Throughput True Ran-280

dom Number Generation Using Quadruple Row Activation in Commodity DRAM Chips, May281

2021. URL http://arxiv.org/abs/2105.08955. arXiv:2105.08955 [cs].282

Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. FracDRAM: Fractional Values in Off-the-283

Shelf DRAM. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO),284

pages 885–899, Chicago, IL, USA, October 2022. IEEE. ISBN 978-1-66546-272-3. doi: 10.1109/285

MICRO56248.2022.00066. URL https://ieeexplore.ieee.org/document/9923819/.286

Ismail Emir Yuksel, Yahya Can Tugrul, F. Nisa Bostanci, Geraldo F. Oliveira, A. Giray Yaglikci,287

Ataberk Olgun, Melina Soysal, Haocong Luo, Juan Gómez-Luna, Mohammad Sadrosadati, and288

Onur Mutlu. Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips: Experimen-289

tal Characterization and Analysis, May 2024. URL http://arxiv.org/abs/2405.06081.290

arXiv:2405.06081 [cs].291

İsmail Emir Yüksel, Yahya Can Tuğrul, Ataberk Olgun, F. Nisa Bostancı, A. Giray Yağlıkçı, Ger-292

aldo F. Oliveira, Haocong Luo, Juan Gómez-Luna, Mohammad Sadrosadati, and Onur Mutlu.293

Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization294

and Analysis. In 2024 IEEE International Symposium on High-Performance Computer Ar-295

chitecture (HPCA), pages 280–296, Edinburgh, United Kingdom, March 2024. IEEE. ISBN296

9798350393132. doi: 10.1109/HPCA57654.2024.00030. URL https://ieeexplore.ieee.297

org/document/10476435/.298

Jianyu Wei, Shijie Cao, Ting Cao, Lingxiao Ma, Lei Wang, Yanyong Zhang, and Mao Yang. T-299

MAC: CPU Renaissance via Table Lookup for Low-Bit LLM Deployment on Edge, June 2024.300

URL http://arxiv.org/abs/2407.00088. arXiv:2407.00088 [cs].301

Ataberk Olgun, Hasan Hassan, A. Giray Yağlıkçı, Yahya Can Tuğrul, Lois Orosa, Haocong Luo,302

Minesh Patel, Oğuz Ergin, and Onur Mutlu. DRAM Bender: An Extensible and Versatile FPGA-303

based Infrastructure to Easily Test State-of-the-art DRAM Chips, September 2023. URL http:304

//arxiv.org/abs/2211.05838. arXiv:2211.05838 [cs].305

A Evaluation Setup306

Table 4 provides a detailed overview of the hardware specifications used in our experiments. The307

core of our setup consists of a Xilinx Alveo U200 FPGA board, which serves as the platform for308

implementing our PuCD-based method. We paired this FPGA with four SK Hynix DDR4 DIMM309

modules, each with a density of 4GB and operating at 2400MT/s. For precise control over DRAM310

operations, we employed DRAM Bender [Olgun et al., 2023], an open-source memory controller311

implemented on the FPGA. DRAM Bender is crucial to our setup as it enables us to issue DRAM312

commands with arbitrary timings, a capability essential for implementing PuCD operations. We313

controlled DRAM Bender through a host CPU program, allowing us to generate and execute the314

specific command sequences required for our bulk bitwise accumulation method.315

8

https://ieeexplore.ieee.org/document/8416842/
https://ieeexplore.ieee.org/document/8416842/
https://ieeexplore.ieee.org/document/8416842/
http://arxiv.org/abs/2402.17764
https://dl.acm.org/doi/10.1145/3352460.3358260
https://dl.acm.org/doi/10.1145/3352460.3358260
https://dl.acm.org/doi/10.1145/3352460.3358260
http://arxiv.org/abs/2105.08955
https://ieeexplore.ieee.org/document/9923819/
http://arxiv.org/abs/2405.06081
https://ieeexplore.ieee.org/document/10476435/
https://ieeexplore.ieee.org/document/10476435/
https://ieeexplore.ieee.org/document/10476435/
http://arxiv.org/abs/2407.00088
http://arxiv.org/abs/2211.05838
http://arxiv.org/abs/2211.05838
http://arxiv.org/abs/2211.05838

Figure 4 shows the setup consisting of the following key components: 1⃝ A Xilinx Alveo U200316

FPGA board programmed with DRAM Bender. This board serves as the central processing unit for317

our PuCD operations. 2⃝ Four DDR4 DIMM modules, each containing 8 DRAM chips, are installed318

in the DIMM slots of our setup. This configuration results in a total of 32 DRAM chips available for319

our experiments, allowing us to explore the full potential of bank-level parallelism in our method.320

3⃝ A separate computer, responsible for generating DRAM commands and controlling the overall321

experiment flow. This host machine runs the software that interfaces with DRAM Bender to execute322

our bulk bitwise accumulation operations.323

Our measurement methodology involved conducting 1000 independent trials for each kernel size324

and configuration to ensure statistical significance and account for DRAM behavior variability. We325

focused on two primary metrics: throughput, calculated as the amount of data processed per second326

when executing our method in parallel across all 64 banks of the 4 DRAM modules, and latency,327

defined as the time elapsed from the first DRAM command to the last for a single kernel execution.328

To provide a meaningful performance comparison, we implemented a baseline version of our bulk329

bitwise accumulation method on an NVIDIA A100-PCIe-40GB GPU using CUDA. GPU throughput330

was calculated based on the execution time of 8192 parallel kernel operations.331

Table 4: Specifications of the FPGA and DRAM module used in our evaluation.

FPGA DRAM Module Memory Bandwidth (GB/s)

Xilinx Alveo U200 SK Hynix’s DDR4 DIMM 1 76.8
1 We used four DRAM modules HMA851U6CJR6N-UHN0 that have a density

of 4GB and operates at 2400MT/s.

Figure 4: DRAM chips testing setup.

B NMSE Calculation332

To quantify the accuracy of our bulk bitwise accumulation method, we employed the normalized333

mean square error (NMSE) metric NMSE is a statistical measure that quantifies the relative differ-334

ence between predicted and actual values, normalized by the variance of the actual values. It is335

defined as:336

NMSE =
E[(Y − Ŷ)2]

Var(Y)

NMSE values provide a measure of our method’s accuracy relative to the inherent variability in the337

accumulation task. Lower NMSE values indicate better performance, with an NMSE of 0 represent-338

ing perfect prediction.339

For this evaluation, we generated input bits randomly with a 50% probability for each bit state.340

Our NMSE calculation process began with performing an ideal accumulation using a high-precision341

software implementation for each set of randomly generated inputs. This provided our ”actual”342

values (Y). We then performed the accumulation using our proposed PuCD-based method, obtaining343

our ”predicted” values (Ŷ). For each column, we calculated the squared difference between the ideal344

and PuCD-based results: (Y − Ŷ)2. We then computed the mean of these squared differences across345

all columns, giving us E[(Y − Ŷ)2]. Next, we calculated the variance of the ideal accumulation346

9

results across all columns: Var(Y). Finally, we divided the mean squared error by the variance to347

obtain the NMSE.348

10

	Introduction
	DRAM Structure and PuCD Technology
	Bulk Bitwise Accumulation
	POPCNT3 in Commercial DRAM
	POPCNT3-based Bitwise Accumulation

	Results and Discussion
	Conclusion
	Evaluation Setup
	NMSE Calculation

