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ABSTRACT

We recast existing works on probabilistic dynamics forecasting through a unified
framework connecting turbulence and diffusion principles: Cohesion. Specifi-
cally, we relate the coherent part of nonlinear dynamics as a conditioning prior
in a denoising process, which can be efficiently estimated using reduced-order
models. This fast generation of long prior sequences allows us to reframe fore-
casting as trajectory planning, a common task in RL. This reformulation is bene-
ficial because we can perform a single conditional denoising pass for an entire
sequence, rather than autoregressively over long lead time, gaining orders-of-
magnitude speedups with little performance loss. Nonetheless, Cohesion supports
flexibility through temporal composition that allows iterations to be performed
over smaller subsequences, with autoregressive being a special case. To ensure
temporal consistency within and between subsequences, we incorporate a model-
free, small receptive window via temporal convolution that leverages large NFEs
during denoising. Finally, we perform our guidance in a classifier-free manner
to handle a broad range of conditioning scenarios for zero-shot forecasts. Our
experiments demonstrate that Cohesion outperforms state-of-the-art probabilistic
emulators for chaotic systems over long lead time, including in Kolmogorov Flow
and Shallow Water Equation. Its low spectral divergence highlights Cohesion’s
ability to resolve multi-scale physical structures, even in partially-observed cases,
and are thus essential for long-range, high-fidelity, physically-realistic emulation.

1 INTRODUCTION

Solving Partial Differential Equations (PDEs) with probabilistic emulators has gained significant
momentum relative to their deterministic counterpart Gao et al. (2024a); Rühling Cachay et al.
(2024); Gilpin (2024) due to their ability to generate ensemble forecasts that facilitate uncertainty
quantification useful for decision making processes Bhatnagar et al. (2019); Brandstetter et al.
(2022a;b); Guo et al. (2016); Li et al. (2020); Lu et al. (2021). In particular, diffusion, a power-
ful class of probabilistic model, has been widely used as emulators in an autoregressive manner to
produce sequential forecasts over a target lead time, ∆t Li et al. (2024); Price et al. (2023); Lippe
et al. (2024). However, this probabilistic forecasting approach poses several challenges. First, the
conditional denoising process to estimate p(u | c), where u ∈ Rnu and c ∈ Rnu are the state and
conditioning vector respectively, is generally tied to the condition-generating process. This is pri-
marily due to the use of (u, c) data pair during training, such that whenever the likelihood p(c | u)
changes, one would require further fine-tuning and re-training Stock et al. (2024); Zhao et al. (2024);
Gong et al. (2024); Gao et al. (2024a); Chen et al. (2023); Gao et al. (2024b); Hua et al. (2024); Li
et al. (2024). Second, a diffusion-based autoregressive approach is extremely costly as one needs to
perform multiple denoising passes such that the number of function evaluation (NFEs) grows pro-
portionately with the number of discretization of ∆t Price et al. (2023); Lippe et al. (2024). This is a
problem for many long-range forecasting applications, in weather and climate domains for example,
where previous gains in inference speed achieved by deterministic data-driven emulators are quickly
offset.

As such, we introduce Cohesion (Figure 1), a diffusion-based forecasting framework that incorpo-
rates turbulence and reinforcement learning (RL) principles to achieve accurate and stable long roll-
outs with orders-of-magnitude inference speedups. First, by leveraging the idea of low-dimensional,
coherent flow in turbulence as a conditioning factor within diffusion, we can efficiently generate long
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Figure 1: Overview of our Cohesion framework, which reframes forecasting as a trajectory plan-
ning task, enabled by a lightweight reduced-order model (ROM) capable of generating conditioning
priors efficiently. Key features include: (a) classifier-free guidance for handling broad range of
conditioning for zero-shot forecasting; (b) temporal composition through iterative denoising passes
which stitch subsequences together; and the use of (c) model-free, small receptive window to ensure
local agreement and multi-scale global consistency by exploiting large NFEs during denoising.

sequences of prior c using a reduced-order model (ROM), such as deep Koopman operator Lusch
et al. (2018); Wang et al. (2022). ROMs are especially useful in representing dynamics evolving
on low-dimensional attractors dominated by persistent coherent structures Stachenfeld et al. (2021);
Solera-Rico et al. (2024), and they demonstrate greater stability over long rollouts compared to
high-dimensional models Nathaniel et al. (2024). As a result, we are able to reframe forecasting
as trajectory planning – a common task in RL Janner et al. (2022) – which allows us to perform
conditional denoising for the entire sequence in a single pass. Nonetheless, Cohesion supports flex-
ibility through temporal composition that allows denoising passes to be performed iteratively over
smaller subsequences, with autoregressive being a special case when the subsequence length R is
less than the discretization magnitude over ∆t: i.e., R < T := N∆t. Furthermore, we implement
a small receptive window to ensure local agreement at each denoising step, and multi-scale global
consistency over the composition of many NFEs without any specialized temporal models Gao et al.
(2024a); Rühling Cachay et al. (2024). Finally, we perform our guidance in a classifier-free manner
to handle a broad range of conditioning scenarios for zero-shot forecasts.

In order to evaluate Cohesion, we study challenging chaotic spatiotempral dynamics including the
Kolmogorov Flow and Shallow Water Equation. For instance, we show that Cohesion is more sta-
ble and accurate over state-of-the-art models, including the probabilistic formulation of Spherical
Fourier Neural Operator (SFNO) Bonev et al. (2023). Cohesion also has minimal spectral diver-
gences, highlighting its ability to resolve multi-scale structures even in partially-observed cases.

2 UNIFIED TURBULENCE-DIFFUSION FRAMEWORK

We begin by recasting existing works on diffusion-based dynamics forecasting through the lens of
turbulence theory. Specifically, we consider time-dependent, discrete dynamics across one temporal
dimension t ∈ [0, T ] ⊂ N and multiple spatial coordinates x = [x1, x2, . . . , xm] ∈ X (Equation 1).

u(x, t+ 1) = F [u(x, t)] (1)

whereF : Rnu → Rnu is a differentiable flow map. In general, turbulent dynamics are characterized
by a state vector u(x, t), and can be represented by a combination of coherent flow and fluctuating
component through a mapping operator H : Rnu → Rnu ; the linear composition represents the
popular Reynolds technique:
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u(x, t) = H[ ū(x, t)︸ ︷︷ ︸
coherent flow

, u′(x, t)︸ ︷︷ ︸
fluctuating flow

] = ū(x, t) + u′(x, t)︸ ︷︷ ︸
Reynolds decomposition

(2)

Several previous studies have implicitly leveraged the decomposition principle in diffusion-based
dynamics forecasting. Here, we make the connection explicit, starting with the coherent flow.
Many works, for instance, approximate a variation of ū(x, t) using a deterministic mapping and
employ this as a conditioning factor to directly estimate the posteriors over (1) the full solution
pϕ(uK | ū(x, t)), or indirectly through (2) the residual pϕ(u′

K | ū(x, t)). Throughout, the sub-
scripts {0, k,K} ∈ K refer to the perturbed state vector at the initial, intermediate, and final de-
noising step, respectively. We explain each of these strategies in turn.

Coherent flow as conditioning prior. In order to obtain a conditioning prior within a diffusion
framework for forecasting purposes, one often estimates an initial guess for the current timestep
using a parameterized model D : Rnu → Rnu , such as ū(x, t) = D[u(x, t − 1)] Stock et al.
(2024); Zhao et al. (2024); Price et al. (2023); Gong et al. (2024); Gao et al. (2024a); Chen et al.
(2023). Others, meanwhile, utilize either a filtered approximation or known system statistics as
ū(x, t) Qu et al. (2024); Gao et al. (2024b); Hua et al. (2024); Li et al. (2024). In this work, we
define deterministic prior to follow closely with the principle of coherent flow in turbulence theory
(more in Section 3.2).

Full posterior estimation. Estimating the full posterior solution involves constructing the operator
H based on prior approximation and posterior estimation through an iterative denoising process.
This is followed by marginalization over intermediate states, as shown in Equation 3.

pϕ(u0:K | ū(x, t)) := p(u0)

K∏
k=1

pϕ(uk | uk−1, ū(x, t))

u(x, t) ∼ pϕ(uK | ū(x, t)) =
∫

pϕ(u0:K | ū(x, t))du0:K−1

(3)

Thereafter, probability evaluation is performed, for example by taking an expectation over the con-
ditional posterior at diffusion step K Stock et al. (2024); Zhao et al. (2024); Price et al. (2023); Gong
et al. (2024); Gao et al. (2024a); Chen et al. (2023); Qu et al. (2024); Gao et al. (2024b); Hua et al.
(2024); Li et al. (2024).

Residual posterior estimation. Several works seek to instead estimate the correction term u′(x, t),
rather than the full solution u(x, t) Lippe et al. (2024); Srivastava et al. (2023); Yu et al. (2023);
Mardani et al. (2024). Here, H is first composed of prior approximation. The posterior estimation
step in Equation 3 is then followed, but replacing u(x, t) ← u′(x, t). After marginalization of
intermediate states and posterior evaluation, the residual (or stochastic refinement) is added to the
prior, akin to Reynolds linear decomposition (Equation 2 RHS), and shown in Equation 4.

u(x, t) ≈ ū(x, t)︸ ︷︷ ︸
deterministic prior

+ u′(x, t)︸ ︷︷ ︸
stochastic refinement

; u′(x, t) ∼ pϕ(u
′
K | ū(x, t)) (4)

For both approaches, in addition to the different ways for prior approximation, variations exist in
terms of how sampling is performed and how post-processing is implemented. After demonstrat-
ing the conceptual connection between diffusion and turbulence in the form of coherent-prior and
stochastic-refinement pairings, we discuss each component of Cohesion next.

3 COHESION: COHERENCE-BASED DIFFUSION

3.1 CLASSIFIER-FREE DIFFUSION FOR ZERO-SHOT FORECASTING

Forward diffusion. At each time step in the forward diffusion process, a sample u ∼ p(u) is
progressively perturbed through a continuous diffusion timestepping. This process is described by a
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linear stochastic differential equation (SDE), as shown in Equation 5 Song et al. (2020).

duk = f(k)uk dk︸ ︷︷ ︸
drift term

+ g(k) dw(k)︸ ︷︷ ︸
diffusion term

(5)

where f(k) and g(k) ∈ R are the drift and diffusion coefficients. Here, w(k) ∈ Rnu represents
a Wiener process (standard Brownian motion), and uk ∈ Rnu denotes the perturbed sample at
diffusion step k ∈ [0,K = 1] ⊂ R. We use cosine noise scheduler in variance-preserving (VP)
SDE Nichol & Dhariwal (2021); Chen (2023).

Reverse denoising. The reverse denoising process is represented by a reverse SDE as defined in
Equation 6 Song et al. (2020), where the score function is approximated with a learnable score net-
work, sθ(uk, k). The objective function would be to minimize a continuous weighted combination
of Fisher divergences between sθ(uk, k) and∇uk log p(uk) through score matching Vincent (2011);
Song et al. (2020).

duk = [f(k)uk︸ ︷︷ ︸
drift term

−g(k)2∇uk log p(uk)︸ ︷︷ ︸
score function

]dk + g(k)dw(k)︸ ︷︷ ︸
diffusion term

(6)

However, the perturbed state distribution p(uk) is data-dependent and unscalable. As such, we
reformulate the objective function by replacing ∇uk log p(uk) with ∇uk log p(uk | u) where the
analytical form of the perturbation kernel is accessible Vincent (2011). In order to improve the
stability of the objective, especially closer to the start of the denoising step (k → 0), we apply
a reparameterization trick which replaces sθ(uk, k) = −ϵθ(uk, k)/σ(k), where Σ = σ2 as in
Equation 7 Zhang & Chen (2022).

min
θ

Ep(u),p(k),p(ϵ)∼N (0,I)

[
∥ϵθ(µ(k)u+ σ(k)ϵ, k)− ϵ)∥22

]
(7)

Following standard convention, we denote ϵθ(uk, k) with sθ(uk, k) for cleaner notation.

Zero-shot conditional sampling. The case we have discussed so far is the unconditional sampling
process as we try to sample u ∼ p(uK). In order to condition the generative process with c :=
ū(x, t), we seek to sample from u ∼ p(uK | c). This can be done by modifying the score as in
Equation 6 with ∇uk log p(uk | c) and plugging it back to the reverse SDE process.

As noted earlier, however, one would need fine-tuning or re-training whenever the observation pro-
cess p(c | u) changes. Nonetheless, several works have attempted to approximate the conditional
score with just a single pre-trained network, bypassing the need for expensive re-training Song et al.
(2020); Chung et al. (2022). First, using Bayes rule, we expand the conditional score as:

∇uk log p(uk | c) = ∇uk log p(uk)︸ ︷︷ ︸
unconditional score

+∇uk log p(c | uk)︸ ︷︷ ︸
log-likelihood function

(8)

Since the first term on the right-hand side is already approximated by the unconditional score net-
work, the remaining task is to identify the second log-likelihood function. Assuming a Gaussian
observation process, the approximation goes as in Equation 9 Chung et al. (2022).

p(c | uk) =
∫

p(c | u)p(u | uk)du ≈ N (c | û(uk), σ2
c) (9)

The mean û(uk) can be approximated by the Tweedie’s formula Efron (2011) as in Equation 10.

û(uk) ≈
uk + σ2(k)sθ(uk, k)

µ(k)
(10)

Following works from Rozet & Louppe (2023); Qu et al. (2024), we improve the numerical stability
by injecting information about the noise-signal ratio in the variance term, i.e., σ2

c+γ[σ2(k)/µ2(k)]I,

4
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Figure 2: By temporal composition, we allow for flexible refinement subsequence size R. (a) Tra-
jectory planning approach (R = T case) where only one pass of conditional denoising is performed.
(b) Autoregressive forecasting approach (R = 1 case) requires multiple backward passes.

where γ, I are scalar constant and the identity matrix respectively. We now have a classifier-free pos-
terior diffusion sampling where∇uk log p(uk | c) can be approximated using a single unconditional
score network sθ(uk, k), allowing for zero-shot forecasts given different conditioning scenarios (see
Algorithm 1).

Predictor-corrector. We implement a predictor-corrector procedure to enhance the quality of our
conditional generative process Song et al. (2020). The reverse SDE prediction process is solved
using the exponential integrator (EI) discretization scheme as in Equation 11 Zhang & Chen (2022).
The correction phase employs several steps of Langevin Monte Carlo (LMC) to adjust for discretiza-
tion errors, utilizing a sufficiently small Langevin amplitude τ ∈ R+ as in Equation 12 Song et al.
(2020) (see Algorithm 2).

uk+∆k ←
µ(k +∆k)

µ(k)
uk +

(
µ(k +∆k)

µ(k)
+

σ(k +∆k)

σ(k)

)
Σ(k)sθ(uk, k | c) (11)

uk ← uk + τsθ(uk, k) +
√
2τϵ. (12)

3.2 LEARNING COHERENT STRUCTURES

Koopman theory Koopman & Neumann (1932) demonstrates that nonlinear dynamics can be mod-
eled by an infinite-dimensional linear Koopman operator acting on the space of all possible mea-
surement functions. Leveraging a deep encoder-decoder model, {GE ,GD} ∈ G Lusch et al. (2018),
the Koopman operator O : GE(X ) 7→ GE(X ) acts on a lower (nd)-dimensional latent manifold that
advances the state vector in time (see Equation 13).

O[GE(u(x, t))] := GE ◦ F [u(x, t)] = GE ◦ u(x, t+ 1) (13)

A conditioning prior is then generated by the decoder as:

ū(x, t+ 1) := GD ◦ O[GE(u(x, t))] (14)

ComposingO for m times within Equation 14 results in the generation of an autoregressive sequence
of conditioning priors that extends over m steps. We perform joint training by minimizing the 1-
step lagged reconstruction loss as in Equation 15. We collectively refer to {GE ,O,GD} ∈ fψ as the
reduced-order model (ROM), where fψ : Rnu → Rnu .

min
{GE ,O,GD}∈fψ

Ep(u)
[
∥ū(x, t+ 1)− u(x, t+ 1)∥22

]
(15)
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3.3 FORECASTING AS TRAJECTORY PLANNING

When a denoising pass is performed iteratively, as evidenced in many autoregressive tasks Price
et al. (2023); Srivastava et al. (2023), the computational costs can become prohibitively expensive.
By leveraging our proposed compute-efficient ROM fψ , we can generate a sequence of conditioning
priors C(x) ∈ RR×nu of length R as:

C(x) = {c(t0 + 1) := f1
ψ(u(x, t0)), · · · , c(t0 +R) := fRψ (u(x, t0))}1:R (16)

where u(x, t0) is the initial condition. We then perform conditional denoising given C(x) to estimate
U(x) ∈ RR×nu as in Equation 17.

U(x) = {u(x, t0 + 1), · · · ,u(x, t0 +R)}1:R ∼ pϕ(UK(x) | C(x)) (17)

uk+1(t) uk+1(t+1) uk+1(t+2)uk+1(t-2) uk+1(t-1)

uk(t) uk(t+1) uk(t+2)uk(t-2) uk(t-1)

Cohesion

refinement sequence length

de
no

is
in

g

c(t) c(t+1) c(t+2)c(t-2) c(t-1)

conditional

refinement

Figure 3: A single denoising step with local recep-
tive window of size W = 3. Multiple composition
through many NFEs ensures global consistency.

Figure 2a illustrates an example of trajectory
planning (R = T ), with a single denoising
pass. We also provide flexibility and allow
R ∈ [1, T ] ⊂ N. In the case where R <
T , we can simply repeat the denoising passes
r = 1 : ⌈T/R⌉ times, where ⌈.⌉ is the ceil-
ing operation, and C(x) is generated using the
previous-step forecast as the initial condition
whenever r > 1. Figure 2b illustrates this case
for R = 1, a special case for the classic next-
step autoregressive approach. In order to ef-
fectively capture multi-scale temporal informa-
tion, we also incorporate a model-free local re-
ceptive window of size W ∈ [1, R] ⊂ N. This
approach ensures local agreement during each
conditional denoising step by training the score
model on W -length subsequences (see Algo-

rithm 3). By composing many such steps during inference (see Algorithm 4), local agreement trans-
lates to global consistency. Figure 3 shows a single temporal convolution during a single denoising
step illustrating a window size of W = 3 captures local context. For this work, we use W = 5
during the training of and sampling using the score network.

4 EXPERIMENTS

Baselines. We use probabilistic Spherical Fourier Neural Operator (SFNO) Bonev et al. (2023) as
a baseline, building on FNO Li et al. (2020), which leverages Fast Fourier and Spherical Harmonic
Transforms (SHT) to model Earth’s fluid dynamics, including Kolmogorov Flow and the Shallow
Water Equation used in this study. We use the off-the-shelf SFNO implementation1, widely em-
ployed in weather Kurth et al. (2023) and climate emulation Watt-Meyer et al. (2023). To ensure a
fair comparison, we scale SFNO’s parameters to match or exceed those of Cohesion and introduce
probabilistic modifications. Unless stated, all models are evaluated on five samples/members.

• Checkpoints: Ensembles through multiple model fitting initialized randomly.
• MC-Dropout: Ensembles by enabling inference-time dropouts.
• IC Perturbation: Ensembles through the perturbation of initial conditions.

Metrics. In addition to pixel-based (RMSE, MAE; Equations 19-20) and structure-based (MS-
SSIM; Equation 25) metrics, we also use physics-based metrics of spectral divergence evaluated
at the final forecasting step, ∆t (Equation 31). The latter is especially crucial to measure how
well multi-scale structures are preserved. A smooth model (i.e., low fidelity) can perform better on
metrics like RMSE, but poorly on the spectral domain in e.g., capturing high-frequency signal. The
notation (R=1) and (R=T) indicate Cohesion in either autoregressive or trajectory planning mode.

1https://github.com/NVIDIA/torch-harmonics
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4.1 KOLMOGOROV FLOW

Incompressible fluid dynamics are governed by the Navier-Stokes equations:

u̇ = −(u · ∇)u+
1

Re
∇2u− 1

ρ
∇p+ f ,

0 = ∇ · u
(18)

where u is the velocity field, Re = 103 is the Reynolds number, ρ = 1 is the fluid density, p is the
pressure field, and f is the external forcing. Following Kochkov et al. (2021) and using jax-cfd2

as solvers, we consider a two-dimensional domain [0, 2π]2 with periodic boundary conditions and
an external forcing f corresponding to Kolmogorov forcing with linear damping.

Experimental setup. The Navier-Stokes Equations 18 are solved on a 256×256 grid, downsampled
to a 64×64 resolution, with an integration time step of ∆ = 0.2 model time units between successive
snapshots of the velocity field u. We generated 8196 independent trajectories – each of length 64
and discarding the first half of warm-ups – subsequently dividing them into 80-10-10 train-val-
test trajectory-level split. More details in Appendix C.1.

Model architectures. The ROM consists of 5 symmetrical convolution layers in the GE −O − GD
composition with hidden size of [4, 8, 16, 32, 64] and embedding dimension of nd = 64. The score
network is parameterized by modern U-Net with [3, 3, 3] residual blocks He et al. (2016), each
consisting of [16, 32, 64] hidden channels. The temporal component of the score network is param-
eterized by a two-layer dense network with 256 hidden channels and 64-dimensional embedding.
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Figure 4: Qualitative result for Kolmogorov Flow where Cohesion is stable and able to capture fine
details over long rollouts compared to its probabilistic baselines.
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Figure 5: Quantitative result for Kolmogorov Flow where Cohesion has the lowest RMSE (↓), MAE
(↓), and highest MS-SSIM (↑) over long rollouts compared to its probabilistic baselines.

2https://github.com/google/jax-cfd
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Results. As illustrated in Figure 4, we demonstrate that Cohesion is able to capture fine details over
long rollouts. This is also highlighted by Cohesion’s ability to outperform probabilistic baselines in
the pixel-based, structure-based metrics (Figure 5), as well as physics-based scores (Figure 8a).

4.2 SHALLOW WATER EQUATION (SWE)

The SWE system can be described by a set of nonlinear hyperbolic PDEs that governs the dynamics
of thin-layer ”shallow” fluid where its depth is negligible relative to the characteristic wavelength.
Thus, SWE is ideal to model planetary fluid phenomena Bonev et al. (2018).
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Figure 6: Qualitative result for SWE where Cohesion is stable and able to capture fine details over
long rollouts compared to its probabilistic baselines.
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Figure 7: Quantitative result for SWE where Cohesion has the lowest RMSE (↓), MAE (↓), and
highest MS-SSIM (↑) over long rollouts compared to its probabilistic baselines.
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Figure 8: Cohesion has the lowest spectral diver-
gence (↓) across probabilistic baselines, indicating
its ability to capture multi-scale physical structures.

Experimental setup. We generate 2048 tra-
jectories of SWE on a rotating sphere Bonev
et al. (2023), with a 80-10-10 train-val-test
trajectory-level split. Each trajectory is ran-
domly initialized with an average geopoten-
tial height of φavg = 103 · g and a stan-
dard deviation φamp ∼ N (120, 20) · g, on
a Galewsky setup to mimic barotropically un-
stable mid-latitude jet Galewsky et al. (2004).
The spatial resolution is 120 × 240, keeping
the last ∆t = N∆t = 32 of vorticity snap-
shots. More details in Appendix C.2.

Model architectures. The ROM consists of
5 symmetrical convolution layers in the GE−
O−GD composition with hidden size of [8, 16, 32, 64, 128] and embedding dimension of nd = 128.
The score network is setup identically with that in Kolmogorov Flow.
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Results. We first demonstrate that Cohesion is able to capture fine details over long rollouts (Figure
6). This is also highlighted by Cohesion’s ability to outperform probabilistic baselines in the pixel-
based, structure-based metrics (Figure 7), as well as physics-based scores (Figure 8b).

4.3 COHESION AS A PHYSICALLY-CONSISTENT PROBABILISTIC EMULATOR

We further demonstrate Cohesion’s ability to generate physically-consistent forecasts over long roll-
outs, even in partially-observed cases. Evaluations are based on Cohesion as trajectory planner.
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Figure 9: Cohesion as a refiner: Cohesion improves RMSE (↓), MAE (↓), and MS-SSIM (↑) scores
over its coherent-only prior forecasts generated sequentially with ROM.

Cohesion as a refiner. As shown in Figure 9, Cohesion acts as a refiner of prior forecasts generated
by ROM. While ROM provide fast approximations of the system’s evolution, they often lack the
resolution necessary to capture fine details of the system, particularly in complex chaotic flows. Co-
hesion enhances these coarse forecasts by applying a diffusion-based refinement process, improving
their alignment with high-fidelity simulation.
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(b) Shallow Water Equation

Figure 10: Cohesion as a resolver: Cohesion resolves multi-scale physics ubiquitous in chaotic
dynamics even after long rollouts (T = ∆t), by first getting accurate coherent flow i.e., low-frequency
signal (↓ k), before correcting for the fluctuating component i.e., high-frequency signal (↑ k). Top-
middle-bottom rows represent initial-middle-final denoising steps.
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Cohesion as a resolver. As shown in Figure 10 (evaluated at T = ∆t), Cohesion also resolves multi-
scale physics where it first captures low-frequency signals (low wavenumber, k), which correspond
to the coherent features of the system (e.g., dominant wave pattern). Once the coherent flow is well-
represented, Cohesion then resolves high-frequency signals (high wavenumber, k), which relate to
the faster-evolving turbulent features (e.g., eddies) that arise from coupled nonlinearity.

Cohesion is physically grounded. As shown in Figure 11, Cohesion generates high-resolution, real-
istic physics even in the presence of partially observed conditioning priors. This property is essential
for modeling real-world dynamics where priors may be incomplete (e.g., due to sparse representa-
tion) or inconsistent (e.g., due to system biases), enabling the framework to handle uncertainty over
long unrolls in a physically-grounded manner.
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Figure 11: Cohesion produces physically-consistent and realistic forecasts at long unrolls even in
the presence of partially-observed conditioning prior. In this experiment, we apply equally-spaced
masking to the coherent dynamics generated by ROM, which is then used as a conditioning prior
during the denoising process.
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Figure 12: Relative inference
runtime in R=1 and R=T set-
tings with identical resource.

We introduce Cohesion, a diffusion-based forecasting framework
developed with turbulence and RL principles that is both cheap and
achieves stable, accurate, and realistic long simulation rollouts. By
reframing autoregressive forecasting as trajectory planning, we gain
significant speedups (Figure 12) while maintaining performance.
This is enabled by reduced-order modeling, temporal composition,
and temporal convolution to ensure multi-scale, local-global con-
sistency. Our extensive examination of Cohesion on Kolmogorov
Flow and Shallow Water Equation, in terms of improved perfor-
mance over state-of-the-art probabilistic emulator across metrics
presents an important step toward resolving multi-scale physics in
an efficient manner, even in partially-observed cases. This approach
can extend predictability and improve the fidelity and realism of
data-driven emulators for chaotic systems, like weather and climate,
leading to actionable insights.
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A ALGORITHMS

Some of these algorithms are inspired by, and extended from Rozet & Louppe (2023) and Janner
et al. (2022), though these are set to solve different problems.

Algorithm 1 Posterior score estimation,∇uk log p(uk | c)
1: function POSTERIORESTIMATE(sθ,uk, k, c)
2: su ← sθ(uk, k)

3: û← uk+σ
2(k)su

µ(k)

4: sc ← ∇uk logN (c | û, σ2
c + γ σ

2(k)
µ2(k)I)

5: return su + sc
6: end function

Algorithm 2 Predictor-corrector sampling

1: function DIFFUSIONSAMPLING(sθ, τ,Nc)
2: uK0=0 ∼ N (0, σ2(I))
3: for i = 0 to |K| do
4: sp ← PosteriorEstimate(sθ,uKi ,Ki, c) ▷ see Algorithm 1

5: uKi+1 ←
µ(Ki+1)
µ(Ki) uKi +

(
µ(Ki+1)
µ(Ki) −

σ(Ki+1)
σ(Ki)

)
σ2(Ki)sp ▷ Predictor

6: for j = 0 to Nc do
7: ϵ ∼ N (0, I)
8: sc ← PosteriorEstimate(sθ,uKi+1 ,Ki+1, c) ▷ see Algorithm 1
9: uKi+1

← uKi+1
+ τsc +

√
2τϵ ▷ Corrector

10: end for
11: end for
12: return uK
13: end function

Algorithm 3 Score network training with window of size, W

Require: W mod 2 = 1 ▷ Symmetric window about u(ti)
1: W ← 2w + 1
2: while not done do
3: i ∼ U({w + 1, · · · , T − w})
4: k ∼ U(K), ϵ ∼ N (0, I)
5: uk(ti−w:i+w)← µ(k)u(ti−w:i+w) + σ(k)ϵ

6: Loss← ∥ϵθ(uk(ti−w:i+w), k)− ϵ)∥22
7: θ ← GradientUpdate(θ,∇θLoss)
8: end while

Algorithm 4 Temporal convolution with local receptive window within (sub)sequences

Require: 1 ≤ w ≤ R
1: function TEMPORALCONVOLUTION(sθ,uk, c, k, w,R)
2: s1:w+1 ← sθ(uk(t1:2w+1), k | c)[: w + 1]
3: for i = w + 2 to R− w − 1 do
4: si ← sθ(uk(ti−w:i+w), k | c)[w + 1]
5: end for
6: sR−w:R ← sθ(uk(tR−2w:R), k | c)[w + 1 :]
7: return s1:R
8: end function
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B METRICS

We divide our metrics into pixel-based, structure-based, and physics-based. The former two deal
with information loss in the data space, while the latter in the spectral space.

B.1 PIXEL-BASED METRICS

As described in the main text, we apply root mean-squared error (RMSE; equation 19) and mean
absolute error (MAE; equation 20)

MRMSE =

√
1

nu

∑
(û− u)2 (19)

MMAE =
1

nu

∑
|û− u| (20)

B.2 STRUCTURE-BASED METRICS

Let Y and Ŷ be two images to be compared, and let µY, σ2
Y and σYŶ be the mean of Y, the

variance of Y, and the covariance of Y and Ŷ, respectively. The luminance, contrast and structure
comparison measures are defined as follows:

l(Y, Ŷ) =
2µYµŶ + C1

µ2
Y + µ2

Ŷ
+ C1

, (21)

c(Y, Ŷ) =
2σYσŶ + C2

σ2
Y + σ2

Ŷ
+ C2

, (22)

s(Y, Ŷ) =
σYŶ + C3

σYσŶ + C3
, (23)

where C1, C2 and C3 are constants given by

C1 = (K1L)
2, C2 = (K2L)

2, and C3 = C2/2. (24)

L = 255 is the dynamic range of the gray scale images, and K1 ≪ 1 and K2 ≪ 1 are two small
constants. To compute the MS-SSIM metric across multiple scales, the images are successively
low-pass filtered and down-sampled by a factor of 2. We index the original image as scale 1, and the
desired highest scale as scale M . At each scale, the contrast comparison and structure comparison
are computed and denoted as cj(Y, Ŷ) and sj(Y, Ŷ) respectively. The luminance comparison is
only calculated at the last scale M , denoted by lM (Y, Ŷ). Then, the MS-SSIM metric is defined by

MMS−SSIM = [lM (Y, Ŷ)]αM ·
M∏
j=1

[cj(Y, Ŷ)]βj [sj(Y, Ŷ)]γj (25)

where αM , βj and γj are parameters. We use the same set of parameters as in Wang et al. (2003):
K1 = 0.01, K2 = 0.03, M = 5, α5 = β5 = γ5 = 0.1333, β4 = γ4 = 0.2363, β3 = γ3 = 0.3001,
β2 = γ2 = 0.2856, β1 = γ = 0.0448. The predicted and ground truth images of physical variables
are re-scaled to 0-255 prior to the calculation of their MS-SSIM values.

B.3 PHYSICS-BASED METRICS

We next describe in detail the definition and implementation of our physics-based metrics, partic-
ularly Spectral Divergence (SpecDiv). Consider a 2D image field of size h × w for a physical
parameter at a specific time, variable, and level. Let f(x, y) be the intensity of the pixel at position
(x, y). First, we compute the 2D Fourier transform of the image by:

F (kx, ky) =

w−1∑
x=0

h−1∑
y=0

f(x, y) · e−2πi(kxx/w+kyy/h) (26)
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where kx and ky correspond to the wavenumber components in the horizontal and vertical directions,
respectively, and i is the imaginary unit. The power at each wavenumber component (kx, ky) is given
by the square of the magnitude spectrum of F (kx, ky), that is,

S(kx, ky) = |F (kx, ky)|2 = Re[F (kx, ky)]
2 + Im[F (kx, ky)]

2 (27)

The scalar wavenumber is defined as:

k =
√

k2x + k2y (28)

which represents the magnitude of the spatial frequency vector, indicating how rapidly features
change spatially regardless of direction. Then, the energy distribution at a spatial frequency corre-
sponding to k is defined as:

S(k) =
∑

(kx,ky):
√
k2x+k

2
y=k

S(kx, ky) (29)

Given the spatial energy frequency distribution for observations S(k) and predictions Ŝ(k) , we
perform normalization over K, the set of wavenumbers, as defined in Equation 30. This is to ensure
that the sum of the component sums up to 1 which exhibits pdf-like property.

S(k)← S(k)∑
k∈K S(k)

, Ŝ(k)← Ŝ(k)∑
k∈K Ŝ(k)

(30)

Finally, the SpecDiv is formalized as follows:

MSpecDiv =
∑
k

S(k) · log(S(k)/Ŝ(k)) (31)

where S(k), Ŝ(k) are the power spectra of the target and forecast along space continuum.
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C EXPERIMENTAL DETAILS

C.1 KOLMOGOROV FLOW

Model training and inference. All models are trained over 256 epochs, optimized with ADAMW
Loshchilov & Hutter (2017), with a batch size of 64, learning rate of 2× 10−4, and a weight decay
of 1× 10−3. During diffusion inference, we apply 64 denoising steps with 1-step LMC correction,
γ = 10−2, and τ = 3e−2. Training and inference are performed using 1x A100 NVIDIA GPU in a
100GB memory node.

Ablation. In order to build the best ensembles based on MC-dropout and IC perturbation strat-
egy, we perform the following ablation: (i) vary the probability of dropout during inference (MC-
dropout), (ii) introduce Gaussian noise to initial condition (IC) following ε ∼ N (0, fI), where
f ∈ [0, 1]. Figure 13 demonstrates that a dropout rate p = 0.1 and perturbation factor f = 0.1 yield
the best ensembles.
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Figure 13: Ablating the best strategies to yield the optimal ensembles for MC-dropout and IC per-
turbation for Kolmogorov Flow, by varying dropout probability p and Gaussian noise factor f re-
spectively.

C.2 SHALLOW WATER EQUATION

We define a new coordinate system on the spherical domain x ∈ S2 in terms of longitude φ ∈
[0, 2π] and colatitude θ ∈ [0, π] Bonev et al. (2023). The unit vector x can then be reparamterized
as (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ))T . Given this coordinate transform, we define the set of
differential equations describing SWE:

∂tφ+∇ · (φu) = 0

∂t(φu) +∇ · T = S (32)

with initial conditions φ = φ0, u = u0. The state vector (φ,φuT )T includes both the geopotential
layer depth φ (representing mass) and the tangential momentum vector φu (indicative of discharge).
Within curvilinear coordinates, the flux tensor T can be expressed using the outer product φu ⊗ u.
The right-hand side of the equation features flux-related terms, such as the Coriolis force.

Experimental setup. We use spectral method Giraldo (2001) to solve the PDE on an equiangular
grid with a spatial resolution of 120 × 240 and 60-second timesteps. Time-stepping is performed
using the third-order Adams-Bashford scheme and snapshots are taken every 5 hour for a total of 12
days, keeping the last 32 temporal sequences of vorticity outputs. The parameters of the PDE, such
as gravity, radius of the sphere and angular velocity, are referenced to the Earth.
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Model training and inference. All models are trained over 256 epochs, optimized with ADAMW
Loshchilov & Hutter (2017), with a batch size of 64, learning rate of 2×10−4, and a weight decay of
1 × 10−3. During diffusion inference, we apply 1024 denoising steps with 1-step LMC correction,
γ = 10−2, and τ = 3e−2. Training and inference are performed using 1x A100 NVIDIA GPU in a
100GB memory node.

Ablation. In order to build the best ensembles based on MC-dropout and IC perturbation strat-
egy, we perform the following ablation: (i) vary the probability of dropout during inference (MC-
dropout), (ii) introduce Gaussian noise to initial condition (IC) following ε ∼ N (0, fI), where
f ∈ [0, 1]. Figure 14 demonstrates that a dropout rate p = 0.2 and perturbation factor f = 0.1 yield
the best ensembles.
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(b) IC perturbation

Figure 14: Ablating the best strategies to yield the optimal ensembles for MC-dropout and IC per-
turbation for Shallow Water Equation, by varying dropout probability p and Gaussian noise factor f
respectively.
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