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Abstract

Unsupervised domain adaptation (UDA) aug-001
ment model performance with only accessible002
annotations from the source domain and un-003
labeled data from the target domain. Exist-004
ing state-of-the-art UDA models learn domain-005
invariant representations across domains and006
evaluate primarily on class-imbalanced data.007
In this work, we propose an unsupervised do-008
main adaptation approach via reinforcement009
learning that jointly leverages both label pre-010
diction, domain, and imbalanced labels across011
domains. We experiment with the text classifi-012
cation task for its easily accessible datasets and013
compare the proposed method with five base-014
lines. Experiments on three datasets prove that015
our proposed method can effectively learn ro-016
bust domain-invariant representations and suc-017
cessfully adapt text classifiers over domains018
and imbalanced classes.019

1 Introduction020

Performance of text classifiers may get worse when021

training and test data come from different domains,022

where feature distributions are the difference be-023

tween the source (training data) and target (test024

data) domains. However, annotated data from the025

target domain may not be available to train text026

classifiers causing the main challenge of adapting027

classifiers from the source domain to the target do-028

main. This happens when obtaining annotations029

from the target domain is either expensive or re-030

quires domain expertise, such as classifying moral031

values in social psychology (Hoover et al., 2020).032

Unsupervised domain adaptation (UDA) is an es-033

sential approach to augment model performance on034

the target domain with only labeled data from the035

source domain and no access to any labeled data036

from the target domain.037

The key idea of UDA is to find a shared fea-038

ture space that is predictive across target and039

source domains (Ramponi and Plank, 2020). The040

shared space, domain-independent feature set, al- 041

lows transferring of trained text classifiers from 042

the source domain to the target domain. Methods 043

to find the space have two major directions, pivot 044

feature (Blitzer et al., 2006; Daumé III, 2007; Ziser 045

and Reichart, 2018; Ben-David et al., 2020) and 046

adversarial learning (Ganin and Lempitsky, 2015; 047

Chen et al., 2020b; Du et al., 2020). The pivot- 048

based method selects a subset of shared features, 049

called pivots, which learn important cross-domain 050

information to represent shared feature space. Ad- 051

versarial learning approaches the shared feature 052

space by reducing document features’ capability to 053

distinguish source and target domains. The com- 054

mon method to achieve this is Gradient Reversal 055

Layer (GRL) (Ganin and Lempitsky, 2015) aiming 056

to reduce domain-specific patterns. However, learn- 057

ing optimal predictive features across the source 058

and target domains is still a challenge. Additionally, 059

a wide evaluation benchmark of UDA for text clas- 060

sifiers is the Amazon review (Blitzer et al., 2006). 061

The data has the same balanced-class distributions 062

for both source and target domains. However, the 063

class-imbalanced data (e.g., different label distribu- 064

tions across domains (Cui et al., 2017; Cheng et al., 065

2020)) is a different challenge. Under the class- 066

imbalanced scenario, we assume that the label is 067

imbalanced across domains, and the label distri- 068

butions in source and target domains are not the 069

same. For example, the source domain of Amazon 070

Book reviews may have more positive reviews than 071

negative reviews, and the target domain of Kitchen 072

may have more negative reviews. However, eval- 073

uating unsupervised domain adaptation under the 074

class-imbalanced scenario is under-examined than 075

the ideal scenario of the class-balanced benchmark. 076

In this study, we proposed an unsupervised re- 077

inforcement adaptation model (URAM) for text 078

classifiers under the UDA setting that only labeled 079

source data and unlabeled target data are available. 080

Specifically, we propose a neural mask mechanism 081
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to generate domain-dependent and -independent082

feature representations and a reward policy using a083

critic value network (Konda and Tsitsiklis, 2000)084

(CRN) to learn optimal domain-independent repre-085

sentations. The reward policy optimizes the URAM086

via three joint reward factors, label, domain, and087

domain distance. While the label reward aims to088

encourage text classification models on domain-089

independent features to predict correct document090

classes, the domain and domain distance rewards091

reduce domain variations of domain-dependent fea-092

ture representations between source and target do-093

mains. We compare our reinforcement adapta-094

tion model with five baselines and experiment on095

four class-imbalanced data with both binary and096

non-binary labels. The results using the F1-score097

demonstrate the effectiveness of our reinforcement098

learning model that outperforms the baselines by099

3.13 on average. The main contributions of this100

paper are as follows:101

• We propose a reinforcement learning model102

for unsupervised domain adaptation that103

jointly leverages cross-domain variations and104

classification performance.105

• We experiment unsupervised domain adapta-106

tion approaches on the class-imbalanced sce-107

nario that label distributions are different be-108

tween source and target domains. The class-109

imbalanced scenario is under-explored for the110

UDA challenge.111

• We conduct an extensive ablation analysis that112

demonstrates how the reinforcement model113

can coherently combines both pivot and ad-114

versarial directions of unsupervised domain115

adaptation.116

2 Background117

This section briefly recaps the concepts of unsuper-118

vised domain adaptation (UDA) and reinforcement119

learning.120

2.1 UDA for Class-Imbalanced Data121

UDA assumes a labeled dataset with D𝑆 =122 {(
𝑥𝑖𝑠, 𝑦

𝑖
𝑠

)}𝑛𝑠
𝑖=1

from source domain and a unlabeled123

data D𝑇 =

{
𝑥
𝑗
𝑡

}𝑛𝑡
𝑗=1

from target domain, data distri-124

butions of the two domains are different, 𝑝(𝑥𝑠) ≠125

𝑝(𝑥𝑡 ), and the two domains share the same number126

of unique annotations. UDA is to find a common127

feature space aligning source and target domains so128

that 𝑓 (𝑝(𝑥𝑠)) ≈ 𝑝(𝑥𝑡 ) However, class-imbalanced 129

data naturally exist in UDA tasks that may cause 130

inefficient knowledge transfer (Ramponi and Plank, 131

2020). We assume both data and labels are not 132

equally distributed in this work. 133

2.2 Reinforcement Learning 134

Actor-Critic (Konda and Tsitsiklis, 2000) is an RL 135

algorithm that combines Actor and Critic networks. 136

Critic, a value network (denote as 𝑉\𝑐 ), estimates 137

rewards at state 𝑠𝑡 and is optimized by state differ- 138

ence error as follows 139

L(\𝑐) =
𝑉\𝑐 (𝑠𝑡 ) − 𝑟 (s𝑡 , 𝑎𝑡 ) −𝑉\𝑐 (s𝑡+1)

2 (1) 140

where 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is a target reward and tells us the 141

reward for taking action 𝑎 in state 𝑠. The actor is 142

a policy function that gives us the probability of 143

taking action 𝑎 in the state 𝑠. The actor decides 144

which action should be taken, and the critic eval- 145

uates how good the action is and how it should 146

adjust. The learning of the actor (\𝑎) is based on 147

policy gradient approach as the following 148

L𝐴(\𝑎) =
∑︁
𝑡

log 𝜋\𝑎 (𝑎𝑡 , 𝑠𝑡 ) 𝐴 (𝑠𝑡 , 𝑎𝑡 ) (2) 149

, where 𝐴 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 ). 150

𝛾 is a decay factor that discounts rewards backward 151

over steps. To encourage the actor to explore more 152

actions, the algorithm adds an entropy penalty, 153

L𝑆 (\𝑎) = −
∑︁
𝑎

𝜋\ (𝑎 | 𝑠) log 𝜋\𝑎 (𝑎 | 𝑠) (3) 154

The overall objective is as following, 155

L = L(\𝑐) − (L𝐴(\𝑎) + L𝑠 (\𝑎)) (4) 156

3 Unsupervised Reinforcement 157

Adaptation Model (URAM) 158

In this section, we present details of the URAM, 159

shown in Figure 1. The URAM trains classifiers 160

on the labeled data from the source domain and 161

unlabeled data from the target domain. The model 162

contains three major modules: 1) a base model; 2) 163

adversarial learning; 3) reinforcement learning. 164

3.1 Based Model 165

Our based model consists of an encoder and a clas- 166

sifier. The encoder extracts features from input 167

documents, and the classifier predicts document 168

labels. The based model takes a regular in-domain 169
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Figure 1: Illustration of proposed URAM.

training method with 𝑛𝑠 labeled samples from the170

source domain171

min
\𝑒 , \𝑐𝑙𝑎

𝑛𝑠∑︁
𝑖

(L(𝐶 (𝐸 (𝑥𝑖𝑠, \𝑒), \𝑐𝑙𝑎), 𝑦𝑖𝑠) (5)172

, where \𝑒, \𝑐𝑙𝑎 are the parameters of the en-173

coder and classifier respectively. L(·) is the cross-174

entropy loss.175

3.2 Adversarial Learning Strategy176

In this part, we propose an adversarial learning177

strategy to train our discriminator and the mask178

model. Source and target domains have a feature179

distribution discrepancy, and therefore representa-180

tions (𝐸 (𝑥)) from the encoder will capture domain-181

specific patterns. With these domain-specific fea-182

tures, a discriminator (\𝑑) can distinguish a sam-183

ple’s domain by minimizing the classification error184

185

min
\𝑑

(L(𝐷 (𝐸 (𝑋𝑠), \𝑑), 𝟙) +L(𝐷 (𝐸 (𝑋𝑡 ), \𝑑), 𝟘)).
(6)186

Next, we propose a mask model to confuse the187

discriminator. The mask model is based on the idea188

that the features extracted by the encoder contain189

domain-specific features and domain-independent190

features. The domain-independent features are191

transferable knowledge cross domains. Learning192

the domain-independent features can improve the193

generability of text classifiers, while overfitting194

domain-specific features degrade the cross-domain195

performance. Based on this idea, the mask model196

captures common knowledge cross domains and197

generates domain-independent representations. We198

design a training objective for the mask model. In-199

tuitively, if the discriminator uses the generated200

features from the mask model and fails to recog-201

nize domains of input data, then this indicates the202

features generated by the mask model are domain- 203

independent. Therefore, our first goal is to maxi- 204

mize the loss of the discriminator as the following 205

formulation: 206

𝑅𝑑 = max
\𝑚

(L(𝐷 (𝑀 (𝐸 (𝑋𝑠), \𝑚), \𝑑), 𝟙)+

L(𝐷 (𝑀 (𝐸 (𝑋𝑡 ), \𝑚), \𝑑), 𝟘))
(7) 207

Our second goal is to minimize the classification 208

loss using the domain-independent features (𝑥𝑚) 209

on the classifier (C). The mask model yields the 210

domain-independent features by learning how to 211

mask out domain-dependent features. To reduce 212

the relevance of the features to the classification 213

task, we want to obtain the masked features that 214

can keep an identical prediction from the original 215

features while removing the domain-dependent pat- 216

terns. Therefore, our second goal is to make a 217

consistent prediction between 𝐶 (𝑀 (𝐸 (𝑋))) and 218

𝐶 (𝑀 (𝐸 (𝑋))). Here, we follow the work (Saito 219

et al., 2018b) and employ L1-distance to mea- 220

sure the representation discrepancy loss between 221

𝐶 (𝑀 (𝐸 (𝑋))) and 𝐶 (𝑀 (𝐸 (𝑋))) as the following: 222

223

𝑅𝑐 = 𝑚𝑖𝑛(L𝑑𝑖𝑠 ( |𝐶 (𝑀 (𝐸 (𝑋))) − 𝐶 (𝐸 (𝑋)) |))
(8) 224

, where 𝑅𝑐 measures cross-domain variations. 225

3.3 Actor-Critic Learning 226

We apply actor-critic algorithm (Konda and 227

Tsitsiklis, 2000) to optimize our model since 228

searching domain-independent features is a non- 229

differentiable process. The optimization process of 230

the mask model is shown in Fig 1. 231

First, we introduce a value estimation network, 232

critic. The critic helps to estimate an action’s re- 233

ward by giving a state. Our critic is a 2-layer feed- 234

forward network, with the input of 𝑀 (𝐸 (𝑋)) and 235
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𝐸 (𝑋). The predictive reward 𝑅𝑝 is formulated as236

follow:237

𝑅𝑝 = 𝑓𝑤2 ( 𝑓𝑤1 (𝐸 (𝑋)) − 𝑓𝑤1 (𝑀 (𝐸 (𝑋)))) (9)238

, where 𝐸 (𝑥) and 𝑀 (𝐸 (𝑥)) represent the state 𝑠239

and 𝑠𝑡+1 respectively. The loss function is as the240

following,241

L(\𝑐) =
(
𝑅𝑑 + 𝑅𝑐 − 𝑅𝑝

)2 (10)242

The critic is trained with Adam on a mean squared243

error L(\𝑐).244

The mask model generates a mask matrix M𝑎245

and is an actor model by a fully connected neural246

network and a sigmoid unit. It accepts inputs from247

the encoder and calculates a masked probability248

of each features M𝑝. Then we adopt Bernoulli249

sampling and obtain a logical matrix M𝑎. The250

elements in M𝑎 belongs to {0, 1}. We denote the251

output of the mask model as 𝑥𝑚 = M𝑎 ∗𝐸 (𝑥). The252

mask model’s training objective is to maximum the253

total reward 𝑅𝑑 and 𝑅𝑐 defined in e.q. 7 and e.q. 8254

𝐽 (M𝑎 | 𝐸 (𝑋)) =
EM𝑎∼𝜋 (M𝑝 |𝐸 (𝑋)) {𝑅𝑑 − 𝑅𝑐 + 𝑅𝑟𝑒𝑔},

(11)255

, where 𝜋 is a policy function and 𝑅𝑟𝑒𝑔 is a regu-256

larization term, controlling the number of masked257

features. We set 𝑅𝑟𝑒𝑔 = (∑M𝑎). The optimiza-258

tion of e.q. 11 follows e.q. 2 and e.q. 3. Since we259

only take one action, the optimization in e.q. 2 and260

e.q. 3 can be simplified as the following261

L(\𝑚) = − log 𝜋\𝑚 (𝑎, 𝑠) 𝐴 (𝑠, 𝑎) +
𝜋\𝑚 (𝑎 | 𝑠) log 𝜋\𝑚 (𝑎 | 𝑠)

(12)262

, where 𝐴(𝑠, 𝑎) = 𝑅𝑑 + 𝑅𝑐 − 𝑅𝑝. We update \𝑚 by263

maximizing L(\𝑚).264

Algorithm 1 Optimization Process of Our Model.

Input: The source data 𝐷𝑠 = (𝑋𝑠, 𝑌𝑠) and target
data 𝐷𝑡 = (𝑋𝑡 ), maximum iteration 𝐼;

Output: The network parameter \𝑒, \𝑐𝑙𝑎, \𝑑 , \𝑚,
\𝑐;

1: for 𝑖 = 1; 𝑖 < 𝐼; 𝑖 + + do
2: Samples a batch from 𝐷𝑠 and 𝐷𝑡 ;
3: Update \𝑒, \𝑐𝑙𝑎 via e.q.(5);
4: Update \𝑑 via e.q.(6)
5: Update \𝑚, \𝑐 via section (3.3)
6: end for
7: return \𝑒, \𝑐𝑙𝑎, \𝑑 , \𝑚, \𝑐;

3.4 Training Procedure 265

Our training procedure includes three steps: 1) step 266

A trains the encoder and classifier as e.q. 5; 2) 267

step B trains the discriminator by e.q. 6; 3) step 268

C training the mask model by the reinforcement 269

learning. We summarize the optimization process 270

in Algorithm 1. 271

4 Experiment 272

4.1 Datasets 273

We assembled four datasets, three online reviews 274

and one Twitter data. The reviews are binary labels, 275

and the Twitter data has 11 unique labels. We 276

summarize data statistics in Table 2. 277

Amazon Review (Ni et al., 2019) consists of 278

four different product genres: Books (B), DVDs 279

(D), Electronics (E) and Kitchen (K). We treat 280

each genre as a domain, where each domain con- 281

tains 4,000 samples and two classes (positive and 282

negative). We name cross-domain evaluations by 283

the source-target format. For example, Books- 284

Kictchen means that Books is the source data 285

and Kictchen is the target data. In this task, we 286

randomly select 2000 samples from each domain 287

that follows the standard benchmark (Blitzer et al., 288

2006) for the UDA evaluations, while label distri- 289

butions are not the same cross domains. We split 290

1600 as a training set and 400 as a test set for each 291

domain. 292

Yelp and IMDB are two online review datasets 293

from torchtext.1 The binary label distributions are 294

balanced. Therefore, to create imbalanced datasets, 295

we first randomly produce a label ratio and then 296

sample data depending on the label ratio. Follow- 297

ing the Amazon review, we randomly select 2000 298

samples from Yelp Review Polarity and IMDb 299

training set, separately. We treat Yelp and IMDB 300

as domains and split the training and test sets into 301

1600 and 400 samples. 302

MFTC (Hoover et al., 2020) is a multi-label clas- 303

sification Twitter data with 35,108 tweets. These 304

tweets are drawn from seven different discourse 305

domains with moral sentiment across seven so- 306

cial movements, including MeToo, Black Lives 307

Matter (BLM), Sandy, Davidson, Baltimore, All 308

Lives Matter (ALM), and US Presidential Election 309

(Election). We treat social movements as domains. 310

These domains share the same set of 11 moral senti- 311

1https://pytorch.org/text/stable/
datasets.html
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Method MeToo - Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
LSTM

DANN 45.00 23.17 83.33 93.55 45.16 61.79
MCD 40.25 23.61 83.85 94.17 48.27 61.54

JUMBOT 46.94 23.26 81.79 93.66 42.57 56.78
ALDA 38.20 23.31 84.14 93.88 42.30 52.46
URAM 47.06 24.00 85.09 94.49 50.58 62.50

BERT
DANN 78.20 23.50 73.23 69.64 54.36 43.44
MCD 79.51 23.39 74.33 69.54 43.67 42.37

JUMBOT 73.74 23.23 80.57 75.00 53.37 43.08
ALDA 77.26 24.42 77.21 70.54 47.01 39.84
URAM 81.93 27.09 86.24 76.97 57.70 45.16

Table 1: Cross-domain performance of UDA models using F1 score. Each UDA model testifies over two popular
neural feature extractor, LSTM. We list extensive evaluations in the Appendix.

Docs Tokens pos/neg
M-MeToo 4480 13.86 -

M-Davidson 4480 19.13 -
A-Book 2000 25.65 0.65

A-Kitchen 2000 29.73 4.78
Yelp 2000 231.57 0.26

IMDB 2000 146.01 0.67

Table 2: Data statistics summary of Morality and three
review data, Amazon, Yelp and IMDB. We include
multi-label distributions of the Morality data in ap-
pendix, Table 7.

ment types: Subversion, Authority, Cheating, Fair-312

ness, Harm, Care, Betrayal, Loyalty, Purity, Degra-313

dation, Non-moral. The rates of each of the virtues314

and vices vary substantially across the domain. For315

example, only approximately 2% of the ALM data316

were labeled as degradation while approximately317

14% of the Sandy data were labeled as degrada-318

tion. In this task, we randomly split 3584 samples319

as training and 896 samples for testing for each320

domain.321

We conduct an exploratory analysis of domain322

variations. The analysis follows the name format323

as source-target. We use KL-divergence of the324

class distribution to measure the category-wise dis-325

tribution and Euclidean distance to measure the326

domain-wise distribution. The domain-wise dis-327

crepancy refers to the euclidean distance of the328

encoder’s output between the training and test sets.329

The category-wise is the KL-divergence of labels’330

distribution between the training and test sets. We331

extract feature vectors using LSTMs trained over332

the domains. We show cross-domain discrepancy333

in Table 3. We can find that the multi-label Twitter334

data has more variations in both domain and label 335

distributions. 336

4.2 Baselines 337

We compare our models with four recent methods. 338

• DANN (Ganin and Lempitsky, 2015) maps 339

source and target domains to a common sub- 340

space through shared parameters. This ap- 341

proach introduces a gradient reversal layer to 342

confuse domain prediction to improve classi- 343

fication robustness across domains with the 344

adversarial train. 345

• MCD (Saito et al., 2018a) proposes to maxi- 346

mize the discrepancy between two classifiers’ 347

outputs to detect target samples that are far 348

from the support of the source. Then, A fea- 349

ture generator learns to generate target fea- 350

tures near the support to minimize the discrep- 351

ancy. 352

• JUMBOT (Fatras et al., 2021) proposes a new 353

formulation of the mini-batch optimal trans- 354

port strategy coupled with an unbalanced op- 355

timal transport program to calculate optimal 356

transport distance. 357

• ALDA (Chen et al., 2020b) constructs a new 358

loss function by introducing a confusion ma- 359

trix. The confusion matrix reduces the gap 360

and aligns the feature distributions in an ad- 361

versarial manner. 362

4.3 Implementation Details 363

In this study, we evaluate the UDA methods us- 364

ing two standard neural models as feature extrac- 365

tors, LSTM (Hochreiter and Schmidhuber, 1997) 366
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Table 3: Domain discrepancy summary.

discrepancy MeToo-Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
domain-wise 10889 661 15986 11680 1.523 1.692
category-wise 0.1197 0.1933 2.0 × 10−4 1.0 × 10−4 0.044 0.050

and BERT (Devlin et al., 2019). For the LSTM-367

based encoder, we use pre-trained word vectors368

GloVe (Pennington et al., 2014) by torchtext 2 to369

train word embedding. The learning rate is set370

to 1 × 10−3 and batch size set to 64. We utilize371

a Bidirectional LSTM as our encoder and set the372

LSTM hidden number as 256. For the BERT-based373

encoder, we load the pre-trained BERT model374

(bert-base-uncased) from the transformer375

toolkit (Wolf et al., 2020). We set the learning rate376

as 1 × 10−5 and batch size as 16.377

In all the above experiments, we used378

Adam (Kingma and Ba, 2015) to optimize our379

model and maximum iteration set to 50 in all ex-380

periments. We run each experiment five times and381

average F1 as the final performance.382

4.4 Result383

Table 4: The domain-wise discrepancy based on domain
adaptation methods.

DANN MCD JUMBOT ALDA URAM
MeToo - Davidson 3.937 5.806 0.072 7.902 0.401
Davidson-MeToo 0.016 10.862 0.121 0.016 0.044
Book-Kitchen 0.950 1.651 0.046 3.922 0.233
Kitchen-Book 0.649 1.749 0.073 2.984 0.196
Yelp-IMDB 3.376 3.029 0.492 8.106 0.586
IMDB-Yelp 2.951 6.184 0.733 31.469 0.665

In this section, we present model performance384

on the cross-domain adaptation task and conduct an385

ablation analysis to examine the effects of the two386

reward factors, 𝑅𝑑 and 𝑅𝑐. We include extensive387

evaluation results in the appendix (Table B).388

Overall Performance. The table 1 reports the389

overall performance. Our method achieves the best390

result in the datasets with a significant discrepancy391

both in domain and category. We obtain a sig-392

nificant improvement on Amazon datasets, Book-393

Kitchen (1.12%-17.7%) and Kitchen-Book (2.62%-394

10.68%), respectively. Amazon datasets follow the395

traditional assumption that different domains have396

significant feature discrepancies but have similar397

label distributions. Our improvement on Amazon398

datasets verifies our model effectiveness of learn-399

ing transferable knowledge. On the other hand, our400

2https://pytorch.org/text/stable/index.html

method also can release the category discrepancy 401

problem. As shown in the table 1, our method 402

outperforms existing methods remarkably on the 403

MFTC dataset (Metoo-Davidson) with the signif- 404

icant discrepancy in domain and category since 405

we can align the distribution both in-text features 406

and labels. We notice some latest methods fail to 407

compete with DANN. We infer the reasons behind 408

this are that some methods do not consider cate- 409

gory discrepancy. For example, the performance of 410

ALDA is lower than DANN on Metoo-Davidson 411

since ALDA tries to align category discrepancy by 412

narrowing domain discrepancy, which causes nega- 413

tive knowledge transfer. The other reason is due to 414

poor robustness. Some methods may ascribe sam- 415

ples’ feature discrepancy to domain discrepancy, 416

and aligning these sample’s specific features lead 417

to a lower distinguished ability among different 418

samples (e.g., ALDA on Yelp-IMDB). All meth- 419

ods have similar performance on Davidson-Metoo 420

since Davidson datasets have an extreme label dis- 421

tribution. Most samples focus on the same category, 422

which causes models not to access enough samples 423

to learn the features in other classes. 424
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Figure 2: The convergence comparison between our
model and baselines on Book-Kitchen.

Convergence Investigation The convergence 425

curves of our model and baselines are respectively 426

depicted in Fig. (2). We conduct a convergence 427

experiment on Book-Kitchen datasets based on 428

LSTM to verify the training stability during knowl- 429

edge transfer. This task focuses on evaluating the 430

ability to align domain-wise discrepancy since the 431

feature’s center of Book and Kitchen have a remark- 432

able difference (up to 15986), but their categories 433

are similar. Specifically, we observe that our model 434

significantly outperforms DANN and MCD dur- 435

6



ing training. DANN has relatively low stability436

since it only aligns different domain features with-437

out considering task-specific features. Compared438

with ALDA, our model achieves similar stability.439

Our model can achieve efficient convergence af-440

ter iterating 15 epochs, which proves our model’s441

robustness.442

Knowledge Transfer. We measure the fea-443

ture center distance between the training set in444

the source data and the test set in the target data445

to evaluate models’ ability to transfer knowledge.446

Generally, the domain-wise discrepancy is signifi-447

cantly narrowed after applying domain adaptation448

methods. Our model achieves relatively signifi-449

cant improvements, but there are some exceptions.450

For example, ALDA has a lower domain-wise dis-451

crepancy on Davidson-MeToo than ours. However,452

ALDA’s performance is unsatisfactory, especially453

when the datasets have similar domains (e.g., Yelp-454

IMDB and IMDB-Yelp). A similar situation also455

happens on DANN and MCD. These methods en-456

large domain-wise discrepancy when the domains457

have similar feature distribution. Compared with458

JUMBOT, our model has a slightly large domain-459

wise discrepancy. However, our model is more effi-460

cient on knowledge transfer when the domain has461

huge category-wise discrepancies. For example,462

the distance of our model is .0438 on Davidson-463

MeToo, while the corresponding figure is .1207 on464

JUMBOT.465

4.5 Ablation Analysis466

In this subsection, we investigate the importance467

of different rewards in RL learning by conducting468

variant experiments, as shown in the Table 5.469

−𝑅𝑐 means we delete reward 𝑅𝑐 in our 𝑅𝑎𝑑𝑣.470

𝑅𝑐 is a unsupervised reward. Instead of aligning471

features, 𝑅𝑐 aims to search subspace features, en-472

suing the consistent prediction between completed473

features 𝐸 (𝑋) and sub-spaced features 𝑀 (𝐸 (𝑋)).474

This method is efficient since removing 𝑅𝑐 is signif-475

icantly detrimental to cross-domain performance.476

Especially, we find that 𝑅𝑐 plays a more critical477

role Book-Kitchen and Kitchen-Book tasks by com-478

paring the 𝑅𝑑 since removing 𝑅𝑐 lower the perfor-479

mance than 𝑅𝑑 .480

𝑅𝑑 is proposed to align domain features by fool-481

ing the discriminator. −𝑅𝑑 means we do not need482

to train the discriminator and 𝑅𝑎𝑑𝑣 only combines483

with 𝑅𝑐 and 𝑅𝑟𝑒𝑔. −𝑅𝑑 achieves a better perfor-484

mance than our completed model on Book-Kitchen.485

We infer the reason behind this is because 𝑅𝑑 only 486

focuses on feature shift rather than considering the 487

discrepancy among different classes, which causes 488

class-specific features to be weakened, and the 489

model fails to distinguish the boundaries of other 490

classes. However, removing 𝑅𝑑 decreases the per- 491

formance in most of the situations, which proves 492

feature shift is efficient in domain adaptation. 493

Generally, 𝑅𝑑 and 𝑅𝑐 work together to guide 494

critical knowledge transfer and removing any one 495

of them degrade the performance badly. Which 496

reward dominates an improvement depends on the 497

datasets’ property. When the domains have signifi- 498

cant discrepancy both in features and label distri- 499

bution, 𝑅𝑑 and 𝑅𝑐 work in an adversarial way to 500

ensure shifting features as well as keeping class- 501

specific features. 502

5 Related work 503

Unsupervised Domain Adaptation for text clas- 504

sification has several major approaches (Ramponi 505

and Plank, 2020), such as distribution adapta- 506

tion, feature selection and subspace learning. Dis- 507

tribution adaptation reduce the difference in the 508

marginal distribution (Gretton et al., 2007), condi- 509

tional distribution (Satpal and Sarawagi, 2007) or 510

joint distribution (Long et al., 2013) by explicitly 511

minimizing predefined distance measures. For ex- 512

ample, Zhang et al. adopts the Margin Disparity 513

Discrepancy (Zhang et al., 2019) to solve the cross- 514

lingual text classification problems. Zellinger et al. 515

proposes Central Moment Discrepancy (CMD), 516

which explicitly minimizes differences of higher- 517

order central moments for each moment order by 518

matching the domain-specific hidden representa- 519

tions. Feature selection minimizes the difference 520

between the domains by finding commonality in 521

features or pivots. For example, SCL (Blitzer 522

et al., 2006) uses unlabeled data and frequently- 523

occurring pivot features from both source and target 524

domains to find correspondences among features 525

from these domains. PBLM (Ziser and Reichart, 526

2018) combines SCL with a neural language model 527

based on long short-term memory (LSTM) net- 528

works which predict the presence of pivots and 529

non-pivots. FSDA (Sun et al., 2019) finds informa- 530

tive features to reduce the domain discrepancy and 531

eliminate noisy features by developing a cutting- 532

plane algorithm. Subspace learning aligns the fea- 533

tures in the different domain into the same space 534

and then build a unified model for these domains. 535
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Table 5: Ablation studies of our model on LSTM

Method MeToo - Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
−𝑅𝑑 31.97 23.14 86.09 44.15 43.28 61.40
−𝑅𝑐 35.84 23.19 84.51 40.87 43.71 60.87

One of the key methods in this work focus on ad-536

versarial learning. Du et al. design a post-training537

procedure to distill the domain-specific features538

in a self-supervised way and then conduct the ad-539

versarial training to derive the enhanced domain-540

invariant features. Qu et al. propose an adversarial541

category alignment network (ACAN) to enforce the542

category-level alignment under a prior condition of543

global marginal alignment.544

5.1 Reinforcement Learning545

With the robustness in learning sophisticated poli-546

cies, recent works introduce Reinforcement learn-547

ing (RL) into the domain adaptation task (Chen548

et al., 2020a; Dong et al., 2020; Zhang et al.,549

2021). DARL (Chen et al., 2020a) employs deep Q-550

learning in partial domain adaptation. The DARL551

framework designs a reward for the agent-based on552

how relevant the selected source instances are to553

the target domain. With the action-value function554

optimizer, DARL can automatically select source555

instances in the shared classes for circumventing556

negative transfer as well as to simultaneously learn557

transferable features between domains by reducing558

the domain shift. However, DARL does not gener-559

alize to unsupervised domain adaptation. Highly560

relying on the rich labels in the source domain will561

cause failure when insufficient labels are in the562

source domain. To address this problem, Zhang563

et al. develop a new reward across both source and564

target domains. This reward can guide the agent to565

learn the best policy and select the closest feature566

pair for both domains. However, these works only567

focus on computer vision. To our best knowledge,568

we are the first work introducing RL for the UDA569

under the class-imbalanced text classification.570

5.2 Imbalanced-class571

Increasing works study the class-imbalanced do-572

main adaptation (Tan et al., 2020; Lee et al., 2020;573

Bose et al., 2021; Li et al., 2020). COAL (Tan et al.,574

2020) deals with feature shift and label shift in a575

unified way. With the idea of prototype-based con-576

ditional distribution alignment and class-balanced577

self-training, COAL tackles feature shift in the con-578

text of label shift. However, present works only 579

focus on computer vision, and the imbalanced class 580

domain adaptation in NLP is unexplored. The 581

other similar works is category-level feature align- 582

ment (Qu et al., 2019; Luo et al., 2019; Li et al., 583

2021, 2019; Yang et al., 2020). These works usu- 584

ally focus on domain shifts and propose domain- 585

level aligned strategies while ignoring the local 586

category-level distributions, reducing cross-domain 587

text classifiers’ effectiveness. A popular strategy 588

for category-level alignment is aligning the same 589

class features among different domains respectively 590

by resorting to pseudo labels (Dong et al., 2020; 591

Yang et al., 2020). 592

6 Conclusion 593

In this study, we have proposed an unsupervised 594

reinforcement adaptation model (URAM) for the 595

novel cross-domain adaptation challenge where the 596

source and target domains are class-imbalanced. 597

We demonstrate the effectiveness of our reinforce- 598

ment approach with the other four state-of-art 599

baselines on the task of text classification. The 600

URAM learns domain-independent representations 601

by leveraging three reward factors, label, domain, 602

and domain distance, which coherently combines 603

pivot and adversarial approaches in UDA. Exten- 604

sive experiments and ablation analysis show that 605

the URAM can obtain robust domain-invariant rep- 606

resentations and effectively adapt text classifiers 607

over both domains and imbalanced data. 608

6.1 Limitation and Future Work 609

Our work opens several future directions on the 610

limitations of this study. First, class-imbalanced 611

data naturally exist in NLP tasks, such as dis- 612

course inference (Spangher et al., 2021), text gen- 613

eration (Nishino et al., 2020), and question answer- 614

ing (Li et al., 2020). Our next step will examine 615

the effectiveness of our model over the NLP tasks. 616

Second, we only validate the URAM on English 617

datasets, and additional multilingual settings will 618

be verified in future work, such as multilingual text 619

classification (Schwenk and Li, 2018). 620
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A Imbalanced Data Label Distribution874

Docs Tokens pos/neg
D-DVD 2000 30.51 2.52

E-Electronic 2000 27.65 2.26

Table 6: Stats of the Amazon review data. We present
the average number of tokens and the imbalanced-class
ratio.

B Cross-domain Evaluations875

11

https://openreview.net/forum?id=SkB-_mcel
https://doi.org/10.18653/v1/2020.findings-emnlp.315
https://doi.org/10.18653/v1/2020.findings-emnlp.315
https://doi.org/10.18653/v1/2020.findings-emnlp.315
https://doi.org/10.18653/v1/2020.findings-emnlp.315
https://doi.org/10.18653/v1/2020.findings-emnlp.315
https://doi.org/10.1109/WACV48630.2021.00068
https://doi.org/10.1109/WACV48630.2021.00068
https://doi.org/10.1109/WACV48630.2021.00068
https://proceedings.mlr.press/v97/zhang19i.html
https://proceedings.mlr.press/v97/zhang19i.html
https://proceedings.mlr.press/v97/zhang19i.html
https://doi.org/10.18653/v1/N18-1112
https://doi.org/10.18653/v1/N18-1112
https://doi.org/10.18653/v1/N18-1112
https://doi.org/10.18653/v1/N18-1112
https://doi.org/10.18653/v1/N18-1112


dataset Non-moral Degradation Harm Fairness Subversion Care Cheating Purity Betrayal Authority Loyalty
MeToo 21.40 15,30 6.86 6.30 14.70 3.40 11.00 2.98 5.83 6.93 5.29
BLM 23.59 4.23 19.36 8.58 5.74 5.93 13.84 2.76 2.71 5.40 7.83
Sandy 13.68 1.94 1.69 3.82 9.63 21.30 9.80 1.45 3.12 9.46 8.86

Davidson 92.13 1.34 2.76 0.08 0.14 0.18 1.24 0.10 0.82 0.40 0.82
Baltimore 54.93 0.55 4.86 2.60 5.34 3.26 9.38 0.69 11.18 0.40 6.83

ALM 20.98 3.18 19.15 13.42 2.37 11.88 13.16 2.11 1.04 6.36 6.36
Election 47.70 2.13 9.09 8.66 2.55 6.15 9.59 6.32 1.98 2.61 3.20

Table 7: Label distributions of the multi-class morality dataset (Hoover et al., 2020)

No-adapt MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 47.16 18.09 6.28 35.61 29.58 14.61 16.95
BLM 16.23 76.32 17.22 26.27 25.28 16.16 26.40
Sandy 8.81 14.46 58.50 19.27 7.49 15.68 9.04

Davidson 23.12 31.98 8.09 99.17 66.96 24.93 58.49
Baltimore 23.32 32.42 10.07 99.17 66.54 25.00 59.09

ALM 12.11 17.60 14.27 24.88 25.12 43.71 20.33
Election 23.18 32.59 15.24 99.11 66.57 24.95 58.87

MCD MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 48.14 25.86 13.77 40.25 38.86 22.81 32.41
BLM 16.48 78.42 17.27 29.17 55.27 23.40 34.51
Sandy 24.37 16.68 60.17 15.74 32.50 16.52 12.58

Davidson 23.62 31.99 13.94 99.17 66.96 25.73 58.49
Baltimore 23.12 32.44 14.80 99.17 66.21 24.93 59.09

ALM 16.88 23.37 15.48 37.11 34.33 63.18 25.22
Election 23.12 32.53 14.10 99.17 66.54 24.93 63.91

DANN MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 40.03 17.98 9.74 45.00 20.65 13.69 24.30
BLM 16.33 75.40 15.48 35.68 22.94 17.82 24.39
Sandy 8.37 14.55 56.84 6.78 6.47 14.65 9.34

Davidson 23.17 31.98 8.17 99.17 66.96 24.93 58.49
Baltimore 23.17 32.42 9.82 99.17 66.24 24.95 59.03

ALM 12.63 16.78 14.93 19.18 20.87 60.88 17.26
Election 23.14 32.57 14.23 99.17 66.57 24.93 64.01

JUMBOT MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 43.12 28.32 10.47 46.94 42.33 21.08 36.11
BLM 24.37 72.57 16.02 52.20 48.92 32.18 48.91
Sandy 19.34 33.17 57.60 10.86 41.23 30.86 39.59

Davidson 23.26 32.99 8.35 99.17 66.96 26.64 58.49
Baltimore 23.48 32.66 12.16 99.17 66.18 25.03 59.09

ALM 23.30 39.82 17.04 66.60 61.70 42.01 46.50
Election 23.12 32.49 15.20 99.17 66.42 24.93 60.41

ALDA MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 21.50 25.89 14.17 38.21 1.12 9.84 58.75
BLM 14.82 56.82 13.97 51.90 39.98 16.53 23.39
Sandy 23.36 14.23 34.84 33.81 6.01 22.06 28.03

Davidson 23.31 31.99 26.59 99.17 66.96 32.31 58.49
Baltimore 23.03 31.63 8.77 42.12 65.33 25.50 28.77

ALM 22.43 14.83 5.94 31.16 58.96 38.50 37.35
Election 25.44 39.70 19.16 98.32 66.54 23.17 58.87

URAM MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 45.54 19.34 10.48 47.07 38.14 16.97 34.80
BLM 16.03 79.12 15.86 50.31 30.57 18.56 26.74
Sandy 9.28 14.65 60.44 10.50 10.28 15.28 8.86

Davidson 24.00 32.53 11.59 99.17 66.96 25.02 58.49
Baltimore 23.10 28.57 12.09 98.96 63.52 24.93 53.43

ALM 12.58 16.51 15.70 34.43 27.88 63.11 17.29
Election 22.54 31.92 12.38 99.06 58.10 24.88 65.23

Table 8: Cross-domain performance evaluation over the Morality dataset (Hoover et al., 2020) using F1. Each
subtable presents results of one UDA model.

book-dvd dvd-book book-eletronic eletronic-book kitchen-eletronic eletronic-kitchen dvd-kitchen kitchen-dvd dvd-eletroic eletronic-dvd
DANN 83.16 94.00 86.87 92.15 95.24 91.21 94.24 94.29 94.63 92.57
MCD 84.39 94.34 85.06 93.36 94.08 91.61 94.14 94.99 94.22 92.54

JUMBOT 82.27 91.51 77.34 84.83 92.91 85.58 92.49 94.01 91.64 92.23
ALDA 84.49 93.52 84.14 94.49 93.93 92.39 92.70 94.21 94.00 90.91
URAM 86.56 94.58 87.90 93.51 94.96 92.87 94.81 95.15 95.03 93.02

Table 9: Cross-domain performance evaluation over the Amazon review dataset (Blitzer et al., 2006).
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