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Abstract

Processing-in-memory (PIM) is a promising paradigm for addressing data transfer
bottlenecks in data-intensive workloads, particularly in machine learning. Among
PIM techniques, Processing-using-Commercial-DRAM (PuCD) offers a practi-
cal approach for enabling in-memory computing by employing widely available
DRAM modules without hardware modifications. With its massive bit-level par-
allelisms, PuCD has a high-performance capability of bulk bit logic operation.
However, implementing accumulation operations, crucial for machine learning
tasks, remains challenging in PuCD. The need for multiple consecutive opera-
tions in accumulation leads to increased latency and error propagation. To address
these challenges, we propose a novel method for bulk bitwise accumulation us-
ing PuCD. As a fundamental building block for our accumulation method, we
introduce a novel implementation of the population-count-of-3 (POPCNT3) opera-
tion tailored for commercial DRAM. On top of this, we present a POPCNT3-based
bitwise accumulation method that efficiently handles large input sizes, enabling
scalable bitwise accumulation for various input sizes. We evaluate the through-
put and errors of our approach using commercial DDR4 DRAM modules with an
FPGA. The experiments indicate that the throughput improvement is up to 348
times over A100 GPU across various input sizes with negligible errors to main-
tain the accuracy of machine learning applications. These results demonstrate that
PuCD can provide a practical pathway for accelerating machine learning tasks
without requiring specialized memory chips.

1 Introduction

Emerging data-intensive workloads, particularly in machine learning (ML), are increasingly con-
strained by data transfer costs rather than computation. Deep neural networks, especially large
language models, exemplify this trend with their demand for processing vast amounts of data, often
requiring tens of gigabytes of parameters [Brown et al., 2020]. The predominance of multiply-
accumulate (MAC) operations of general matrix-vector multiplication (GeMV) in these models,
coupled with their low on-chip data reuse, makes off-chip data transfer the primary performance
bottleneck [Choi et al., 2023, Wu et al., 2024].
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To address this challenge, processing-in-memory (PIM) has reemerged as a promising solution. PIM
is a computing paradigm that integrates computational capabilities directly within memory devices,
utilizing high internal bandwidth and reducing off-chip data movement. While digital PIM [Devaux,
2019, Kwon et al., 2021, Lee et al., 2022] incorporates processing units within memory devices,
analog PIM [Chi et al., 2016, Seshadri et al., 2017, Eckert et al., 2018] transforms memory cells into
computational units. Compared to digital PIM, analog PIM offers higher computational density and
energy efficiency, while digital PIM provides greater arithmetic precision and flexibility.

While most workloads require high-precision computations, some DNN models, including LLMs,
have inherent redundancy that allows them to tolerate lower precision [Ma et al., 2024]. These mod-
els can quantize their weights to just a few bits without sacrificing accuracy. This trend towards
low-bit arithmetic presents a unique opportunity for analog PIM, which operates with bit-level par-
allelism, to efficiently accelerate DNNs. Even more intriguing is the discovery of a technology
called Processing-using-Commercial-DRAM (PuCD), which transforms standard DRAM into an
analog PIM device [Gao et al., 2019, Olgun et al., 2021, Gao et al., 2022, Yuksel et al., 2024, Yüksel
et al., 2024]. PuCD enables massive parallelism and substantial computational power by leverag-
ing the density of DRAM, without requiring additional circuitry or changes to the cost-optimized,
low-margin DRAM design. By making use of the widespread availability of DRAM and enabling in-
memory computation without hardware modifications, PuCD provides a practical solution to bring
PIM capabilities into mainstream computing systems.

Despite the potential of PuCD, implementing accumulation using PuCD presents significant chal-
lenges. Accumulation is a fundamental operation in MAC computations, which form the backbone
of many ML processes. Unlike multiplication, which typically involves two inputs, accumulation
requires a number of inputs proportional to the matrix size to sum up the multiple results. This char-
acteristic poses two main difficulties for PuCD implementation: performance issues and accuracy
concerns. Executing accumulation with many inputs necessitates a proportional number of logical
operations, resulting in slow performance when implemented in PuCD. Additionally, PuCD inher-
ently carries computational errors, which can accumulate significantly when multiple operations are
performed consecutively, as required in accumulation.

To address the challenges of implementing fast and accurate accumulation operations in PuCD, we
propose a novel method for bulk bitwise accumulation. Our approach consists of two key com-
ponents: First, we introduce an optimized implementation of the population-count-of-3 (POPCNT3)
operation specifically designed for commercial DRAM. POPCNT3 serves as a fundamental building
block for our accumulation method, efficiently counting the number of ’1’ bits in three input bits.
Our implementation leverages PuCD to perform POPCNT3 with minimal latency and error propaga-
tion. Building upon this optimized POPCNT3 operation, we develop a scalable bitwise accumulation
technique capable of handling larger input sizes. This method iteratively applies POPCNT3 operations
to groups of inputs, progressively computing higher-order bit positions. By leveraging the efficiency
of our POPCNT3 implementation and the parallelism inherent in PuCD, we achieve high-throughput
accumulation across various input sizes.

The key contributions of this work are as follows:

1. As a fundamental building block for our accumulation method, we introduce a new imple-
mentation of the POPCNT3 operation tailored for commercial DRAM.

2. We present a POPCNT3-based bitwise accumulation method that efficiently handles large
input sizes, enabling scalable bitwise accumulation for various input sizes.

3. Using DDR4 DRAM modules, we demonstrate up to 348 times higher throughput than
A100 GPU across various input sizes with negligible errors to maintain the accuracy of
machine learning applications.

2 DRAM Structure and PuCD Technology

Modern computing systems widely employ dynamic random-access memory (DRAM) as their main
memory due to its high density and low cost characteristics. DRAM modules utilize a hierarchical
structure to enable efficient data management as shown in Figure 1. At the highest level, channels
offer independent data paths. Each channel encompasses multiple ranks, with a rank comprising a
collection of DRAM chips. Manufacturers divide each chip into multiple banks, which function as
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Figure 1: DRAM hierarchy and basic operation. The figure illustrates the structural organization of
DRAM from the highest level (memory channel) down to the individual memory cell.

independently operable memory arrays. Banks further subdivide into subarrays, with each subarray
consisting of a two-dimensional array of memory cells arranged in rows and columns. The memory
cell, the fundamental unit of DRAM, incorporates a single transistor and a capacitor. This cell stores
data as the presence or absence of an electrical charge. Each column of memory cells is connected
to a bitline, which serves as a communication for reading from and writing to the cells. At the end
of each bitline is a sense amplifier, a crucial component that detects and amplifies the small voltage
differences on the bitline operations. A memory controller governs data access in DRAM. This
controller issues commands in carefully timed sequences. Through this orchestration of commands,
the memory controller achieves efficient data access.

Processing-using-Commercial-DRAM (PuCD) is an innovative technique that enables in-memory
computation on existing DRAM modules without hardware modifications by exploiting the charge-
sharing effect between simultaneously activated rows to perform logical operations. Gao et al.
[2019] discovered that logical operations could be performed directly on commercial DDR3 DRAM
modules without circuit modifications. Building on this insight, researchers have demonstrated the
ability to execute RowCopy [Gao et al., 2019, Yuksel et al., 2024], AND/OR [Gao et al., 2022], and
NOT [Yüksel et al., 2024] operations on DDR4 DRAM modules. The charge-sharing effect occurs
when multiple DRAM rows are activated simultaneously, causing the electrical charges stored in the
capacitors of these rows to redistribute across the bitlines. PuCD implements this charge-sharing
effect through simultaneous multi-row activation (SiMRA), a method that involves issuing DRAM
commands in a way that violates conventional timing constraints. This technique activates multi-
ple DRAM rows simultaneously on commercial DRAM modules, inducing charge sharing on the
bitlines. PuCD then utilizes this charge sharing effect to execute majority-of-X (MAJX) operations.
MAJX operations, which determine the majority value among input bits, serve as the basic logical
units in PuCD. Prior works build upon MAJX to implement fundamental logical operations such as
AND and OR. For instance, they can achieve AND/OR operations by fixing certain inputs of MAJX to spe-
cific values. By combining these basic operations, PuCD can perform more complex computations.
However, PuCD faces challenges in operational reliability. The reliability of MAJX operations heav-
ily depends on input patterns, with performance degrading significantly when the numbers of ’0’s
and ’1’s in the input are closely balanced. Furthermore, complex operations often require numerous
consecutive MAJX operations, potentially leading to cumulative errors and performance deteriora-
tion.

3 Bulk Bitwise Accumulation

In this section, we introduce a novel approach to perform efficient bulk bitwise accumulation using
PuCD. We present our method in two stages: first, we propose an optimized implementation of
POPCNT3, a fundamental operation that counts the number of ’1’s in three input bits. Then, we
build upon this POPCNT3 operation to develop a scalable bitwise accumulation technique capable
of handling larger input sizes. By combining these two components, we achieve an efficient and
accurate method for bulk bitwise accumulation for various input sizes.
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3.1 POPCNT3 in Commercial DRAM

We propose a novel method for efficiently implementing POPCNT3 in PuCD. POPCNT3 represents a
bit operation that counts the number of ’1’s in three input bits and expresses the result in two bits.
POPCNT3 is defined for three input bits A, B, and C using the following logical expressions:

MSB(A,B,C) = (A ∧B) ∨ (B ∧ C) ∨ (C ∧A)

LSB(A,B,C) = (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C) ∨ (A ∧B ∧ C)

where MSB denotes the most significant bit and LSB the least significant bit. Naive PuCD ap-
proaches attempting to implement these logical expressions directly require numerous consecutive
AND, OR, and NOT operations. Specifically, LSB calculation necessitates 11 consecutive AND/OR
operations, leading to high latency and reduced accuracy. In PuCD, multiple consecutive logical
operations increase the overall execution time. Moreover, each logical operation carries a success
probability. For instance, even if a DRAM module can perform AND/OR operations with an exact
99% success rate, the probability of all 11 consecutive operations succeeding drops to approxi-
mately 90%. These challenges highlight the inefficiency and accuracy issues of directly implement-
ing POPCNT3 in PuCD.

To achieve fast and high-precision POPCNT3 in PuCD, we propose a novel implementation method
that leverages MAJX operations in PuCD. This approach introduces reference rows and performs
MAJX operations combining input and reference rows to directly and efficiently calculate the
POPCNT3 output. Figure 2 illustrates the execution timeline of POPCNT3. Our method prepares
three input rows, two reference rows, and two output rows within the same subarray. The process
unfolds as follows: 1⃝ We store input values in the input rows. We can move these values can from
other rows within the same subarray using RowCopy. 2⃝ We execute MAJ3 on the input rows to
calculate the MSB value and store the result in the MSB row. 3⃝ We reload the input values into
the input rows and copy the NOT of the previous MSB value to the reference rows using NOT. 4⃝ We
perform a MAJ5 operation combining input and reference rows to calculate the LSB value. Table 1
presents the truth table for POPCNT3. The essence of this approach lies in recursively comparing the
number of ’1’s in the input to identify the output bits in binary representation from the most signifi-
cant bit. We can consider this process as a binary search. Our proposed method executes POPCNT3
with significantly fewer logical operations (two MAJX operations). This reduction in operations sub-
stantially decreases the overall execution time. Moreover, by minimizing the number of consecutive
PuCD logical operations, we also mitigate output accuracy degradation.
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Figure 2: Timeline illustrating data changes in a DRAM segment during a POPCNT3 operation. The
figure shows the step-by-step process of executing a POPCNT3 operation using PuCD.

3.2 POPCNT3-based Bitwise Accumulation

Building upon the POPCNT3 operation, we propose POPCNT3-based bitwise accumulation, a method
for executing bitwise accumulation on a larger number of inputs. This approach enables counting for
a larger number of inputs by iteratively applying POPCNT3. While POPCNT3 generates a 2-bit output
from three inputs, we can continue to calculate higher bit position values by repeatedly executing
POPCNT3 on each output bit position. Figure 3 illustrates the procedure for bitwise accumulation
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# of 1s in Input Rows 0 1 2 3

Reference Row Value
1 1 0 0
1 1 0 0

Output Bits
MSB 0 0 1 1
LSB 0 1 0 1

Table 1: Truth table for the POPCNT3 operation in PuCD. This table illustrates the relationship
between the number of ’1’ bits in the input rows, the reference row bit, and the resulting output bit
pattern in the POPCNT3 operation.

with 15 inputs. First, we initially execute POPCNT3 five times on groups of three inputs from the
15 inputs, yielding five 1st bits and five 2nd bits as outputs. Then, we apply POPCNT3 to three
of the five 1st bits, generating an additional 1st bit and 2nd bit. Finally, we repeat this process,
ultimately obtaining a 4-bit output. Consequently, our approach offers an efficient solution for
bitwise accumulation across various input sizes, leveraging the simplicity and effectiveness of the
POPCNT3 operation.

Our POPCNT3-based bitwise accumulation inherits the bulk processing capabilities and bank par-
allelism of PuCD, enabling simultaneous computation across all columns in an array and parallel
execution across multiple banks. This parallelism allows our method to achieve high throughput for
bitwise accumulation operations. However, it’s constrained by PuCD’s requirement that all inputs
and intermediate results must reside within the same subarray. Given that typical DRAM subar-
rays contain only a few hundred rows, this limits the size of accumulations that can be performed
solely using PuCD. For larger accumulations, alternative or hybrid approaches may be necessary,
highlighting the importance of careful data layout consideration in practical applications of this
technique.
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Figure 3: Timeline of a 15-input bitwise accumulation operation in a single DRAM bitline using
POPCNT3-based method. This figure illustrates the step-by-step process of performing bitwise accu-
mulation on 15 inputs using our proposed POPCNT3-based approach.

4 Results and Discussion

We evaluate the performance and accuracy of our proposed bulk bitwise accumulation method using
DDR4 DRAM for different accumulation sizes. We refer to a single bulk bitwise accumulation
computation as a kernel. We express the kernel size as K ×N , where K represents the input length
and N denotes the bulk data width. To implement our proposed method, we use an FPGA connected
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to four DDR4 DRAM modules. We compare the performance of our method with an NVIDIA A100
GPU as a baseline. Further details about our evaluation setup are in Appendix A.

Table 2 presents the throughput and latency of our proposed method for each kernel size. Through-
put indicates the amount of data that can be processed per second. For our method, we calculate
throughput when executing in parallel across 64 banks of 4 modules. Latency of our method repre-
sents the time required from the execution of the first DRAM command to the completion of the last
DRAM command for a single kernel execution which comprises multiple POPCNT3 operations. As
shown in Table 2, our proposed method consistently outperforms the GPU across all kernel sizes.
Specifically, our method achieves approximately 348 times higher throughput for the smallest ker-
nel size (7x65536) and still maintains about 27 times higher throughput for the largest kernel size
(127x65536). This significant improvement in throughput demonstrates that our proposed method
effectively leverages the bit-level parallelism of DRAM to accelerate bulk bitwise accumulation op-
erations. The ability to process data at such high rates is particularly beneficial for large-scale MAC
operations, potentially enabling much faster execution of machine learning algorithms and neural
network computations.

Table 2: Comparison of throughput and latency for bulk bitwise accumulation using our method and
GPU (A100) for different kernel sizes. Our evaluation covers four dimensions: K = 7, 15, 31, 63
and N = 65536. We chose these K values to represent realistic accumulations within a subarray,
with output bit counts of exactly 3, 4, 5, and 6, respectively. N is equal to the number of columns in
the DRAM.

Kernel Size Our Method GPU (A100)

K x N Throughput (TB/s) (Latency (us)) Throughput (TB/s) (Latency (us))

7x65536 47.3 (4.97) 0.136 (7.06)
15x65536 37.0 (13.6) 0.352 (7.36)
31x65536 32.2 (32.3) 0.609 (5.95)
63x65536 30.0 (70.8) 0.834 (6.09)

127x65536 28.6 (149) 1.04 (6.48)

Due to the inherent error in PuCD operations, our proposed bulk bitwise accumulation also has
error. Table 3 presents the normalized mean square error (NMSE) of our DRAM-based calculations
compared to ideal computational results (details in Appendix B). As shown in Table 3, the error
in our proposed method is three to four orders of magnitude smaller than the quantization error
typically used in machine learning [Wei et al., 2024]. This implies that adopting our method for
neural network inference would have a negligible impact on inference accuracy.

Table 3: NMSE error of our bulk bitwise accumulation for different kernel sizes.

Kernel Size NMSE error

7x65536 9.1e-08
15x65536 1.1e-07
31x65536 2.9e-07
63x65536 6.9e-07

127x65536 1.5e-06

5 Conclusion

This paper has introduced an efficient method for bulk bitwise accumulation using PuCD. Our ap-
proach addresses the challenges of implementing accumulation operations in PuCD, which are cru-
cial for machine learning tasks. We presented a novel implementation of the POPCNT3 operation
optimized for commercial DRAM, serving as a fundamental building block for our scalable bit-
wise accumulation technique. Evaluation using DDR4 DRAM modules shows that our approach
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consistently outperforms GPU-based methods across all tested kernel sizes, with throughput im-
provements ranging from 27 to 348 times, while maintaining high accuracy. These results highlight
the effectiveness of leveraging bit-level parallelism in DRAM for accelerating bulk bitwise accu-
mulation operations. This substantial increase in throughput is crucial for constructing large matrix
multiplications, which form the cornerstone of many machine learning inference tasks. The ability
to process vast amounts of data rapidly can lead to significant advancements in real-time predictions
and efficient handling of large datasets. Future work could explore integrating this approach into
broader machine learning frameworks and extending it to other types of operations. By enabling
efficient PIM capabilities in standard DRAM, our work contributes to addressing the data transfer
bottleneck in modern computing systems.
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A Evaluation Setup

Table 4 provides a detailed overview of the hardware specifications used in our experiments. The
core of our setup consists of a Xilinx Alveo U200 FPGA board, which serves as the platform for
implementing our PuCD-based method. We paired this FPGA with four SK Hynix DDR4 DIMM
modules, each with a density of 4GB and operating at 2400MT/s. For precise control over DRAM
operations, we employed DRAM Bender [Olgun et al., 2023], an open-source memory controller
implemented on the FPGA. DRAM Bender is crucial to our setup as it enables us to issue DRAM
commands with arbitrary timings, a capability essential for implementing PuCD operations. We
controlled DRAM Bender through a host CPU program, allowing us to generate and execute the
specific command sequences required for our bulk bitwise accumulation method.

Figure 4 shows the setup consisting of the following key components: 1⃝ A Xilinx Alveo U200
FPGA board programmed with DRAM Bender. This board serves as the central processing unit for
our PuCD operations. 2⃝ Four DDR4 DIMM modules, each containing 8 DRAM chips, are installed
in the DIMM slots of our setup. This configuration results in a total of 32 DRAM chips available for
our experiments, allowing us to explore the full potential of bank-level parallelism in our method.
3⃝ A separate computer, responsible for generating DRAM commands and controlling the overall

experiment flow. This host machine runs the software that interfaces with DRAM Bender to execute
our bulk bitwise accumulation operations.

Our measurement methodology involved conducting 1000 independent trials for each kernel size
and configuration to ensure statistical significance and account for DRAM behavior variability. We
focused on two primary metrics: throughput, calculated as the amount of data processed per second
when executing our method in parallel across all 64 banks of the 4 DRAM modules, and latency,
defined as the time elapsed from the first DRAM command to the last for a single kernel execution.

To provide a meaningful performance comparison, we implemented a baseline version of our bulk
bitwise accumulation method on an NVIDIA A100-PCIe-40GB GPU using CUDA. GPU throughput
was calculated based on the execution time of 8192 parallel kernel operations.

Table 4: Specifications of the FPGA and DRAM module used in our evaluation.

FPGA DRAM Module Memory Bandwidth (GB/s)

Xilinx Alveo U200 SK Hynix’s DDR4 DIMM 1 76.8
1 We used four DRAM modules HMA851U6CJR6N-UHN0 that have a density

of 4GB and operates at 2400MT/s.

Figure 4: DRAM chips testing setup.

B NMSE Calculation

To quantify the accuracy of our bulk bitwise accumulation method, we employed the normalized
mean square error (NMSE) metric NMSE is a statistical measure that quantifies the relative differ-
ence between predicted and actual values, normalized by the variance of the actual values. It is
defined as:

NMSE =
E[(Y − Ŷ )2]

Var(Y )

9



NMSE values provide a measure of our method’s accuracy relative to the inherent variability in the
accumulation task. Lower NMSE values indicate better performance, with an NMSE of 0 represent-
ing perfect prediction.

For this evaluation, we generated input bits randomly with a 50% probability for each bit state.
Our NMSE calculation process began with performing an ideal accumulation using a high-precision
software implementation for each set of randomly generated inputs. This provided our ”actual”
values (Y). We then performed the accumulation using our proposed PuCD-based method, obtaining
our ”predicted” values (Ŷ ). For each column, we calculated the squared difference between the ideal
and PuCD-based results: (Y − Ŷ )2. We then computed the mean of these squared differences across
all columns, giving us E[(Y − Ŷ )2]. Next, we calculated the variance of the ideal accumulation
results across all columns: Var(Y ). Finally, we divided the mean squared error by the variance to
obtain the NMSE.

10


	Introduction
	DRAM Structure and PuCD Technology
	Bulk Bitwise Accumulation
	POPCNT3 in Commercial DRAM
	POPCNT3-based Bitwise Accumulation

	Results and Discussion
	Conclusion
	Evaluation Setup
	NMSE Calculation

