PROMPT SEGMENTATION AND ANNOTATION OPTIMI-
SATION: CONTROLLING LILM BEHAVIOUR VIA OPTI-
MISED SEGMENT-LEVEL ANNOTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt engineering is crucial for effective interaction with generative artificial
intelligence systems, yet existing optimisation methods often operate over an un-
structured and vast prompt space, leading to high computational costs and po-
tential distortions of the original intent. We introduce Prompt Segmentation
and Annotation Optimisation (PSAO), a lightweight and model-agnostic frame-
work designed to improve prompt controllability and efficiency. PSAO decom-
poses a prompt into interpretable segments (e.g., sentences) and augments each
with human-readable annotations (e.g., not important, important, very important).
These annotations guide large language models (LLMs) to allocate attention more
effectively during response generation. We formally define the segmentations and
annotations and provide theoretical guarantees that PSAO yields responses that
are provably at least as good as, and often better than, those generated from the
original prompt. Empirical results demonstrate that PSAO enhances LLM perfor-
mance and can be seamlessly integrated with existing prompt optimisation meth-
ods or used as a stand-alone approach.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks such
as summarisation, reasoning, and code generation (Hendrycks et al., 2021;|Wang et al.,[2024). How-
ever, their performance is highly sensitive to the wording of input prompts (Zhan et al.| 2024} Tang
et al.l|2025). End-users interact with LLMs through prompting, making prompt engineering essen-
tial in optimising LLM performance. Recent studies have shown that even small prompt modifi-
cations can lead to significant performance differences (Huang et al., 2025} [Liskavets et al., 2025
Trivedi et al.| [2025).

To improve prompt quality, numerous automatic prompt optimisation methods have been proposed.
For example, gradient-based (Wen et al., 2023} |Pryzant et al., 2023) or gradient-free (Shin et al.,
2020) search and scoring approaches, reinforcement learning-based optimisation (Deng et al., 2022
Li et al.l 2024; Huang et al.| 2025), and methods leveraging (LLMs) as optimisers (Tang et al.,
2025), such as Automatic Prompt Engineering (APE) (Zhou et al., 2023b)), which iteratively refine
prompts.

While these approaches have significantly advanced the state of the art, they share several common
limitations. Many operate in the vast and unstructured space of natural language, which can result
in computational inefficiency and poor sample efficiency (Pryzant et al.,|2023 |Zhou et al., [2023a).
Some methods risk semantic drift, where optimised prompts deviate from original inputs, resulting
in reduced readability and limiting the user’s ability to refine the prompt further using domain knowl-
edge (Zhou et al., 2025). Furthermore, LLM-based optimisation methods often lack guarantees of
exploring the optimal regions within the search space, underscoring the need for more principled
and efficient optimisation strategies (Sabbatella et al.| [2024)).

In contrast, humans often process large or complex contexts by adding lightweight annotations, such
as underlining key sentences, marking text as important or adding explanations. Such annotations
help direct attention without altering the original text.



Objective (GSMBK Example): Find the best Segmentation and Annotation method for the given prompt to improve question answer correctness

Input Prompt

Optimised
Annotations per segment

Run Configs

willactually have to

Figure 1: An illustration of Prompt Segmentation and Annotation optimisation (example: GSM8K
question). Initially, a prompt is provided to PSAO, which is segmented into chunks (example: seg-
mented by semantic meaning via an LLM). An instructional prompt describing the annotation may
be added at the beginning. Next, PSAO assigns an annotation to each prompt segment to facilitate
optimisation (example: the structured annotation is represented as {very important}, {important}
and {not important}). Finally, the optimised prompt is generated by concatenating the segmented
portions of the prompt with their corresponding optimised annotations, aiming to maximise LLM
performance. Evaluation: annotations yielded a 50% uplift in accuracy (167% relative uplift) from
30% to 80%. This was determined by running the original prompt vs annotated prompt 20 times.

Inspired by this, we hypothesise that structured or unstructured, human-readable annotations can
serve as controllable signals for LLMs, improving reasoning and alignment while preserving se-
mantic intent.

We propose Prompt Segmentation and Annotation Optimisation (PSAQO), a novel and
lightweight framework for controllable prompt optimisation. PSAO decomposes a prompt into inter-
pretable segments (e.g., sentences or clauses) and attaches human-readable control annotations (e.g.,
{important}, {not important}, {very important}) to each segment. These annotations act as soft di-
rectives, guiding LLMs’ attention and reasoning. By optimising annotation assignments rather than
rewriting the prompt itself, PSAO preserves the prompt’s original meaning while providing a struc-
tured and tractable optimisation space. In this paper, we formally define the prompt segmentation
and annotation optimisation problem and establish four key theoretical guarantees. Empirical evalu-
ations across multiple tasks demonstrate that PSAO can improve LLM performance with negligible
computational overhead. PSAO is model-agnostic, interpretable, and easily applicable in real-world
scenarios, offering a new perspective for controllable and efficient prompt optimisation.

The main contribution of this paper are as follows:
1. We introduce the Prompt Segmentation and Annotation optimisation (PSAO) framework,
which enables more effective and interpretable prompt optimisation for LLMs.

2. We provide a comprehensive theoretical analysis of PSAO, establishing its key properties
and guarantees.

3. We conduct empirical evaluations to demonstrate the potential of PSAO across various
tasks and models.

2 RELATED WORK

Prompt optimisation refers to the process of refining, engineering or automatically generating
prompts to improve LLM performance on downstream tasks (Zhou et al., 2023b; | Yang et al.| 2024;
Sun et al.,2024; [Tang et al.,[2025). Methods span gradient-based soft prompt tuning to gradient-free
strategies such as meta prompting and LLM-in-the-loop refinement.

Initial work explored discrete prompt optimisation through gradient-based search, including Auto-
Prompt (Shin et al.,|2020) and hard prompt tuning via gradient descent and beam search (Wen et al.}



2023)). Prior work on soft prompt tuning optimised prompts as task-specific continuous embeddings
prepended to model inputs (Lester et al., 20215 Li & Liang} 2021; Lan et al.,|2025} [Fan et al., 2025),
with extensions such as gradient-based reasoning enhancements (Das et al., [2025). Other approaches
use reinforcement learning and token-level editing to improve prompt quality, including RLPrompt
(Deng et al., 2022), DP20 (Li et al., 2024), RTLIR (Huang et al., |2025)), and ParetoPrompt (Zhao
et al., |2025). These techniques require access to gradients, model weights or internal parameters,
making them unsuitable for black-box or API-only settings (Chen et al.|[2024; [Yang et al., [2024).

In parallel, gradient-free methods increasingly rely on LLMs to generate and refine prompt candi-
dates. APE (Zhou et al.l 2023b) generates prompt variants from an initial instruction and selects
those with the highest downstream performance. Recent methods incorporate feedback to guide re-
visions, such as OPRO (Yang et al., 2024)), which uses a trajectory of prompt-score pairs to inform
future edits and CriSPO (He et al., |2025), which adds structured critiques for multi-aspect self-
reflection. In addition, ProTeGi (Pryzant et al.,2023)) edits prompts using natural language critiques
with beam and bandit-guided search, while GEPA (Agrawal et al.,|2025)) applies evolutionary refine-
ment through Pareto-guided, alignment-driven reflection. This extends to output-level revision, with
methods like Reflexion (Shinn et al., 2023)) using verbal feedback on prior outputs, and approaches
such as PromptAgent (Wang et al.|[2024)),|Zhang et al.[(2024) and |Ye et al.| (2024) adopt multi-round
refinement through self-critique or planning-based strategies.

Several works explore programmatic and modular strategies for prompt optimisation. DSPy pro-
vides an interface for multi-stage pipeline optimisation (Khattab et al.,|2024). Within this, COPRO
uses coordinate ascent to refine prompts (Khattab et al., [2024; |Sarmah et al.| [2024), and MIPRO
combines instruction and example selection with Bayesian optimisation (Opsahl-Ong et al., [2024)).
Related segmentation-based methods decompose tasks or prompts into sub-prompts or segment-
level cues (Khot et al.}[2023; Jain & Chowdhary,2025)). Some methods use language models as mu-
tation and crossover operators in evolutionary algorithms, as in EvoPrompting (Chen et al., |2023)),
EvoPrompt (Guo et al.| 2024) and PromptBreeder (Fernando et al.,2024)). Causal prompting (Zhang
et al.| 2025) uses structural causal models to estimate prompt effects and guide optimisation.

Existing methods share several limitations: they often treat prompts as monolithic (Zhou et al.,
2023b), involve extensive LLM queries (Shinn et al., |2023)) and risk diverging from the user’s orig-
inal intent (Wu et al. [2024). The lack of interpretable structure further limits transparency and
reduces users’ ability to understand or control the optimisation process (Bie et al.| 2024; [Feng et al.,
2024).

3 METHODOLOGY

3.1 PROBLEM SETTING

Given a natural language prompt P € L, where £ denotes the space of all natural language prompts,
and a frozen large language model M, the goal of prompt optimisation is to identify an optimal
prompt P* such that the generated output M (P*) maximises a given objective function Q(e). The
objective ()(e) can represent various criteria, including task accuracy, response coherence, informa-
tiveness, or human preference.

Challenge: Most existing prompt optimisation methods operate directly within the natural lan-
guage space £, which poses several inherent challenges:

1. Highly-dimensional and combinatorially large, making exhaustive or fine-grained
search intractable,

2. Non-differentiable, leading to inefficient optimisation procedures,

3. Semantically unstable, as optimisation may unintentionally alter the original intent of the
prompt.

These limitations motivate us to explore alternative strategies for prompt optimisation. Inspired by
how humans annotate long or complex contexts to convey relative importance, we propose leverag-
ing structured representations and intermediate annotations. Such representations aim to (i) capture
the essential semantics of the original prompt while being more amenable to optimisation, (ii) pre-



serve the readability and intent of the prompt, and (iii) provide meaningful guidance to the optimi-
sation process through explicit annotations.

To achieve the best LLM performance, we aim to answer two key questions:

1. Where should annotations be inserted within the prompt to maximise their impact?

2. What annotations should be applied at these locations to effectively guide the model?

These questions motivate two essential components of our approach: Prompt Segmentation and
Annotation optimisation.

Definition 1 (Prompt Segmentation S). Given a prompt P, the segmentation space S is defined as
the set of all valid partitions of P into contiguous subunits:

S:{{sl,...,sn} SigP, LJSlZF)}7

i=1
where each s; corresponds to a meaningful linguistic unit, such as a sentence, clause, or phrase. The
number of segments n can vary depending on the prompt’s complexity and the desired granularity
of annotation. Each segmentation thus defines a unique structured representation of P to which
annotations can be applied.

Prompt Segmentation is designed to identify semantically coherent boundaries within the prompt
that are suitable for selective annotation and to construct a structured representation that explicitly
delineates key segments, thereby facilitating targeted optimisation.

Definition 2 (Annotation .A). Given a segmented prompt P = {s1, ..., s, }, an annotation for each
segment s; is defined as:

a; = A(si, P),
where A(-) is an annotation function that assigns a control annotation to s; by considering both its
local content and its global context within P. The complete set of annotations is:

A={ay,azs,...,a,}.

Annotations are designed to influence the model’s attention and reasoning by explicitly signal-
ing aspects such as importance, tone, or contextual reminders (e.g., summaries of preceding seg-
ments), while preserving the original semantics of each segment s;, ensuring that s; itself remains
unchanged.

Definition 3 (Segmented and Annotated Prompt Ps, _4). Let a prompt P be segmented into n con-
tiguous units S = {s1,...,8n}, and let A = {a1,...,ay,} denote the corresponding annotations.
The segmented and annotated prompt is defined as:

PS,AZ{(SZ‘,(IZ—)|SZ‘ES, a; € A, i=1,...7n}.

We formalise the problem of Prompt Segmentation and Annotation optimisation as a joint opti-
misation that simultaneously searches for the optimal segmentation S* and annotation assignment
A*:

(8%, A") = arg max Q(M(Fs,4)) (D

where Q(-) is a task-specific objective function (e.g., accuracy, coherence, or human preference),
and M denotes a frozen large language model.

3.2 THEORETICAL ANALYSIS

This section presents the theoretical foundations of the PSAO framework by proving four main
properties: (1) Weak Optimality Guarantee—PSAQ’s search space includes the original prompt,
ensuring no worse performance; (2) Search Space Efficiency—PSAO drastically reduces the opti-
misation complexity; (3) Monotonic Improvement—finer segmentation never degrades performance
and often improves it; (4) Composability—PSAOQ can enhance any existing prompt optimiser with-
out harming results. These results establish PSAO as a controllable, interpretable, and efficient
prompt optimisation method. Proofs are deferred to the Appendix.



1. Inputs | 4. Optimisation
]

Cmen ) T

Segmentation
Methods

ides feedback- 0
= L Baselines
Coser 0 o ety ) ’
3. Annotation Heuristics
i Brute Force
notation

Y
5. Optimised Prompt ’

|

2. Decomposition and Segmentation

Annotated Candidates

GEOE...

Figure 2: Illustration of the PSAO framework workflow. The PSAO framework begins by decom-
posing the base prompt into segments (1)-(2). These segments are then annotated with additional
information (3), and the framework outputs the best-performing, annotated prompt (4)-(5). The an-
notations can be either structured (e.g., keywords with associated importance weights that can be
optimised) or unstructured (e.g., plain explanations of the segment, compressed context, or clear
definitions of key terms).

Theorem 1 (Weak Optimality Guarantee). Let P be the original prompt and Ps_ s be any segmented
and annotated prompt in the PSAO search space. Then, the optimal segmented and annotated prompt
Ps« 4+ satisfies:

Q(M(Ps+.4-)) =2 QM(P)).

That is, PSAO achieves performance at least as good as the original prompt since P is contained
within the search space.

Theorem 2 (Search Space Efficiency). The PSAO search space S x A is strictly smaller than the
Sull natural language prompt space L, i.e.,

|S x A| < |L].

Thus, PSAO substantially reduces the complexity of the prompt optimisation problem.

Theorem 3 (Monotonic Improvement with Finer Segmentation). Let S1 and Ss be two segmen-
tations of P such that Ss is a refinement of Sy (i.e., So segments P into smaller units than Sy).
Then,

max Q(M(Ps,,4,)) > I%XQ(M(P&,AJ)-

Finer segmentation can only maintain or improve performance.

Theorem 4 (Composability with Existing Optimisers). Let O be any existing prompt optimisation
method producing a prompt Po. Applying PSAO on top of O by optimising annotations A over a
fixed segmentation S yields

Q(M(Ps 4-)) > Q(M(Po)).

PSAO can be combined with any optimiser without degrading performance.

3.3 PSAO ALGORITHM

The core intuition behind Prompt Segmentation and Annotation Optimisation arises from a funda-
mental observation about human communication: when conveying complex instructions, humans
naturally emphasise certain parts while de-emphasising others. In the context of answering a spe-
cific question based on a set of instructions, certain segments (e.g., individual steps) may be more
critical than others for achieving the correct or optimal outcome. PSAO aims to identify the most ef-
fective way to divide prompts into segments and enrich them with informative annotations, enabling
LLMs to better comprehend the instructions and their context. The overall framework of PSAO is
illustrated in Fig. 2]



Algorithm 1 PSAO Algorithm

1: Input: Input Prompt P,

2: Task T', LLM M, optimisation runs N,

3: Segmentation function SEGMENT (Refer to Algorithm 2]in Appendix),
4: Annotation function ANNOTATE (Refer to Algorithm [3in Appendix),
5: Evaluation function EVAL,
6
7
8

: Annotation Vocabulary Set V
: Output: Optimised message sequence Ps« 4+

9: 8’ + SEGMENT(P) > Decompose prompt into segments

10: A"+~ A, Q*(-) + —o0 > Set initial variables and baseline performance

11: for ¢ <— 1to N do

12: A’ +— ANNOTATE(S',V) > Sample new annotation value

13: Ps/ 4 < JOIN(S', A") > Create annotated prompt

14: Q'(-) < EVAL(T, M, Ps:_a/) > Evaluate end-to-end performance

15: if Q'(-) > Q*(-) then

16: Ps« g« < Ps/ 4, Q(-)* <+ Q(") > Update best configuration

17: end if

18: end for

19: Update P = Ps« 4- and repeat 9-18 until converge (|S’| = 1) or reached a max iteration
number

20: return Ps« 4~

The PSAO framework operates through a systematic three-stage process that transforms unstruc-
tured prompts into annotated, optimised inputs for LLMs.

Stage 1: Prompt Segmentation: The framework begins by parsing the input prompt P into seman-
tically coherent segments S = {s1, sa, ..., s, }, where each segment represents a logical unit such
as a sentence, paragraph, or conceptual block. This segmentation preserves the original semantic
structure while enabling granular control over individual prompt components.

Stage 2: Annotation Optimisation: Each segment s; is assigned an annotation from a user-defined
annotation space (e.g. A = {None, Low, Medium, High}). These annotations are added as human-
readable metadata that explicitly signals the relative significance of each segment to the LLM M.

Stage 3: Performance Evaluation and Selection: Each candidate annotated prompt Ps 4 is eval-
vated against task 7" and M, producing a performance score Q(-). The algorithm maintains the
best-performing configuration with score Q*(-), updating when superior configurations are found.
The final optimised prompt Ps~ 4+ is constructed by joining the prompt segments with the optimal
annotation variables. This iterative process ensures that M receives explicit guidance on segment
importance without requiring model retraining, while the systematic search through the annotation
space maximises response quality for the given task 7.

Complexity Analysis: The computational complexity of our configurable prompt optimisation
framework is O(N X |S| X (Tsegment + Tannotate + Tevar)) Where N represents the number of
optimisation trials, |.S| denotes the number of prompt segments, and Tse gment> Lunnotate> A4 Tepar
represent the time complexities of the segment, annotation, and evaluation functions respectively.
The space complexity is O(|S| + |II|) where [II| is the original prompt length. The framework
exhibits linear scalability with respect to both the number of trials and prompt segments, making it
computationally tractable for typical prompt optimisation scenarios.

4 EXPERIMENTS

We selected five representative benchmarks that span different domains and reasoning requirements:
GSMSK (Cobbe et al.,|[2021), MMLU (Hendrycks et al., 2021), Multi-Arith (Roy & Roth, 2015)),
Big-Bench-Hard (Suzgun et al.| 2023)) and AQuA (Ling et al.| 2017). We compare PSAO against
three state-of-the-art prompt optimisation methods: COPRO (Khattab et al., [2024): A coordinate
ascent-based approach that refines prompts through iterative optimisation within the DSPy frame-



work. MIPROV2 (Opsahl-Ong et al|, [2024): A method that combines instruction and example
selection with Bayesian optimisation for systematic prompt improvement. PromptAgent
2024): A method that refines prompts into detailed, domain-aware instructions that generalise
better via self-reflection and planning via Monte Carlo Tree Search. ProTeGi (Pryzant et al.} [2023):
A non-parametric approach using textual gradients and bandit-guided beam search to iteratively edit
prompts, significantly improving task performance. GEPA (Agrawal et al| [2025): An evolutionary
prompt optimiser using Pareto-based candidate selection, module-wise mutation and system-aware
crossover with minibatch evaluation.

4.1 EXPERIMENT 1: SYSTEMATIC EVALUATION OF SEGMENT ANNOTATION
CONFIGURATIONS

This experiment investigates whether segment-level annotations (Ps- 4+) can systematically im-
prove LLM response accuracy by guiding model attention across different predefined annotation
formats and segmentation strategies. We hypothesise that specific segmentation—annotation combi-
nations will yield measurable performance gains over baseline conditions.

We conduct a combinatorial evaluation across four annotation dimensions (Table [T, yielding 1,296
unique configurations per question. To assess the effect of annotation cues, we sample 50 questions
from the benchmark datasets with low baseline performance under GPT-40, which serves as the un-
derlying model throughout this experiment. Each annotation configuration is applied to a predefined
segment partition before evaluation.

Table 1: Predefined annotation space. The configuration is defined by choices across four dimen-
sions: type, bracket, positioning strategy, and introduction condition. Annotation types are tested
with and without instructional introductions (see Appendix) that guide the model in interpreting
bracketed cues. For example, the underlined configuration corresponds to prefixing each segment
with a single label such as [very important], [important], or [not important], combined with instruc-
tional sentences in the system prompt.

Dimension Values
Annotation types Importance, Context, Intent, Priority (3 levels each)
Bracket variants (1, O, {}, 0

Positioning strategy Prefix, Suffix
Introduction condition  With instructional sentences, Without instructional sentences

Results: We evaluate four conditions: (1) baseline (original questions) without system prompt, (2)
optimal (Ps=, 4~ ) without system prompt, (3) baseline with system prompt, and (4) optimal (Ps~ 4+ )
with system prompt. For (Ps- 4-), we report the best-performing annotation configuration based
on average accuracy across 10 runs under the 3-segment partition setting. Figure [3] presents the
comparative results, while Table 2]compares 3-segment and 5-segment partitioning.

BN Baseline

061 (P a)

0.5+

0.4

0.3+

Performance Score (%)

0.1+

0.0~

No System Prompt With System Prompt

Figure 3:  Accuracy comparison of baseline and optimal (Ps+ 4~) configurations under the 3-
segment setting, with and without a system prompt.



Table 2: Top 3 configurations per segmentation ranked by accuracy.
Annotation Type Segmentation Prompt Setting Brackets Position Avg. Accuracy

Importance 3-seg No Sys + Instr (] Suffix 58.77%
Priority 3-seg No Sys + Instr [ Suffix 53.57%
Priority 3-seg No Sys + Instr O Suffix 53.47%
Context 5-seg Sys Only ) Prefix 59.18%
Priority 5-seg Sys Only {} Suffix 58.50%
Context 5-seg Sys Only O Suffix 57.82%

Findings: Figure [3] shows that optimal configurations (Ps- 4-) consistently outperform baseline
prompts. Table [2| further indicates that finer-grained segmentation (5 segments) combined with a
system prompt yields the strongest improvements, with the top-performing setup reaching 59.18%.
In contrast, for 3-segment partitions, suffix positioning with instructional cues and no system prompt
performs best, with square brackets [] emerging as the most effective bracket choice. Across annota-
tion types, importance and priority dominate in the 3-segment setting, while context cues prove most
effective under 5-segment configurations. These results provide empirical evidence that segment-
level annotations systematically enhance LLM performance.

4.2 EXPERIMENT 2: ANNOTATION OPTIMISATION THROUGH HEURISTIC SEARCH

Exp. . T|poses significant efficiency challenges to scaling PSAO to longer prompts or larger datasets.
We hypothesise that the annotation space landscape contains exploitable patterns that enable efficient
optimisation. We investigate whether optimisation algorithms can efficiently navigate the annotation
space while maintaining competitive performance. Specifically, we examine whether a heuristic
search, implemented through the Optuna framework, can identify annotation configurations that are
within comparable accuracy to the brute force method from Exp. We expect to see the accuracy
of heuristic optimisation is greater than that of no annotation and less than or equal to that of brute
force method.

Table 3: Response accuracy and annotation search coverage under heuristic optimisation on 3-
segmented questions. Due to computational resource constraints, results are averaged across 50
sampled questions from GSM8K, MMLU, Multi-Arith, Big-Bench-Hard, and AQuA. Coverage is
defined as the ratio between the number of combinations explored during the search process and
the total number of possible combinations. For a case involving three segments, each with three
annotations, the total number of combinations is calculated as 3% = 27.

Condition GPT-40 Searched Combo Annotation Search
Correct Answer Rate per Question Coverage
Baseline 29.4% 0 0.00%
Heuristic 44.2% 5 21.43%
Heuristic 47.2% 10 35.71%
Heuristic 48.6% 15 57.14%
Brute force 58.8% 27 100.00%

Results: Table 3| summarises the comparative performance and coverage of the heuristic annotation
optimisation against the no-annotation baseline and the brute-force enumeration from Experiment
[.1] Results are based on GPT-40, averaged over 50 randomly selected incorrectly answered ques-
tions from GSM8K, MMLU, Multi-Arith, Big-Bench-Hard, and AQuA, with 10 random seeds per
Optuna trial. The experimental results demonstrate significant improvements with heuristic optimi-
sation, supporting our hypothesis that structured and informative annotations can effectively guide
model behaviour and enhance performance.



Performance Across Models (10 runs)

Gemini-2-Flash - Accuracy
100

00 - 87.70% 89.18% 88.17% 89.40% ss._}s%

Mean Score (%)

T
Baseline ProTeGi PromptAgent PSAO_LLM

GPT-40 - Accuracy
100

o
89.41% 90'-?-6/u

4

90 A
81.59%
80 A

Mean Score (%)

70 -

T
Baseline GEPA ProTeGi PromptAgent COPRO MIPRO PSAO_LLM

Figure 4: Experiment results.

4.3 EXPERIMENT 3: COMPARING WITH EXISTING API-FRIENDLY PROMPT OPTIMISATION
ALGORITHMS

In this experiment, we compare PSAO with other prompt optimisation algorithms that operate
through LLM APIs. For each dataset, we randomly split the questions into 80% training and 20%
testing subsets. The training questions are used to optimise the prompt, and evaluation is conducted
on the test questions using GPT-40 and Gemini-2-Flash. To ensure robustness, we repeat the evalu-
ation process ten times. The mean and standard deviation of the results are reported in Figure[d] At
this stage, since constructing a pre-trained segmentation and annotation model is prohibitively ex-
pensive, we instead employ GPT-40 and Gemini-2-Flash as the segmentation and annotation models,
respectively. The system prompt used for segmentation and annotation is provided in appendix

Results: Figure [ presents the evaluation results across all benchmark-method combinations. The
results demonstrate consistent improvements when PSAQ is applied, both as a standalone optimisa-
tion method and in combination with existing techniques. We admitted that many additional evalu-
ation experiments could be conducted to more comprehensively demonstrate the full capabilities of
PSAO. However, given our current resource limitations, we prioritise this cost-efficient yet meaning-
ful setup. Importantly, these initial results already showcase the promise of PSAO as a lightweight,
interpretable, and effective framework for prompt optimisation.

5 CONCLUSION

Inspired by human annotation strategies, PSAO revolutionises prompt optimisation by reshaping it
from an unstructured search challenge into a structured annotation assignment task. By maintaining
the semantic integrity of prompts while optimising attention allocation, PSAO delivers a practical,
interpretable, and theoretically solid methodology for enhancing language model performance. Its
model-agnostic design and minimal computational overhead make it highly adaptable for embedding
into existing optimisation workflows, laying the groundwork for more advanced prompt engineering
strategies.

A promising avenue for future research lies in developing Annotation Learning, expressed as a; =
A(s;, P), where s; is the segment and P is the prompt. This approach would involve leveraging
optimised annotations to enable the generation of annotations directly from the overall context,
eliminating the need for optimisation. Such advancements could significantly expand the capabilities
and efficiency of PSAO. Furthermore, exploring the application of PSAO across different domains
will be essential for uncovering its full potential and identifying any inherent limitations.



ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. PSAO contributes to responsible Al development
by creating interpretable prompt optimisation methods that preserve semantic integrity, preventing
unintended modifications that could lead to harmful or misleading outputs. We maintain scientific
rigour through formal theoretical analysis with four key guarantees and transparent experimental
evaluation across five benchmarks (GSM8K, MMLU, Multi-Arith, Big-Bench-Hard, AQuA) using
three models (GPT-40, Claude 4 Sonnet, Gemini 2.0 Flash). The framework addresses accessibility
by being model-agnostic and API-friendly, using only established public benchmarks without col-
lecting personal data. We acknowledge limitations including budget constraints that restricted our
evaluation scope to 20% random selected questions per dataset. We properly cite all related work
and position PSAO as complementary to existing optimisation techniques. To ensure full repro-
ducibility, we provide all development code, experimental traces, and implementation details upon
publication.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide complete source code for the PSAO framework with all
segmentation and annotation algorithms, hyperparameter configurations, and evaluation protocols
in the supplementary materials. All experiments use established benchmarks (GSM8K, MMLU,
Multi-Arith, Big-Bench-Hard, AQuA) with GPT-40, Claude 4 Sonnet, and Gemini 2.0 Flash in
API-only settings across five random seeds for statistical robustness. The supplementary materi-
als include exact question selection criteria and filtered datasets, all system prompts and optimised
PSAO prompts, baseline method configurations for COPRO/MIPRO/OPRO comparisons, complete
experimental logs with performance traces, annotation ranges and optimisation parameters, and au-
tomated reproduction scripts. Theoretical proofs supporting our four main guarantees are provided
in the appendix, with formal definitions and mathematical foundations that enable verification of all
theoretical claims.

REFERENCES

Lakshya A. Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, Christopher Potts, Koushik Sen,
Alexandros G. Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, and Omar Khattab. GEPA: Reflec-
tive prompt evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457,
2025.

Yequan Bie, Luyang Luo, Zhixuan Chen, and Hao Chen. Xcoop: Explainable prompt learning
for computer-aided diagnosis via concept-guided context optimization. In Proceedings of the
27th International Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pp. 773-783, 2024. doi: 10.1007/978-3-031-72390-2_72.

Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level neural
architecture search. In Advances in Neural Information Processing Systems 37, 2023.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Effi-
cient instruction optimization for black-box large language models. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Sarkar Snigdha Sarathi Das, Ryo Kamoi, Bo Pang, Yusen Zhang, Caiming Xiong, and Rui Zhang.
GReater: Gradients over reasoning makes smaller language models strong prompt optimizers. In
Proceedings of the 13th International Conference on Learning Representations, 2025.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement

10



learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 3369-3391. Association for Computational Linguistics, 2022. doi: 10.18653/v1/
2022.emnlp-main.222.

Sinan Fan, Liang Xie, Chen Shen, Ge Teng, Xiaosong Yuan, Xiaofeng Zhang, Chenxi Huang, Wenx-
ia0 Wang, Xiaofei He, and Jieping Ye. Improving complex reasoning with dynamic prompt
corruption: A soft prompt optimization approach. In Proceedings of the 13th International Con-
ference on Learning Representations, 2025.

Zijian Feng, Hanzhang Zhou, Zixiao Zhu, Junlang Qian, and Kezhi Mao. Unveiling and manip-
ulating prompt influence in large language models. In Proceedings of the 12th International
Conference on Learning Representations, 2024.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim
Rocktédschel. Promptbreeder: Self-referential self-improvement via prompt evolution. In Pro-
ceedings of the 41st International Conference on Machine Learning, 2024.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In Proceedings of the 12th International Conference on Learning Represen-
tations, 2024.

Han He, Qianchu Liu, Lei Xu, Chaitanya Shivade, Yi Zhang, Sundararajan Srinivasan, and Ka-
trin Kirchhoff. Crispo: Multi-aspect critique-suggestion-guided automatic prompt optimization
for text generation. In Proceedings of the 2025 AAAI Conference on Artificial Intelligence, pp.
24014-24022, April 2025. doi: 10.1609/aaai.v39i22.34575.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In Proceedings of the 9th
International Conference on Learning Representations, 2021.

Guang Huang, Yanan Xiao, Lu Jiang, Minghao Yin, and Pengyang Wang. Beyond prompt en-
gineering: A reinforced token-level input refinement for large language models. Proceed-
ings of the 2025 AAAI Conference on Artificial Intelligence, 39(22):24113-24121, 2025. doi:
10.1609/aaai.v39i22.34586.

Yash Jain and Vishal Chowdhary. Local prompt optimization. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pp. 75-81. Association for Computa-
tional Linguistics, 2025. doi: 10.18653/v1/2025.naacl-short.7.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into self-
improving pipelines. In Proceedings of the 2024 International Conference on Learning Repre-
sentations, 2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In Proceed-
ings of the 11th International Conference on Learning Representations, 2023.

Pengxiang Lan, Enneng Yang, Yuting Liu, Guibing Guo, Jianzhe Zhao, and Xingwei Wang. EPT:
Efficient prompt tuning by multi-space projection and prompt fusion. In Proceedings of the 2025
AAAI Conference on Artificial Intelligence, pp. 24366-24374, 2025. doi: 10.1609/aaai.v39i23.
34614.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 3045-3059. Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.emnlp-main.243.

11



Chengzhengxu Li, Xiaoming Liu, Yichen Wang, Duyi Li, Yu Lan, and Chao Shen. Dialogue for
prompting: a policy-gradient-based discrete prompt generation for few-shot learning. In Pro-
ceedings of the 2024 AAAI Conference on Artificial Intelligence, pp. 18481-18489, 2024. doi:
10.1609/aaai.v38i16.298009.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 4582-4597. Association for Computational Linguistics, 2021. doi: 10.18653/v1/
2021.acl-long.353.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158-167.
Association for Computational Linguistics, 2017. doi: 10.18653/v1/P17-1015.

Barys Liskavets, Maxim Ushakov, Shuvendu Roy, Mark Klibanov, Ali Etemad, and Shane K. Luke.
Prompt compression with context-aware sentence encoding for fast and improved llm inference.
In Proceedings of the 2025 AAAI Conference on Artificial Intelligence, pp. 24595-24604, 2025.
doi: 10.1609/aaai.v39i23.34639.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
programs. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 9340-9366. Association for Computational Linguistics, 2024. doi: 10.18653/v1/
2024.emnlp-main.525.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic Prompt
Optimization with “Gradient Descent” and Beam Search. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 7957-7968. Association for
Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.494.

Subhro Roy and Dan Roth. Solving General Arithmetic Word Problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 1743—-1752. Association
for Computational Linguistics, 2015. doi: 10.18653/v1/D15-1202.

Antonio Sabbatella, Andrea Ponti, Ilaria Giordani, Antonio Candelieri, and Francesco Archetti.
Prompt Optimization in Large Language Models. Mathematics, 12(6), 2024. ISSN 2227-7390.
doi: 10.3390/math12060929.

Bhaskarjit Sarmah, Kriti Dutta, Anna Grigoryan, Sachin Tiwari, Stefano Pasquali, and Dhagash
Mehta. A Comparative Study of DSPy Teleprompter Algorithms for Aligning Large Language
Models Evaluation Metrics to Human Evaluation. arXiv preprint arXiv:2412.06570, 2024.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 4222-4235.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.346.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: Language Agents with Verbal Reinforcement Learning. In Advances in Neural Information
Processing Systems 36, 2023.

Hao Sun, Alihan Hiiyiik, and Mihaela van der Schaar. Query-dependent prompt evaluation and
optimization with offline inverse rl. In Proceedings of the 12th International Conference on
Learning Representations, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-Bench
Tasks and Whether Chain-of-Thought Can Solve Them. In Findings of the 2023 Association for
Computational Linguistics, pp. 13003—13051. Association for Computational Linguistics, 2023.
doi: 10.18653/v1/2023.findings-acl.824.

12



Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan Lu, Yaliang Li, and Ji-Rong Wen. Unleash-
ing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with
Gradient-based Model Optimizers. Proceedings of the 2025 AAAI Conference on Artificial Intel-
ligence, 39(24):25264-25272, 2025. doi: 10.1609/aaai.v39i24.34713.

Prashant Trivedi, Souradip Chakraborty, Avinash Reddy, Vaneet Aggarwal, Amrit Singh Bedi, and
George K. Atia. Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment.
In Proceedings of the 2025 AAAI Conference on Artificial Intelligence, pp. 2765327661, 2025.
doi: 10.1609/aaai.v39i26.34979.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. PromptAgent: Strategic Planning with Language Models Enables Expert-
level Prompt Optimization. In Proceedings of the 12th International Conference on Learning
Representations, 2024.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Dis-
covery. In Advances in Neural Information Processing Systems, volume 36, pp. 51008-51025,
2023.

Yurong Wu, Yan Gao, Bin Zhu, Zineng Zhou, Xiaodi Sun, Sheng Yang, Jian-Guang Lou, Zhiming
Ding, and Linjun Yang. StraGo: Harnessing Strategic Guidance for Prompt Optimization. In
Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 10043-10061,
2024. doi: 10.18653/v1/2024.findings-emnlp.588.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large Language Models as Optimizers. In Proceedings of the 12th International Conference on
Learning Representations, 2024.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. In Findings of the 2024 Association for Computational Linguistics, pp. 355-385. Asso-
ciation for Computational Linguistics, 2024. doi: 10.18653/v1/2024.findings-acl.21.

Pengwei Zhan, Zhen Xu, Qian Tan, Jie Song, and Ru Xie. Unveiling the lexical sensitivity of llms:
Combinatorial optimization for prompt enhancement. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 5128-5154. Association for Computa-
tional Linguistics, 2024. doi: 10.18653/v1/2024.emnlp-main.295.

Chenrui Zhang, Lin Liu, Jinpeng Wang, Chuyuan Wang, Xiao Sun, Hongyu Wang, and Mingchen
Cai. Prefer: Prompt ensemble learning via feedback-reflect-refine. In Proceedings of the 2024
AAAI Conference on Artificial Intelligence, pp. 19525-19532, 2024. doi: 10.1609/aaai.v38il7.
29924.

Congzhi Zhang, Linhai Zhang, Jialong Wu, Yulan He, and Deyu Zhou. Causal prompting: Debiasing
large language model prompting based on front-door adjustment. In Proceedings of the 2025 AAAI
Conference on Artificial Intelligence, pp. 2584225850, 2025. doi: 10.1609/aaai.v39i24.34777.

Guang Zhao, Byung-Jun Yoon, Gilchan Park, Shantenu Jha, Shinjae Yoo, and Xiaoning Qian. Pareto
prompt optimization. In The 13th International Conference on Learning Representations, 2025.

Chenyi Zhou, Zhengyan Shi, Yuan Yao, Lei Liang, Huajun Chen, and Qiang Zhang. Riot: Efficient
prompt refinement with residual optimization tree. In Proceedings of the 63rd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 22307-22323, 2025.

Han Zhou, Xingchen Wan, Ivan Vuli¢, and Anna Korhonen. Survival of the most influential prompts:
Efficient black-box prompt search via clustering and pruning. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 13064-13077, 2023a. doi: 10.18653/v1/2023.
findings-emnlp.870.

Yongchao Zhou, Andrei loan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In Proceedings of the 11th
International Conference on Learning Representations, 2023b.

13



6 APPENDIX

6.1 PROOF OF THEOREMS

We provide formal proofs for the four key theoretical guarantees of the PSAO framework stated in
the main text. Each proof is preceded by an intuitive explanation.

6.1.1 PROOF OF THEOREM 1: WEAK OPTIMALITY GUARANTEE

Intuition. Since PSAQO’s search space explicitly contains the original prompt as a trivial segmen-
tation with neutral annotations, the best prompt found by PSAO cannot be worse than the original.
This ensures that during the optimisation process, PSAO would consider the original prompt and
would never degrade performance.

Proof. As the PSAO search space consists of all the segmented and annotated prompts Ps_4, where
S represents a set of segments P and A is the corresponding annotation set.

Consider segmentation Sy = {P}, i.e., the original prompt is treated as a single segment. Define
the assignment of the annotation Ay = {ag} where ag is a neutral annotation (an empty string) that
does not alter the semantics or effect of the prompt.

By construction, Ps,, 4, = P. Hence,
QM(Ps,,40)) = QM(P)).

Since (8*, . A*) is defined as the optimiser over all segmentations and annotations,

Q(M(Ps+ 4+)) = IggiiQ(M(Ps,A)) > Q(M(Ps,,4,))-

Therefore,
Q(M(Ps- 4+)) > Q(M(P)),

which proves the theorem. O

6.1.2 PROOF OF THEOREM 2: SEARCH SPACE EFFICIENCY

Intuition. The natural language prompt space is considered infinite, which makes prompt optimi-
sation over it infeasible. PSAO narrows the search by segmenting the prompt into meaningful units
and constrains annotations to a finite vocabulary set, which limited the optimisation space into a
controllable size.

Proof. The full natural language prompt space L is combinatorially large due to the unrestricted
nature of natural language and continuous token embeddings.

In contrast, PSAO constrains the search space to a discrete space S x A, where:

» S is a set of valid segments of a given prompt P, bounded by the finite length of P. The
number of segments of a sequence of length m is bounded by the (m — 1)-th Bell number,
which is much smaller than |L|.

» A is a finite set of annotations drawn from a predefined set of annotation vocabulary with
size |V|. For n segments, there are at most |V|™ annotation assignments.

Therefore, the size of the PSAO search space satisfies the following criteria:
IS X Al < Bp—1 x V™ < |L],

where B,,_1 is the (m — 1)-th Bell number.

Therefore, PSAO is capable of controlling the search space compared to £, and allowing controllable
prompt optimisation. O

14



6.1.3 PROOF OF THEOREM 3: MONOTONIC IMPROVEMENT WITH FINER SEGMENTATION

Intuition. Finer segmentation provides more granular control on the prompt and enabling more
precise annotations. In the worst case, it can replicate empty annotations by assigning empty string
to smaller subsegments, so performance shall not decrease.

Proof. Let S = {s1,...,sx} and So = {t1,...,t,} be two segments of P such that Sy
is a refinement of S7. Formally, for each segment s; € &, there exists a subset of segments
{tirs- - ti,,, } € Sz such that:

m;
S; = U ti’j’ with t,’j N tij/ = @ fOI'j # j,.
j=1
Let A; = {agl), ce ag)} be an annotation assignment for S;. Construct an annotation assignment
As = {agz), . ,agf)} for S, by assigning the empty annotation to all subsegments within each s;:
2 1 .
agj) = al( ) Vi=1,...,m,.

Since the segmentation Sy with annotations A5 can be reconstructed as of Sy, Ay, it follows that:
Q(M(PSQ,.AQ)) = Q(M(P51,A1)) .

Because
max Q(M(Ps; 4;)) = Q(M(Ps, 4,)),

so we can conclude that

H}AaQXQ(M(PSLAz)) > H}‘aXQ(M(PShAl))'

Hence, increasing segmentation granularity shall not degrade LLM performance and may improve
it. O

6.1.4 PROOF OF THEOREM 4: COMPOSABILITY WITH EXISTING OPTIMISERS

Intuition. Because PSAO allows empty string as annotations that do not alter prompt semantics,
PSAO can always preserve or improve the performance of any existing prompt optimiser by refining
annotations, ensuring composability without loss.

Proof. Let O be an existing prompt optimisation method that outputs a prompt Pp.

Fix a segmentation S of Pn. Consider optimising annotations 4 over S:

A* = arg max Q(M(Ps,4)).

Because the annotation space includes a neutral annotation that leaves the prompt unchanged, setting
all annotations to neutral yields:

Q(M(Ps Areu)) = Q(M(Po)).
Since A* is the optimal annotation assignment,

Q(M(Ps,a-)) = Q(M(Ps Apn)) = Q(M(Po)).

Thus, PSAO can be applied on top of any existing optimiser without degrading performance. O

15



6.2 SEGMENTATION AND ANNOTATION ALGORITHMS
6.2.1 SEGMENTATION ALGORITHM

The segmentation procedure splits a input prompt into ordered segments that can be independently
annotated and then recombined. It is generalisable to a wide range of segmentations, including
sentence-level splits and character-based delimiters, while remaining role-agnostic and reproducible.
In experiment [4.3] we use the corresponding LLM to segment the input prompt.

Algorithm 2 SEGMENT: General Prompt Segmentation
1: Input: Input Prompt P;
2: Optional delimiter patterns D;
3 Optional secondary splitter g (e.g., sentence splitter or character-based rules)
4: Output: Ordered segments S = [sq, ..., Sp]
5: Ensure: P = sq|---|lsps and Vm € {1,..., M}, |s;m| >0
6.
7
8

. if The prompt P is clearly articulated and free of ambiguity. then
: S ={P}
9: return S
10: end if
11: B + FIND_BOUNDARIES(P,D U {0,|P|}) > Locate split boundaries
12: C <— CHOP(P, B) > Exact substrings between boundaries
13: S+ ]
14: for each c € C' do
15: if ¢ is provided then

16: P + SPLIT(c, g) > e.g., by sentences or specific characters
17: Append each piece in P to S

18: else

19: Append cto S

20: end if

21: end for

22: return S

6.2.2 ANNOTATION ALGORITHM

The annotation procedure assigns per-segment control variables according to a schema (e.g., scalar
weights, categorical tags, or text templates) that guide optimisation and reconstruction. It is gener-
alisable across deterministic or sampling-based proposals and produces a one-to-one map aligned
with the input segments.

Algorithm 3 ANNOTATE: Segment Annotation
: Input: Segment list S = [s1,...,Snm];

[

2: Annotation vocabulary set V (fields and domains);

3: Annotation function A(s,,, P) (deterministic or sampling-based);

4: Output: Annotations A = {ay,...,ap } with a,, matching s,,

5:

6: A<+ ]

7: for m < 1to M do

8: G — A(Sm, P) > Generate annotation for segment s,
9: Append a,,, to A

10: end for

11: return A

16



6.3 PROMPTS

6.3.1 SEGMENTATION AND ANNOTATION PROMPT

Table 4: Segmentation and Annotation Prompts for Different LLM Models

LLM Model

Segmentation and Annotation Prompt

GPT-40

Gemini-2-flash

You are a prompt segmentation and annotation engineer.

**Goal:** If the input question is clear and you are confident in your under-
standing, return “’[Clear]” only. Otherwise, if the question is ambiguous or
lacks detail, highlight these issues in [brackets] before the relevant segment.
**Quality Bar**: Your output must be more useful than the original question
by improving clarity, surfacing dependencies and ambiguities, and guiding so-
lution focus. Otherwise, just response the original question.

**Annotation**: - Annotation should be seamlessly integrated without caus-
ing interruption of context within []. - Highlight key facts, constraints, units,
definitions, and dependencies. - Note implications, edge cases, missing info,
and assumptions (label assumptions clearly). - You may include the final an-
swer succinctly in the most relevant segment’s annotation when the question
calls for one. For multiple choice, you may name the selected option with a
one-sentence justification.

**Notes:** - Annotations must increase clarity and actionability beyond the
original question. - Identify required methods/principles. - If data are missing
or ambiguous, flag it and state how you would proceed under reasonable as-
sumptions.”

You are a prompt optimization specialist designed to refine user questions for
Gemini 2.0 Flash, maximizing response accuracy.

**Goal:** If the user question is already perfectly clear and actionable, re-
spond with ”’[Clear]”. Otherwise, analyze the question for potential sources of
ambiguity and instability and enhance the question by adding precise clarify-
ing annotations directly before the corresponding parts, enclosed in [brackets].
The goal is to guide Gemini 2.0 Flash to generate significantly more accurate
responses without changing the original text. Adding new text is allowed only
within the [brackets].

**Annotation Style & Content:** - Integration: Annotations must be seam-
lessly integrated within the question text using [brackets]. - Focus: Priori-
tize annotations that provide actionable information directly useful to Gemini,
minimizing ambiguity and guiding it towards a more accurate response. This
includes: Context & Definitions, Constraints, Missing Details, Unstated As-
sumptions, Methodologies, Exemplars (When Appropriate), Output Format. -
Brevity: Keep annotations concise and highly relevant to improving the re-
sponse and promoting consistency. Avoid unnecessary explanations. - Do not
change the fundamental nature of the prompt.

6.3.2 INSTRUCTIONAL PROMPTS FOR ANNOTATIONS

Table 5: Optional Instructional Prompts Used to Describe Annotation Types.

Annotation Instructional Prompt

Importance  Follow the importance levels indicated in brackets (very important, important,
not important) carefully when solving the problem below:

Context Use the context clues in brackets to answer the following:

Intent Consider the intent in brackets when responding

Priority Follow the priority levels indicated in brackets (high, medium, low) carefully

when solving the problem below:

17



6.3.3 SYSTEM PROMPTS PER DATASET

Table 6: The optional 5-sentence system prompts are used to describe each dataset and are fed into
the LLM during inference. Used to test PSAO for the system prompt testcase.

Dataset

System Prompt (5 sentences)

AQuA

Big-Bench-Hard (BBH)

GSMSK

MMLU

MultiArith

You will be given an AQUA algebraic word problem that requires a de-
tailed, step-by-step solution. Clearly identify the relevant mathematical
relationships and use appropriate algebraic techniques. Show all your
intermediate reasoning steps and explain how each step addresses the
problem. Link your calculations directly to the original question, en-
suring every step is justified with provided information. Always check
that your answer is mathematically accurate and directly responds to the
question.

You will be presented with a single, challenging question from the BBH
(Big-Bench Hard) dataset, which covers a wide range of topics includ-
ing logic, mathematics, language understanding and complex problem-
solving. These questions are designed to test advanced reasoning skills,
so pay close attention to all details, requirements, and constraints in the
prompt. Carefully analyze the problem, applying relevant background
knowledge and working through the solution step by step. Justify each
part of your reasoning and explain the methods or concepts you use to
reach your answer, focusing on information directly needed to solve the
problem. Restrict your explanation to the essential logic and details,
leaving out unrelated commentary, so your solution remains clear and
easy to follow.

You are a math tutor for grade school students answering GSM8K math
word problems. Carefully read each question, identify relevant quanti-
ties, and use appropriate arithmetic operations. Provide clear, step-by-
step explanations using simple language, solving the problem indepen-
dently. Always justify your reasoning and do not round numbers unless
the question asks; use exact values. Finish by clearly stating the final
answer derived from your calculations.

You will be given a question from the MMLU dataset, covering subjects
such as STEM, humanities or social sciences. Carefully read each ques-
tion and identify the relevant concepts and facts required to solve it. An-
swer the question directly and accurately using your subject knowledge.
Briefly explain your reasoning and reference any essential evidence or
logic. Keep your response concise, avoiding unnecessary information
or details.

You will receive a math word problem from the MultiArith dataset, ap-
propriate for elementary-level reasoning. Read the problem carefully,
identify relevant quantities, and determine the necessary arithmetic op-
erations. Break the problem into logical steps using addition, subtrac-
tion, multiplication or division as needed. Show all intermediate steps
in your explanation and justify each calculation clearly. Focus on pro-
viding a detailed, step-by-step solution with exact answers, avoiding
unnecessary details.

18



6.4 PSAO SCORE COMPARISON WITH BASELINES AND SOTAS

Comparison of Baseline, SOTA prompt optimisation techniques and PSAO_LLM. Scores are accu-
racy percentages as mean(%) + standard deviation (%). Each table contains 1x Baseline, 5x SOTAs
and PSAO_LLM. The tables are split into two as they are too wide to fit into one table.

6.4.1 GEMINI-2-FLASH ACCURACY MEAN AND STANDARD DEVIATION

Table 7a: Baseline vs SOTA vs PSAO for Gemini-2-Flash

Dataset Baseline GEPA ProTeGi PromptAgent
AQuA 91.45+£1.62 90.13+1.12 93.55£1.69 92.244+0.97
BBH_Boolean_Expressions 99.67 +0.42 99.30+0.70 99.73+0.56 100.00 £ 0.00
BBH_Causal _Judgement 66.36 £ 3.18 70.70+£2.00 68.91+2.90 68.55+2.85
BBH_Temporal_Sequences 96.67+£1.09 97.20+1.33 97.07+2.07 9747+1.17
GSM8K 93.40+0.00 93.944+0.00 93.14+0.57 92.37+0.00
MMLU College Medicine_Test ~ 79.11 £1.97 81.924+2.26 78.63+£0.62 76.47+1.31
MMLU_HS_US _History_Test 87.30£1.76 93.284+0.93 85.74£1.74 83.93+2.16
MMLU_HS_World_History_Test 91.46 £0.75 91.86£0.69 91.57+1.25  69.86 &+ 3.19
MMLU Professional Law_Test ~ 74.41+£0.71 76.24+1.12 76.80£0.57 75.25£0.74
MultiArith 97.22+0.00 97.224+0.00 96.56+0.57 97.22+0.00
Average 87.71+£1.15 89.18+1.01 88.17+£1.25 85.34+1.24
Table 7b: Baseline vs SOTA vs PSAO for Gemini-2-Flash
Dataset COPRO MIPRO PSAO_LLM
AQuA 92.76 £1.12 88.95 £ 1.54 93.42 £1.32
BBH_Boolean_Expressions 98.40 £ 1.05 98.27 £1.26 100.00 £ 0.00
BBH_Causal_Judgement 68.91 £ 3.58 67.09 £ 3.37 72.73 +1.82
BBH_Temporal_Sequences 98.93 +1.38 0.00 £ 0.00 98.22 £ 0.77
GSMSK 93.99 £ 0.00 90.23 £ 0.27 93.75 £ 0.00
MMLU College_Medicine_Test 78.24 +1.45 77.65 + 1.65 77.124+1.13
MMLU_HS_US _History _Test 93.93 £ 1.56 91.64 £1.21 88.52 £1.64
MMLU_HS_World_History_Test 93.14 £1.13 92.57£1.13 91.43 £0.82
MMLU _Professional_Law_Test 78.50 &+ 2.08 89.52 +0.88 75.06 = 1.03
MultiArith 97.22 £0.00 97.06 £ 0.27 97.22 +£0.00
Average 89.40 £1.33 79.30 £ 1.16 88.75 +£0.85

19



6.4.2 GPT-40 ACCURACY MEAN AND STANDARD DEVIATION

Table 8a: Baseline vs SOTA vs PSAO for GPT-40

Dataset Baseline GEPA ProTeGi PromptAgent
AQuA 82.63 £2.54 83.42+1.41 81.32+2.13 83.29+2.06
BBH_Boolean_Expressions 99.33+0.94 98.90+0.80 99.20+£0.93 99.20 £0.93
BBH_Causal_Judgement 68.73£3.30 68.00£3.40 67.27+2.42 65.09 £ 3.62
BBH_Temporal_Sequences 100.00 £0.00 99.73+0.56 99.07+1.26 99.33 +£0.94
GSMSK 94.18£1.49 95.11£1.18 94.74+0.82 93.16 £6.59
MMLU _College_Medicine_Test ~ 83.43 £2.38 87.88£1.58 81.37£1.67 82.75+2.58
MMLU_HS_US _History_Test 93.77+£1.69 9279+£1.38 94.26+1.39 93.93+1.35
MMLU_HS _World_History _Test 92.43 £0.96 91.86+£0.69 93.14+1.48 88.71+1.96
MMLU _Professional_Law_Test 78.89£0.91 80.78£0.65 80.66£0.93 T77.84+0.77
MultiArith 98.33£0.00 98.33£0.00 98.28+0.18 98.33+0.00
Average 89.17+£1.42 89.68+1.17 88.93+1.32 88.16+2.08
Table 8b: Baseline vs SOTA vs PSAO for GPT-40
Dataset COPRO MIPRO PSAO_LLM
AQuA 83.42 £ 2.50 81.84 £2.30 92.65 £ 2.49
BBH_Boolean_Expressions 99.33 £ 0.70 99.20 £1.12 100.00 £ 0.00
BBH_Causal _Judgement 70.00 + 2.46 70.91 £ 3.43 69.07 £ 4.17
BBH_Temporal_Sequences 100.00 £ 0.00 22.13 £4.67 100.00 £ 0.00
GSMSK 94.48 £ 1.45 95.09+1.21 95.58 £ 0.86
MMLU College_Medicine_Test 82.16 £ 2.52 82.16 £ 0.62 86.44 £ 4.90
MMLU_HS_US _History_Test 92.95 £ 1.56 93.61 £2.11 93.84 £1.34
MMLU _HS_World_History_Test 93.00 £ 1.25 92.71 £ 0.81 95.38 £1.80
MMLU _Professional Law_Test 80.43 £2.94 79.94 + 1.66 78.45+1.21
MultiArith 98.33 £ 0.00 98.33 £ 0.00 98.22 £0.00
Average 89.41 £ 1.54 81.59 £ 1.79 90.96 £ 1.68

20



	Introduction
	Related Work
	Methodology
	Problem Setting
	Theoretical Analysis
	PSAO Algorithm

	Experiments
	Experiment 1: Systematic Evaluation of Segment Annotation Configurations
	Experiment 2: Annotation Optimisation Through Heuristic Search
	Experiment 3: Comparing with Existing API-Friendly Prompt Optimisation Algorithms

	Conclusion
	Appendix
	Proof of Theorems
	Proof of Theorem 1: Weak Optimality Guarantee
	Proof of Theorem 2: Search Space Efficiency
	Proof of Theorem 3: Monotonic Improvement with Finer Segmentation
	Proof of Theorem 4: Composability with Existing Optimisers

	Segmentation and Annotation Algorithms
	Segmentation Algorithm
	Annotation Algorithm

	Prompts
	Segmentation and Annotation Prompt
	Instructional Prompts for Annotations
	System Prompts per Dataset

	PSAO Score Comparison with Baselines and SOTAs
	Gemini-2-Flash accuracy mean and standard deviation
	GPT-4o accuracy mean and standard deviation



