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Abstract

Labor economists regularly analyze employment data by fitting predictive models to small,
carefully constructed longitudinal survey datasets. Although modern machine learning
methods offer promise for such problems, these survey datasets are too small to take advan-
tage of them. In recent years large datasets of online resumes have also become available,
providing data about the career trajectories of millions of individuals. However, standard
econometric models cannot take advantage of their scale or incorporate them into the anal-
ysis of survey data. To this end we develop CAREER, a transformer-based model that uses
transfer learning to learn representations of job sequences. CAREER is first fit to large,
passively-collected resume data and then fine-tuned to smaller, better-curated datasets for
economic inferences. We fit CAREER to a dataset of 24 million job sequences from resumes,
and adjust its representations on longitudinal survey datasets. We find that CAREER forms
accurate predictions of job sequences, achieving state-of-the-art predictive performance on
three widely-used economics datasets. We further find that CAREER can be used to form
good predictions of other downstream variables. For example, incorporating CAREER into
a wage model provides better predictions than the econometric models currently in use.

1 Introduction

In labor economics, many analyses rely on models for predicting an individual’s future occupations. These
models are crucial for estimating important economic quantities, such as gender or racial differences in
unemployment (Hall, 1972; Fairlie & Sundstrom, 1999); they underpin causal analyses and decompositions
that rely on simulating counterfactual occupations for individuals (Brown et al., 1980; Schubert et al., 2021);
and they also inform policy, by forecasting occupations with rising or declining market shares.

In this paper we develop a novel representation-learning method—a transformer adapted for modeling jobs—
for building such predictive models of occupation. Our model is first fit to large-scale, passively-collected
resume data and then fine-tuned to more curated economics datasets, which are carefully collected for
unbiased generalization to the larger population. The representation it learns is effective both for predicting
job trajectories and for conditioning in downstream economic analyses.

In the past, labor-economics analyses only involved fitting predictive models to small datasets, specifically
longitudinal surveys that follow a cohort of individuals during their working career (Panel Study of Income
Dynamics, 2021; Bureau of Labor Statistics, 2019a). Such surveys have been carefully collected to represent
national demographics, ensuring that the economic analyses can generalize, but they are also very small,
usually containing only thousands of workers. As a consequence, prior models of occupation trajectories
have been based on very simple sequential assumptions, such as where a worker’s next occupation depends
only on their most recent occupation (Hall, 1972) or a few summary statistics about their past (Blau &
Riphahn, 1999).

In recent years, however, much larger datasets of online resumes have also become available. These datasets
contain the occupation histories of millions of individuals, potentially revealing complex information and
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patterns about career trajectories. But, while one might hope these datasets can improve our economic
analyses, there are fundamental difficulties to using them. First, they are passively collected and likely
represent a biased sample of the population. Second, they are noisy, since the occupation sequences in
the data are derived from text analysis of raw resumes. Finally, they generally omit important economic
variables such as demographics and wage, which are essential for the kinds of quantities that economists
would like to estimate.

To overcome these challenges, we develop CAREER, a neural sequence model of occupation trajectories.
CAREER is designed to leverage large-scale resume data to learn an initial representation of job history
that is then fine-tuned to smaller and better-curated survey data for economic prediction. Its architecture is
based on the transformer language model (Vaswani et al., 2017), for which transfer learning has proven to be
an effective paradigm for many NLP tasks (Devlin et al., 2019; Lewis et al., 2019). CAREER extends this
transformer-based transfer learning approach to modeling sequences of occupations, rather than text. The
modifications we make to the transformer’s architecture to model occupations are straightforward yet crucial
to the success of the method. We will show that CAREER’s representations provide effective predictions of
occupations on survey datasets used for economic analysis, and can be used as inputs to economic models
for other downstream applications.

To study this model empirically, we pretrain CAREER on a dataset of 24 million passively-collected resumes.
We then fine-tune CAREER’s representations of job sequences to make predictions on three widely-used
economic datasets: the National Longitudinal Survey of Youth 1979 (NLSY79), another cohort from the
same survey (NLSY97), and the Panel Study of Income Dynamics (PSID). In contrast to resume data,
these well-curated datasets are representative of the larger population. It is with these survey datasets
that economists make inferences, ensuring their analyses generalize. In this study, we find that CAREER
outperforms standard econometric models for predicting and forecasting occupations, achieving state-of-the-
art performance on the three widely-used survey datasets.

We further find that CAREER can be used to form good predictions of other downstream variables; incor-
porating CAREER into a wage model provides better predictions than the econometric models currently in
use. We release code so that practitioners can train CAREER for their own problems.

In summary, we demonstrate that CAREER can leverage large-scale resume data to make accurate predic-
tions on important datasets from economics. Thus CAREER ties together economic models for understand-
ing career trajectories with transformer-based methods for transfer learning. (See Section 3 for details of
related work.) A flexible predictive model like CAREER expands the scope of analyses that can be performed
by economists and policy-makers.

2 CAREER

Given an individual’s career history, what is the probability distribution of their occupation in the next
timestep? We go over a class of models for predicting occupations before introducing CAREER, one such
model based on transformers and transfer learning.

2.1 Occupation Models

Consider an individual worker. This person’s career can be defined as a series of timesteps. Here, we use
a timestep of one year. At each timestep, this individual works in a job: it could be the same job as the
previous timestep, or a different job. (Note we use the terms “occupation” and “job” synonymously.) We
consider “unemployed” and “out-of-labor-force” to be special types of jobs.

Define an occupation model to be a probability distribution over sequences of jobs. An occupation model
predicts a worker’s job at each timestep as a function of all previous jobs and other observed characteristics
of the worker.

More formally, define an individual’s career to be a sequence (y1, . . . , yT ), where each yt ∈ {1, . . . , J} indexes
one of J occupations at time t. Occupations are categorical; one example of a sequence could be (“cashier”,
“salesperson”, ... , “sales manager”). At each timestep, an individual is also associated with C observed
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covariates xt = {xtc}C
c=1. Covariates are also categorical, with xtc ∈ {1, . . . , Nc}. For example, if c corre-

sponds to the most recent educational degree, xtc could be “high school diploma” or “bachelors”, and Nc is
the number of types of educational degrees.1 Define yt = (y1, . . . , yt) to index all jobs that have occurred
up to time t, with the analogous definition for xt.

At each timestep, an occupation model predicts an individual’s job in the next timestep, p(yt|yt−1,xt).
This distribution conditions on covariates from the same timestep because these are “pre-transition.” For
example, an individual’s most recent educational degree is available to the model as it predicts their next
job.

Note that an occupation model is a predictive rather than structural model. The model does not incorporate
unobserved characteristics, like skill, when making predictions. Instead, it implicitly marginalizes over these
unobserved variables, incorporating them into its predictive distribution.

2.2 Representation-Based Two-Stage Models

An occupation model’s predictions are governed by an individual’s career history; both whether an individual
changes jobs and the specific job they may transition to depend on current and previous jobs and covariates.

We consider a class of occupation models that make predictions by conditioning on a low-dimensional
representation of work history, ht(yt−1,xt) ∈ RD. This representation is assumed to be a sufficient statistic
of the past; ht(yt−1,xt) should contain the relevant observed information for predicting the next job.

Since individuals frequently stay in the same job between timesteps, we propose a class of models that make
predictions in two stages. These models first predict whether an individual changes jobs, after which they
predict the specific job to which an individual transitions. The representation is used in both stages.

In the first stage, the career representation ht(yt−1,xt) is used to predict whether an individual changes
jobs. Define the binary variable st to be 1 if a worker’s job at time t is different from that at time t− 1, and
0 otherwise. The first stage is modeled by

st|yt−1,xt ∼ Bernoulli (σ(η · ht(yt−1,xt))) , (1)

where σ(·) is the logistic function and η ∈ RD is a vector of coefficients.

If the model predicts that an individual will transition jobs, it only considers jobs that are different from
the individual’s most recent job. To formulate this prediction, it combines the career representation with a
vector of occupation-specific coefficients βj ∈ RD:

p(yt = j|yt−1,xt, st = 1) = exp{βj · ht(yt−1,xt)}∑
j′ 6=yt−1

exp{βj′ · ht(yt−1,xt)}
. (2)

Otherwise, the next job is deterministic:

p(yt = j|yt−1,xt, st = 0) = δj=yt−1 . (3)

Two-stage prediction improves the accuracy of occupation models. Moreover, many analyses of occupational
mobility focus on whether workers transition jobs rather than the specific job they transition to (Kambourov
& Manovskii, 2008). By separating the mechanism by which a worker either keeps or changes jobs (η) and the
specific job they may transition to (βj), two-stage models are more interpretable for studying occupational
change.

Equations 1 to 3 define a two-stage representation-based occupation model. In the next section, we introduce
CAREER, one such model based on transformers.

1Some covariates may not evolve over time. We encode them as time-varying without loss of generality.
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2.3 CAREER Model

We develop a two-stage representation-based occupation model called CAREER.2 This model uses a trans-
former to parameterize a representation of an individual’s history. This representation is pretrained on a
large resumes dataset and fine-tuned to make predictions on small survey datasets.

Transformers. A transformer is a sequence model that uses neural networks to learn representations of
discrete tokens (Vaswani et al., 2017). Transformers were originally developed for natural language processing
(NLP), to predict words in a sentence. Transformers are able to model complex dependencies between words,
and they are a critical component of modern NLP systems including language modeling (Radford et al., 2019)
and machine translation (Ott et al., 2018).

CAREER is an occupation model that uses a transformer to parameterize a low-dimensional representation
of careers. While transformers were developed to model sequences of words, CAREER uses a transformer
to model sequences of jobs. The transformer enables the model to represent complex career trajectories.

CAREER is similar to the transformers used in NLP, but with two modifications. First, as described in
Section 2.2, the model makes predictions in two stages, making it better-suited to model workers who
stay in the same job through consecutive timesteps. (In contrast, words seldom repeat.) Second, while
language models only condition on previous words, each career is also associated with covariates x that
may affect transition distributions (see Equation 2). We adapt the transformer to these two changes. These
modifications are straightforward, easy to implement, and substantially improve the model’s predictions.

Parameterization. CAREER’s computation graph is depicted in Figure 1. Note that in this section
we provide a simplified description of the ideas underlying the transformer. Appendix D contains a full
description of the model.

CAREER iteratively builds a representation of career history, ht(yt−1,xt) ∈ RD, using a stack of L layers.
Each layer applies a series of computations to the previous layer’s output to produce its own layer-specific
representation. The first layer’s representation, h(1)

t (yt−1,xt), considers only the most recent job and co-
variates. At each subsequent layer `, the transformer forms a representation h

(`)
t (yt−1,xt) by combining

the representation of the most recent job with those of preceding jobs. Representations become increasingly
complex at each layer, and the final layer’s representation, h(L)

t (yt−1,xt), is used to make predictions fol-
lowing Equations 1 to 3. We drop the explicit dependence on yt−1 and xt going forward, and instead denote
each layer’s representation as h(`)

t .

The first layer’s representation combines the previous job, the most recent covariates, and the position of
the job in the career. It first embeds each of these variables in D-dimensional space. Define an embedding
function for occupations, ey : [J ] → RD. Additionally, define a separate embedding function for each
covariate, {ec}C

c=1, with each ec : [Nc] → RD. Finally, define et : [T ] → RD to embed the position of the
sequence, where T denotes the number of possible sequence lengths. The first-layer representation h(1)

t sums
these embeddings:

h
(1)
t = ey(yt−1) +

∑
c ec(xtc) + et(t). (4)

For each subsequent layer `, the transformer combines representations of the most recent job with those of
the preceding jobs and passes them through a neural network:

π
(`)
t,t′ ∝ exp

{(
h

(`)
t

)>
W (`)h

(`)
t′

}
for all t′ ≤ t (5)

h̃
(`)
t = h

(`)
t +

∑t
t′=1 π

(`)
t,t′ ∗ h

(`)
t′ (6)

h
(`+1)
t = FFN(`)

(
h̃

(`)
t

)
, (7)

where W (`) ∈ RD×D is a model parameter and FFN(`) is a two-layer feedforward neural network specific to
layer `, with FFN(`) : RD → RD.

2CAREER is short for “Contextual Attention-based Representations of Employment Encoded from Resumes.”
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Figure 1: CAREER’s computation graph. CAREER parameterizes a low-dimensional representation of an
individual’s career history with a transformer, which it uses to predict the next job.

The weights {π(`)
t,t′} are referred to as attention weights, and they are determined by the career represen-

tations and W (`). The attention weights are non-negative and normalized to sum to 1. The matrix W (`)

can be interpreted as a similarity matrix; if W (`) is the identity matrix, occupations t and t′ that have
similar representations will have large attention weights, and thus t′ would contribute more to the weighted
average in Equation 6. Conversely, if W (`) is the negative identity matrix, occupations that have differing
representations will have large attention weights.3 The final computation of each layer involves passing
the intermediate representation h̃(`)

t through a neural network, which ensures that representations capture
complex nonlinear interactions.

The computations in Equations 5 to 7 are repeated for each of the L layers. The last layer’s representation
is used to predict the next job:

p(yt|yt−1,xt) = two-stage-softmax
(
h

(L)
t ; η, β

)
, (8)

where “two-stage-softmax” refers to the operation in Equations 1 to 3, parameterized by η and β.

All of CAREER’s parameters – including the embedding functions, similarity matrices, feed-forward neural
networks, and regression coefficients η and β – are estimated by maximizing the likelihood in Equation 8
with stochastic gradient descent (SGD), marginalizing out the latent variable st.

Transfer learning. Economists apply occupation models to survey datasets that have been carefully
collected to represent national demographics. In the United States, these datasets contain a small number
of individuals. While transformers have been successfully applied to large NLP datasets, they are prone to
overfitting on small datasets (Kaplan et al., 2020; Dosovitskiy et al., 2021; Variš & Bojar, 2021). As such,
CAREER may not learn useful representations solely from small survey datasets.

In recent years, however, much larger datasets of online resumes have also become available. Although
these passively-collected datasets provide job sequences of many more individuals, they are not used for
economic estimation for a few reasons. The occupation sequences from resumes are imputed from short
textual descriptions, a process that inevitably introduces more noise and errors than collecting data from
detailed questionnaires. Additionally, individuals may not accurately list their work experiences on resumes
(Wexler, 2006), and important economic variables relating to demographics and wage are not available.
Finally, these datasets are not constructed to ensure that they are representative of the general population.

3In practice, transformers use multiple attention weights to perform multi-headed attention (Appendix D).
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Between these two types of data is a tension. On the one hand, resume data is large-scale and contains
valuable information about employment patterns. On the other hand, survey datasets are carefully collected,
designed to help make economic inferences that are robust and generalizable.

Thus CAREER incorporates the patterns embedded in large-scale resume data into the analysis of survey
datasets. It does this through transfer learning: CAREER is first pretrained on a large dataset of resumes to
learn an initial representation of careers. When CAREER is then fit to a small survey dataset, parameters
are not initialized randomly; instead, they are initialized with the representations learned from resumes.
After initialization, all parameters are fine-tuned on the small dataset by optimizing the likelihood. Because
the objective function is non-convex, learned representations depend on their initial values. Initializing with
the pretrained representations ensures that the model does not need to re-learn representations on the small
dataset. Instead, it only adjusts representations to account for dataset differences.

This transfer learning approach takes inspiration from similar methods in NLP, such as BERT and the GPT
family of models (Devlin et al., 2019; Radford et al., 2018). These methods pretrain transformers on large
corpora, such as unpublished books or Wikipedia, and fine-tune them to make predictions on small datasets
such as movie reviews. Our approach is analogous. Although the resumes dataset may not be representative
or carefully curated, it contains many more job sequences than most survey datasets. This volume enables
CAREER to learn representations that transfer to survey datasets.

3 Related Work

Many economic analyses use log-linear models to predict jobs in survey datasets (Boskin, 1974; Schmidt
& Strauss, 1975). These models typically use small state spaces consisting of only a few occupation
categories. For example, some studies categorize occupations into broad skill groups (Keane & Wolpin,
1997; Cortes, 2016); unemployment analyses only consider employment status (employed, unemployed,
and out-of-labor-force) (Hall, 1972; Lauerova & Terrell, 2007); and researchers studying occupational
mobility only consider occupational change, a binary variable indicating whether an individual changes jobs
(Kambourov & Manovskii, 2008; Guvenen et al., 2020). Although transitions between occupations may
depend richly on history, many of these models condition on only the most recent job and a few manually
constructed summary statistics about history to make predictions (Hall, 1972; Blau & Riphahn, 1999). In
contrast to these methods, CAREER is nonlinear and conditions on every job in an individual’s history.
The model learns complex representations of careers without relying on manually constructed features.
Moreover, CAREER can effectively predict from among hundreds of occupations.

Recently, the proliferation of business networking platforms has resulted in the availability of large resume
datasets. Schubert et al. (2021) use a large resume dataset to construct a first-order Markov model of job tran-
sitions; CAREER, which conditions on all jobs in a history, makes more accurate predictions than a Markov
model. Models developed in the data mining community rely on resume-specific features such as stock prices
(Xu et al., 2018), worker skill (Ghosh et al., 2020), network information (Meng et al., 2019; Zhang et al., 2021),
and textual descriptions (He et al., 2021), and are not applicable to survey datasets, as is our goal in this pa-
per (other models reduce to a first-order Markov model without these features (Dave et al., 2018; Zhang et al.,
2020)). The most suitable model for survey datasets from this line of work is NEMO, an LSTM-based model
that is trained on large resume datasets (Li et al., 2017). Our experiments demonstrate that CAREER out-
performs NEMO and other models developed for resumes when they are adapted to model survey datasets.

Recent works in econometrics have applied machine learning methods to sequences of jobs and other discrete
data. Ruiz et al. (2020) develop a matrix factorization method called SHOPPER to model supermarket
basket data. We consider a baseline “bag-of-jobs” model similar to SHOPPER. Like the transformer-based
model, the bag-of-jobs model conditions on every job in an individual’s history, but it uses relatively simple
representations of careers. Our empirical studies demonstrate that CAREER learns complex representations
that are better at modeling job sequences. Rajkumar et al. (2021) build on SHOPPER and propose a
Bayesian factorization method for predicting job transitions. However, their method is focused on modeling
individual transitions, so it only conditions on the most recent job in an individual’s history. In our empirical
studies, we show that models like CAREER that condition on every job in an individual’s history form more
accurate predictions than Markov models.
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CAREER is based on a transformer, a successful model for representing sequences of words in natural
language processing (NLP). In econometrics, transformers have been applied to the text of job descriptions
to predict their salaries (Bana, 2021) or authenticity (Naudé et al., 2022); rather than modeling text, we
use transformers to model sequences of occupations. Transformers have also been applied successfully to
sequences other than text: images (Dosovitskiy et al., 2021), music (Huang et al., 2019), and molecular
chemistry (Schwaller et al., 2019). Inspired by their success in modeling a variety of complex discrete
sequential distributions, this paper adapts transformers to modeling sequences of jobs. Transformers are
especially adept at learning transferrable representations of text from large corpora (Radford et al., 2018;
Devlin et al., 2019). We show that CAREER learns representations of job sequences that can be transferred
from noisy resume datasets to smaller, well-curated administrative datasets.

Our paper also contributes to the growing field of transfer learning in economics. Most existing transfer
learning approaches in the economics literature have focused on fine-tuning existing models on image or text
data, where the effectiveness of transfer learning is better understood. For example, one existing line of
work has fine-tune pretrained convolutional neural networks on satellite images in order to predict economic
indicators (Price & Atkinson, 2022; Yeh et al., 2020; Persello & Kuffer, 2020), while another has fine-tuned
BERT on financial and economic text (Araci, 2019; Bana, 2021). Our work differs from these papers in that
we focus on a new domain (job sequences on survey data instead of images or text) and also identify a novel
pretraining corpus that helps with this task (large-scale, passively-collected resume data). By using transfer
learning to achieve state-of-the-art predictive performance on survey data, CAREER has the potential to
help make more accurate estimates of important economic quantities.

4 Empirical Studies

We assess CAREER’s ability to predict jobs and provide useful representations of careers. We pretrain
CAREER on a large dataset of resumes, and transfer these representations to small, commonly used survey
datasets. With the transferred representations, the model is better than econometric baselines at both
held-out prediction and forecasting. Additionally, we demonstrate that CAREER’s representations can be
incorporated into standard wage prediction models to make better predictions.

Resume pretraining. We pretrain CAREER on a large dataset of resumes collected by Zippia Inc., a
career planning company. This dataset contains resumes from 23.7 million working Americans. Each job is
encoded into one of 330 occupational codes, using the coding scheme of Autor & Dorn (2013). We transform
resumes into sequences of jobs by including an occupation’s code for each year in the resume. For years
with multiple jobs, we take the job the individual spent the most time in. We include three covariates:
the year each job in an individual’s career took place, along with the individual’s state of residence and
most recent educational degree. We denote missing covariates with a special token. See Appendix E for
an exploratory data analysis of the resume data. CAREER uses a 12-layer transformer with 5.6 million
parameters. Pretraining CAREER on the resumes data takes 18 hours on a single GPU.

Survey datasets. We transfer CAREER to three widely-used survey datasets: two cohorts from the
National Longitudinal Survey of Youth (NLSY79 and NLSY97) and the Panel Study of Income Dynamics
(PSID). These datasets have been carefully constructed to be representative of the general population, and
they are widely used by economists for estimating important quantities. NLSY79 is a longitudinal panel
survey following a cohort of Americans who were between 14 and 22 when the survey began in 1979, while
NLSY97 follows a different cohort of individuals who were between 12 and 17 when the survey began in
1997. PSID is a longitudinal survey following a sample of American families, with individuals added over
the years.

Compared to the resumes dataset, these survey datasets are small: we use slices of NLSY79, NLSY97, and
PSID that contain 12 thousand, 9 thousand, and 12 thousand individuals, respectively. The distribution of
job sequences in resumes differs in meaningful ways from those in the survey datasets; for example, manual
laborers are under-represented and college graduates are over-represented in resume data (see Appendix E
for more details). We pretrain CAREER on the large resumes dataset and fine-tune on the smaller survey
datasets. The fine-tuning process is efficient; although CAREER has 5.6 million parameters, fine-tuning on
one GPU takes 13 minutes on NLSY79, 7 minutes on NLSY97, and 23 minutes on PSID.
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PSID NLSY79 NLSY97

Markov regression (Hall, 1972) 18.97 ±0.10 15.03 ±0.03 20.81 ±0.02
NEMO (Li et al., 2017) 17.58 ±0.04 12.82 ±0.04 18.38 ±0.08
Job rep. learning (Dave et al., 2018) 17.23 ±0.16 14.71 ±0.02 16.83 ±0.03
Job2Vec (Zhang et al., 2020) 16.48 ±0.13 14.46 ±0.01 16.20 ±0.02
Bag-of-jobs (Ruiz et al., 2020) 16.21 ±0.08 13.09 ±0.03 16.20 ±0.01
CAREER (vanilla) 15.26 ±0.08 12.20 ±0.04 16.19 ±0.04
CAREER (two-stage) 14.79 ±0.04 12.00 ±0.00 15.22 ±0.03
CAREER (two-stage + pretrain) 13.88 ±0.01 11.32 ±0.00 14.15 ±0.03

Table 1: One-stage baselines

(a) Test perplexity on survey datasets. Results are averaged over three ran-
dom seeds. CAREER (vanilla) includes covariates but not two-stage pre-
diction or pretraining; CAREER (two-stage) adds two-stage prediction.

(b) CAREER’s scaling law on
NLSY79 as a function of
pretraining data volume.

Figure 2: Prediction results on longitudinal survey datasets and scaling law.

dictive models have lower perplexities. We train all models to convergence and use the checkpoint
with the best validation perplexity. See Appendix I for more experimental details.

Figure 2a compares the test-set perplexity of each model. With the transferred representations, CA-
REER makes the best predictions on all survey datasets, achieving state-of-the-art performance.
NEMO, which was designed to model large resume datasets, struggles to make good predictions
on these small survey datasets, performing on par with standard econometric baselines. Pretraining
is the biggest source of CAREER’s improvements. Although the resume data is noisy and differs
in many ways from the survey datasets used for economic prediction, CAREER learns useful rep-
resentations of work experiences that aid its predictive performance. In Appendix G we show that
modifying the baselines to incorporate two-stage prediction (Equations 1 to 3) improves their per-
formance, although CAREER still makes the best predictions across datasets. We include qualitative
analysis of CAREER’s predictions in Appendix D.

To assess how the volume of resumes used for pretraining affects CAREER’s predictions on survey
datasets, we downsample the resume dataset and transfer to survey datasets. The scaling law for
NLSY79 is depicted in Figure 2b. When there are less than 20,000 examples in the resume dataset,
pretraining CAREER does not offer any improvement. The relationship between pretraining volume
and fine-tuned perplexity follows a power law, similar to scaling laws in NLP (Kaplan et al., 2020).

We also assess CAREER’s ability to forecast future career trajectories. In contrast to predicting
held-out sequences, forecasting involves training models on all sequences before a specific year. To
predict future jobs for an individual, the fitted model is used to estimate job probabilities six years
into the future by sampling multi-year trajectories. This setting is useful for assessing a model’s
ability to make long-term predictions, especially as occupational trends change over time.

We evaluate CAREER’s forecasting abilities on NLSY97 and PSID. (These datasets are more valu-
able for forecasting than NLSY79, which follows a cohort that is near or past retirement age.) We
train models on all sequences (holding out 10% as a validation set), without including any obser-
vations after 2014. When pretraining CAREER on resumes, we also make sure to only include
examples up to 2014. Table 2 compares the forecasting performance of all models. CAREER makes
the best overall forecasts. CAREER has a significant advantage over baselines at making long-term
forecasts, yielding a 17% advantage over the best baseline for 6-year forecasts on NLSY97. Again,
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We compare CAREER to several baseline models: a second-order linear regression with covariates and
hand-constructed summary statistics about past employment (a common econometric model used to analyze
these survey datasets – see Section 3); a bag-of-jobs model inspired by SHOPPER (Ruiz et al., 2020)
that conditions on all jobs and covariates in a history but combines representations linearly; and several
baselines developed in the data-mining community for modeling worker profiles: NEMO (Li et al., 2017), job
representation learning (Dave et al., 2018), and Job2Vec (Zhang et al., 2020). As described in Section 3, the
baselines developed in the data-mining community for modeling worker profiles cannot be applied directly
to economic survey datasets and thus require modifications, described in detail in Appendix H. We also
compare to two additional versions of CAREER — one without pretraining or two-stage prediction, the
other only without two-stage prediction — to assess the sources of CAREER’s improvements. All models
use the covariates we included for resume pretraining, in addition to demographic covariates (which are
recorded for the survey datasets but are unavailable for resumes).

We divide all survey datasets into 70/10/20 train/validation/test splits, and train all models by optimizing
the log-likelihood with Adam (Kingma & Ba, 2015). We evaluate the predictive performance of each model
by computing held-out perplexity, a common metric in NLP for evaluating probabilistic sequence models.
The perplexity of a sequence model p on a sequence y1, . . . , yT is exp{− 1

T

∑T
t=1 log p(yt|yt−1,xt)}. It is a

monotonic transformation of log-likelihood; better predictive models have lower perplexities. We train all
models to convergence and use the checkpoint with the best validation perplexity. See Appendix H for more
experimental details.

Figure 2a compares the test-set perplexity of each model. With the transferred representations, CAREER
makes the best predictions on all survey datasets, achieving state-of-the-art performance. The baselines
developed in the data mining literature, which were designed to model large resume datasets while relying
on resume-specific features, struggle to make good predictions on these small survey datasets, performing
on par with standard econometric baselines. Pretraining is the biggest source of CAREER’s improvements.
Although the resume data is noisy and differs in many ways from the survey datasets used for economic
prediction, CAREER learns useful representations of work experiences that aid its predictive performance.
While two-stage prediction is a straightforward modification to the transformer’s architecture, requiring
only a few additional lines of code, it is crucial to CAREER’s success. In Appendix F we show that
modifying the baselines to incorporate two-stage prediction (Equations 1 to 3) improves their performance,
although CAREER still makes the best predictions across datasets. We include further qualitative analysis
of CAREER’s predictions in Appendix C.

To assess how the volume of resumes used for pretraining affects CAREER’s predictions on survey datasets,
we downsample the resume dataset and transfer to survey datasets. The scaling law for NLSY79 is depicted
in Figure 2b. When there are less than 20,000 examples in the resume dataset, pretraining CAREER does
not offer any improvement. The relationship between pretraining volume and fine-tuned perplexity follows
a power law, similar to scaling laws in NLP (Kaplan et al., 2020).
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NLSY97 PSID
Overall 2-Year 4-Year 6-Year Overall 2-Year 4-Year 6-Year

Markov regression 23.11 12.50 25.88 36.59 19.43 11.83 21.66 27.89
Bag-of-jobs 22.51 11.98 25.11 36.29 19.28 11.44 21.68 28.14
NEMO 25.26 12.59 28.35 43.01 18.58 11.08 20.67 27.29
CAREER 19.41 10.78 21.57 30.19 16.51 10.35 18.30 23.18

Table 1: Forecasting perplexity (lower is better) on NLSY97 and PSID. Results are averaged over three
random seeds.

1981 1990 1999 2007 2009 2011

Full specification from Blau & Kahn (2017a) 0.148 0.152 0.178 0.198 0.204 0.203
Full specification + CAREER 0.139 0.134 0.160 0.181 0.183 0.182

Table 2: Held-out mean square error for wage regressions (averaged over 10 splits).

We also assess CAREER’s ability to forecast future career trajectories. In contrast to predicting held-out
sequences, forecasting involves training models on all sequences before a specific year. To predict future jobs
for an individual, the fitted model is used to estimate job probabilities six years into the future by sampling
multi-year trajectories. This setting is useful for assessing a model’s ability to make long-term predictions,
especially as occupational trends change over time.

We evaluate CAREER’s forecasting abilities on NLSY97 and PSID. (These datasets are more valuable for
forecasting than NLSY79, which follows a cohort that is near or past retirement age.) We train models on
all sequences (holding out 10% as a validation set), without including any observations after 2014. When
pretraining CAREER on resumes, we also make sure to only include examples up to 2014. Table 1 compares
the forecasting performance of all models. CAREER makes the best overall forecasts. CAREER has a
significant advantage over baselines at making long-term forecasts, yielding a 17% advantage over the best
baseline for 6-year forecasts on NLSY97. Again, the baselines developed for resume data mining, which had
been developed to model much larger corpora, struggle to make good predictions on these smaller survey
datasets.

Using CAREER’s representations to predict wage. In addition to forming job predictions, CAREER
learns low-dimensional representations of job histories. These representations can be used as inputs to
economic models for downstream applications.

As an example of how CAREER’s representations can be incorporated into other economic models, we
use CAREER to predict wages. Economists build wage prediction models in order to estimate important
economic quantities, such as the adjusted gender wage gap. For example, to estimate this wage gap, Blau &
Kahn (2017a) regress an individual’s log-wage on observable characteristics such as education, demographics,
and current occupation for six different years on PSID. Rather than including the full, high-dimensional job-
history, the model summarizes an individual’s career with summary statistics such as full-time and part-time
years of experience (and their squares).

We incorporate CAREER’s representation into the wage regression by adding the fitted representation for
an individual’s job history, ĥi. For log-wage wi and observed covariates xi, we regress

wi ∼ α+ θ>xi + γ>ĥi, (9)

where α, θ, and γ are regression coefficients. We pretrain CAREER to predict jobs on resumes, and for each
year we fine-tune on job sequences of the cohort up to that year. For example, in the 1999 wage regression,
we fine-tune CAREER only on the sequences of jobs until 1999 and plug in the fixed representation to the
wage regression. We do not include any covariates (except year) when training CAREER. We run each wage
regression on 80% of the training data and evaluate mean-square error on the remaining 20% (averaging over
10 random splits).

9
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Table 2 shows that adding CAREER’s representations improves wage predictions for each year. Although
these representations are fine-tuned to predict jobs on a small dataset (each year contains less than 5,000
workers) and are not adjusted to account for wage, they contain information that is predictive of wage. By
summarizing complex career histories with a low-dimensional representation, CAREER provides represen-
tations that can improve downstream economic models, resulting in more accurate estimates of important
economic quantities.

5 Conclusion

We introduced CAREER, a method for representing job sequences from large-scale resume data and fine-
tuning them on smaller datasets of interest. We took inspiration from modern language modeling to develop
a transformer-based occupation model. We transferred the model from a large dataset of resumes to smaller
survey datasets in economics, where it achieved state-of-the-art performance for predicting and forecasting
career outcomes. We demonstrated that CAREER’s representations can be incorporated into wage prediction
models, outperforming standard econometric models.

One direction of future research is to incorporate CAREER’s representations of job history into methods for
estimating adjusted quantities, like wage gaps. Underlying these methods are models that predict economic
outcomes as a function of observed covariates. However, if relevant variables are omitted, the adjusted
estimates may be affected; e.g., excluding work experience from wage prediction may change the magnitude
of the estimated gap. In practice, economists include hand-designed summary statistics to overcome this
problem, such as in Blau & Kahn (2017a). CAREER provides a data-driven way to incorporate such
variables—its representations of job history could be incorporated into downstream prediction models and
lead to more accurate adjustments of economic quantities.

Broader Impact Statement

As discussed, passively-collected resume datasets are not curated to represent national demographics. Pre-
training CAREER on these datasets may result in representations that are affected by sampling bias. Al-
though these representations are fine-tuned on survey datasets that are carefully constructed to represent
national demographics, the biases from pretraining may propagate through fine-tuning (Ravfogel et al., 2020;
Jin et al., 2021). Moreover, even in representative datasets, models may form more accurate predictions for
majority groups due to data volume (Dwork et al., 2018). Thus, we encourage practitioners to audit noisy
resume data, re-weight samples as necessary (Kalton, 1983), and review accuracy within demographics before
using the model for downstream economic analysis.

Although resume datasets may contain personally identifiable information, all personally identifiable in-
formation had been removed before we were given access to the resume dataset we used for pretraining.
Additionally, none of the longitudinal survey datasets contain personally identifiable information.
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A Econometric Baselines

In this section, we describe baseline occupation models that economists have used to model jobs and other
discrete sequences.

Markov models and regression. A first-order Markov model assumes the job at each timestep depends
on only the previous job (Hall, 1972; Poterba & Summers, 1986). Without covariates, a Markov model takes
the form p(yt = j|yt−1) = p(yt = j|yt−1). The optimal transition probabilities reflect the overall frequencies
of individuals transitioning from occupation yt−1 to occupation j. In a second-order Markov model, the next
job depends on the previous two.

A multinomial logistic regression can be used to incorporate covariates:

p(yt = j|yt−1,xt) ∝ exp
{
β

(0)
j + β

(1)
j · yt−1 +

∑
c β

(c)
j · xtc

}
, (10)

where β(0)
j is an occupation-specific intercept and yt−1 and xtc denote J- and Nc-dimensional indicator

vectors, respectively. Equation 10 depends on history only through the most recent job, although the
covariates can also include hand-crafted summary statistics about the past, such as the duration of the most
recent job (McCall, 1990). This model is fit by maximizing the likelihood with gradient-based methods.

Bag-of-jobs. A weakness of the first-order Markov model is that it only uses the most recent job to make
predictions. However, one’s working history beyond the last job may inform future transitions (Blau &
Riphahn, 1999; Neal, 1999).

Another baseline we consider is a bag-of-jobs model, inspired by SHOPPER, a probabilistic model of consumer
choice (Ruiz et al., 2020). Unlike the Markov and regression models, the bag-of-jobs model conditions
on every job in an individual’s history. It does so by learning a low-dimensional representation of an
individual’s history. This model learns a unique embedding for each occupation, similar to a word embedding
(Bengio et al., 2003; Mikolov et al., 2013); unlike CAREER, which learns complicated nonlinear interactions
between jobs in a history, the bag-of-jobs model combines jobs into a single representation by averaging their
embeddings.

The bag-of-jobs model assumes that job transitions depend on two terms: a term that captures the effect
of the most recent job, and a term that captures the effect of all prior jobs. Accordingly, the model learns
two types of representations: an embedding αj ∈ RD of the most recent job j, and an embedding ρj′ ∈ RD

for prior jobs j′. To combine the representations for all prior jobs into a single term, the model averages
embeddings:

p(yt = j|yt−1) ∝ exp
{
β

(1)
j · αyt−1 + β

(2)
j ·

(
1

t−2
∑t−2

t′=1 ρyt′

)}
. (11)

Covariates can be added to the model analogously; for a single covariate, its most recent value is embedded
and summed with the average embeddings for its prior values. All parameters are estimated by maximizing
the likelihood in Equation 11 with SGD.

B Forecasting Resumes

We also perform the forecasting experiment on the large dataset of resumes. Each model is trained on resumes
before 2015. To predict occupations for individuals after 2015, a model samples 1,000 trajectories for each
individual, and averages probabilities to form a single prediction for each year. For more experimental
details, see Appendix H.

Table 3 depicts the forecasting results for the resumes dataset. Each fitted model is used to forecast occu-
pation probabilities for three years into the future. CAREER makes the best forecasts, both overall and for
each individual year.
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Overall 2015 2016 2017

Regression 20.71 7.78 27.97 40.85
Bag-of-Jobs 19.45 7.57 25.63 37.93
CAREER 17.37 7.07 23.06 32.11

Table 3: Forecasting perplexity (lower is better) for unseen years in the large resumes dataset. Each model
is trained on sequences before 2015 and makes forecasts three years into the future. The “overall” column
averages perplexities across all three forecasted years.

Job History Predicting

StudentAnimal 
Caretaker

Engineering 
Technician Student Biological 

TechnicianStudent

CAREER rationale

Out of Labor 
Force

Figure 3: An example of a held-out job sequence on PSID along with CAREER’s rationale. CAREER ranks
the true next job (biological technician) as the most likely possible transition for this individual; in contrast,
the regression and bag-of-jobs model rank it as 40th and 37th most likely, respectively. The rationale depicts
the jobs in the history that were sufficient for CAREER’s prediction.

C Qualitative Analysis

Rationalizing predictions. Figure 3 shows an example of a held-out career sequence from PSID. CAREER
is much likelier than a regression and bag-of-jobs baseline to predict this individual’s next job, biological
technician. To understand CAREER’s prediction, we show the model’s rationale, or the jobs in this individ-
ual’s history that are sufficient for explaining the model’s prediction. (We adapt the greedy rationalization
method from Vafa et al. (2021); refer to Appendix H for more details.) In this example, CAREER only needs
three previous jobs to predict biological technician: animal caretaker, engineering technician, and student.
The model can combine latent attributes of each job to predict the individual’s next job.

Representation similarity. To demonstrate the quality of the learned representations, we use CAREER’s
fine-tuned representations on NLSY97 to find pairs of individuals with the most similar career trajectories.
Specifically, we compute CAREEER’s representation ht(yt−1,xt) for each individual in NLSY97 who has
worked for four years. We then measure the similarity between all pairs by computing the cosine similarity
between representations. In order to depict meaningful matches, we only consider pairs of individuals with
no overlapping jobs in their histories (otherwise the model would find individuals with the exact same career
trajectories). Figure 5 depicts the career histories with the most similar CAREER representations. Although
none of these pairs have overlapping jobs, the model learns representations that can identify similar careers.

Predictive improvements. To assess the source of CAREER’s predictive improvement, we decompose
predictions into three categories: consecutive repeats (when the next job is the same as the previous year’s),
non-consecutive repeats (when the next job is different from the previous year’s, but is the same as one of
the prior jobs in the career), and new jobs. Table 4 shows the results on PSID. CAREER has an advantage
over baselines in all three categories, but the biggest improvement comes when predicting jobs that have
been repeated non-consecutively. This advantage makes sense: although consecutive repeated jobs are more
common in work trajectories, CAREER’s predictive advantage reveals that workers returning to jobs they
previously held in their careers are also common and should be incorporated into model predictions.

We also break down predictive advantage as a function of career length for NLSY79 (Figure 4). We find
that CAREER is not at an advantage when predicting an individual’s first job, which makes sense since
there is no additional job history to condition on. We find that for all other years of history, CAREER has a
predictive advantage over the econometric baselines. However, the size of this advantage is most pronounced
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Model Consecutive Repeat Non-Consecutive Repeat New Job

Markov regression (Hall, 1972) 1.92 29.59 115.7
NEMO (Li et al., 2017) 1.99 30.84 105.0
Job rep. learning (Dave et al., 2018) 1.91 48.72 115.1
Job2Vec (Zhang et al., 2020) 1.88 45.44 115.1
Bag-of-jobs (Ruiz et al., 2020) 1.90 35.55 112.9
CAREER 1.87 12.90 100.1

Table 4: Held-out perplexity for different transition types on PSID (lower is better). CAREER’s predictions
are best across all transition types, but it’s biggest improvements come for predicting jobs that repeat in a
career at non-consecutive timesteps..
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Figure 4: Held-out perplexity as a function of career length on NLSY79. CAREER has a predictive
advantage at all points of an individual’s career. The magnitude of this advantage is largest mid-career.

mid-career. For both CAREER and the baseline regression, it becomes easier to predict an individual’s next
job as their career progresses, partially because individuals are more likely to stay at the same job later
in their career rather than earlier. The countervailing effect is that, all else equal, CAREER’s predictive
advantage should be more pronounced when there are more jobs to condition on. Thus, there is a sweet spot
for CAREER’s advantage, between 5-10 years in an individual’s career.

D Transformer Details

In this section, we expand on the simplified description of transformers in Section 2.3 and describe CAREER
in full detail. Recall that the model estimates representations in L layers, h(1)

t (yt−1,xt), . . . , h(L)
t (yt−1,xt),

with each representation h(`)
t ∈ RD. The final representation h(L)

t (yt−1,xt) is used to represent careers. We
drop the explicit dependence on yt−1 and xt, and instead denote each representation as h(`)

t .

2001: Cashier
2002: Secretary
2003: Secretary
2004: Secretary

2002: Janitor
2003: Food prep worker
2004: Food service worker
2006: Food service worker

2002: Retail salesperson
2003: Material handler
2004: Laundry worker
2005: Cook

2001: Retail salesperson
2002: Receptionist
2003: Receptionist
2004: Receptionist

2001: Teacher’s aide
2002: Teacher’s aide
2003: Teacher’s aide
2004: Teacher’s aide

2003: Material handler
2004: Material handler
2005: Material handler
2006: Material handler

2003: Shipping clerk
2004: Shipping clerk
2005: Shipping clerk
2006: Shipping clerk

2001: Child care worker
2002: Child care worker
2003: Child care worker
2004: Child care worker

0.957

0.956

0.954

0.952

Figure 5: The work experiences with the most similar CAREER representations (measured with cosine
similarity) for individuals with no overlapping jobs in NLSY97.
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The first transformer layer combines the previous occupation, the most recent covariates, and the position
of the occupation in the career. It first embeds each of these variables in D-dimensional space. Define an
embedding function for occupations, ey : [J ]→ RD. Additionally, define a separate embedding function for
each covariate, {ec}C

c=1, with each ec : [Nc] → RD. Finally, define et : [T ] → RD to embed the position of
the sequence, where T denotes the number of possible sequence lengths. The first-layer representation h(1)

t

sums these embeddings:
h

(1)
t = ey(yt−1) +

∑
c ec(xtc) + et(t). (12)

The occupation- and covariate-specific embeddings, ey and {ec}, are model parameters; the positional em-
beddings, et, are set in advance to follow a sinusoidal pattern (Vaswani et al., 2017). While these embeddings
could also be parameterized, in practice the performance is similar, and using sinusoidal embeddings allows
the model to generalize to career sequence lengths unseen in the training data.

At each subsequent layer, the transformer combines the representations of all occupations in a history. It
combines representations by performing multi-headed attention, which is similar to the process described in
Section 2.3 albeit with multiple attention weights per layer.

Specifically, it uses A specific attention weights, or heads, per layer. The number of heads A should be less
than the representation dimension D. (Using A = 1 attention head reduces to the process described in
Equations 5 and 6.) The representation dimension D should be divisible by A; denote K = D/A. First, A
different sets of attention weights are computed:

z
(`)
a,t,t′ =

(
h

(`)
t

)>
W (`)

a h
(`)
t′ for t′ ≤ t

πa,t,t′ = exp{za,t,t′}∑
k exp{za,t,k}

,
(13)

where W (`)
a ∈ RD×D is a model parameter, specific to attention head a and layer l.4 Each attention head

forms a convex combination with all previous representations; to differentiate between attention heads, each
representation is transformed by a linear transformation V (`)

a ∈ RK×D unique to an attention head, forming
b

(`)
a,t ∈ RK :

b
(`)
a,t =

∑t
t′=1 π

(`)
a,t,t′

(
V

(`)
a h

(`)
t′

)
. (14)

All attention heads are combined into a single representation by concatenating them into a single vector
g

(`)
t ∈ RD:

g
(`)
t =

(
b

(`)
1,t, b

(`)
2,t, . . . , b

(`)
A,t

)
. (15)

To complete the multi-head attention step and form the intermediate representation h̃(`)
t , the concatenated

representations g(`)
t undergo a linear transformation and are summed with the pre-attention representation

h
(`)
t :

h̃
(`)
t = h

(`)
t +M (`)g

(`)
t , (16)

with M (`) ∈ RD×D.

The intermediate representations h̃(`)
t ∈ RD combine the representation at timestep t with those preceding

timestep t. Each layer of the transformer concludes by taking a non-linear transformation of the intermediate
representations. This non-linear transformation does not depend on any previous representation; it only
transforms h̃(`)

t . Specifically, h̃(`)
t is passed through a neural network:

h
(`+1)
t = h̃

(`)
t + FFN(`)

(
h̃

(`)
t

)
, (17)

4For computational reasons, W
(`)
a is decomposed into two matrices and scaled by a constant, W

(`)
a =

Q
(`)
a

(
K

(`)
a

)>
√

K
, with

Q
(`)
a , K

(`)
a ∈ RD×K .
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Number of individuals 23,731,674
General Number of tokens 245,439,865

Median year 2007

Percent Northeast 17.6
Percent Northcentral 20.7

Geography Percent South 39.9
Percent West 19.4
Percent without location 2.4

Percent high school diploma 7.2
Percent associate degree 8.6

Education Percent bachelor degree 23.1
Percent graduate degree 4.5
Percent empty 52.8

Percent managerial/professional specialty 38.4
Percent technical/sales/administrative support 34.2

Broad Occupation Groups Percent service 12.0
Percent precision production/craft/repair 7.9
Percent operator/fabricator/laborer 7.2

Table 5: Exploratory data analysis of the resume dataset used for pretraining CAREER.

Resumes NLSY79 NLSY97 PSID

Number of individuals 24 million 12 thousand 9 thousand 12 thousand
Unemployed/out-of-labor-force/student available No Yes Yes Yes
Median year 2007 1991 2007 2011
Percent manual laborers 7% 17% 13% 12%
Percent college graduates 56% 23% 29% 28%
Demographic covariates available No Yes Yes Yes

Table 6: Comparing the resume dataset used for pretraining with the three longitudinal survey datasets of
interest.

where FFN(`) denotes a two-layer feedforward neural network with N hidden units, with FFN(`) : RD → RD.

We repeat the multi-head attention and feedforward neural network updates above for L layers, using
parameters unique to each layer. We represent careers with the last-layer representation, ht(yt−1,xt) =
h

(L)
t (yt−1,xt).

For our experiments, we use model specifications similar to the generative pretrained transformer (GPT)
architecture (Radford et al., 2018). In particular, we use L = 12 layers, a representation dimension of
D = 192, A = 3 attention heads, and N = 768 hidden units and the GELU nonlinearity (Hendrycks &
Gimpel, 2016) for all feedforward neural networks. In total, this results in 5.6 million parameters. This
model includes a few extra modifications to improve training: we use 0.1 dropout (Srivastava et al., 2014)
for the feedforward neural network weights, and 0.1 dropout for the attention weights. Finally, we use layer
normalization (Ba et al., 2016) before the updates in Equation 13, after the update in Equation 16, and after
the final layer’s neural network update in Equation 17.

E Exploratory Data Analysis

Table 5 depicts summary statistics of the resume dataset provided by Zippia that is used for pretraining
CAREER. Table 6 compares this resume dataset with the longitudinal survey datasets of interest.
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PSID NLSY79 NLSY97

Markov regression (two-stage) 15.60 ± 0.03 13.30 ± 0.02 15.47 ± 0.00
NEMO (two-stage) 15.23 ± 0.08 12.37 ± 0.04 15.13 ± 0.03
Job rep. learning (two-stage) 15.98 ± 0.06 13.97 ± 0.03 15.43 ± 0.01
Job2Vec (two-stage) 15.80 ± 0.04 13.91 ± 0.01 15.31 ± 0.02
Bag-of-jobs (two-stage) 15.40 ± 0.05 12.68 ± 0.01 15.11 ± 0.02
CAREER 13.88 ± 0.01 11.32 ± 0.00 14.15 ± 0.03

Table 7: Perplexity of economic baselines when they are modified to make predictions in two stages.

F One-Stage vs Two-Stage Prediction

Table 7 compares the predictive performance of occupation models when they are modified to make predic-
tions in two stages, following Equations 1 to 3. Incorporating two-stage prediction improves the performance
of these models compared to Figure 2a; however, CAREER still makes the best predictions on all survey
datasets.

G Data Preprocessing

In this section, we go over the data preprocessing steps we took for each dataset.

Resumes. We were given access to a large dataset of resumes of American workers by Zippia, a career
planning company. This dataset coded each occupation into one of 1,073 O*NET 2010 Standard Occupational
Classification (SOC) categories based on the provided job titles and descriptions in resumes. We dropped
all examples with missing SOC codes.

Each resume in the dataset we were given contained covariates that had been imputed based off other data in
the resume. We considered three covariates: year, most recent educational degree, and location. Education
degrees had been encoded into one of eight categories: high school diploma, associate, bachelors, masters,
doctorate, certificate, license, and diploma. Location had been encoded into one of 50 states plus Puerto
Rico, Washington D.C., and unknown, for when location could not be imputed. Some covariates also had
missing entries. When an occupation’s year was missing, we had to drop it from the dataset, because we
could not position it in an individual’s career. Whenever another covariate was missing, we replaced it with
a special “missing” token. All personally identifiable information had been removed from the dataset.

We transformed each resume in the dataset into a sequence of occupations. We included an entry for each
year starting from the first year an individual worked to their last year. We included a special “beginning of
sequence” token to indicate when each individual’s sequence started. For each year between an individual’s
first and last year, we added the occupation they worked in during that year. If an individual worked in
multiple occupations in a year, we took the one where the individual spent more time in that year; if they
were both the same amount of time in the particular year, we broke ties by adding the occupation that had
started earlier in the career. For the experiments predicting future jobs directly on resumes, we added a
“no-observed-occupation” token for years where the resume did not list any occupations (we dropped this
token when pretraining). Each occupation was associated with the individual’s most recent educational
degree, which we treated as a dynamic covariate. The year an occupation took place was also considered
a dynamic categorical covariate. We treated location as static. In total, this preprocessing left us with a
dataset of 23.7 million resumes, and 245 million individual occupations.

In order to transfer representations, we had to slightly modify the resumes dataset for pretraining to encode
occupations and covariates into a format compatible with the survey datasets. The survey datasets we used
were encoded with the “occ1990dd” occupation code (Autor & Dorn, 2013) rather than with O*NET’s SOC
codes, so we converted the SOC codes to occ1990dd codes using a crosswalk posted online by Destin Royer.
Even after we manually added a few missing entries to the crosswalks, there were some SOC codes that did
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not have corresponding occ1990dd’s. We gave these tokens special codes that were not used when fine-tuning
on the survey datasets (because they did not correspond to occ1990dd occupations). When an individual
did not work for a given year, the survey datasets differentiated between three possible states: unemployed,
out-of-labor-force, and in-school. The resumes dataset did not have these categories. Thus, we initialized
parameters for these three new occupational states randomly. Additionally, we did not include the “no-
observed-occupation” token when pretraining, and instead dropped missing years from the sequence. Since
we did not use gender and race/ethnicity covariates when pretraining, we also initialized these covariate-
specific parameters randomly for fine-tuning. Because we used a version of the survey datasets that encoded
each individual’s location as a geographic region rather than as a state, we converted each state in the
resumes data to be in one of four regions for pretraining: northeast, northcentral, south, or west. We also
added a fifth “other” region for Puerto Rico and for when a state was missing in the original dataset. We
also converted educational degrees to levels of experience: we converted associate’s degree to represent some
college experience and bachelor’s degree to represent four-year college experience; we combined masters and
doctorate to represent a single “graduate degree” category; and we left the other categories as they were.

NLSY79. The National Longitudinal Survey of Youth 1979 (NLSY79) is a survey following individuals
born in the United States between 1957-1964. The survey included individuals who were between 14 and
22 years old when they began collecting data in 1979; they interviewed individuals annually until 1994, and
biennially thereafter.

Each individual in the survey is associated with an ID, allowing us to track their careers over time. We
converted occupations, which were initially encoded as OCC codes, into “occ1990dd” codes using a crosswalk
(Autor & Dorn, 2013). We use a version of the survey that has entries up to 2014. Unlike the resumes dataset,
NLSY79 includes three states corresponding to individuals who are not currently employed: unemployed,
out-of-labor-force, and in-school. We include special tokens for these states in our sequences. We drop
examples with missing occupation states. We also drop sequences for which the individual is out of the labor
force for their whole careers.

We use the following covariates: years, educational experience, location, race/ethnicity, and gender. We drop
individuals with less than 9 years of education experience. We convert years of educational experience into
discrete categories: no high school degree, high school degree, some college, college, and graduate degree.
We convert geographic location to one of four regions: northeast, northcentral, south, and west. We treat
location as a static variable, using each individual’s first location. We use the following race/ethnicities:
white, African American, Asian, Latino, Native American, and other. We treat year and education as
dynamic covariates whose values can change over time, and we consider the other covariates as static. This
preprocessing leaves us with a dataset consisting of 12,270 individuals and 239,545 total observations.

NLSY97. The National Longitudinal Survey of Youth 1997 (NLSY97) is a survey following individuals
who were between 12 and 17 when the survey began in 1997. Individuals were interviewed annually until
2011, and biennially thereafter.

Our preprocessing of this dataset is similar to that of NLSY79. We convert occupations from OCC codes
into “occ1990dd” codes. We use a version of the survey that follows individuals up to 2019. We include
tokens for unemployed, out-of-labor-force, and in-school occupational states. We only consider individuals
who are over 18 and drop military-related occupations. We use the same covariates as NLSY79. We use
the following race/ethnicities: white, African-aAmerican, Latino, and other/unknown. We convert years
of educational experience into discrete categories: no high school degree, high school degree, some college
degree, college degree, graduate degree, and a special token when the education status isn’t known. We use
the same regions as NLSY79. We drop sequences for which the individual is out of the labor force for their
whole careers. This preprocessing leaves us with a dataset consisting of 8,770 individuals and 114,141 total
observations.

PSID. The Panel Study of Income Dynamics (PSID) is a longitudinal panel survey following a sample of
American families. It was collected annually between 1968 and 1997, and biennially afterwards.
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The dataset tracks families over time, but it only includes occupation information for the household head
and their spouse, so we only include these observations. Occupations are encoded with OCC codes, which we
convert to “occ1990dd” using a crosswalk (Autor & Dorn, 2013). Like the NLSY surveys, PSID also includes
three states corresponding to individuals who are not currently employed: unemployed, out-of-labor-force,
and in-school. We include special tokens for these states in our sequences. We drop other examples with
missing or invalid occupation codes. We also drop sequences for which the individual is out of the labor
force for their whole careers.

We consider five covariates: year, education, location, gender, and race. We include observations for individ-
uals who were added to the dataset after 1995 and include observations up to 2019. We exclude observations
for individuals with less than 9 years of education experience. We convert years of education to discrete
states: no high school, high school diploma, some college, college, and graduate degree. We convert geo-
graphic location to one of four regions: northeast, northcentral, south, and west. We treat location as a
static variable, using each individual’s first location. We use the following races: white, Black, and other.
We treat year and education as dynamic covariates whose values can change over time, and we consider the
other covariates as static. This preprocessing leaves us with a dataset consisting of 12,338 individuals and
62,665 total observations.

H Experimental Details

Baselines. We consider a first-order Markov model and a second-order Markov model (both without
covariates) as baselines. These models are estimated by averaging observed transition counts. We smooth
the first-order Markov model by taking a weighted average between the empirical transitions in the training
set and the empirical distribution of individual jobs. We perform this smoothing to account for the fact
that some feasible transitions may never occur in the training set due to the high-dimensionality of feasible
transitions. We assign 0.99 weight to the empirical distributions of transitions and 0.01 to the empirical
distribution of individual jobs. We smooth the second-order model by assigning 0.5 weight to the empirical
second-order transitions and 0.5 weight to the smoothed first-order Markov model.

When we add covariates to the Markov linear baseline, we also include manually constructed features about
history to improve its performance. In total, we include the following categorical variables: the most recent
job, the prior job, the year, a dummy indicating whether there has been more than one year since the most
recent observed job, the education status, a dummy indicating whether the education status has changed, and
state (for the experiments on NLSY79 and PSID, we also include an individual’s gender and race/ethnicity).
We also add additive effects for the following continuous variables: the number of years an individual has
been in the current job and the total number of years for which an individual has been in the dataset. In
addition, we include an intercept term.

For the bag-of-jobs model, we vary the representation dimension D between 256-2048, and find that the pre-
dictive performance is not sensitive to the representation dimension, so we use D = 1024 for all experiments.
For the LSTM model, we use 3 layers with 436 embedding dimensions so that the model size is comparable
to the transformer baseline: the LSTM has 5.8 million parameters, the same number as the transformer.

We also compare to NEMO (Li et al., 2017), an LSTM-based method developed for modeling job sequences
in resumes. We adapted NEMO to model survey data. In its original setting, NEMO took as input static
covariates (such as individual skill) and used these to predict both an individual’s next job title and their
company. Survey datasets differ from this original setting in a few ways: covariates are time-varying,
important covariates for predicting jobs on resumes (like skill) are missing, and an individual’s company
name is unavailable. Therefore, we made several modifications to NEMO. We incorporated the available
covariates from survey datasets by embedding them and adding them to the job embeddings passed into the
LSTM, similar to the method CAREER uses to incorporate covariates. We removed the company-prediction
objective, and instead only used the model to predict an individual’s job in the next timestep. We considered
two sizes of NEMO: an architecture using the same number of parameters as CAREER, and the smaller
architecture proposed in the original paper. We found the smaller architecture performed better on the
survey datasets, so we used this for the experiments. This model contains 2 decoder layers and a hidden
dimension of 200.
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We compare to two additional baselines developed in the data mining literature: job representation learning
(Dave et al., 2018) and Job2Vec (Zhang et al., 2020). These methods require resume-specific features such as
skills and textual descriptions of jobs and employers, which are not available for the economic longitudinal
survey datasets we model. Thus, we adapt these baselines to be suitable for modeling economic survey data.
Job representation learning (Dave et al., 2018) is based on developing two graphs, one for job transitions
and one for skill transitions. Since worker skills are not available for longitudinal survey data, we adapt the
model to only use job transitions by only including the terms in the objective that depend on job transitions.
We make a few additional modifications, which we found to improve the performance of this model on our
data. Rather than sampling 3-tuples from the directed graph of job transitions, we include all 2-tuple job
transitions present in the data, identical to the other models we consider. Additionally, rather than using
the contrastive objective in Equation 4 of Dave et al. (2018), we optimize the log-likelihood directly — this
is more computationally intensive but leads to better results. Finally, we include survey-specific covariates
(e.g. education, demographics, etc.) by adding them to wx, embedding the covariate of each most recent
job to the same space as wx. We make similar modifications to Job2Vec (Zhang et al., 2020). Job2Vec
requires job titles and descriptions of job keywords, which are unavailable for economic longitudinal survey
datasets. Instead, we modify Equation 1 in Zhang et al. (2020) to model occupation codes rather than titles
or keywords and optimize this log-likelihood as our objective. We also incorporate survey-specific covariates
by embedding each covariate to the same space as ei and adding it ei before computing Equation 2 from
Zhang et al. (2020), which we also found to improve performance. We follow Dave et al. (2018) and use 50
embedding dimensions for each model, and optimize with Adam using a maximum learning rate of 0.005,
following the minibatch and warmup strategy described below.

When we compared the transferred version of CAREER to a version of CAREER without pretrained rep-
resentations, we tried various architectures for the non-pretrained version of CAREER. We found that,
without pretraining, the large architecture we used for CAREER was prone to overfitting on the smaller
survey datasets. So we performed an ablation of the non-pretrained CAREER with various architectures: we
considered 4 and 12 layers, 64 and 192 embedding dimensions, 256 and 768 hidden units for the feedforward
neural networks, and 2 or 3 attention heads (using 2 heads for D = 64 and 3 heads for D = 192 so that D
was divisible by the number of heads). We tried all 8 combinations of these parameters on NLSY79, and
found that the model with the best validation performance had 4 layers, D = 64 embedding dimensions, 256
hidden units, and 2 attention heads. We used this architecture for the non-pretrained version of CAREER
on all survey datasets.

Training. We randomly divide the resumes dataset into a training set of 23.6 million sequences, and a
validation and test set of 23 thousand sequences each. We randomly divide the survey datasets into 70/10/20
train/test/validation splits.

The first- and second-order Markov models without covariates are estimated from empirical transitions
counts. We optimize all other models with stochastic gradient descent with minibatches. In total, we use
16,000 total tokens per minibatch, varying the batch size depending on the largest sequence length in the
batch. We use the Adam learning rate scheduler (Kingma & Ba, 2015). All experiments on the resumes data
warm up the learning rate from 10−7 to 0.0005 over 4,000 steps, after which the inverse square root schedule
is used (Vaswani et al., 2017). For the survey datasets, we also used the inverse square root scheduler, but
experimented with various learning rates and warmup updates, using the one we found to work best for each
model. For CAREER with pretrained representations, we used a learning rate of 0.0001 and 500 warmup
updates; for CAREER without pretraining, we used a learning rate of 0.0005 and 500 warmup updates;
for the bag of jobs model, we used a learning rate of 0.0005 and 5,000 warmup updates; for the regression
model, we used a learning rate of 0.0005 and 4,000 warmup updates. We use a learning rate of 0.005 for
job representation learning and Job2Vec, with 5,000 warmup updates. All models besides were also trained
with 0.01 weight decay. All models were trained using Fairseq (Ott et al., 2019).

When training on resumes, we trained for 85,000 steps, using the checkpoint with the best validation perfor-
mance. When fine-tuning on the survey datasets, we trained all models until they overfit to the validation
set, again using the checkpoint with the best validation performance. We used half precision for training all
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models, with the exception of the following models (which were only stable with full precision): the bag of
jobs model with covariates on the resumes data, and the regression models for all survey dataset experiments.

The tables in Section 4 report results averaged over multiple random seeds. For the results in Figure 2a,
the randomness includes parameter initialization and minibatch ordering. For CAREER, we use the same
pretrained model for all settings. For the forecasting results in Table 1, the randomness is with respect to
the Monte-Carlo sampling used to sample multi-year trajectories for individuals. For the wage prediction
experiment in Table 2, the randomness is with respect to train/test splits.

Forecasting. For the forecasting experiments, occupations that took place after a certain year are dropped
from the train and validation sets. When we forecast on the resumes dataset, we use the same train/test/-
validation split but drop examples that took place after 2014. When we pretrain CAREER on the resumes
dataset to make forecasts for PSID and NLSY97, we use a cutoff year of 2014 as well. We incorporate
two-stage prediction into the baseline models because we find that this improves their predictions.

Although we do not include any examples after the cutoff during training, all models require estimating year-
specific terms. We use the fitted values from the last observed year to estimate these terms. For example,
CAREER requires embedding each year. When the cutoff year is 2014, there do not exist embeddings for
years after 2014, so we substitute the 2014 embedding.

We report forecasting results on a split of the dataset containing examples before and after the cutoff year. To
make predictions for an individual, we condition on all observations before the cutoff year, and sample 1,000
trajectories through the last forecasting year. We never condition on any occupations after the cutoff year,
although we include updated values of dynamic covariates like education. For forecasting on the resumes
dataset, we set the cutoff for 2014 and forecast occupations for 2015, 2016, and 2017. We restrict our test set
to individuals in the original test set whose first observed occupation was before 2015 and who were observed
to have worked until 2017. PSID and NLSY97 are biennial, so we forecast for 2015, 2017, and 2019. We
only make forecasts for individuals who have observations before the cutoff year and through the last year
of forecasting, resulting in a total of 16,430 observations for PSID and 18,743 for NLSY97.

Wage prediction. For the wage prediction experiment, we use replication data provided by Blau & Kahn
(2017b). We add individual’s job histories to this dataset by matching interview and person numbers. We
drop individuals that could not be matched, about 3% of the data.

When we apply CAREER to this data to learn a representation of job history, we do not use any covariates
besides the year a job took place. We pretrain a version of CAREER containing 4 layers, 64 dimensions for
the representations, 256 hidden units in the feedforward neural networks, and 2 attention heads. We pretrain
on resumes for 50,000 steps. We fine-tune to predict jobs on PSID using the job histories of individuals up
to the year of interest; for example, for the 2011 experiment, we only fine-tune on jobs that took place before
2011. We update parameters every 6 batches when fine-tuning.

After fine-tuning CAREER’s representations to predict jobs, we plug in the learned representations into
the wage regression in Equation 9. Notably, we do not alter CAREER’s representations to predict wage;
we only estimate regression coefficients. We perform an unweighted linear regression. Our model without
CAREER uses the same covariates as the wage regression in Blau & Kahn (2017a), including full- and
part-time years of experience (and their squares), education, region, race/ethnicity, union status, current
occupation, and current industry. We do not include whether an individual is a government worker because
it results in instability for unweighted regression. Rather than estimate two separate models for males and
females, we use a single model and include gender as an observed covariate. When we incorporate CAREER’s
representations into the model, we use the same base model and add CAREER’s representations.

Rationalization. The example in Figure 3 shows an example of CAREER’s rationale on PSID. To simplify
the example, this is the rationale for a model trained on no covariates except year. In order to conceal
individual behavior patterns, the example in Figure 3 is a slightly altered version of a real sequence. For
this example, the transformer used for CAREER follows the architecture described in Radford et al. (2018).
We find the rationale using the greedy rationalization method described in Vafa et al. (2021). Greedy
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rationalization requires fine-tuning the model for compatibility; we do this by fine-tuning with “job dropout”,
where with 50% probability, we drop out a uniformly random amount of observations in the history. When
making predictions, the model has to implicitly marginalize over the missing observations. (We pretrain on
the resumes dataset without any word dropout). We find that training converges quickly when fine-tuning
with word dropout, and the model’s performance when conditioning on the full history is similar.

Greedy rationalization typically adds observations to a history one at a time in the order that will maximize
the model’s likelihood of its top prediction. For occupations, the model’s top prediction is almost always
identical to the previous year’s occupation, so we modify greedy rationalization to add the occupation that
will maximize the likelihood of its second-largest prediction. This can be interpreted as equivalent to greedy
rationalization, albeit conditioning on switching occupations. Thus, the greedy rationalization procedure
stops when the model’s second-largest prediction from the target rationale is equivalent to the model’s
second-largest prediction when conditioning on the full history.
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