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Abstract

In this manuscript, we analyze a solvable model of flow or diffusion-based gen-
erative model. We consider the problem of learning a model parametrized by a
two-layer auto-encoder, trained with online stochastic gradient descent, on a high-
dimensional target density with an underlying low-dimensional manifold structure.
We derive a tight asymptotic characterization of low-dimensional projections of
the distribution of samples generated by the learned model, ascertaining in particu-
lar its dependence on the number of training samples. Building on this analysis,
we discuss how mode collapse can arise, and lead to model collapse when the
generative model is re-trained on generated synthetic data.

Introduction

Diffusion and flow-based generative models represent a new paradigm in the sampling of high-
dimensional probability densities. Such methods operate by recasting the sampling problem as a
transport from a simple base distribution to the target density. The velocity field directing the transport
can further be parameterized by a neural network, and learned from data [68 70,36} 134]]. These ideas
have been successfully implemented in a number of algorithmic frameworks [70, 48, 4, 49, [71], with
applications ranging from image generation [55} 58} (63]] to drug discovery [83].

The surprising effectiveness of such models in learning probability densities in high dimensions
hints at the presence of architectural biases built in the network parametrization, placing strong
priors on the class of densities generated by the model. When aligned with the target density, these
architectural biases can allow generative models to learn a good approximation of the target from only
a small number of training samples [35]]. Naturally, when the biases are ill-suited to the task, they
can also lead to poor solutions. Gaining a solid theoretical understanding on how the neural network
architecture shapes the generated density is hence a central, yet still largely open, research question.

Arguably, the prominent technical obstruction lies in the need to reach a precise characterization
of the density a given architecture learns to generate. A large fraction of theoretical studies of
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generative models [17, 14} 8 40, 41| 43]] analyze only the generative transport process, starting
from the assumption that a L2-accurate approximation of the velocity or score is available. This
gap has in part been filled by a recent line of works [52} [15 (7} [13}82]], which establishes that some
target densities can provably be learned by neural networks, provided sufficient width and number of
samples. Such sample complexity bounds are however little descriptive of the shape of the generated
density, nor do they capture failure modes where the architecture is not expressive enough to yield
a good approximation. Closer to our work, authors of [21]] conduct a tight analysis of a simple
generative model, which is however limited to the highly stylized case of a binary Gaussian mixture
target density with isotropic covariances. The present manuscript overcomes these barriers, and
provides a sharp characterization of the generated distribution for models learning from a large class
of non-trivially structured target densities.

Main contributions

We consider generative models parametrized by a two-layer Denoising Auto-Encoder (DAE) with
tied weights and trainable skip connection, trained with online Stochastic Gradient Descent (SGD), in
the framework of stochastic interpolation [4} 5]]. We consider target distributions given by (possibly
infinite) Gaussian mixtures in high dimensions, with generic cluster covariances, and centroids
spanning a low-dimensional manifold — reflecting a pervasive intuition in machine learning [[72,
84]. Overcoming previous limitations, we derive a tight asymptotic description of the generated
distribution. More precisely,

* We provide a tight characterization of the training dynamics in terms of a set of deterministic
Ordinary Differential Equations (ODEs), bearing over a finite set of low-dimensional
summary statistics.

* Building on these results, we similarly provide a tight low-dimensional characterization of
the generative transport process, thereby reaching a sharp description of low-dimensional pro-
jections of the generated density, as a function of the number of samples and sampling time.
The theoretical predictions further quantitatively capture experiments on simple real datasets.

* We discuss and illustrate how a phenomenon akin to mode collapse [32] can arise, and lead
to a loss of diversity in the generated density. Iterating and extending over our analysis to
cases where the generated data is further re-used to train the generative model, we highlight
how this mode collapse phenomenon can ultimately conduce to model collapse [66].

The code employed in this manuscript is accessible on this online repository.

Related works

Sampling accuracy and dynamics— A large body of works on diffusion-based and flow-based
generative models has been devoted to the study of the generative process, assuming access to a
L2-accurate score estimate, or to the exact empirical score. [17, 14} 8 140, 41} 43| 19, [16, 23, 142]
provide rigorous bounds on appropriate distances between the target and generated probability
distributions. The sequential emergence of structure in the transported density with sampling time
has been investigated in [[11} 10,165} 164} |1} [79} 44} 28| 45]], evidencing the presence of rich critical
phenomena. [30] explore the computational hardness of sampling for an array of graphical models.
This line of works, however, does not allow one to elucidate how such score estimates can be learned
from data by practical architectures.

Sample complexity bounds— Complementing this set of results, a recent stream of work refined
these bounds by further ascertaining the sample complexity of learning accurate score estimates
(12} 138) 185, 1251 1904 133 146l 29]. For data distributions close to the one considered in the present
work, [27, 18] show how the score of Gaussian mixture densities can be learned algorithmically in
efficient fashion. Similarly, for target densities with latent low-dimensional structure, [52, [15} [13]]
prove that DAE-parameterized models are able to learn the latent structure, and thus break the curse
of dimensionality. [82] provide a full error analysis for models parametrized by deep ReLu networks.
None of these bounds, however, allow for a precise elucidation of the geometry of the generated
density. Furthermore, because such results primarily focus on settings where the target densities
can be provably learned by the model with enough samples, they are not descriptive of unrealizable
settings where the model is unable of perfect learning, and thus overlook possible failure modes and
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biases. The present study on the other hand permits the exploration of the latter, and sheds light on
mode and model collapse phenomena in the considered model.

Tight characterization of learning in AEs— In order to study such cases, sharper results are
therefore warranted. In this direction, a sizeable research effort has been devoted to analyzing the
learning of AEs [[77, (76]], arguably the simplest instance of the class of denoiser neural networks used
in generative models. The learning dynamics of AEs under (S)GD was characterized in [54] in the
linear case, and [56] for non-linear models. [22] derive a tight asymptotic characterization of the
learning of AEs for a denoising task, reaching a precise description of the generated density when
this network is used to parametrize a generative model [21]. This characterization is however limited
to a rather stylized target density, namely a binary Gaussian mixture with isotropic clusters, and thus
fails to describe real data distributions. The present manuscript overcomes this barrier, and considers
realistically structured target densities.

Inductive bias in generative models— Even with moderately large training sets, generative
models succeed in generating novel images, rather than reproducing memorized training samples
[89, 1881 160L 1531181} 147, 26} 180]]. This surprising efficiency strongly hints at the presence of inductive
biases inherited from the network parametrization, that nudge the model towards good solutions. The
inductive bias of U-net architectures [S9] has been investigated in [35], who observe how such archi-
tectures tend to learn adapted harmonic bases. In a similar spirit, the work of [37] evidences how the
bias of such convolutional architectures towards learning equivariant and local scores helps to promote
good solutions. Finally, [50] demonstrates that U-nets are closely related to message-passing algo-
rithms on random hierarchical data, and thus particularly adapted to such structure. Complementing
this line of works, the present manuscript offers insights on the bias of DAE architectures.

1 Problem formulation

We start by providing a succinct overview of the problem of sampling a target density p over R?
using ideas from generative transport. For definiteness and ease of presentation, we consider in this
manuscript the class of stochastic interpolant models [4], which shares substantial connections with
other methods, including score-based diffusion models [71]] and denoising methods [36, 134].

Sampling— A sample X7 ~ p can be obtained from a Gaussian sample X ~ N (0,I;) by evolving
the latter for ¢ € [0, 1] with the Stochastic Differential Equation (SDE)

dX; _ (g't - %6+ 5t) £t X0 + (“t - 6;) X, + V26 dW,, M

dt a? o o

where W is a Wiener process. This statement holds for any choice of interpolants «, 8 €
C2%([0,1]), e € €°([0, 1]) provided a(0) = B(1) = 1,a(1) = 3(0) = 0 and o? + 57 > 0,¢; > 0 at
all times ¢ € [0, 1] [4]. In (T)), the function f : [0,1] x R? — R9 is defined asf (¢, z) = E[z1|azzo +
Byx1 = x|, with the conditional expectation bearing over z1 ~ p, zg ~ N (0,1;). Intuitively, f (¢, z)
can be interpreted as a denoising function, which aims to recover the sample x; from the interpolated
version ayxg + (i1, in which it is corrupted by the noise :co Perhaps then unsurprisingly, the
function f admits a natural characterization as the minimizer of the quadratic denoising objective

1

R[f] = /E [ £(t, o + Bear) — a1 || dt. )

0

This formulation provides an opportune pathway to learn the function f governing the sampling
(T) directly from data. The learning can be carried out following the usual machine learning rationale
of (a) parametrizing f by a denoiser neural network and (b) replacing the expectation in (2)) by an
empirical average over a training set.

"Note that the denoising function f is related to the score function s of the density of a:xo + Se1 by the
simple linear relation a7 s(t, ) = B: f(t,x) — .



Architecture- In the present manuscript, following [22]], we consider the simplest instance of
denoising neural network, namely a two-layer DAE

.
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with activation function o, and trainable skip connection b € R. For simplicity, we assume that
the decoder and encoder are tied, namely parametrized by a unique set of weights w € R%*"_ This
assumption allows for a more concise exposition of the technical results, and was not found to
sensibly alter the phenomenology of the model. We discuss in Appendix [A]how the analysis can be
extended to generically untied weights. In (3), p : [0, 1] — R is an arbitrary time encoding scheme,
and is embedded into the network preactivation through multiplication with a set of trainable weights
v € R". Note that this is equivalent to including the time encoding p; as an extra dimension in the
input x, and acting upon it with an extended set of (d + 1) x r weights — with v then corresponding to
the first row thereof. Let us remark however that for the model @ the inclusion of the time encoding
scheme was not found to significantly alter the behaviour of the model in all probed settings.

Let us briefly situate the class of DAEs (3)) with respect to models considered in related works. [13152]]
consider deep networks with ReLU activations, but require sparsity constraints on the weights. Closer
to our work, [13]] similarly assume shallow DAEs, but place themselves in the limit of infinite width
(r — 00). On the opposite end of the spectrum, [21] consider shallow DAEs with a single hidden unit
(r = 1), and sigmoidal activations o. The architecture (3)) considered in the present manuscript, on
the other hand, corresponds to a more flexible class of finite-width networks with arbitrary activations.
Let us note that while DAEs are amenable to theoretical characterization and consequently the main
focus of the aforedescribed body of theoretical studies, they admittedly represent very simplified
architectures when compared to e.g. U-Nets [59] used in practice. On the other hand, the model (3)
retains the main architectural features of the latter, notably a bottleneck structure, a skip connection,
and a time encoding scheme, and thus constitutes a valuable simplified model.

Training- The neural network (3) can now be used to parametrize the denoising function f in the
objective (2). We consider training the DAE (3)) with online (single-pass) SGD, with learning rate 7
and weight decay A:

2
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The expectation E; over ¢ bears over the uniform distribution over [0, 1], or any approximation
thereof by a chosen set of points G = {t1, ta, ... }. The updates ) are iterated n times from a given
initialization by, w, vo. Note that in online SGD, a fresh pair of samples 2 ~ p, 25 ~ N (0,1) is
employed at each training step, and the number of training steps thus coincides with the number of
samples. Finally, it will prove convenient to introduce the training time T = 21m/4, a quantity that
remains finite in the asymptotic limit considered, which we detail below. We accordingly denote by
b, w;,, v, the values of the skip connection and weights at the end of training.

After training, the optimized DAE (@) f5. «. . can then be employed in the generative flow (I) as a
proxy for the true denoising function f:

dX . & & €
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The SDE can then be used for sampling. Because the learning is generically imperfect due
to limited data and architectural bias, we generically have f;_., .. # f, and thus the generated
density p.(t) —namely the law of X;— differs from the target density p, even as ¢ — 1. One of the
primary objectives of this work is to give a precise description of the discrepancy between p and
pr(t) — beyond simply bounding probability distances therebetween—, through a sharp asymptotic
characterization of p(t).



Target density— In this manuscript, we consider target densities given by a (possibly infinite)
Gaussian mixture supported on a latent low-dimensional manifold. Namely,

p= [ Nue) Z@)in(o). ®)
RN

In words, the centroids p(c) € R? of the different clusters lie on a x—dimensional manifold, equipped
with a coordinate system ¢ € R”. The distribution of the clusters on the manifold is given by the
relative weights 7(c). Finally, each cluster can exhibit a non-trivial covariance structure ¥(c) € R¥*¢,
For the analysis, we further assume that all the covariances {X(c)}. are jointly diagonalizable, and
admit well-defined spectral densities v, in the high-dimensional limit d — oo, leaving the generic
case to future work. The density (8) reflects and models the celebrated data manifold hypothesis
[72,184], which posits that real data distributions lie on low-dimensional manifolds.

(52,115} [13]] similarly consider linear subspaces embedded in high dimensions, which can be viewed
as special instances of (§) in the limit of vanishing covariances X(c) = 0 for all ¢ € R”. Note
also that the K — modal Gaussian mixture distributions considered in e.g. [21] 86] correspond to
the special case of (8) where the cluster distribution 7 is a sum of K Dirac deltas. Finally, the
heavy-tailed distributions considered in [3} 2] correspond to the special case p(c) = 04 for all c.

High-dimensional limit- We aim at characterizing the generated density j,(¢) in the asymptotic
limit of large data dimension and commensurably large number of samples, namely d, n — oo with
n/qd = ©4(1). This asymptotic limit captures the non-trivial regime where the number of samples is
not small enough for the neural network to trivially overfit, and conversely not infinite — thus allowing
the investigation of finite data effects. We further suppose that the number of hidden units r of the
DAE and the intrinsic dimensionality of the data manifold «, alongside all other parameters, remain
finite: r, k, A, = O4(1). Moreover, the diameter of the mixture (8) is also supposed to remain finite,
i.e. there exist D = ©4(1) such that ||(c)||2< D with probability 1 for ¢ ~ 7. Finally, we assume
that the ambient dimension of the manifold is also finite, namely dim span(u(c)). = O4(1).

2 Precise characterization of the generated density

We are now in a position to detail our main technical findings, namely a sharp asymptotic character-
ization of the generated density p, obtained from the sampling process (7), governed by the DAE
Jo. w. v, @) trained with online SGD (@). Because it is challenging to describe a high-dimensional
probability distribution, we rather aim at characterizing low-dimensional projections thereof. For-
mally, let us fix a reference space & C R? with finite dimensionality R = ©4(1), and let F € R¥*E
be a matrix whose columns form an orthonormal basis of £. We aim at an sharp characterization of
the law I1g () of the projection E'T X; of a generated sample X; ~ 5, (t). In words, the subspace
& corresponds to an observation space of interest, chosen by the statistician. Natural choices consists
in electing a subspace where the target density exhibits non-trivial structure, with a view to probing
how well it is reproduced at the level of the generated density — for example, the space spanned by
the directions of larger variance of the target density p, or the space spanned by the latent manifold

span({p(c)}e)-

The derivation of this characterization proceeds in two steps. First, we derive a sharp asymptotic
characterization of the high-dimensional training dynamics induced by SGD (@). More precisely, we
describe the evolution of a set of low-dimensional summary statistics of the weights w over training
time in terms of a collection of limiting ODEs. These summary statistics encode all the geometric
information on w necessary to reach, in a second step, a sharp asymptotic characterization of the
generative SDE () in terms of low-dimensional processes. Finally, this characterization yields a
sharp description of II¢ 4, (¢) as a corollary.

2.1 Analysis of the learning

What weights are learned at the end of the training process (), and how do they correlate with
the main structural components of the target density, such as the centroids and directions of higher
variance ? Answering this question is instrumental to subsequently build an understanding of how,
during the generative process, the weight matrix shapes the generated density and allows to reproduce



the overall structure of the target density. This is the goal of our first result. On a technical level,
it shows that the evolution under the SGD dynamics (@) of a set of summary statistics of the weights
w of the DAE (3)) is asymptotically described by a collection of deterministic ODEs. These summary
statistics importantly quantify the correlation of the trained DAE weights with the key geometric
features of the target density.

Result 2.1. (SGD dynamics) Let T > 0 denote the training time, and w, be the weight matrix
obtained from the stochastic SGD dynamics (@) from an initialization wg. The summary statistics
Q, eR™".Q, :RF - R™" G, e R"*E M, : R* — R" defined as
T T T T
W, Wy w, L(c)w, w, E w, p(c)
Q= — ) (c) = —T—"—, Gr=—"=, M:(c) = — ’ 9
Qe = 5 =" o

asymptotically concentrate in probability to the solutions at time 9 = T of a system of coupled,

finite-dimensional, deterministic ODEs

d d d d

9= Fo(Oy), 290 = Fq(Oy), 2500 = Fe(Oy), oMo = Fr(Oy), (10
using the shorthand Oy = (Qy,Qy, Gy, My, by) for more compact notation, although not all
functions depend on the totality of the arguments in the collection Oy. Similarly, the time encoding
weights v, converge to the solution of an ODE 4/asvy = F,(Oy). The expression for the update
Sunctions Fg q,G,m,v IS expounded in Appendix@ Finally, the value of the skip connection b, after
training from an initialization by is given by the compact closed-form expression

AR, [5;] — (AE,[B2]+E¢[a?]) —(AE[B2)+E[a?])
b, — 1- BB T 4 g, B+ Eod]) T 11
E e L J #boe o

where we denoted A the average covariance eigenvalue A = [ dr(c) [ dv.(w)w.

The derivation of Result which we detail
in Appendix [A] follows the ideas of the seminal
work of [61,62]], and is very close in spirit to
the analysis of [56] for a related model, in the
context of data reconstruction. It leverages the
observation that in the high-dimensional limit,

the SGD steps (@) self-average, and can be cap- 0251

tured by a set of deterministic differential equa- 0.00] & ot

tions. These theoretical predictions accurately Sozs] N o)

capture the dynamics observed in numerical ex- sl N o

periments, as illustrated in Fig.[T} Finally, we sl — b

detail for illustration in Appendix [A]the particu- R T T S S B

lar case of a linear DAE, for which the limiting v

ODEs take simple, compact forms. Figure 1: Evolution of the summary statistics

The ODEs (T0) capture the evolution of M-, QT and of the. skip cpnnection strength b, as a
the low-dimensional summary statistics function of the training time 7, for 0 = tanh, r =
Q,Q,G,M,P,T, which subsume various 2,0t = 0,o¢ =1—1¢,5 =1,G :.{1/2}: The
geometric characteristics of the weight matrix target density is a trimodal Gaussian mixture

w., over the SGD dynamics (@). Most notably, £ = /3N (u1, Ia) +1/3N (p2, La) +1/3N (ps, La).
the statistic M (c) measures the alignment Solid lines: numerical experiments in dimension

between the weights w with the centroids ¢ = 1000. Dashed: theoretical characterization

(c) that constitute the manifold (8], and thus (T0) of Result[2.1}

measures how well the manifold structure is

identified and learned. In the simple example of

a Gaussian mixture target density, M (c) thus gives a quantitative sense of how well w identifies
and correlates with the different centroids, thereby learning the key structure of the density. The
statistic Q(c), on the other hand, gauges the alignment between the weights and the higher-variance
directions of the density at point c of the latent manifold. In the simple case of a unimodal target
density with a spiked covariance, ((c) hence quantifies how well the spike is learned. Overall, the
summary statistics appearing in Result [2.1]thus capture the correlation between the DAE weights w
and the key structural features of the target density (8), describing how well the latter are learned and
encoded into the DAE parameters. The next section investigates how this encoded structure manifests
during the generative transport, and allows in turn the reproduction of the structural elements in the
generated density.



2.2 Analysis of the transport

We are now in a position to leverage the summary statistics Q,, Q,, O, M., P, T characterized in
Result2.T]—which capture key geometric statistics of the weights w, of the DAE after training— to
analyze the generative SDE (T)). A crucial observation is that the SDE (T) is only non-linear in the
r—dimensional subspace W, = span(w?)’_, spanned by the columns of the weight matrix w,, and
is on the other hand linear in the d—r dimensional orthogonal subspace W--. The generative dynamics
(T) of a sample X; can accordingly be compactly described by the linear evolution of Y; = Hf;VT X
(where we denoted Hf;vT the projection in W:), and the more complicated but finite-dimensional
non-linear evolution of Z; = w] X:/vd € W,. This statement is formalized in the following result:

Result 2.2. (generative dynamics) Let X, be a stochastic process obeying the generative SDE (1))
from an initialization Xo ~ N (0,1,), and denote Y; = HﬁvT X and Zy = w] X./vd. Further define
the shorthands Ty = [; — &t o, Bt + €Ptfa2, AT = b1y + %ty — €t/a?, which depend on the
schedule functions «, B, € and on the skip connection strength after training b. Then Z; obeys the
low-dimensional SDE

d
7= A2+ T4Qr0 (Zy + peor) +V26.Q%dB,, (12)

from an initial condition Zy ~ N (0, Q.), with B a r—dimensional Wiener process. On the other
hand, Y, is independently Gaussian-distributed as

2 [ dsAT —2 [ dhA]
Y ~ N [ Opyee 0 1+2/e o e ds| I, | (13)
0
The SDE (12) and equation (13) fully describe the law of Xy in terms of low-dimensional quantities.

We have thus reached a fully asymptotic characterization of the evolution of a sample X transported
by the SDE (T). Qualitatively, the density /. (t) of X is shaped in the column-space W, of the weights
w, by the action of the DAE network (second term in (I2))), which acts as a drift term, while its scale
is controlled by the contraction/expansion term A7 (first term in (T12)), in which the skip connection
b, intervenes. In W=, 5. (¢) simply remains isotropic and Gaussian, with a time-varying variance
succinctly given by (13). We remind that, from Result[2.1] the weights w, encode information on the
key structural features of the target density p (§). The corresponding drift term I'; Q.0 (Z; + piv,) in
(T2)) intuitively pushes the generated density along those important directions, ensuring that they can
be approximately reproduced. This qualitative picture sheds light on the bias of the DAE-parametrized
generative model (). The DAE weights w identify and learn important features of the target density
from the dataset, allowing the model to implement at sampling time a non-trivial transport (I2) in the
corresponding space WV, to reproduce the main structural features of the target density. In the orthog-
onal subspace W+ on the other hand, the DAE is only able to rather crudely approximate the target by
an isotropic Gaussian distribution (T3)), leveraging its skip connection b to adjust the variance thereof.

2.3 Projected density

While Result fully characterizes the distribution of X, the description is set the space W,
which changes with the training time 7, rendering the result rather unwieldy. Ideally, we would
like to transfer the characterization to a 7— independent reference space F, in order to allow for an
easier comparison of the generated density at different training times — a comparison that will be
subsequently discussed in Section [3] and illustrated in Figs.[2]and [3}—. The desired technical result
is thus a characterization of distribution of the projection E'' X} of the generated sample X, in the
reference space £. We state this characterization in the following result.

Corollary 2.3. (Projected generated density) The law of the projection E™ X, of a sample X, in the
space of interest £ is given by

2 tdsA; -2 SdhAT
E'X,2GIQ 72, +N |0g,e { 1+2/e 4 "eds| (I —GTOrG) |, (14)
0

where the law of Z is characterized in Result[2.2)by the SDE (12)), and the summary statistics Q-, G~
are characterized in Result ij denotes the Moore-Penrose pseudo-inverse of Q..
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Figure 2: (Left) Evolution of the projected density Il¢ p, generated by a DAE (3) with » = 1 hidden
unit and o = tanh activation, trained on a bimodal Gaussian mixture, with = 0.2, A = 1.5, ¢; =
0,pt = 0,04 =1—1t,8; =t,G = {0.5}. The generative SDE (7)) was run up to ¢t = 0.9, and the
subspace £ is a plane containing the centroid of the target density. Different panels correspond to dif-
ferent training times 7. Blue contours: contour levels of the theoretical prediction of Corollary [2.3] for
the density I1¢p,. Colormap: numerical experiments in large but finite dimension d = 1000. Green
contours: contour levels of the target density p. (Right) Hellinger distance between the target and
generated densities, projected in the space spanned by the centroid, as a function of the training time 7.

Corollary allows to transfer the characterization of Result[2.2] set in a training time dependent
space W;, into a fixed, 7—independent subspace £. (I4) reveals that the generated density is given by
the sum of a non-trivial term G| Q7 Z;, which captures the key learned structure of the target density,
and a simple Gaussian term, which intuitively tries to approximate the remaining structural features
which were not learned and reproduced. Let us finally remind that the choice of £ is made by the
statistician. To give more concrete examples, in the following, when considering Gaussian mixture tar-
gets, a natural choice for £ is the space spanned by the cluster centroids. When dealing with unimodal
targets with non-trivial covariance, we will choose the space spanned by the principal components.

3 Evolution of the generated density over training time

The theoretical characterizations of Results and afford a complete characterization of
low-dimensional projections of the generated density p, as a function of the network architecture
and training time 7. They thereby provide a window to elucidate how the DAE architecture shapes
the generated density. Importantly, the present analysis also allows the study of the evolution of the
generated density over training time T, in addition to its evolution over sampling time ¢, which has tra-
ditionally been the focal point of past works, e.g. [11,[10,[17]]. In the next paragraphs, we discuss these
questions in the context of two examples, for a Gaussian mixture density and a real data distribution.

Example 1 — Gaussian mixture We give as a first example the case of a Gaussian mixture target
density p with 2 isotropic modes. We consider a generative model parametrized by a DAE (3) with
r = 1 hidden unit and ¢ = tanh activation. Fig. illustrates, for different training times 7, the
generated density p, projected in a two-dimensional space £ containing the cluster centroids. A
comparison between the theoretical predictions of Corollary [2.3](blue contour levels) and numerical
experiments in large but finite dimension d = 1000 (orange colormap) reveals a good agreement.
Over training, the model successfully learns the data structure, and produces a generated density p,
exhibiting the correct bimodal structure in the relevant direction. Correspondingly, the estimated
Hellinger distance between the generated and target densities in the subspace spanned by the cluster
centroids monotonically decreases over training (Fig.[2]right). This simple example, which echoes
the finding of e.g. [21]], illustrates how the diffusion model (3 can successfully learn to reproduce
simple target densities over training time. However, as mentioned above, the interest of deriving
a precise characterization such as Corollary primarily lies in the possibility to not only study
settings where the model successfully learns the target density, but also settings where it fails and is
biased — due to insufficient expressivity or data, or poor fit between the architecture and data structure.
The following example instantiates such a case. We provide another example for a 3-modal Gaussian
mixture, learned with a width r = 4, ReLU-activated DAE in Appendix B}
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Figure 3: (Left) Evolution of the density Ilgp, generated by a DAE (B) with » = 2 hidden units
and o0 = tanh activation, trained on a Gaussian density with the MNIST sevens covariance, with
n=02A=.784,¢, =p; = 0,00 =1 — t, 5 = t,G = {1/2}. The generative SDE (7) was run up
to ¢t = 0.98, and the subspace £ is spanned by principal components of the target density. Different
panels correspond to different training times 7. Blue contours: contour levels of the theoretical
prediction of Corollary [2.3|for the density p,. Colormap: numerical experiments. Green contours:
contour levels of the target density p. (Right) Samples from the generated density p.-, from a common
initialization Xy of the generative SDE (7), as a function of the training time 7.
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Example 2- MNIST In Fig.[3| a DAE-parametrized generative model with = 2 hidden units and
o = tanh activation is trained to generate a Gaussian distribution with covariance matching that of
MNIST sevens [39]]. The generated probability g, is represented in the principal two-dimensional
eigenspace & of the MNIST sevens distribution. In a similar fashion to the first example, the generated
density progressively adjusts to the shape of the target density (green and purple contours) over
training time, first stretching in one direction into a bimodal density (0 < 7 < 1.5), with each mode
being subsequently elongated (7 £ 1.8), approaching the variance of the target in the secondary
direction. This sequential emergence of directions of variance in the generated density has very visual
consequences at the level of the generated images. Fig.[3|shows samples from the generated density
p- for varying training times 7, transported from a common base sample Xy. For 0 $ 7 < 1.5,
the generated image gains more resolution and becomes less noisy, as the first principal direction is
learned. After 7 ~ 1.8, idiosyncratic features — such as the horizontal bar of the seven— emerge, as a
second direction is learned, signaling increased diversity.

While the structure of the generated density p, progressively adapts to that of the target p over training,
it retains a sizable discrepancy thereto — notably, the variance of p, is markedly smaller. This dramatic
reduction in variance betrays a detrimental bias in the model, which we more extensively explore
in the next and last section. For completeness, we report in Fig.[I0]in Appendix [D]an additional
experiment on the FashionMNIST [87]] dataset of clothing item images. The experiment again reveals
a good agreement between the theoretical predictions and simulations (conducted this time directly
on the original dataset, rather than a Gaussian approximation thereof), and a similar phenomenology.

4 Failure modes: mode(l) collapse

Mode collapse— The loss of variance in the modes of the generated density p, when learning
from the MNIST target distribution (Fig.[3) is reminiscent of the mode collapse phenomenon most
commonly observed in the context of generative adversarial networks [32] and score-based models
[24]], and analyzed for variational inference in [69]]. Mode collapse entails a loss in diversity in the
generated images. In the present case, mode collapse is in fact a consequence of the unfitness of the
architecture (@) for the target density at hand. To see this, first observe that the skip connection b, of
the DAE model (B) contributes to increase the variance of the generated density p, as it intervenes in
the linear dilatation term A7 of the generative transport (I2), see Result[2.2] In words, the stronger
the strength b.- of the skip connection, the more spread is the resulting generated density. However,
note from (TI)) that the skip connection b, becomes of the same order as the average eigenvalue
A at large training times 7. For real data distributions which tend to have a small number of large
eigenvalues, and a large tail of small eigenvalues, A is typically small, implying in turn a small b,
and small variance for the modes of .. Mode collapse causes a significant mismatch between the



Figure 4: (left) Target density p corresponding to a Gaussian density equipped with the covariance

of the distribution of MNIST sevens (middle) generated density Il¢ ﬁ(Tl) (right) second generation
density Il¢ [)(72) obtained by training the generative model (3) on the synthetic distribution [)(Tl).
Blue contours: contour levels of the theoretical prediction of Corollary 23] Colormap: numerical
experiments in large but finite dimension d = 1000. Green contours: contour levels of the target
density p. At each successive generations, the same model specifications 7 = 2.8,r = 2,0 =
tanh,n = 0.2, A\ = .784,¢; = p; = 0,0 = 1 —¢, 8y = t,G = {1/2} were employed. The generative
SDE:s ([7) were run up to ¢ = 0.98 at reach generation. Finally, the subspace £ is spanned by principal
components of the target density.

generated distribution p and the target distribution p. A possible remedy would be to fix the skip
connection strength b, instead of training it, ensuring it retains a sufficiently large value. We briefly
present additional numerical experiments in Appendix

Model collapse— This mismatch can be further aggravated when the biased synthetic data thus
generated is re-used to train another generative model, with successive generations of generated
densities p(1),r,, A(2),7,, --- becoming increasingly biased. This rapid degradation is an instantiation
of the model collapse phenomenon —described in [66] and analyzed in [91] for simple linear
single-step denoising models— can be opportunely analyzed for non-linear diffusion-based models
within the present theoretical framework. To see this, observe that training the generation g + 1 model
on data produced by the generation g model corresponds to adopting the density j,) -, generated by
the latter as the target distribution. Seasonably, at each generation ) -, further remains of the form
(8. and Results 2.1] 2.2] and 2.3] thus apply. This observation is formalized in the following remark.

Remark 4.1. (Successive generated densities) At each generation, py) 7, is again of the form @),
with k = 1, u(c) = c and

) B 2 [ dsAT —2 [dhAT N
= Hw(g)w Pig)ryr VeERT X(c)=e 0 1+ 2/6 0 €sds HW@,,g' (15)
0

In (13), HWQ,)TH Pg),ry» A0 are given by Results and evaluated for a target density
Plg—1),7y_, - We remind that W) .. denotes the column-space of the trained weights of the generation
g model.

In words, Remark [4.T] ensures that one can apply Results [2.1] 2.2] and 23] to iteratively reach a
characterization of p(y 1) 7,,, from that of p(g) - . Fig.E| illustrates the first two generations of
synthetic distributions p(1) 7., 0(2),r,,» When the initial target distribution p is given by the same
Gaussian approximation of MNIST sevens considered in Fig.[3] The mode collapse phenomenon
described in the previous subsection, and apparent at generation g = 1, gets aggravated upon
re-training. As a result, the density p(z) -, generated at g = 2 exhibits smaller even variance, and
is devoid of meaningful structure.

Conclusions

In this manuscript, we provide a precise and exhaustive theoretical characterization of the distribution
of the samples generated by a simple diffusion model. Considering a model parametrized by a shallow
DAE, in the limit of high dimensions, we derive a tight characterization of low-dimensional projec-
tions of the generated density, ascertaining in particular its evolution over training. Our results, which
also describe tasks with realistically structured target densities, capture how the architectural bias
can lead to mode collapse, and ultimately model collapse if the synthetic data is re-used for training.
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address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions are stated in the main text, and the detailed derivation of the
technical results is provided in the Appendices.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details are given in the Appendix, and the code used is
provided as supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in the supplementary material, and will be released on a
public online repository upon de-anonymization.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are provided in the Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental curves are for a single simulation. Its good match with the
theoretical prediction is a consequence of the concentration of metrics of interest in high
dimensions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The present manuscript is theoretical in nature, and all the experiments are
very small in scale and simply run on a personal laptop.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors reviewed the Code of Ethics, and the research conforms thereto.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: the present paper is theoretical and aims at advancing the field of machine
learning theory. There are no societal impact we feel needs to be discussed in particular.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The research poses no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Derivation of Result 2.1]

In this Appendix, we detail the derivation of the tight ODE description of the SGD training
dynamics (), as provided in Result[2.1] We sequentially examine the dynamics for the skip connection
b and the weight matrix w.

A.1 SGD dynamics of the skip connection

We first derive a closed-form expression for the evolution of the skip connection strength b (3] over
the SGD iterations. We recall that the latter read

by = b = =B [=2(1 = b3 G|+ 200 o -+O(VA)] (16)

keeping only leading order terms. Note that ll='I1*/a (resp. ll=5 11 /d) asymptotically concentrate to A
(resp. 1) in the limit d — oo. Therefore, the increment db = b, 1 — b, self-averages as

d
%db =E; [B:(1 — bB)A — baf]. (17)

The ODE gives in closed-form the evolution of the skip connection strength over the SGD
training (@), in the considered high-dimensional limit. Note that interestingly, while the training
algorithm is inherently stochastic, the randomness averages out in the high-dimensional limit, leading
the dynamics to concentrate to a deterministic limiting ODE.

A.2 SGD dynamics of the weight matrix
A.2.1 SGD update

‘We now turn to deriving a similar tight asymptotic characterization for the evolution of the weight
matrix w (3) under the SGD dynamics. Let us first write explicitly the SGD updates (@). Developing
the derivative, and dropping the time index p for readability, for 1 < v < r 1 < ¢ < d, the SGD
update of the weight matrix reads

21 2
dwiy = — g’ S Ed [o(w!, + vpe)o(wh +vspe)] wis + 7%1& [(1 = bB)a! — bayad)o(w!, + vypr)]
6=1

T

2 wi w
_ lEt ((thg + /thll) o(wf; + U(Spt) <6d’y> 0"(0\)3; + U7pt)]

vd =
2
+ \/—%Et [(atx? + Bex})((1 — bﬂt)/\}/ — bat)\g)ol(wfy + vypr)] — Z)\wm (18)

We introduced the shorthands

(=)

T,.1 T
)\1:’11)733 A 24

1T

g

2O
S

w! =) + Bl (19)

A.2.2 Expected increment

In the likeness of the settings studied by e.g. [611 162} 56], we expect the dynamics to asymptotically
self-average. Let us accordingly evaluate the expectation [E[dw;. ] over the running data sample 1:};0.
This can be compactly rewritten as

Eldw;,] = EE[E dw], (20)

with the expectation E. bearing over the manifold coordinate ¢ ~ 7 (8). Conditional on the manifold
coordinate c, the expectation [E¢ bears over the Gaussian random variable associated to the c—indexed
cluster in (8), distributed as NV (u(c), £(c)). We remind the reader that the covariances {3(c)}. are
assumed jointly diagonalizable. Without loss of generality, we place ourselves in the basis in which
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they are directly diagonal, and denote in the following by of the i—th eigenvalue of ¥(c). Taking the
expectation over (I8), the expected increment then reads

21) = e 2 :
- ;7 E E° [o(w!, + vype)o(wh + vspe) | wis + 7%(1 — bpt) E€ [m}a(wg + vypt)]
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21

The various coefficients A", Bt:¢, Ct¢, D¢ can be computed leveraging the fact that the data
components x}’o are weakly correlated with the local fields w, A%!, i.e. have ©4(1/vd) covariance.
Using the expansions for weakly correlated Gaussian variables reported e.g. in [57]] (Appendix B.1),
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we reach
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We introduced the summary statistics
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One also needs to introduce the further statistics
T
FE
G = %’ P =ETpu(c), (33)

where we remind that the columns of £ € R%*E constitue an orthonormal basis of the
R—dimensional subspace £ in which we aim to characterize the generated density. Finally, we
also used the shorthands:

ILE(%,8) = By, s [0 (w5 + vype)or(ws + vspy)), sis ~ N (BME, 5, 95 5))

(34)
I°(v) = B, [o(wy +03p1)], wy ~ N (B M5, Q55) (35)
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and
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Let us briefly summarize at this point the derivation so far. Starting from the SGD update on w,
we showed that the expected increment can be written solely in terms of a small number summary
statistics M, @), Q, ), T, in addition to the weight components themselves. Next, we aim at closing
these equations on the summary statistics, thus reaching a concise low-dimensional description of the
SGD dynamics.

A.2.3 Update equation for the summary statistics

The training dynamics of the DAE weights w are thus governed by set of finite-dimensional summary
statistics. To close the equations and reach a self-contained characterization, we now turn to deriving
the induced dynamics of the summary statistics. To that end, following e.g. [31], it proves convenient
to first introduce a new set of summary statistics densities. For any ¢ : R® — R —denoting a
joint sequence of eigenvalues {o(c)}—, let us assume the existence of the densities m,p : R* x
FRAR) — R,q,g : xF(R®,R) — Rand 0 : (R*)? x F(R*,R) — R so that the summary
statistics M ¢, Q, Q°, T, G, P(3I) can be decomposed as

we = [ dgme (o) (#4)
Q= / doq(0)oc, (45)
o~ | deato), (46)
ok — / dob™ (o), 47)
G- / dog(0), (48)
pPe = / dop®(e)s (49)

The following subsections focus on deriving the updates of the summary statistic densities
m(-), q(),0(-), g(-) inherited from the SGD dynamics of the weight matrix w T).

A.24 Overlap m*(.)
The expected increment for m* (o) can also be decomposed as

E[dm* (0)] = E.E. [E°dm}“(0)] , (50)
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A.2.5 Overlap g(+)

The expected SGD for g(o) can be derived along nearly identical lines. By the same token, for
1 <4 < R, the decomposition

Edgi(0)] = E:E. [E°dg;*(0)] (52)
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holds with
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yielding the increment of g(-) under the SGD dynamics.

A.2.6 Overlap ¢(-)

We now turn to the summary statistic ¢(o) (31). First note that

[dQ ZE |:U) E, [Ecdwt C] 1+ E, [Ecdwt C]w + Et y [Egdwt C(d ?/’C)T]

K2

=EE C[ECdQEf) (0)] + Er v Ec[E°dQfy (o). (54)

We have separated the linear term and the quadratic term. It follows that the density statistic ¢(-) can
be similarly decomposed as

E[dg(0)] = BiE[E°dqy(0)] + By v Ec[E°dqly) (o). (55)
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In the following, we sequentially examine the linear and quadratic terms. The expected increment for
the linear term dqé’lc) (+) can be read from (ZI)) as
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We now turn to the quadratic term dqz’;; (+). Keeping only leading order terms,
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We introduced the integrals
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‘We further denoted
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A.3 Update for v

Finally, we can ascertain the asymptotic evolution of the time encoding weights v. In the considered
limit, the update dv again concentrates. As above, let us decompose the expected increment as

E[dv,] = EE[E°dve], (69)

with

2 (& C (&
Bedvy = ==L 17 Qusll (1.0) = (L= BB, (1.7) + bau i, (v,7) + doy | (T0)
4
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A.4 Continuous time limit

Equations (31),(33),(56) and (57) provide the update equations for the summary statistic densities
m(-),g(+), q(-) under SGD steps (@), which take the form

d

%dm(@) = Fm(g,m(g), Q(g)7Ma Q7 Qa b)7

d

%dg = Fg(Q,m(Q), Q(Q)7 Ma Q) Q7 b)a

d

%dq: Fq(Qam(Q)7Q(Q)aMaQ7 va)a (71)

where the update functions F}, 4 , denote the right hand sides of (5T)),(53).(56) and (57), and we have
omitted the time step indices to ease the notations. From (@4), these updates translate directly at the
level of the summary statistics M, @), Q, G into

d
%dMC = FM (M, Q7 Q, b; U)Ca F]V[(')C = /Frn(ga m(@)a Q(Q)a ')Cdga
d
%dG = FG(M7 Q7 Qa b,?}), FG() = /Fg(g, m(@)a Q(Q)? )dQ,
d
%dQc = FQ(Ma Qa Q? b7 ,U)C7 FQ()C = / QCFq(Qa m(@)7 q(Q)7 )an
d
10 = FolM,Q. Q.0,0), Fa() = [ Fu(em(o)a(o), e
(72)
We remind that from (7)), the skip connection strength similarly obeys
d
2, =Fo(d) (73)

where the update function F}, corresponds to the right hand side of equation (I7). Similarly, from
(70), the time encoding weights obey

9 4o = F,(M,Q, Qb,v), (74)
2n

where F, corresponds to the right-hand side of (70). Now remark that in the asymptotic limit d — oo,
the coefficient ¢/2y tends to zero. Introducing the time variable ¢ = 27#/4, so that di} = 2n/d, the
discrete processes and are thus asymptotically described by the limiting ODEs

% = Fy(M,Q,Q,b,v),

% = Fo(M,Q, Q,b,v),

% = Fo(M,Q,Q,b,v),

% — Fy(b),

%ZEW@@@W )

Finally, the ODE for b, governing the dynamics of the skip connection strength b over the SGD
optimization dynamics, can be solved in closed-form as

AE:[8,] nm e 2 Cne e
b(¥) = 1— ( t[ﬁt]‘HEt[at])ﬁ b (A]Et[ﬁt]‘HEt[O‘t])ﬁ 76
)= SR+ Edeg | +ou -

where by designates the value of b at initialization. This completes the derivation of Result2.1] [
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Figure 5: Evolution of the summary statistics (31I)) M (left), Q (middle) and skip connection strength
b (right), characterizing the dynamics of the AE parameters (3)) under SGD dynamics {@). Parameters
o = tanh,r = 2,A = 0,7 = 0.2,G = {1/2} were used, and the target density p was taken to
be a Gaussian mixture with three isotropic clusters (see also Fig.[7]in the main text). The weight
vectors were initialized along the centroids of the target density, with norm 0.1, while the initial skip
connection strength is by = 0. Dashed lines: theoretical characterization of Result[2.1} Continuous
lines: numerical experiments in d = 1000, for a single run.
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Figure 6: Evolution of the summary statistics (31)) Q) (left), b (middle) and skip connection strength M
(right), characterizing the dynamics of the AE parameters (3) under SGD dynamics (@). Parameters
o = tanh,r = 2, A = 0.784,7 = 0.2,G = {1/2} were used; weights were initialized with random
independent Gaussian components and by = 0. Dotted continuous lines : numerical experiments for
a target density p given by the set of MNIST sevens. Continuous lines: numerical experiments for
a unimodal Gaussian target distribution with covariance matching that of the set of MNIST sevens.
Dashed lines: theoretical predictions of Result[2.T|for the latter Gaussian target density.

A.5 Numerical validation

We plot the theoretical predictions of Result [2.1] for the evolution of the summary statistics
M,Q, Q,G,b (3I) under the SGD dynamics (@) in Fig.[5 for a Gaussian mixture target density
p with three isotropic modes, learnt by an AE with » = 2 hidden units and tanh activation, using
learning rate 1 = 0.2 and weight decay A = 0. The centroids of the clusters were taken as +e;, es
for two orthonormal vectors e1, €3, and the columns of the weight matrix w were initialized with a
warm start as 0.1 x e 2. Finally, for simplicity, the expectation E; in (@) was chosen to bear over a
delta distribution around G = {1/2}, instead of the full integral over [0, 1]. Including more points in
the grid G was not found to significantly alter the qualitative aspect of the generated density. Fig.[3]
reveals an overall good agreement between the theoretical predictions of Result[2.1] (dashed lines) and
numerical experiments (solid lines), obtained by simulating the model in large but finite dimension

d = 1000.

Fig.[6] similarly contrasts numerical experiments for a target distribution corresponding to MNIST
images of sevens (dotted lines), a Gaussian target density with matching covariance (solid lines), and
the theoretical predictions of Result[2.T| for the latter. All experimental details are specified in the
caption. Although the agreement between the three curves is overall good, discrepancies appear, in
particular due to the rather low dimensionality d = 784.
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A.6 Extensions

We briefly describe, for completeness, how the analysis can be generalized to characterize the
learning of more complex DAE architectures. Namely, we discuss how the derivation can be adapted
to accommodate (a) untied weights and (b) time encodings.

Untying the weights — The analysis reported in the present appendix can be extended to untied
DAE architectures of the form

Fouw(@) =bx z+ %a (”\;g) , 77)
trained with online SGD
bt = b == 25 (6B 0 = fo e, (0l + Bzt 78)
wers =ty = = VLB [ = fo, 0, (sl + Bt = ngum (79
Vit = U = = NV B || — fo v (el + Beat)]|” — ngvﬂ- (80)

Such an extension, however, comes at the price of more cumbersome expressions, as the summary
statistics needs to be introduced for the two sets of weights u, v, in addition to cross-statistics
of the form v" £(c)v/d and »" v/a. We refer the interested reader to Appendix B of [56] where such a
derivation is detailed, in a closely related setting. Experimentally, in the probed settings, we did not
observe a significant effect of (un)tying the weights on the qualitative phenomenology discussed in
the main text.

Deeper architectures — This manuscript focuses on the simpler instance of DAE architecture
(3), namely a two-layer model with a skip connection. It is of interest to remark, however, that the
technical ideas employed in its analysis can be extended to study more intricate models, at the cost of
considerably heavier mathematical expression. For this reason, we present in this paragraph a model
of multi-layer DAE which we anticipate is amenable to similar analysis, and sketch the main ideas
underlying the latter; the detailed analysis, however, is left for future work.

Consider the depth-2L model f(s, u,v.}0c(z, () = hi, where the successive post-activations
{he}eeir are defined by ho =
utt T
hosr = b hy + Nz Or+1 <(\/%le> . (81)

In simple words, this multi-layer model simply results from the composition of multiple DAE layers
(B). We denote r, the width of layer ¢, so that u,, v, € RéxTe, We again consider the limit d — oo,
while rp = ©4(1) for all ¢ € [L]. We anticipate that the analysis of the online SGD training dynamics
trained with online SGD

n 2
bfl,+1 - bft ) <3bet xh — f{bﬁ,uﬂ,vﬁ}@E[L] (ol + Btﬂf’f)H ) ) (82)
£ L iz H M 2 A
fpr =y = = 1B |2 = Fog g gy sy (@0t + Bt =0T, (83)
2 A
vf;H — va =—nV By ||z — f{bﬁ,uﬂ,vﬁ,}zem (ot + Btac’f)H — N5V (84)

should once again be amenable to theoretical analysis, and shown to converge to a set of de-
terministic limiting ODEs, borrowing the same technical ideas as previously. We highlight
some of the differences in the computations. Massaging the update equations (82) reveals that
they depend as previously in on random variables of the form /\i’f = (u*) "' /Vd, )\11)’5 =
WO e VAN, = )T Va,N) = (v°)Ta®/vd, over which the integrals appearing in the
final expressions bear. The updates will also involve further summary statistics of the type
QUhl () = Ts(w fd, QU () = (wh)Ts(ewt fd, QU () = wh)TS(eut /a4, and
QUUbt = ()Tt Ja, QU = ()T ot fa, QUbE = (4£)T Y Ja, which will appear in the end
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result, and whose dynamics are tracked by a set of limiting ODEs. Importantly, we thus trade matrix
r X r summary statistics for tensors of size L x L X r x r, thus resulting in more cumbersome
equations. We leave for future work a thorough theoretical analysis of this model, and the study of
the effect of deeper architectures on the generated density.

Attention models — Transformer architectures [[74]] are also often used to parametrize diffusion
models. Consider d = Ld’ dimensional data x, divided in L patches z1, ...,z € R? and reshaped
into a sequence seq(z) € RY xd"Consider the folowing attention-based denoiser:

fuw(x) = softmax (seq(x)ww—rseq(;v)—r) seq(z), (85)

parametrized by w € R%*" trained on the denoising loss Eq|| f., (v + Brz1) — seq(z1)||%. Let us
further assume that all patches x, for £ € [L] are drawn from a generalized Gaussian mixture of the
form @), with the different latent variables c, allowed to be correlated across rows — thus reprising,
and slightly extending, the data model in [19]]. In the asymptotic limit d’ — oo, L,r = ©4 (1), this
simple model, close to that considered in [20]], and is expected to be once more amenable to analysis
using the same set of technical tools, in an approach analogous in spirit to that of [6]. Let us mention
that more complex (e.g. deep) architectures are also anticipated to be analyzable, leveraging similar
ideas to e.g. [[73].

We remark that, on a fundamental level, the anticipated analytical tractability of the above models
stems from their pertaining to the class of sequence multi-index models introduced in [19]. This
formalism allows for an unified analysis of this class of models. A study of online SGD on sequence
multi-index models was reported in full generality in the recent work of [51]], to which we refer the
curious reader. Finally, we note that while we assumed in this work finite-width networks r = ©,4(1),
the analysis can also in theory be extended to accommodate wider networks. We refer the interested
reader to [[75]] where such an extension is studied for two-layer feedforward networks, and leave this
direction for future work.

A7 7 — oo limit

The summary statistics describing the weights of the DAE (3) at convergence are captured by the
T — oo solutions of the ODEs of Result[2.1] The value of the skip connection b, at convergence
admits the simple closed-form expression

AE,[Bi]

b = RE,52] + Edlod]”

(86)

as a function of the schedule fonctions oy, 5;. Interestingly, the target density only enters this
expression through the effective variance A, which provides an intuitive notion of the spread of the
data density, without allowing a finer description of its structure — which is captured by the network
component of the DAE (3), rather than its skip connection. In contrast, the other summary statistics
Qoos Qoo, Moo, G at convergence obey a set of four coupled equations, which generically admit no
simple closed-form expression, aside from simple cases. For illustration, we detail in the following
subsection such a simple setting (Gaussian mixture target, linear network) where the equations at
convergence can be solved in closed-form.

A.8 Example : linear model, Gaussian mixture

The previous analysis provides a tight characterization of the training dynamics of the non-linear
DAE under the SGD dynamics @). For completeness and intuition, we conclude the present
appendix by expounding a special simple case where the limiting ODEs of Result[2.T|admit a compact,
closed-form expression, and consider the linear case o(x) = x,r = 1,p; = 0, when learning a
target binary Gaussian mixture with isotropic clusters p = 12N (u, I4) + 12N (—p, I4). We assume
the squared norm ||4||? asymptotically concentrates and denote by p its limiting value. Finally, we

consider the limit of vanishing learning rate n — 0. In this limit, the quadractic term qf’;)', which is of
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order ©(n?), can be neglected. The limiting ODEs simplify in this case to
d

oM = —Ee [BM + Q87 + af) + Q (a7 + B (1 +p)) = 2((1 = bB)Bi(p +1) — aid) + A M

%Q = —E/|2Q (BM? + Q(B7 +af)) =2 ((1 = bB)B(M? + Q) — fbQ) + AQ|.  (87)

The evolution of the skip connection b, on the other hand, remains unchanged from @ Let us now
seek a solution of at convergence, in the limit 9 — oo. It can be straightforwardly verified that,
Eq[Be]E¢ 0] A

BB T3] P 2

M=r9 ST R[4 p) o)
is a solution of at convergence. Note that the identity M = pQ, together with the definitions
M = w'u/vd, Q = w w/d4, implies that w lies entirely in span(u). In other words, the weights w of
the DAE recover perfectly the direction i along which the data distribution p exhibits non-trivial
structure.

(88)

Turning to the generative process, we aim at describing the generated density p in the one-dimensional
subspace £ = span(u), in which the original distribution p exhibits non-trivial structure. The SDE
describing the evolution of the projection of a sample in this subspace is for the considered
setting linear, and can be solved in closed form as
t
ds(AS°+T

z=200 "V g0, (89)
In the orthogonal subspace span ()=, the law of a sample is still given by an isotropic Gaussian, as
described by equation (T3) in Result[2.2] Therefore, the law of a sample X; remains Gaussian at all
times, with the variance in span(u) increasing over sampling time to adapt to — and approximate—
the structure of the target distribution p in this subspace. This simple linear case sheds light on the
workings of the DAE-parametrized diffusion models. Over training, the weights identify and learn
the relevant structural features of the target distribution. Subsequently, the learned weights drive the
generative process to reproduce the target structure in the identified subspace, while approximating
the density in the orthogonal space by an isotropic Gaussian.

B Derivation of Result[2.2]

In this section, we derive the tight characterization of Result [2.2]for the learnt generative transport
process (7).

B.1 Generative SDE

We remind the generative SDE, leveraged to generate samples from p(t) starting from Xy ~ N (0, I4):

dX . & I & €
Tt = <5t — 18+ Et;> Jor we o, (Xe) + (t - tg) Xt + V2edWy, (90)
t oy lo'h (ST e
with W, a Wiener process and ¢, the diffusion schedule. Introducing the shorthands
. « I
Lo=Bi— —B+e— o1
Qg (&%
A7 =Ty + 2L (92)
it (&%
the generative SDE can be written more compactly as
dXt - W+ U);_rXt
= AT X + Ftﬁa ( Nz + prvr | + V2. dWy. (93)

Importantly, note that the non-linear term o (-) acts on the projection of X in the space W, spanned
by the columns of the trained weights matrix w... Furthermore, its image also resides in V... Thus,
the challenging non-linear part of the transport only acts in a small finite-dimensional space, and
can be handled carefully in isolation. In contrast, the dynamics in the orthogonal space W+ is still
non-trivially high-dimensional, but simply linear and thus easily to analyzed. This motivates one to
examine in succession the variable Z; = w] X:/v/d and the projection Y; = Hf;vT X; of Xy in Wj‘
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B.2 Dynamicsin W,

Let us first ascertain the evolution of Z;, which tracks the evolution of a sample X, in the weight
space W;. It follows directly from (93)) that Z; obeys the r—dimensional SDE

d
%= A2+ 10Qr0 (Zy + prvr) + V2¢,Q'2dB;, (94)

with B, a r—dimensional Wiener process, and Q. the summary statistic sharply characterized in
Result[2.1] This recovers equation (I2) of Result[2.2]

B.3 Dynamics in W

In W, the transport induced by the SDE (93) is simply linear:

dY;
— =AY, + V26dH,, ©3)

with H; here a (d — r)—dimensional Wiener process. This SDE admits a compact closed-form
solution

t t i s
[ dsAT [dsAT — [dhAT,
Y, =eb Yy +ed / e b \2e,dWs. (96)
0
By It6 isometry, Y; is Gaussian with law

t

2 [ dsAT —2 [ dhA] N
Y~ N [ Opyr,e 0 1—1—2/6 0 esds| Iy, |, 97)
0
which recovers equation (I3). This completes the derivation of Result[2.2] O

B.4 Discretized sampling

As a final remark, let us note that the derivation presented in the present Appendix can be carried
out in completely unchanged fashion starting from any discretization of the generative SDE (T)). Let
to =0, t1,....,t7 € (0,1) and consider the Euler-Mayurama discretization of the stochastic process
fork € [0,T — 1]:

. & B, & €
X1 — X =tk — i) [(ﬂtk - szkﬁtk + Etkatzk) for i, 0, (Xi) + (O:“ - szk )} Xk
k 23 k tr
2, (trr1 — tr)k, (98)

starting from X;, ~ N(0,1;). In O8), & ~ N(0,1;) independently for each step k. Then the
following version of Result [2.2]holds:

Result B.1. (Discrete dynamics) Consider a discretization ty, ...,t7 € (0,1) and the discretized
sampling process (Xy.)ren,r] O8). Denote Yy, = Hf;vT Xy and Zy, = w] Xy /Vd, for a process Xy,

satisfying the generative process (Q8)) from an initialization Xy ~ N (0,1y). Then Z, follows the
low-dimensional stochastic process

Zir — Zi = (tepr — tw) [A], Ze + T, Q70 (Z1 + pevr)| + /260, (trr1 — ti) QG (99)

from an initial condition Zy ~ N (0, Q. ), with (j, ~ N(0,1,.) and E[(x,'] = Sri1,. On the other
hand, Yy, is independently Gaussian-distributed as

k=1 o k—2
_HO (1+(t7+1*tj)AZJ) + ZO 2et; (tj+1—t5)
Ji= Ji=

k—1

Yk NN(0W$,|:

I=j+1

(100)
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C Derivation of Corollary 2.3]

Result[2.2]already provides a tight asymptotic characterization of the law of a sample X, in terms
of its projection Z; (12)) in the weights space W, (characterized by a r—dimensional ODE) and
its Gaussian component Y; (I3) in the orthogonal space W.-. A weakness of this characterization,
however, lies in that it relies on a training-time dependent space V., with respect to which the
characterization is formulated. Intuitively, this space rotates and changes as the model is further
trained, making the result rather unwieldy. To palliate this shortcoming, one would rather select
a fixed, T—independent, reference subspace £ of finite dimension R = ©4(1), and transfer the
characterization of Result- 2.2]to this fixed subspace. Formally, this means ascertaining the law of
the projection of X; in &, from that of its projections in W, , W:-. This is made possible because
the overlap between the spaces WV, and £ is captured by the summary statistic G, characterized in
result 2.1} Formalizing this agenda is the object of the present Appendix.

Let us fix an orthonormal basis {ej t | of &, stacked vertically in the matrix £ € R?*%. We remind

that we aim at characterizing the law of ET X,. To that end, for any 1 < j < R, start from the
decomposition

e) Xy = (I, e;) T (Thw, Xy) + ¢ Ty, V3, (101)
where we decomposed X into its projections in W, , W:-. Note that, from Resultthe two terms

of this decomposition are independent. In the following, we sequentially ascertain the distribution of
each of the terms in the decomposition (T0T).

C.1 Law of (HWT ej)T (HWT Xt)

To compute (ITyy, e;) T (ITyy. X;), we first aim to decompose e, X; in a basis of W, Let us consider
the eigendecomposition of the summary statistic @, = w. w, /4 (characterized in Result[2.3) as

Q. =U,S, U . (102)

This means that B, = 1/va(S;")"/2Uw] forms a set of  orthonormal vectors (or a set of orthonor-
mal vectors plus zero vectors if Q. is rank deficient), which we will use as a basis. We denoted ij
the Moore-Penrose pseudo-inverse of S;. The components of the reference vectors E € R¥*% (with
columns {e;}) and X; in this basis are then given by

B.E = 7(5*)1/2UT w] E = (SH'"*uT Gt (103)

ﬁ

where Z; is characterized in Result[2.2] Then, very simply, the decomposition of X, in the reference
basis F restricted to W, reads

B.X; = —(SH"*uTw! X, = ($H)"*U] z,, (104)

(T, e;) " (M, X,) =€, B B. X, = G, Q} 7, (105)

C2 Lawof E'Ily;, Y,

In distribution, ETHWTY} inherits the Gaussianity of Y;, as established in Result It has mean
zero and covariance

2 [dsAT 2 tdsA;
e f "E'lly, E=e { E'(l;—- B! B,;)E
2ftdsA'sr
=e¢ 0 [Ir — G,OfG]]. (106)
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C3 Lawof ETX,

One is now in a position to ascertain the law of £ X,. Putting the above results together, in
distribution:

2 tdsAg
ETX,£G.0'Z, + N |Og.e { I, -G.ofGI] |, (107)

which recovers Corollary [2.3] O

D Additional experiments

D.1 Additional details on the numerical experiments

In this Appendix, we provide further specifications on the numerical experiments illustrated in Fig.[7}

[3land Fig.}@]

Generative process— In all the figures, the sampling was carried out by discretizing the interval
(0,1) in N steps t, = 1/n for k € [0, N], and running the discretized SDE (98) in experiments, and
the associated theoretical characterization of Results and[2.3|for the theoretical predictions, up to
a stopping time 0 < ¢y < 1. In Fig.[], N = 100,¢; = 0.95; in Fig.[§| N' = 100,¢; = 0.98 and in
Figs.?? and N = 50,ty = 0.98. Note that all choices for IV, ¢y are up to the experimentalist,
and captured by the theoretical characterizations. Generically, one needs to opt for t; < 1 due to the
DAE-parametrized SDE (/) being ill-defined at ¢ = 1, since cr; = 0. This is an artifact of the neural
network parametrization; the ground-truth SDE () is on the hand well-defined even at ¢ = 1.

Discretization of the manifold density 7— In the generic case where 7(-) (8] is not discrete, the
ODE updates (T0) still involve an integral over d(c), with ¢ spanning R”. For instance, in the setting
of Fig.}4} at generation g = 2, Kk = r = 2 and 7(c) = HWu)ﬁ(l) (c). The latter is however still
characterized in terms of a SDE @, and not in closed-form. As a first step, we thus generated 4000
samples from 7, using the theoretical characterization of Result[2.2] and approximated the density
using the scipy [78] implementation of Gaussian kernel density estimation (KDE), in order to access
a smooth estimation of w. The bandwidth was elected to be 1.5 times that determined using the
Silverman method [67]. To perform the integral with measure dr(c), we discretized 7 over a 10 x 10
grid, restricting the support to [—1.5,1.5] x [—2.5,2.5] where almost all of its mass was found to
lie. The relative weights of the 10 x 10 = 100 discretized points were then evaluated from the KDE
estimation, and overall normalization was finally enforced to ensure the relative weights sum to
1. Finally, this discretization was used in evaluating the theoretical characterization of Result

replacing the integrals over 7 by finite sums over the 100 points of the discretization. All results have
been observed to be rather robust with respect to the choice of discretization, range, and bandwidth.

Preprocessing of the MNIST images— Finally, we detail the procedure used to evaluate the
covariance of MNIST sevens used in Fig.[3] The total MNIST training set was used, retaining
only sevens. The data was vectorized (flattened), centered, and normalized by 300. The empirical
covariance was finally evaluated over the entire dataset, and used to generate the Gaussian target
density considered in Fig.[3]

Evaluation of the Hellinger distance— To estimate the Hellinger distance between p and p (see
Fig.[2] (right)), we first sample 5000 points from the trained diffusion model, project them in the
considered subspace £, and approximate the density using the scipy implementation of Gaussian
KDE. In the case of Fig. (right), we used £ = span(u), and used a 1000-points grid discretization
of the interval [—10, 10] for the purpose of the KDE. The Hellinger distance between p and the (KDE
of) p is then numerically estimated as

H(Itep.Tep) = [ dz [VTenG) ~ VT3] (108)

By the same token, the theoretical prediction of the Hellinger distance is obtained by sampling 5000
samples from the theoretical expression for p, as described in Result[2.3] and repeating the same
KDE procedure.
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Figure 7: Evolution of the projected density II¢p, generated by a DAE (3] with » = 4 hidden units
and 0 = ReLU activation, trained on a trimodal Gaussian mixture, with 7 = 0.2, A = 1.5,¢; =
0.1,,pr =0,a4 =1—1t,0, =t,G = {0.7}, from a warm start. The generative SDE (7) was run up
to t = 0.98, and the subspace £ is spanned by the centroids of the target density. Different panels
correspond to different training times 7. Blue contours: contour levels of the theoretical prediction of
Corollary [2.3|for the density II¢ 6. Colormap: numerical experiments in large but finite dimension
d = 1000. Green contours: contour levels of the target density p. Over training time, the four
branches of the generated density rotate to align with the clusters of the target density, with two
branches merging in the process.
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Figure 8: Density II¢j, generated by a DAE (3)) with » = 2 hidden units and o = tanh activation,
trained on a trimodal Gaussian mixture, withn = 0.2, A =1.5,¢ =0.1,p; =0, s, =1 —t, 5 =
t,G = {1/2}, 7 = 2.8. The generative SDE (7) was run up to ¢ = 0.98, and the subspace & is spanned
by the centroids of the target density. Blue contours: contour levels of the theoretical prediction of
Corollary [2.3|for the density II¢ 6. Colormap: numerical experiments in large but finite dimension
d = 1000. Green contours: contour levels of the target density p.

D.2 Additional examples

Trimodal Gaussian mixture —  For completeness, we conclude this Appendix by illustrating the
theoretical results[2.T]2.3]on an additional example, namely a trimodal Gaussian mixture density with
isotropic clusters.

We consider a generative model parametrized by a DAE (3) with » = 4 hidden units and ReLU
activation. Fig.[7illustrates, for different training times 7, the generated density /. projected in the
space &£ spanned by the cluster centroids of the target density. A comparison between the theoretical
predictions (blue contour levels) and numerical experiments in large but finite dimension d = 1000
(orange colormap) reveals a good agreement. Interestingly, the modes of the generated density .
rotate over training time to align with the modes of the target density p, with two modes merging
in the process. The resulting density p, at large training time 7 exhibits a similar geometry to the
target density p, without however perfectly reproducing it — a sign of the architectural bias due to the
limited expressivity of the model (3)), which cannot perfectly generate the target distribution.

Perhaps unsurprisingly, this bias furthermore strongly depends on the architecture of the DAE. Fig.[§]
represents the density generated by a DAE with » = 2 hidden units and tanh activation, for the
same target density p, with all parameters otherwise unchanged, revealing a very different geometry
compared to the ReLU network. In particular, the model fails to generate a trimodal density, with
four modes emerging instead. This instance of architectural bias can be easily rationalized. Observe
indeed that from equation (T2)) of Result (2:2)), for odd activations such as o = tanh, the transport
process is equivariant with respect to the transformation X — —X. In other words, the generated
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Figure 9: Evolution of the projected density 1l¢p, generated by a DAE (3) with r = 2 hidden units
and 0 = tanh activation, trained on a trimodal Gaussian mixture, with n = 0.5, A = 0.1,¢; =
0.0,,p; = cos(mt),ap =1 —t, 6, =t,G = {0.2,0.4,0.6, 0.8}, from a random initialization. For
two unit vectors eq, ea, the target density is the mixture p = 12N (—3eq, 1) + /6N (3e1, I4) +
L3N (—3eq, I). The generative SDE (7) was run up to ¢ = 0.9, and the subspace & is spanned by
e1, eo. Different panels correspond to different training times 7. Blue contours: contour levels of the
theoretical prediction of Corollary|2.3|for the density II¢ 5. Colormap: numerical experiments in
large but finite dimension d = 1000.

density p, then necessarily exhibits a symmetry with respect to inversions around the origin —thus
forbidding the existence of an odd number of modes. This provides a particularly simple yet telling
example of how the choice of architecture can strongly constrain the geometry of the generated
densities.

Class imbalance — The above example concerns a balanced Gaussian mixture, with all three
clusters sharing equal relative probability 1/3. One may naturally wonder whether the model can
also adapt to class imbalance. Fig.[J]is set for the same target density as Fig.[8] with the difference
that clusters now have probabilities 1/2, 1/3, 1 /6. While the generated density still presents a spurious
mode (see discussion above), it correctly reproduces the clusters, and correctly gives higher mass to
the most probable clusters.

Fashion MNIST — We finally provide another example on a real dataset, namely FashionMNIST
[87]. This dataset corresponds to 28 x 28 gray-scale pictures of clothing items; for simplicity, we
only retain images of t-shirts (class 0) and dresses (class 3). We plot in Fig.[I0]the density produced
by a model parametrized by a » = 2 DAE, alongside the target density. The blue curves on the other
hand represent theoretical predictions for a target density corresponding to a single Gaussian whose
covariance is given by the empirical covariance of the original dataset. Importantly, in contrast to
the MNIST experiment illustrated in Fig.[3]in the main text, the numerical experiment were directly
conducted on the original dataset, rather than a Gaussian approximation thereof. Furthermore, two
classes were kept, instead of a single one in Fig.[3] Fig.[I0]shows that the theoretical prediction still
reasonably captures the shape of the generated density, and notably once more exhibits a visible
reduction in variance compared to the target density.

D.3 The effect of time encoding

We conclude this appendix by discussing the effect of including the time encoding p; through its
associated set of weights v in the DAE model (3)). For the binary target mixture described in the main
text (see Fig.[2), we plot in Fig.[2.T| the evolution of the summary statistics M, Q of Result[2.T|over
training time, alongside that of the skip connection strength b and encoding weights v. The two plots
correspond to a model with no time encoding (i.e. p; = 0) and a model endowed with a sinusoidal
time encoding p; = cos(wt). As can be observed, the introduction of the time encoding has a very
small effect, and the curves are left sensibly unchanged. The generated densities, illustrated in Fig.[T2]
are also strongly similar. A more quantitative viewpoint is displayed in Fig.[I3] which shows how the
introduction of a time encoding yields a slightly lower, but overall very similar, Hellinger distance
between target and generated densities at large training times. These observations temptingly suggest
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Figure 10: (Evolution of the density II¢p, generated by a DAE (3) with » = 2 hidden units and
o = tanh activation, trained on a the original FashionMNIST [87] dataset, with n = 0.2, A =
84,6, = py = 0,04 = 1 —t,8 = t,G = {1/2}, namely the same parameters as Fig.[J] The
generative SDE (7) was run up to ¢ = 0.98, and the subspace £ is spanned by principal components
of the target density. Different panels correspond to different training times 7. Blue contours:
contour levels of the theoretical prediction of Corollary [2.3for the density p,. Colormap: numerical
experiments on the FashionMNIST dataset. Green contours: contour levels of the target density p.

Figure 11: Evolution of the summary statistics M, Q. and of the skip connection strength b and
time encoding weights v, as a function of the training time 7, for 0 = tanh,r = 1,0, =1 — ¢, 5, =
t,G = {0.2,0.4,0.6,0.8}. The target density the same bimodal Gaussian mixture as Fig. Solid
lines: numerical experiments in dimension d = 1000. Dashed: theoretical characterization (I0)
of Result 2.1} Right: no time encoding p; = 0. Left: with a time encoding p, = cos(nt). The
introduction of a time encoding leaves the training dynamics sensibly unchanged.
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Figure 12: Evolution of the projected density Ilgp, generated by a DAE (@) with » = 1 hidden
unit and o = tanh activation, trained on a bimodal Gaussian mixture, with = 0.2, A = 1.5, ¢; =
0,00 =1—1t,8; =1t,G ={0.2,0.4,0.6,0.8}. The generative SDE (7) was run up to ¢ = 0.9, and
the subspace £ is a plane containing the centroid of the target density. Different panels correspond to
different training times 7. Blue contours: contour levels of the theoretical prediction of Corollary
[2.3]for the density II¢ p,. Colormap: numerical experiments in large but finite dimension d = 1000.
Green contours: contour levels of the target density p. Top: no time encoding p; = 0. Bottom: with
a time encoding p; = cos(mt).
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Figure 13: In the same setting as Fig.[T2] Hellinger distance between the target and generated
densities, projected in the space spanned by the centroid, as a function of the training time 7. Red:
model with a time encoding p; = cos(nt). Blue: without time encoding p; = 0.
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Figure 14: (Evolution of the density II¢p, generated by a DAE (3) with » = 2 hidden units
and ¢ = tanh activation, trained on 5000 samples of a Gaussian distribution with covariance
mathching that of MNIST sevens (see also Fig.E[), withn = 0.2, = .784,¢, = p, = 0,G =
{0,1/7,2/7,3/7,4/7,5/7,6/7}. The generative SDE (7) was run up to ¢ = 0.98, and the subspace
£ is spanned by principal components of the target density. (left) oy = 1 — ¢, 8; = t (middle)
a; = cos(wt*/2), By = sin(=t*/2) (right) oy = 1 — ¢, 3, = t and the skip connection strength is
untrained and fixed at b = 0.75. Colormap: numerical experiments. Green contours: contour levels
of the target density p.

that, in all probed settings, for this simple model, the inclusion of a time encoding has an overall
small effect on the qualitative behavior of the considered model.

D.4 Influence of the schedule and skip connection on the generated density

In the main text, we described how the limited expressivity of the considered DAE architecture
could be conducive to a phenomenon akin to mode collapse, where the generated density displays a
largely reduced variance, when compared to the target density. This failure mode could in turn lead
to model collapse, namely the rapid degradation of the successive generated densities when samples
produced by the model are re-used for training. In this subsection of Appendix D] we briefly mention
some parameters of the problem that qualitatively influence the shape of the generated density, and
may influence the mode collapse phenomenon. Fig.[T4] reprises the experiment on the Gaussian
approximation of MNIST sevens of Fig.[3] (reminded on the leftmost panel). In the middle panel,
with all other parameters otherwise unchanged, the interpolation schedule is changed from the linear
schedule oy = 1 —t, 3; = t to a more intricate cosine schedule oy = cos(rt*/2), 3; = sin(rt*/2).
This change of schedule is accompanied by a visible shift in the structure of the generated density
when all other parameters are kept fixed. Notably, the latter displays a less pronounced multimodal
structure. In the rightmost panel, for the linear schedule, we illustrate an experiment where the
skip connection is kept fixed at b = 0.75 and left untrained. Visibly, the generated density sees its
variance increase. Qualitatively, a higher value of b translates into a density with larger spread. These
preliminary experiments hint at the role of many of the parameters of the problem in shaping the
generated density. A precise and quantitative description of such effects warrants further theoretical
and empirical studies, and we leave such questions for future work.
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