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Abstract

Unsupervised domain adaptation (UDA) aug-
ment model performance with only accessible
annotations from the source domain and un-
labeled data from the target domain. Exist-
ing state-of-the-art UDA models learn domain-
invariant representations across domains and
evaluate primarily on class-imbalanced data.
In this work, we propose an unsupervised do-
main adaptation approach via reinforcement
learning that jointly leverages both label pre-
diction, domain, and imbalanced labels across
domains. We experiment with the text classifi-
cation task for its easily accessible datasets and
compare the proposed method with five base-
lines. Experiments on three datasets prove that
our proposed method can effectively learn ro-
bust domain-invariant representations and suc-
cessfully adapt text classifiers over domains
and imbalanced classes.

1 Introduction

Performance of text classifiers may get worse when
training and test data come from different domains,
where feature distributions are the difference be-
tween the source (training data) and target (test
data) domains. However, annotated data from the
target domain may not be available to train text
classifiers causing the main challenge of adapting
classifiers from the source domain to the target do-
main. This happens when obtaining annotations
from the target domain is either expensive or re-
quires domain expertise, such as classifying moral
values in social psychology (Hoover et al., 2020).
Unsupervised domain adaptation (UDA) is an es-
sential approach to augment model performance on
the target domain with only labeled data from the
source domain and no access to any labeled data
from the target domain.

The key idea of UDA is to find a shared fea-
ture space that is predictive across target and
source domains (Ramponi and Plank, 2020). The

shared space, domain-independent feature set, al-
lows transferring of trained text classifiers from
the source domain to the target domain. Methods
to find the space have two major directions, pivot
feature (Blitzer et al., 2006; Daumé II1, 2007; Ziser
and Reichart, 2018; Ben-David et al., 2020) and
adversarial learning (Ganin and Lempitsky, 2015;
Chen et al., 2020b; Du et al., 2020). The pivot-
based method selects a subset of shared features,
called pivots, which learn important cross-domain
information to represent shared feature space. Ad-
versarial learning approaches the shared feature
space by reducing document features’ capability to
distinguish source and target domains. The com-
mon method to achieve this is Gradient Reversal
Layer (GRL) (Ganin and Lempitsky, 2015) aiming
to reduce domain-specific patterns. However, learn-
ing optimal predictive features across the source
and target domains is still a challenge. Additionally,
a wide evaluation benchmark of UDA for text clas-
sifiers is the Amazon review (Blitzer et al., 2006).
The data has the same balanced-class distributions
for both source and target domains. However, the
class-imbalanced data (e.g., different label distribu-
tions across domains (Cui et al., 2017; Cheng et al.,
2020)) is a different challenge. Under the class-
imbalanced scenario, we assume that the label is
imbalanced across domains, and the label distri-
butions in source and target domains are not the
same. For example, the source domain of Amazon
Book reviews may have more positive reviews than
negative reviews, and the target domain of Kitchen
may have more negative reviews. However, eval-
uating unsupervised domain adaptation under the
class-imbalanced scenario is under-examined than
the ideal scenario of the class-balanced benchmark.

In this study, we proposed an unsupervised re-
inforcement adaptation model (URAM) for text
classifiers under the UDA setting that only labeled
source data and unlabeled target data are available.
Specifically, we propose a neural mask mechanism



to generate domain-dependent and -independent
feature representations and a reward policy using a
critic value network (Konda and Tsitsiklis, 2000)
(CRN) to learn optimal domain-independent repre-
sentations. The reward policy optimizes the URAM
via three joint reward factors, label, domain, and
domain distance. While the label reward aims to
encourage text classification models on domain-
independent features to predict correct document
classes, the domain and domain distance rewards
reduce domain variations of domain-dependent fea-
ture representations between source and target do-
mains. We compare our reinforcement adapta-
tion model with five baselines and experiment on
four class-imbalanced data with both binary and
non-binary labels. The results using the F1-score
demonstrate the effectiveness of our reinforcement
learning model that outperforms the baselines by
3.13 on average. The main contributions of this
paper are as follows:

* We propose a reinforcement learning model
for unsupervised domain adaptation that
jointly leverages cross-domain variations and
classification performance.

* We experiment unsupervised domain adapta-
tion approaches on the class-imbalanced sce-
nario that label distributions are different be-
tween source and target domains. The class-
imbalanced scenario is under-explored for the
UDA challenge.

* We conduct an extensive ablation analysis that
demonstrates how the reinforcement model
can coherently combines both pivot and ad-
versarial directions of unsupervised domain
adaptation.

2 Background

This section briefly recaps the concepts of unsuper-
vised domain adaptation (UDA) and reinforcement
learning.

2.1 TUDA for Class-Imbalanced Data

UDA assumes a labeled dataset with Dg =
{(xf, ¥%)}?, from source domain and a unlabeled
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from target domain, data distri-

butions of the two domains are different, p(x;) #
p(x;), and the two domains share the same number
of unique annotations. UDA is to find a common
feature space aligning source and target domains so

that f(p(xs)) = p(x;) However, class-imbalanced
data naturally exist in UDA tasks that may cause
inefficient knowledge transfer (Ramponi and Plank,
2020). We assume both data and labels are not
equally distributed in this work.

2.2 Reinforcement Learning

Actor-Critic (Konda and Tsitsiklis, 2000) is an RL
algorithm that combines Actor and Critic networks.
Critic, a value network (denote as Vyg_), estimates
rewards at state s, and is optimized by state differ-
ence error as follows

L(0e) = ||[Va, (s1) =7 (s,a0) = Ve, sx)||” (D)

where r(s;, a;) is a target reward and tells us the
reward for taking action a in state s. The actor is
a policy function that gives us the probability of
taking action a in the state s. The actor decides
which action should be taken, and the critic eval-
uates how good the action is and how it should
adjust. The learning of the actor (6,) is based on
policy gradient approach as the following

LA(Ba) = ) logma, (ar,s) A(si,a) ()

, where A (s¢,a;) =7 (s¢,a:) + ¥V (s141) =V (5¢).
vy is a decay factor that discounts rewards backward
over steps. To encourage the actor to explore more
actions, the algorithm adds an entropy penalty,

L5(0a) == ) molal s)logmg,(als) (3)

The overall objective is as following,

L=L(0) - (LYNOa) + L5(02) @)

3 Unsupervised Reinforcement
Adaptation Model (URAM)

In this section, we present details of the URAM,
shown in Figure 1. The URAM trains classifiers
on the labeled data from the source domain and
unlabeled data from the target domain. The model
contains three major modules: 1) a base model; 2)
adversarial learning; 3) reinforcement learning.

3.1 Based Model

Our based model consists of an encoder and a clas-
sifier. The encoder extracts features from input
documents, and the classifier predicts document
labels. The based model takes a regular in-domain
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Figure 1: Ilustration of proposed URAM.
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, where 6.,60., are the parameters of the en-
coder and classifier respectively. £(-) is the cross-
entropy loss.

3.2 Adversarial Learning Strategy

In this part, we propose an adversarial learning
strategy to train our discriminator and the mask
model. Source and target domains have a feature
distribution discrepancy, and therefore representa-
tions (E (x)) from the encoder will capture domain-
specific patterns. With these domain-specific fea-
tures, a discriminator (64) can distinguish a sam-
ple’s domain by minimizing the classification error

Hg)tiin(ﬁ(D(E(Xs), 0a). 1)+ L(D(E(X;),04),0)).
(6)

Next, we propose a mask model to confuse the
discriminator. The mask model is based on the idea
that the features extracted by the encoder contain
domain-specific features and domain-independent
features. The domain-independent features are
transferable knowledge cross domains. Learning
the domain-independent features can improve the
generability of text classifiers, while overfitting
domain-specific features degrade the cross-domain
performance. Based on this idea, the mask model
captures common knowledge cross domains and
generates domain-independent representations. We
design a training objective for the mask model. In-
tuitively, if the discriminator uses the generated
features from the mask model and fails to recog-
nize domains of input data, then this indicates the

features generated by the mask model are domain-
independent. Therefore, our first goal is to maxi-
mize the loss of the discriminator as the following
formulation:

Ra = max(L(D(M(E(X;),0m), 04), D)+ -

Our second goal is to minimize the classification
loss using the domain-independent features (x,;)
on the classifier (C). The mask model yields the
domain-independent features by learning how to
mask out domain-dependent features. To reduce
the relevance of the features to the classification
task, we want to obtain the masked features that
can keep an identical prediction from the original
features while removing the domain-dependent pat-
terns. Therefore, our second goal is to make a
consistent prediction between C(M(E(X))) and
C(M(E(X))). Here, we follow the work (Saito
et al., 2018b) and employ L1-distance to mea-
sure the representation discrepancy loss between
C(M(E(X))) and C(M(E(X))) as the following:

Re = min(Lais(IC(M(E(X))) - C(E(X))]))
®)

, where R, measures cross-domain variations.

3.3 Actor-Critic Learning

We apply actor-critic algorithm (Konda and
Tsitsiklis, 2000) to optimize our model since
searching domain-independent features is a non-
differentiable process. The optimization process of
the mask model is shown in Fig 1.

First, we introduce a value estimation network,
critic. The critic helps to estimate an action’s re-
ward by giving a state. Our critic is a 2-layer feed-
forward network, with the input of M(E (X)) and



E(X). The predictive reward R, is formulated as
follow:

Rp = fu, (S, (E(X)) = fuw (M(E(X))))  (9)

, where E(x) and M (E(x)) represent the state s
and 5,41 respectively. The loss function is as the
following,

L£(6:) = (Ry+Re—Ry)* (10)

The critic is trained with Adam on a mean squared
error L(6.).

The mask model generates a mask matrix M,
and is an actor model by a fully connected neural
network and a sigmoid unit. It accepts inputs from
the encoder and calculates a masked probability
of each features M,,. Then we adopt Bernoulli
sampling and obtain a logical matrix M,. The
elements in M, belongs to {0, 1}. We denote the
output of the mask model as x,,, = M, = E(x). The
mask model’s training objective is to maximum the
total reward R; and R, defined ine.q. 7 and e.q. 8

JMa | E(X)) =

(11)
EMa~n(M, EX){Ra — Rc + Rreg},

, where 7 is a policy function and R, is a regu-
larization term, controlling the number of masked
features. We set R,.q = (3 M,). The optimiza-
tion of e.q. 11 follows e.q. 2 and e.q. 3. Since we
only take one action, the optimization in e.q. 2 and
e.q. 3 can be simplified as the following

L(Qm) = —10gﬂ'gm (a,s) A (s,a) +

12)
o, (a | s)logmg,, (a|s)

, where A(s,a) = Rq + R. — R,,. We update 6,,, by
maximizing £(6,,).

Algorithm 1 Optimization Process of Our Model.

Input: The source data D = (X, Yy) and target
data D, = (X,), maximum iteration 7;
Output: The network parameter 6., 674,04, Om,
Oc;
1: fori=1;i < I;i++do

2:  Samples a batch from Dy and D;;
3:  Update 0., 6., viae.q.(5);

4:  Update 6, via e.q.(6)

5:  Update 6,,, 6. via section (3.3)

6: end for

7: return 6,.,0.14,04,0m, 0.;

3.4 Training Procedure

Our training procedure includes three steps: 1) step
A trains the encoder and classifier as e.q. 5; 2)
step B trains the discriminator by e.q. 6; 3) step
C training the mask model by the reinforcement
learning. We summarize the optimization process
in Algorithm 1.

4 Experiment

4.1 Datasets

We assembled four datasets, three online reviews
and one Twitter data. The reviews are binary labels,
and the Twitter data has 11 unique labels. We
summarize data statistics in Table 2.

Amazon Review (Ni et al., 2019) consists of
four different product genres: Books (B), DVDs
(D), Electronics (E) and Kitchen (K). We treat
each genre as a domain, where each domain con-
tains 4,000 samples and two classes (positive and
negative). We name cross-domain evaluations by
the source-target format. For example, Books-
Kictchen means that Books is the source data
and Kictchen is the target data. In this task, we
randomly select 2000 samples from each domain
that follows the standard benchmark (Blitzer et al.,
2006) for the UDA evaluations, while label distri-
butions are not the same cross domains. We split
1600 as a training set and 400 as a test set for each
domain.

Yelp and IMDB are two online review datasets
from torchtext.! The binary label distributions are
balanced. Therefore, to create imbalanced datasets,
we first randomly produce a label ratio and then
sample data depending on the label ratio. Follow-
ing the Amazon review, we randomly select 2000
samples from Yelp Review Polarity and IMDb
training set, separately. We treat Yelp and IMDB
as domains and split the training and test sets into
1600 and 400 samples.

MFTC (Hoover et al., 2020) is a multi-label clas-
sification Twitter data with 35,108 tweets. These
tweets are drawn from seven different discourse
domains with moral sentiment across seven so-
cial movements, including MeToo, Black Lives
Matter (BLM), Sandy, Davidson, Baltimore, All
Lives Matter (ALM), and US Presidential Election
(Election). We treat social movements as domains.
These domains share the same set of 11 moral senti-

"https://pytorch.org/text/stable/
datasets.html
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Method H MeToo - Davidson | Davidson-MeToo | Book-Kitchen | Kitchen-Book | Yelp-IMDB | IMDB-Yelp

LSTM
DANN 45.00 23.17 83.33 93.55 45.16 61.79
MCD 40.25 23.61 83.85 94.17 48.27 61.54
JUMBOT 46.94 23.26 81.79 93.66 42.57 56.78
ALDA 38.20 23.31 84.14 93.88 42.30 52.46
URAM 47.06 24.00 85.09 94.49 50.58 62.50
BERT
DANN 78.20 23.50 73.23 69.64 54.36 43.44
MCD 79.51 23.39 74.33 69.54 43.67 42.37
JUMBOT 73.74 23.23 80.57 75.00 53.37 43.08
ALDA 77.26 24.42 77.21 70.54 47.01 39.84
URAM 81.93 27.09 86.24 76.97 57.70 45.16

Table 1: Cross-domain performance of UDA models using F1 score. Each UDA model testifies over two popular
neural feature extractor, LSTM. We list extensive evaluations in the Appendix.

\ Docs \ Tokens | pos/neg

M-MeToo | 4480 | 13.86 -

M-Davidson | 4480 | 19.13 -
A-Book 2000 | 25.65 0.65
A-Kitchen | 2000 | 29.73 478
Yelp 2000 | 231.57 0.26
IMDB 2000 | 146.01 0.67

Table 2: Data statistics summary of Morality and three
review data, Amazon, Yelp and IMDB. We include
multi-label distributions of the Morality data in ap-
pendix, Table 7.

ment types: Subversion, Authority, Cheating, Fair-
ness, Harm, Care, Betrayal, Loyalty, Purity, Degra-
dation, Non-moral. The rates of each of the virtues
and vices vary substantially across the domain. For
example, only approximately 2% of the ALM data
were labeled as degradation while approximately
14% of the Sandy data were labeled as degrada-
tion. In this task, we randomly split 3584 samples
as training and 896 samples for testing for each
domain.

We conduct an exploratory analysis of domain
variations. The analysis follows the name format
as source-target. We use KL-divergence of the
class distribution to measure the category-wise dis-
tribution and Euclidean distance to measure the
domain-wise distribution. The domain-wise dis-
crepancy refers to the euclidean distance of the
encoder’s output between the training and test sets.
The category-wise is the KL-divergence of labels’
distribution between the training and test sets. We
extract feature vectors using LSTMs trained over
the domains. We show cross-domain discrepancy
in Table 3. We can find that the multi-label Twitter

data has more variations in both domain and label
distributions.

4.2 Baselines

We compare our models with four recent methods.

* DANN (Ganin and Lempitsky, 2015) maps
source and target domains to a common sub-
space through shared parameters. This ap-
proach introduces a gradient reversal layer to
confuse domain prediction to improve classi-
fication robustness across domains with the
adversarial train.

* MCD (Saito et al., 2018a) proposes to maxi-
mize the discrepancy between two classifiers’
outputs to detect target samples that are far
from the support of the source. Then, A fea-
ture generator learns to generate target fea-
tures near the support to minimize the discrep-
ancy.

* JUMBOT (Fatras et al., 2021) proposes a new
formulation of the mini-batch optimal trans-
port strategy coupled with an unbalanced op-
timal transport program to calculate optimal
transport distance.

* ALDA (Chen et al., 2020b) constructs a new
loss function by introducing a confusion ma-
trix. The confusion matrix reduces the gap
and aligns the feature distributions in an ad-
versarial manner.

4.3 Implementation Details

In this study, we evaluate the UDA methods us-
ing two standard neural models as feature extrac-
tors, LSTM (Hochreiter and Schmidhuber, 1997)



Table 3: Domain discrepancy summary.

discrepancy MeToo-Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
domain-wise 10889 661 15986 11680 1.523 1.692
category-wise 0.1197 0.1933 2.0x 107 1.0x 1074 0.044 0.050

and BERT (Devlin et al., 2019). For the LSTM-
based encoder, we use pre-trained word vectors
GloVe (Pennington et al., 2014) by torchtext 2 to
train word embedding. The learning rate is set
to 1 x 1073 and batch size set to 64. We utilize
a Bidirectional LSTM as our encoder and set the
LSTM hidden number as 256. For the BERT-based
encoder, we load the pre-trained BERT model
(bert-base-uncased) from the transformer
toolkit (Wolf et al., 2020). We set the learning rate
as 1 x 107 and batch size as 16.

In all the above experiments, we used
Adam (Kingma and Ba, 2015) to optimize our
model and maximum iteration set to 50 in all ex-
periments. We run each experiment five times and
average F1 as the final performance.

4.4 Result

Table 4: The domain-wise discrepancy based on domain
adaptation methods.

DANN MCD JUMBOT ALDA URAM
MeToo - Davidson ~ 3.937  5.806 0.072 7.902  0.401
Davidson-MeToo 0.016  10.862 0.121 0.016  0.044
Book-Kitchen 0.950  1.651 0.046 3922 0.233
Kitchen-Book 0.649  1.749 0.073 2984  0.196
Yelp-IMDB 3.376  3.029 0.492 8.106  0.586
IMDB-Yelp 2951  6.184 0.733 31.469  0.665

In this section, we present model performance
on the cross-domain adaptation task and conduct an
ablation analysis to examine the effects of the two
reward factors, R; and R.. We include extensive
evaluation results in the appendix (Table B).

Overall Performance. The table 1 reports the
overall performance. Our method achieves the best
result in the datasets with a significant discrepancy
both in domain and category. We obtain a sig-
nificant improvement on Amazon datasets, Book-
Kitchen (1.12%-17.7%) and Kitchen-Book (2.62%-
10.68%), respectively. Amazon datasets follow the
traditional assumption that different domains have
significant feature discrepancies but have similar
label distributions. Our improvement on Amazon
datasets verifies our model effectiveness of learn-
ing transferable knowledge. On the other hand, our

Zhttps://pytorch.org/text/stable/index.html

method also can release the category discrepancy
problem. As shown in the table 1, our method
outperforms existing methods remarkably on the
MFTC dataset (Metoo-Davidson) with the signif-
icant discrepancy in domain and category since
we can align the distribution both in-text features
and labels. We notice some latest methods fail to
compete with DANN. We infer the reasons behind
this are that some methods do not consider cate-
gory discrepancy. For example, the performance of
ALDA is lower than DANN on Metoo-Davidson
since ALDA tries to align category discrepancy by
narrowing domain discrepancy, which causes nega-
tive knowledge transfer. The other reason is due to
poor robustness. Some methods may ascribe sam-
ples’ feature discrepancy to domain discrepancy,
and aligning these sample’s specific features lead
to a lower distinguished ability among different
samples (e.g., ALDA on Yelp-IMDB). All meth-
ods have similar performance on Davidson-Metoo
since Davidson datasets have an extreme label dis-
tribution. Most samples focus on the same category,
which causes models not to access enough samples
to learn the features in other classes.

—— OURS
—+— DANN
—— MCD

—— ALDA

0 10 20 30 40 50 0 10 20 30 40 50
epoch epoch

Figure 2: The convergence comparison between our
model and baselines on Book-Kitchen.

Convergence Investigation The convergence
curves of our model and baselines are respectively
depicted in Fig. (2). We conduct a convergence
experiment on Book-Kitchen datasets based on
LSTM to verify the training stability during knowl-
edge transfer. This task focuses on evaluating the
ability to align domain-wise discrepancy since the
feature’s center of Book and Kitchen have a remark-
able difference (up to 15986), but their categories
are similar. Specifically, we observe that our model
significantly outperforms DANN and MCD dur-



ing training. DANN has relatively low stability
since it only aligns different domain features with-
out considering task-specific features. Compared
with ALDA, our model achieves similar stability.
Our model can achieve efficient convergence af-
ter iterating 15 epochs, which proves our model’s
robustness.

Knowledge Transfer. We measure the fea-
ture center distance between the training set in
the source data and the test set in the target data
to evaluate models’ ability to transfer knowledge.
Generally, the domain-wise discrepancy is signifi-
cantly narrowed after applying domain adaptation
methods. Our model achieves relatively signifi-
cant improvements, but there are some exceptions.
For example, ALDA has a lower domain-wise dis-
crepancy on Davidson-MeToo than ours. However,
ALDA’s performance is unsatisfactory, especially
when the datasets have similar domains (e.g., Yelp-
IMDB and IMDB-Yelp). A similar situation also
happens on DANN and MCD. These methods en-
large domain-wise discrepancy when the domains
have similar feature distribution. Compared with
JUMBOT, our model has a slightly large domain-
wise discrepancy. However, our model is more effi-
cient on knowledge transfer when the domain has
huge category-wise discrepancies. For example,
the distance of our model is .0438 on Davidson-
MeToo, while the corresponding figure is .1207 on
JUMBOT.

4.5 Ablation Analysis

In this subsection, we investigate the importance
of different rewards in RL learning by conducting
variant experiments, as shown in the Table 5.

—R. means we delete reward R, in our R,4, .
R, is a unsupervised reward. Instead of aligning
features, R. aims to search subspace features, en-
suing the consistent prediction between completed
features E(X) and sub-spaced features M (E (X)).
This method is efficient since removing R, is signif-
icantly detrimental to cross-domain performance.
Especially, we find that R, plays a more critical
role Book-Kitchen and Kitchen-Book tasks by com-
paring the R, since removing R, lower the perfor-
mance than R,.

R, is proposed to align domain features by fool-
ing the discriminator. —R; means we do not need
to train the discriminator and R4, only combines
with R. and R,.q. —Ry achieves a better perfor-
mance than our completed model on Book-Kitchen.

We infer the reason behind this is because R4 only
focuses on feature shift rather than considering the
discrepancy among different classes, which causes
class-specific features to be weakened, and the
model fails to distinguish the boundaries of other
classes. However, removing R, decreases the per-
formance in most of the situations, which proves
feature shift is efficient in domain adaptation.

Generally, R; and R, work together to guide
critical knowledge transfer and removing any one
of them degrade the performance badly. Which
reward dominates an improvement depends on the
datasets’ property. When the domains have signifi-
cant discrepancy both in features and label distri-
bution, R; and R, work in an adversarial way to
ensure shifting features as well as keeping class-
specific features.

5 Related work

Unsupervised Domain Adaptation for text clas-
sification has several major approaches (Ramponi
and Plank, 2020), such as distribution adapta-
tion, feature selection and subspace learning. Dis-
tribution adaptation reduce the difference in the
marginal distribution (Gretton et al., 2007), condi-
tional distribution (Satpal and Sarawagi, 2007) or
joint distribution (Long et al., 2013) by explicitly
minimizing predefined distance measures. For ex-
ample, Zhang et al. adopts the Margin Disparity
Discrepancy (Zhang et al., 2019) to solve the cross-
lingual text classification problems. Zellinger et al.
proposes Central Moment Discrepancy (CMD),
which explicitly minimizes differences of higher-
order central moments for each moment order by
matching the domain-specific hidden representa-
tions. Feature selection minimizes the difference
between the domains by finding commonality in
features or pivots. For example, SCL (Blitzer
et al., 2006) uses unlabeled data and frequently-
occurring pivot features from both source and target
domains to find correspondences among features
from these domains. PBLM (Ziser and Reichart,
2018) combines SCL with a neural language model
based on long short-term memory (LSTM) net-
works which predict the presence of pivots and
non-pivots. FSDA (Sun et al., 2019) finds informa-
tive features to reduce the domain discrepancy and
eliminate noisy features by developing a cutting-
plane algorithm. Subspace learning aligns the fea-
tures in the different domain into the same space
and then build a unified model for these domains.



Table 5: Ablation studies of our model on LSTM

Method MeToo - Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
—Ry 31.97 23.14 86.09 44.15 43.28 61.40
-R. 35.84 23.19 84.51 40.87 43.71 60.87

One of the key methods in this work focus on ad-
versarial learning. Du et al. design a post-training
procedure to distill the domain-specific features
in a self-supervised way and then conduct the ad-
versarial training to derive the enhanced domain-
invariant features. Qu et al. propose an adversarial
category alignment network (ACAN) to enforce the
category-level alignment under a prior condition of
global marginal alignment.

5.1 Reinforcement Learning

With the robustness in learning sophisticated poli-
cies, recent works introduce Reinforcement learn-
ing (RL) into the domain adaptation task (Chen
et al., 2020a; Dong et al., 2020; Zhang et al.,
2021). DARL (Chen et al., 2020a) employs deep Q-
learning in partial domain adaptation. The DARL
framework designs a reward for the agent-based on
how relevant the selected source instances are to
the target domain. With the action-value function
optimizer, DARL can automatically select source
instances in the shared classes for circumventing
negative transfer as well as to simultaneously learn
transferable features between domains by reducing
the domain shift. However, DARL does not gener-
alize to unsupervised domain adaptation. Highly
relying on the rich labels in the source domain will
cause failure when insufficient labels are in the
source domain. To address this problem, Zhang
et al. develop a new reward across both source and
target domains. This reward can guide the agent to
learn the best policy and select the closest feature
pair for both domains. However, these works only
focus on computer vision. To our best knowledge,
we are the first work introducing RL for the UDA
under the class-imbalanced text classification.

5.2 Imbalanced-class

Increasing works study the class-imbalanced do-
main adaptation (Tan et al., 2020; Lee et al., 2020;
Bose et al., 2021; Li et al., 2020). COAL (Tan et al.,
2020) deals with feature shift and label shift in a
unified way. With the idea of prototype-based con-
ditional distribution alignment and class-balanced
self-training, COAL tackles feature shift in the con-

text of label shift. However, present works only
focus on computer vision, and the imbalanced class
domain adaptation in NLP is unexplored. The
other similar works is category-level feature align-
ment (Qu et al., 2019; Luo et al., 2019; Li et al.,
2021, 2019; Yang et al., 2020). These works usu-
ally focus on domain shifts and propose domain-
level aligned strategies while ignoring the local
category-level distributions, reducing cross-domain
text classifiers’ effectiveness. A popular strategy
for category-level alignment is aligning the same
class features among different domains respectively
by resorting to pseudo labels (Dong et al., 2020;
Yang et al., 2020).

6 Conclusion

In this study, we have proposed an unsupervised
reinforcement adaptation model (URAM) for the
novel cross-domain adaptation challenge where the
source and target domains are class-imbalanced.
We demonstrate the effectiveness of our reinforce-
ment approach with the other four state-of-art
baselines on the task of text classification. The
URAM learns domain-independent representations
by leveraging three reward factors, label, domain,
and domain distance, which coherently combines
pivot and adversarial approaches in UDA. Exten-
sive experiments and ablation analysis show that
the URAM can obtain robust domain-invariant rep-
resentations and effectively adapt text classifiers
over both domains and imbalanced data.

6.1 Limitation and Future Work

Our work opens several future directions on the
limitations of this study. First, class-imbalanced
data naturally exist in NLP tasks, such as dis-
course inference (Spangher et al., 2021), text gen-
eration (Nishino et al., 2020), and question answer-
ing (Li et al., 2020). Our next step will examine
the effectiveness of our model over the NLP tasks.
Second, we only validate the URAM on English
datasets, and additional multilingual settings will
be verified in future work, such as multilingual text
classification (Schwenk and Li, 2018).
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the average number of tokens and the imbalanced-class
ratio.
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dataset | Non-moral Degradation Harm Fairness Subversion Care Cheating Purity Betrayal Authority Loyalty
MeToo 21.40 15,30 6.86 6.30 14.70 3.40 11.00 2.98 5.83 6.93 5.29
BLM 23.59 4.23 19.36 8.58 5.74 5.93 13.84 2.76 2.71 5.40 7.83
Sandy 13.68 1.94 1.69 3.82 9.63 21.30 9.80 1.45 3.12 9.46 8.86
Davidson 92.13 1.34 2.76 0.08 0.14 0.18 1.24 0.10 0.82 0.40 0.82
Baltimore 54.93 0.55 4.86 2.60 5.34 3.26 9.38 0.69 11.18 0.40 6.83
ALM 20.98 3.18 19.15  13.42 2.37 11.88 13.16 2.11 1.04 6.36 6.36
Election 47.70 2.13 9.09 8.66 2.55 6.15 9.59 6.32 1.98 2.61 3.20

Table 7: Label distributions of the multi-class morality dataset (Hoover et al., 2020)

No-adapt MeToo BLM Sandy Davidson Baltimore ALM Election MCD MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 47.16  18.09 6.28 35.61 29.58 14.61 16.95 MeToo 48.14 25.86 13.77 40.25 38.86 22.81 3241
BLM 1623 7632 17.22 26.27 25.28 16.16  26.40 BLM 1648 7842 17.27 29.17 55.27 2340 3451
Sandy 8.81 1446 58.50 19.27 7.49 15.68 9.04 Sandy 2437 16.68 60.17 15.74 32.50 1652 12.58
Davidson  23.12 3198 8.09 99.17 66.96 2493 5849 Davidson  23.62 3199 13.94 99.17 66.96 25.73 5849
Baltimore  23.32 3242 10.07 99.17 66.54 25.00  59.09 Baltimore  23.12 3244 14.80 99.17 66.21 2493 59.09
ALM 12.11  17.60 14.27 24.88 25.12 4371 2033 ALM 16.88 2337 1548 37.11 34.33 63.18 2522
Election  23.18 3259 1524 99.11 66.57 2495 5887 Election  23.12 32.53 14.10 99.17 66.54 2493 6391

DANN MeToo BLM Sandy Davidson Baltimore ALM Election JUMBOT MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 40.03 1798 9.74 45.00 20.65 13.69 2430 MeToo 43.12 2832 1047 46.94 42.33 21.08  36.11
BLM 1633 7540 1548 35.68 22.94 17.82  24.39 BLM 2437 7257 16.02 52.20 48.92 32.18 4891
Sandy 837 1455 56.84 6.78 6.47 14.65 9.34 Sandy 19.34  33.17 57.60 10.86 41.23 30.86  39.59
Davidson ~ 23.17 31.98 8.17 99.17 66.96 2493 5849 Davidson 2326 3299 8.35 99.17 66.96 26.64  58.49
Baltimore  23.17 3242 9.82 99.17 66.24 2495  59.03 Baltimore 2348 32.66 12.16 99.17 66.18 25.03  59.09
ALM 12.63 16.78 14.93 19.18 20.87 60.88  17.26 ALM 2330 39.82 17.04 66.60 61.70 42.01  46.50
Election ~ 23.14 32.57 14.23 99.17 66.57 2493  64.01 Election  23.12 3249 15.20 99.17 66.42 2493  60.41

ALDA  MeToo BLM Sandy Davidson Baltimore ALM Election URAM MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 21.50 2589 14.17 38.21 1.12 9.84 58.75 MeToo 45.54  19.34 1048 47.07 38.14 16.97  34.80
BLM 1482 56.82 13.97 51.90 39.98 16.53  23.39 BLM 16.03  79.12 15.86 50.31 30.57 18.56  26.74
Sandy 2336 1423 3484 33.81 6.01 22.06  28.03 Sandy 9.28  14.65 60.44 10.50 10.28 15.28 8.86
Davidson 2331 3199 26.59 99.17 66.96 3231 5849 Davidson  24.00 3253 11.59 99.17 66.96 25.02 5849
Baltimore  23.03  31.63 8.77 42.12 65.33 2550  28.77 Baltimore  23.10  28.57 12.09 98.96 63.52 2493 5343
ALM 2243 1483 594 31.16 58.96 38.50 37.35 ALM 12.58 16.51 1570 3443 27.88 63.11 17.29
Election 2544 39.70 19.16 98.32 66.54 23.17 5887 Election  22.54 3192 1238 99.06 58.10 2488 6523

Table 8: Cross-domain performance evaluation over the Morality dataset (Hoover et al., 2020) using F1. Each
subtable presents results of one UDA model.

book-dvd dvd-book book-eletronic eletronic-book  kitchen-eletronic  eletronic-kitchen —dvd-kitchen kitchen-dvd dvd-eletroic  eletronic-dvd

DANN 83.16 94.00 86.87 92.15 95.24 91.21 94.24 94.29 94.63 92.57
MCD 84.39 94.34 85.06 93.36 94.08 91.61 94.14 94.99 94.22 92.54
JUMBOT 82.27 91.51 77.34 84.83 9291 85.58 92.49 94.01 91.64 92.23
ALDA 84.49 93.52 84.14 94.49 93.93 92.39 92.70 94.21 94.00 90.91
URAM 86.56 94.58 87.90 93.51 94.96 92.87 94.81 95.15 95.03 93.02

Table 9: Cross-domain performance evaluation over the Amazon review dataset (Blitzer et al., 2000).
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